高等量子力学笔记
高等量子力学笔记

具有加法与数乘两种运算并满足条件(1)~(8)的集合称为矢量空间或线 性空间。具有加法,数乘和内积三种运算的空间称为内积空间,而完全的内积空 间称为希尔伯特空间。 (在本章矢量空间通常指复数域上的内积空间) 空 间 的 完 全 性 的 意 义 为 空 间 中 任 何 在 Cauchy ( 柯 西 ) 意 义 下 收 敛 的 序 列
类似零
2. 数乘
集合内任意一矢量可以与数(实数或复数)相乘,得出集合内另一矢量。 即规定一种数乘规则,使任意矢量ψ 和一个数 a,在集合内总有一个矢量
与之对应,记为
a a
称为ψ 与 a 的乘积
也满足四个条件 5) 、ψ 1=ψ ψ a 次序无关 尽量数字在后面
这些矢量总在集合 内 类似乘法
{ 1 , 2 , 3 ,...}的极限也必须在本空间中。Cauchy 意义下收敛的意思是:
对给定任意小的实数 0 ,有数 N 存在,当 m,n>N 时,有
( m n , m n)
在量子力学中所用到的空间,就是复数域上的希 尔伯特空间。
高等量子力学笔记
第 1.1- 3 -页 (1)换元法 同(1)
3. 内积
两个矢量可以作内积,得出一个数。即规定一种内积规则,按一定次序任 取两个矢量ψ 与 ,总有一个数 c 与之相对应,记作 (ψ , )=c 在实数域(复数域)上的矢量空间中的内积,所得的也是实数(复数) 。 内积与两个因子的次序有关,内积规则要满足下列四个条件:
类似点乘 不是矢量是数
得到
要求两个因子的顺 序
9) 、
( , ) ( , )*
右上角*表示复共轭
10) 、 11) 、
( , ) ( , ) ( , ) ……………………分配律
《曾谨言 量子力学教程 第3版 笔记和课后习题 含考研真题 》读书笔记思维导图

02
第2章 一维势场中的 粒子
03
第3章 力学量用算符 表达
04
第4章 力学量随时间 的演化与对称性
05 第5章 中心力场
06
第6章 电磁场中粒子 的运动
目录
07 第7章 量子力学的矩 阵形式与表象变换
08 第8章 自 旋
09
第9章 力学量本征值 问题的代数解法
010 第10章 微扰论
011 第11章 量子跃迁
7.2 课后习题详 解
7.1 复习笔记
7.3 名校考研真 题详解
第8章 自 旋
8.2 课后习题详 解
8.1 复习笔记
8.3 名校考研真 题详解
第9章 力学习题详 解
9.1 复习笔记
9.3 名校考研真 题详解
第10章 微扰论
10.2 课后习题 详解
10.1 复习笔记
第1章 波函数与Schrödinger 方...
1.2 课后习题详 解
1.1 复习笔记
1.3 名校考研真 题详解
第2章 一维势场中的粒子
2.2 课后习题详 解
2.1 复习笔记
2.3 名校考研真 题详解
第3章 力学量用算符表达
3.2 课后习题详 解
3.1 复习笔记
3.3 名校考研真 题详解
《 曾 谨 言 量 子 力 学 最新版读书笔记,下载可以直接修改 教程 第3版 笔记 和课后习题 含考研 真题 》
思维导图PPT模板
本书关键字分析思维导图
教程
书
名校
第版
量子力学
考研
知识
真题
笔记
习题 教材
内容
复习
参考书目
免费
考生
清华大学高等量子力学(PDF)

第一章:基本概念1. Stern -Gerlach 实验●容易体现与经典力学的根本差别; ●容易体现量子力学的核心-测量问题; ●二能级系统是最量子的体系。
1)结果加热的银原子束通过不均匀磁场后分裂为两束。
2)分析● 磁场相互作用导致分裂,必是原子的磁矩M 引起的,相互作用势 V M B =-。
● 磁矩与角动量J 成正比,M J ∝。
● 原子感受到的力 z z z z B B F V M e J e z z∂∂=-∇=∝∂∂分裂成对称的上下两束→角动量在磁场方向(Z )只有大小相等方向相反的两个分量。
如果这个角动量是由于原子本身转动引起的,热原子的角动量方向将是随机分布的,大量原子通过磁场后在屏上会有一个对称的连续分布,而不是一个分离的两分量分布。
因此力不是由轨道角动量产生的。
银原子有47个电子,其中46个是满壳分布,球对称,整体不显示角动量。
银原子的角动量完全是由那个价电子引起的。
分离的二分量分布说明是由价电子的内禀角动量引起的,记为s,z s 只有两个大小相等方向相反的值z s +和z s -。
3)量子性质●存在自旋角动量,是内禀物理量(与时空无关); ●自旋角动量的取值不连续。
●磁场起的是测量作用。
用Z 方向的磁场测量Z 方向的角动量。
xyz4)级联Stern -Gerlach 实验图1入射原子束先后经过两个Z 方向的磁场,见图1上部。
在第二个磁场之前z s 有确定值z s +,故在磁场中原子感受的力是确定的,在第二个磁场之后z s 仍然有确定值z s +。
现在让入射原子束经过Z 和X 方向的两个磁场,见图1中部。
在第二个磁场中原子感受的力x x B F J e x∂∝∂ 。
在第二个磁场之后观察到原子束分裂,说明在第二个磁场之前x s 有两个值xs +和x s -两个分量(虽然z s 有确定值z s +)。
●量子性质:当z s 有确定值时,x s 没有确定值。
z s 和x s 不能同时有确定值!再让入射原子束经过Z ,X 和Z 方向的三个磁场,见图1下部。
量子力学笔记

量子力学笔记量子力学是研究微观粒子行为的物理学分支之一,它描述了微观世界的规律和现象。
本文将介绍量子力学的基本概念、原理和应用。
一、波粒二象性在量子力学中,微观粒子既表现出粒子的特点,也表现出波动的特点,这被称为波粒二象性。
根据量子力学原理,微观粒子的性质可以用波函数来描述。
波函数是描述微观粒子状态和运动规律的数学函数。
二、不确定性原理不确定性原理是量子力学的重要原理之一,由海森堡提出。
该原理指出,当我们测量微观粒子的某个性质时,例如位置和动量,我们不能同时精确地知道它们的数值。
精确地测量其中一个性质会导致对另一个性质的测量结果存在不确定性。
三、量子态和量子叠加在量子力学中,微观粒子的状态用量子态表示。
一个量子态可以是一个波函数或由多个波函数组成的线性叠加态。
量子叠加使得微观粒子可以同时处于多个状态,直到被观测或测量之前。
四、观测和测量量子力学认为,当我们观测或测量微观粒子时,它的量子态会坍缩到一个确定的态。
这个过程被称为波函数坍缩。
观测结果是由量子态坍缩到一个确定态而得到的。
五、量子纠缠和量子隐形传态量子纠缠是量子力学中一个特殊而奇妙的现象。
当两个或多个微观粒子发生相互作用后,它们的量子态相互依赖,无论它们之间的距离有多远,任一粒子的态发生变化,其他纠缠粒子的态也会相应变化。
这种相互依赖的关系被称为量子纠缠。
六、量子计算和量子通信量子力学的发展也催生了量子计算和量子通信的研究领域。
量子计算利用量子叠加和纠缠的特性,可以在某些问题上具有更高的计算效率。
量子通信利用量子纠缠实现量子隐形传态和量子加密,具有更高的安全性和可靠性。
总结:量子力学是一门复杂而精密的学科,它的发展和应用正不断推动着科学和技术的进步。
通过对量子力学的研究,我们可以更深入地理解微观世界的奥秘,并且在诸多领域取得令人瞩目的成果。
量子力学的理论框架为现代科学研究提供了重要的基础,也为人类认识世界的边界提供了新的视角。
量子力学笔记

量子力学一、量子力学的实验基础1.卢瑟福实验:a 粒子的质量远大于电子,两者的质心几乎就在a 粒子上。
虽然二体系统有内部的相互作用,但它们的质心是自由运动的,故电子对a 粒子的作用不影响a 粒子的运动。
a 粒子散射时,原子的正电荷部分受到反冲力,导致薄片晶格的振动。
2.原子光谱是原子内部电子运动情态的反映。
光谱项T。
氢原子光谱的频谱是离散的,且不是连续谱亦非由基频和倍频构成的频谱,这个性质直接来源于原子中电子运动具有能级的特性以及光具有粒子性。
3.光电效应实验中无法用经典物理学解释的现象:(1)反向遏止电压和入射光强无关;(2)反向遏止电压和入射光的频率呈线性关系;(3)电子逸出相对于光的照射而言几乎无时间延迟。
4.爱因斯坦方程:φω−=ℏT ,表示金属电子吸收一份光能量而获得T 的动能逸出金属,φ为脱出功,与材料有关。
5.光子:(1)博特实验(W.Bothe experiment)表明每份光能量是集中的;(2)贾诺希实验(L.Janossy experiment)表明每份光子落在何处是偶然事件,也就是说电磁波是光子的概率幅波。
(量子力学有整体性,光子的运动受到整个环境的影响。
)6.爱因斯坦关系:ωℏℏ==E k p ,。
P 和E 描写光子,k 和ω描写单色波。
【注意:说光有波粒二象性是沿用经典物理的语言。
光有波动性,是指光的运动没有轨道;光具有粒子性,是指光与电子相互作用时像粒子那样,而不像经典的波场那般。
】7.康普顿(pton)效应应用了“静电子模型”(靶原子的外层电子)。
康普顿波长:�ℏA mc0242621.02==Λπ。
计算过程中考虑了能量守恒(相对论力学)和动量守恒(矢量力学),2sin 22θλΛ=∆。
(1)对于原子内层的“束缚电子”,由于它们与原子核束缚的紧,应作为一个整体看待,“静电子模型”不成立。
光子撞不动整个原子,只是自己改变方向。
因此实验中出现了0=∆λ的成分。
(2)对于可见光,能量和动量小,靶原子的外层电子应作束缚电子看待,“静电子模型”不成立。
技能高考之中科院量子力学超详细笔记第七章电子自旋角动量

σ x ,再进一步约定位相α = 0 ,于是有
01 σ x= 1 0
接着由(7.6b)式,求得σ y 为
0 σ y = −iσ zσ x = i
−i 0
总之,在规定σ z 为对角形式并约定σ x 的位相之后,就得到下面这组 2 × 2 的自逆、反对易、零迹的厄米矩阵 ——Pauli 矩阵,用它们就可 以具体地实现自旋角动量的对易规则,
利用例3 结果,可得
(7。12)
e σ e = −i
α 2
σ
x
iα 2
σ
x
y
cos
α 2
−
iσ
x
sin
α 2
σy
cos
α 2
+
iσ
x
sin
α 2
=
σ
y
cos
2
α 2
−
i
sin
α 2
cos
α2[σ
x,σ
y]+ σ
xσ
yσ
xsin
2α 2
= σ y cosα + σ z sinα
由 x → y → z → x 的循环置换,可以得到其余四个公式。顺便指出,由
反对易关系,
[ ] 0 = [σ 0 ,σ j ]= σ i 2 ,σ j = σ i [σ i ,σ j ]+ [σ i ,σ ]σ ji = 2iε ijk (σ iσ k + σ kσ i ) = 2iε ijk {σ i ,σ }. k
对任一给定的 j ,总可以取i,k ,使i ≠ k ≠ j ,于是得到σ i之间的反对
以 137 倍的光速转动才行。显然这是一个不能接受的图象。这说明,
中科院量子力学超详细笔记_第五章_量子力学的表象与表示

第五章 量子力学的表象与表示§5.1 幺正变换和反幺正变换1, 幺正算符定义对任意两个波函数)(r v ϕ、)(r vψ,定义内积r d r r vv v )()(),(ψϕψϕ∗∫=(5.1)按第一章中所说,(5.1)式的含义是:当微观粒子处在状态()r vψ时,找到粒子处在状态()r vϕ的几率幅。
依据内积概念,可以定义幺正算符如下:“对任意两个波函数ϕ、ψ,如果算符$U恒使下式成立 ),()ˆ,ˆ(ψϕψϕ=U U(5.2) 而且有逆算符1ˆ−U存在,使得I U U U U ==−−11ˆˆˆˆ1,称这个算符U ˆ为幺正算符。
”任一算符Aˆ的厄米算符+A ˆ定义为:+A ˆ在任意ϕ、ψ中的矩阵元恒由下式左边决定),ˆ()ˆ,(ψϕψϕ+=A A(5.3) 由此,幺正算符Uˆ有另一个等价的定义: “算符Uˆ为幺正算符的充要条件是 I U U U U==++ˆˆˆˆ (5.4a) 或者说1ˆˆ−+=U U 。
” (5.4b)证明:若),()ˆ,ˆ(ψϕψϕ=U U成立,则按+U ˆ定义, ),ˆˆ()ˆ,ˆ(),(ψϕψϕψϕU U U U+== 由于ϕ、ψ任意,所以I U U=+ˆˆ 又因为Uˆ有唯一的逆算符1ˆ−U 存在,假定取ψψϕϕ11ˆ,ˆ−−=′=′U U ,则有 ()),ˆ)ˆ((ˆ,ˆ),()ˆ,ˆ(),(1111ψϕψϕψϕψϕψϕ−+−−−==′′=′′=U U U U U U所以I U U=−+−11ˆ)ˆ( 由于11)ˆ()ˆ(−++−=U U,上式即 I U U=+ˆˆ 这就从第一种定义导出了第二种定义。
类似,也能从第二种定义导出第一种定义。
从而,幺正算符的这两种定义是等价的。
1这里强调了$U−1既是对$U右乘的逆又是对$U 左乘的逆。
和有限维空间情况不同,无限维空间情况下,任一算符$U有逆算符的三种情况:1)有一个左逆算符和无穷多个右逆算符;2)有一个右逆算符和无穷多个左逆算符;3)有一个左逆算符和一个右逆算符,并且它俩相等,唯有此时可简单地写为$U−1。
高等量子力学笔记

三、 讨论. .................................................................................................................................................... 4
1. 产生、消灭算符的对易关系 ............................................................................................................. 5
2. 产生算符和消灭算符之间的对易关系。.......................................................................................... 5
7. 激发态 ............................................................................................................................................... 13
一、 N 个全同费米子(Slater 行列式).................................................................................................... 3
二、 波色子体系 ......................................................................................................................................... 4
高等量子力学考试知识点

1、 黑体辐射:任何物体总在吸收投射在它身上的辐射。
物体吸收的辐射能量与投射到物体 上的辐射能之比称为该物体的吸收系数。
如果一个物体能吸收投射到它表面上的 全部辐射,即吸收系数为 1 时,则称这个物体为黑体。
光子可以被物质发射和吸收。
黑体向辐射场发射或吸收能量 hv 的过程就是 发射或吸收光子的过程。
2、 光电效应(条件):当光子照射到金属的表面上时,能量为 hv 的光子被电子吸收。
12临界频率 v 0 满足2 = ℎ −0 = 0⁄ℎ(1)存在临界频率 v 0,当入射光的频率 v<v 0 时,无论光的强度多大,都无光电 子逸出。
只有在 v≥v 0 时,即使光的强度较弱,但只要光照到金属表面上,几乎 在 10-9s 的极短时间内,就能观测到光电子;(2)出射的光电子的能量只与入射光的频率 v 有关,而与入射光的强度无关; (3)入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积上 逸出的光电子的数目。
3、由于光子以光速运动,根据狭义相对论的质能关系式有2 = 2 4 + 2 2C 是光速, m 0 是光子的静质量,为零,因此得到光子的能量和动量的关系是=4、康普顿效应的推导( P7):康普顿效应还证实: 在微观的单个碰撞事件中, 能量守恒定律和动量守恒定律仍然成立。
5、薛定谔方程:6、概率流守恒定律概率流密度 7、一维无限深势阱(P31)0 2= − ( ∗ − ∗ )+ ∇ ∙ =ℎ22 +ℎ0 −=2ℎ8、束缚态:粒子只能束缚在空间的有限区域,在无穷远处波函数为零的状态。
一维无限深势阱给出的波函数全部是束缚态波函数。
从(2.4.6)式还可证明,当 n 分别是奇数和偶数时,满足{( −) = ( ) (n 为奇数)( −) = −( ) (n 为偶数)即n是奇数时,波函数是x的偶函数,我们称这时的波函数具有偶宇称;当n是偶数时,波函数是 x 的奇函数,我们称这时的波函数具有奇宇称。
王正行 量子力学原理笔记

⋅ϕϕ
≥
1 4
φ
ϕ
+ ϕφ
2
( ) ( ) ( ) Cauchy − Schwarz不等式 : a12 + a22 +L + an2 b12 + b22 +L + bn2 ≥ a1b1 + a2b2 +L + anbn 2
( ) f (x) = (a1x − b1)2 + (a2 x − b2 )2 +L + (an x − bn )2 = a12 + a22 + L + an2 x2
于是
( φ ϕ + ϕ φ )2 ≤ ( φ φ + ϕ ϕ )( ϕ ϕ + φ φ ) = 4 φ φ ⋅ ϕ ϕ
φ φ , ϕ ϕ , φ ϕ + ϕ φ 代入即得结果。
有时说在任一态上“同时测量” A 与 B ,这并不一定是在一次测量操作中既测量 A 也 测量 B 。当 A 与 B 相容时,测量可以在一次操作中完成,而当它们不相容时,测量只能分
{ } { } 理结果一样,但算法不同。考虑分别用完备组 ql 与 pm 做基矢的两个表象,其中 q 与
5
第二章 表象理论 δ函数 投影算符的性质 态矢量和内积、线性算符的表示 表象变换 Löwdin-Bogoliubov 变换 Schrödinger 表象 动量表象 居位数表象 一些有用的矩阵元 量子力学的路径积分形式
( ) −2 (a1b1 + a2b2 +L + anbn ) x + b12 + b22 +L + bn2
Q
f
(x)
≥
量子力学入门笔记

后来普朗克假设能量在传递过程中是一份一份的传递,也就是我们今天所看到的������ = ℎ������,才
把公式解释的通,如果时间允许,我会在最后推导黑体辐射的公式。在当时连普朗克自己都
觉得这个想法太过于荒谬,也没有在物理界引起很大的反响。到了 1905 年,爱因斯坦根据
普朗克的思想解释了光电效应,并且因此获得了诺贝尔物理学奖。当时还有一个在高中困扰
������(������) = ������0 + ������1������ + ������2������2 + ������3������3 + ⋯ 它与我们平时看到的欧几里德空间中的矢量������ = ������������ + ������������ + ������������是不是很像?还有一个熟 悉 的 例 子 是 傅 立 叶 级 数 ( Fourier Series ), 只 不 过 我 们 选 取 的 基 底 是 {1, ������������������������, ������������������2������, ������������������3������, ������������������������, ������������������2������, ������������������3������, … }我们的矢量(函数)就可以表示成:
学发展的历史的解释到这里就告一段落了,下面我们来讲讲怎么去入门地理解量子力学。没
关系,费曼曾经说过:“I can safely said (that) no body understands quantum theory.”。
也许我们并不能完全的理解量子力学,但在学习它的过程中,我们会收获到很多有趣的、有 价值的东西。
考研《量子力学教程》周世勋版2021量子力学考研复习笔记

考研《量子力学教程》周世勋版2021量子力学考研复习笔记第1章绪论1.1 复习笔记在十九世纪末、二十世纪初,经典物理取得了巨大的成功,牛顿定律、麦克斯韦方程、热力学和统计力学相继建立并成功应用于物理学研究和工程,但在物理大厦落成的同时,物理学家中的有识之士也意识到了天空中漂浮的乌云。
黑体辐射、光电效应和固体的比热等一系类问题是经典物理无法解释的。
之后的旧量子论包括玻尔理论、爱因斯坦的光量子和德布罗意波粒二象性假说给物理学的发展带来了希望,它们也为量子力学的发展奠定了基础。
现代物理学中的两大支柱(量子力学、相对论)逐步验证并解释物理实验中的现象的同时,量子力学自身也在不断完善,并发展出了电磁场量子化理论、解释光子原子相互作用的量子电动力学、应用于原子中核子相互作用的量子色动力学理论,以及当下试图对引力场解释的超弦理论。
所以,不论是为了备考还是为了将来的物理学科研,学习好量子力学是十分重要的。
量子力学是现代物理学的基石,也是物理科研必备的工具。
【本章重难点】1.了解经典物理的成功和所面临的危机,以及量子力学的发展历史;2.掌握德布罗意波粒二象性关系;3.熟练运用玻尔-索末菲量子化条件。
一、波粒二象性(见表1-1-1)表1-1-1 波粒二象性相关概念图1-1-1 康普顿散射二、原子结构的玻尔理论1经典理论在解释原子结构上的困难(1)经典理论不能建立一个稳定的原子模型(运动的带电粒子发射电磁场);(2)经典理论得出的频率是连续分布的,而实验中的原子光谱是分立的。
2玻尔假设表1-1-2 玻尔假设3索末菲量子化条件的推广式中,q 是电子的一个广义坐标;p 是对应的广义动量,回路积分是沿运动轨道积一圈;n 是0和正整数,称为量子数。
该推广后的量子化条件可应用于多自由度的情况。
4玻尔理论缺陷(1)当理论应用到结构稍复杂于氢原子的其他原子比如氦原子时,结果与实验不符;(2)只能求出谱线的频率,而不能求出谱线的强度。
中国科学技术大学量子力学公开课学习笔记

中国科学技术大学量子力学公开课学习笔记量子力学是现代物理学中一门重要的学科,研究微观粒子的行为和性质。
本文将记录我在中国科学技术大学的量子力学公开课学习中的一些心得和笔记。
第一章:简介量子力学是20世纪初建立的一门物理学理论,它描述了微观世界的粒子在特定条件下的运动和相互作用规律。
量子力学理论的提出颠覆了经典物理学的传统观念,引发了物理学的革命性变革。
第二章:量子力学基本原理量子力学的基本原理包括态函数、波函数、不确定性原理等。
态函数描述了一个物理系统的状态,而波函数则描述了它的运动规律。
不确定性原理则揭示了粒子的位置和动量无法同时被精确测量的事实。
第三章:量子力学的数学工具量子力学使用一套独特的数学工具来描述和计算微观粒子的性质。
其中,薛定谔方程是量子力学的核心方程,它可以描述物理系统的时间演化情况。
同时,量子力学还利用了矩阵和算符等工具来描述粒子的运动和性质。
第四章:量子力学的测量量子力学中的测量过程有着独特的规律和特点。
测量结果是随机的,且测量改变了系统的状态。
测量的过程也揭示了观察者与被观测系统之间的相互关系。
第五章:量子力学的应用量子力学不仅仅是一门理论学科,还具有广泛的应用领域。
量子力学在材料科学、精密测量等领域都有重要的应用。
同时,量子计算和量子通信等新兴技术也是基于量子力学原理的。
第六章:量子力学的发展和前景随着科学技术的不断进步,量子力学理论也在不断发展和演化。
量子力学的研究将继续推动科学的边界,并为未来的技术发展提供新的突破点。
结语通过参加中国科学技术大学的量子力学公开课,我对量子力学有了更深入的了解。
量子力学作为一门前沿的学科,探索了微观世界的奥秘,为我们认识和改造世界提供了新的思路和方法。
我对于量子力学的学习充满了兴趣,并期待着在将来能进一步深入研究和应用这门学科。
总结:通过学习中国科学技术大学的量子力学公开课,我对于量子力学的基本原理、数学工具、测量方法和应用领域有了全面的认识。
曾谨言量子力学教程第3版知识点总结笔记课后答案

1.Schrödinger方程的引进
在势场V(r)中的粒子的波函数满足的微分方程,称为Schrödinger
波动方程,它揭示了微观世界中物质运动的基本规律.
2.Schrödinger方程的讨论
(1)定域的概率守恒
对于一个粒子来说,在全空间中找到它的概率之总和应不随时间改变.即
以下讨论一个极为重要的特殊情况——假设势能V不显含t(经典力学中,在这种势场中的粒子的机械能是守恒量).
其中ψE(r)满足下列方程:
(2)
在有的条件下,特别是束缚态边条件,只有某些离散的E值所对应的解才是物理上可以接受的.这些E值称为体系的能量本征值(energy eigen value),而相应的解ψ(r)称为能量本征函数(energy eigen unction).方程(2)就是势场V(r)中粒子的能量本征方程,也称为不含时(time-independent)Schrödinger方程.
(1)
(1)式为概率守恒的微分表达式,其形式与流体力学中的连续性方程相同.
(2)初值问题,传播子
Schrödinger方程给出了波函数(量子态)随时间演化的因果关系, 取初始时刻为t‘,则t时刻波函数可以表示为
式中
称为传播子(propagator).可以证明
就是t时刻在r点找到粒子的概率波幅.
3.能量本征方程
stationary state).
5.多粒子体系的Schrödinger方程
设体系由N个粒子组成,粒子质量分别为mi(i=1,2,3,…,N).体系的波函数表示为ψ(r1,…,rN,t).设第i个粒子受到的外势场为Ui(ri),粒子之间相互作用为V(r1,…,rN,t),则Schrödinger方程表示为
量子力学笔记

量子力学笔记
以下是关于量子力学的一些基本笔记:
1. 波粒二象性:量子力学中,粒子既可以表现为粒子,也可以表现为波动,具有波粒二象性。
这就意味着在一些实验中,粒子表现出波动性质,例如干涉和衍射现象。
2. 狄拉克方程:狄拉克方程是描述自旋½粒子的基本方程,它结合了爱因斯坦的相对论和量子力学的理论,为量子场论奠定了基础。
3. 不确定性原理:不确定性原理是由海森堡提出的,指出了我们无法同时准确测量粒子的位置和动量,或者能量和时间。
这意味着存在一个不确定度限制,我们不能完全精确地知道粒子的运动状态。
4. 波函数:波函数是描述量子体系的数学函数,包含了所有可能的信息。
它是一个复数函数,描述了粒子在空间中的概率分布和量子态信息。
5. 纠缠:量子力学中的纠缠现象指的是两个或多个粒子之间存在一种特殊的量子相互关联。
这种关联会导致量子纠缠态,其中一个粒子的测量结果会立即影响到其他纠缠粒子的状态。
6. 叠加态和测量:量子力学中的叠加态是指粒子处于多个可能状态的线性组合,直到进行测量时,才会塌缩到其中一个确定的状态。
这些只是量子力学的基本概念和原理的简要介绍,其中还有更深入和复杂的理论和实验结果。
《量子力学原理》随笔

《量子力学原理》读书札记目录一、量子力学概述 (2)1.1 量子力学的定义和发展历程 (2)1.2 量子力学的主要理论和概念 (4)二、量子力学的基本原理 (5)2.1 波函数和薛定谔方程 (6)2.2 测量问题和不确定性原理 (7)2.3 超定态和量子叠加 (9)2.4 量子纠缠和量子隐形传态 (11)三、量子力学的主要应用 (12)3.1 量子计算 (13)3.2 量子通信 (14)3.3 量子传感 (15)3.4 基本粒子物理学和核物理学 (17)四、量子力学的哲学思考 (18)4.1 量子力学的解释主义 (20)4.2 量子力学的哥本哈根诠释 (21)4.3 量子力学的多世界诠释 (23)4.4 对量子力学的质疑和挑战 (24)五、量子力学与相对论 (25)5.1 狭义相对论与量子力学的结合 (26)5.2 广义相对论与量子场论的结合 (28)六、结语 (28)6.1 量子力学的现状和未来发展趋势 (29)6.2 对量子力学的期待和展望 (31)一、量子力学概述作为现代物理学的重要分支,自20世纪初诞生以来,便对科学界产生了深远的影响。
它不仅改变了我们对自然世界的认知,还为许多前沿科技的发展提供了理论基础。
量子力学研究的是物质的微观粒子行为,特别是在原子和亚原子粒子层面的现象。
在量子力学中,粒子的状态不再是传统的确定性的,而是被描述为概率性的。
一个粒子可以同时处于多个状态,这种状态被称为叠加态。
当我们对粒子进行测量时,它会塌缩到一个特定的状态,并且测量结果遵循一定的统计规律,如波函数坍缩。
量子力学的核心概念还包括超定位原理,即一个量子系统可以同时处于多个可能状态的线性组合。
量子纠缠现象揭示了粒子间状态的强相关性,使得远程的粒子状态可以瞬间影响彼此,无论它们相隔多远。
量子力学是一个复杂而深奥的理论体系,它挑战着我们对现实世界的传统观念,并为我们理解微观世界提供了全新的视角。
随着科学技术的进步和对量子力学的深入研究,我们期待它能继续引领我们探索未知的领域,并为人类社会的发展带来更多的可能性。
中科院量子力学超详细笔记_第一章_量子

第一章 量子力学的物理基础§1.1 ,实验基础1, 第一组实验 —— 光的粒子性实验:黑体辐射、光电效应、Compton 散射能量分立、辐射场量子化的概念,实验揭示了光的粒子性质。
《黑体辐射谱问题》黑体辐射谱的Wien 经验公式(1894年):考虑黑体空腔中单位体积的辐射场,令其中频率在ννν→+d 间的能量密度为dE d νεν=((1.1)这里c 1、c 2β=1/kT 间内与实验符合,但在中、低频区,特别是低频区与实验差别很大。
Rayleigh-Jeans 公式(1900,Rayleigh ;1905,Jeans ):将腔中黑体辐射场看成大量电磁波驻波振子集合,利用能量连续分布的经典观念和Maxwell - Boltzmann 分布律,导出黑体辐射谱的另一个表达式——。
若记ενενν()=N ,这里N ν是腔中辐射场单位体积内频率ν附近单位频率间隔内电磁驻波振子数目(自由度数目),它为823πνc。
下面来简单推算出它: 00:222ikx ikxx x LL e e n kL n k k L L πππ==→==→=→Δ= 于是,在单位体积辐射场中,波数在3k k d k →+v v 内的自由度数目(22k c c ππνωλ===v )为 22332233232312428882L k d k k d k d kd d c cL ππννπννππππ=⋅====⎛⎞⎜⎟⎝⎠v v v v 而εν是频率为ν的驻波振子的平均能量, 由M -B 分布律得kT d e d e ==∫∫∞−∞−00εεεεεβεβν于是得到 (1.2)这个与Wien但在高频波段不但不符合,出现黑体辐射能量密度随频率增大趋于无穷大的荒谬结果。
这就是著名的所谓“紫外灾难”,是经典物理学最早显露的困难之一。
1900年Planck 用一种崭新的观念来计算平均能量εν。
他引入了“能量子”的概念,即,假设黑体辐射空腔中振子的振动能量并不象经典理论所主张的那样和振幅平方成正比并呈连续变化,而是和振子的频率ν成正比并且只能取分立值, ......,3,2,,0νννh h h这里的正比系数h 就是后来所称的Planck 常数。
高等量子力学知识总结

高等量子力学总结 理论物理 张四平 学号:220120922061第一章 希尔伯特空间1、矢量空间,同类的许多数学对象(实数,复数,数组)在满足一定的要求下构成的系统. 三种运算:加法,数乘,内积。
例:θ+ψ=ψ+θ;ψ+θ=0 即:ψ=-θ(存在逆元)(ψa )b=ψ(ab )ψ(a+b )=ψa+ψb(ψ,θ)=(θ,ψ)*(ψ,θa )=(ψ,θ)a矢量的空间性质:零矢量唯一;逆元唯一;ψ(-1)=-ψ;(θ+ψx )=θx+ψx ;2、正交矢量:(ψ,θ)=0; 模方:|ψ||ψ|=(ψ,ψ);schwarts 不等式:|(ψ,ψ)|≤|ψ||ψ|;三角不等式:|ψ+θ|≤|ψ|+|θ|;3、基矢n 维空间中有限个矢量集合;一个线性无关的矢量的集合(完全集);正交归一的完全集; 对于同一矢量,左右因子不同,dirac 符号:<ψ|θ>=(ψ,θ)右矢量满足:|ψ>+|θ>=|θ>+|ψ>;|ψ>+|0>=|ψ>;|ψ>*1=|ψ>;(|ψ>+|θ>)*a=|ψ>a+|θ>a<ψ|θ>≥0;4、算符:|ψ>=A|ψ>; A (|ψ>+|θ>)=A|ψ>+A|θ>;线性算符的性质:定义域是个右矢空间,值域也是个右矢空间;定义域是有限维,值域也是 小于等于这个维数;零算符:0|ψ>=|0>;单位算符:I |ψ>=|ψ>;算符:A|ψ>=|θ>;逆算符:A -1|θ>=|ψ>;<θ|=<A ψ|=<ψ|A+(A+为A 的伴算符);若A 有逆,则(A+)-1 =(A -1)+;5、等距算符:定义:U+U=I ;性质:U+U=I ;<U θ|U ψ>=<θ|ψ> ;|U ψ|=|ψ|;6、幺正算符:定义:U+U=UU+=I 或U+=U-1;投影算符:|ψ><ψ|(厄米算符);7、本证矢和本证值:A|ψi>=a|ψi> (i=1,...s ){|ψi>}(本证子空间,s 重简并);厄米算 符A 的本证矢量:不简并的正交,S 重简并的本证矢量构成一个s 维的子空间,与其他的本证 矢量正交;完全性;正交性;定理:有限维空间中,厄米算符的全部本证矢量构成一个完全集;定理:当且仅当两个厄米算符对易时,他们有一组共同的本证矢量完全集;8、表象理论:基矢:厄米算符完备组K={P ,H ,...,}.基矢选他们共同的本证矢,K|i>=ki|i>;相似变换:存在幺正矩阵U :B=U -1AU ,A ,B 相似.trA=trB ,detB=detU+detA ,detA=detB ;任何厄米矩阵都可以通过相似变换变成对角矩阵;L 表象:{|εi>} ∑|εi><εi|=1K 表象:{|να>} ∑|να><να|=1|να>= ∑|εi>Ui α|εi>= ∑|να>U αi-1 Ψα = ∑U αi -1ψiΨi = ∑Ui α ψαA αβ=∑∑U αi -1AijUj βAij=∑∑Ui αA αβU βj -1第二章 量子力学基本原理1、基本原理:原理1:描写微观系统状态的数学量是希尔伯特空间中的矢量,相差一个复数因子的两个矢 量描写同一状态.原理2:1.描写微观系统物理量的是希尔伯特空间中的厄米算符.2.物理量所能取得值是相应 的本征值.3.物理量A 在状态|ψ>中取各值ai 的概率,与态矢量|ψ>安A 的归一化本证矢量 {|ai>}的展开式|ai>的系数复平方成正比.原理3.微观系统中的每个粒子的直角坐标下的位置算符Xi (i=1.2.3)与相应正则动量有下 列对易关系:[Xi,Xj]=0 [Pi,Pj]=0[Xi,Pj]=i(h/2π)ζij而不同粒子间的所有算符均相互对易.原理4.微观状态|ψ(t)>随时间变化的规律是薛定谔方程.原理5.描写全同粒子系统的态矢量,对于任意一对粒子的对调,是对称的,或是反对称的, 服从前者的粒子是波色子,服从后者的粒子是费米子.2、哈密顿算符不显含时间t 是能量算符.|ψ(t)>=|ψ>f(t).H|ψi>=Ei|ψi>定态薛定谔方程能量值确定.态矢量为:|ψi(t)>=|i>exp (-iEit/h ).含时间的H 对应薛定谔方程的解为:|ψ(t)>=∑|i> Ci exp (-iEit/h ).为各定态矢量的叠加 .若已知初态|ψ0>=∑|i> Ci则 |ψ(t)>=∑|i><i|ψ0>exp (-iE0t/h ).第三章 量子力学的基本概念和方法1、一个电子具有自旋角动量S ,s 沿着空间中某一固定方向,只有两个可能的投影值:Sz=+ /2 或Sz=- /2;电子磁矩:u=-g (e/2mc )s电子在外磁场中B 中又相互作用能量:H=-u*B2、自旋的矩阵表示:Sz=+ /2 -> α=⎥⎦⎤⎢⎣⎡01 Sz=- /2 -> β=⎥⎦⎤⎢⎣⎡10 电子的自旋态:|ψ(t)>|ψ(t)>=C1(t)α+C2(t)β<ψ(t)|=C1*(t)α-1+C2*(t)β-1电子的自旋态只能有两个(朝上或朝下).3、相继stern-Gerlach 实验说明:一般的说,测量必定要改变微观客体状态,当加第二个装置 Gx 测量Sx 时,原来关于Sz 的信息消失,一个电子的自旋要么按Sx 分解,要么按Sz 分解,电子不能同时具有Sz 和Sx.4、pauli 矩阵算符ζx 和ζy 之间不对易,S=( /2)ζζx = ⎥⎦⎤⎢⎣⎡0110 ζy = ⎥⎦⎤⎢⎣⎡-00i i ζz = ⎥⎦⎤⎢⎣⎡-1001 对易关系:ζ*ζ=ζ 或 S*S=S Sz=mz极化矢量:<ζ>=P=<ψ(t)|ζ|ψ(t)>P^2=Px^2+Py^2+Pz^2=1;<ζp >=Px<ζx>+Py<ζy>+Pz<ζz>;P 标志了自旋S 的指向;电子自旋的量子本质表现与P 矢量始终存在着起伏,用均方偏差度量:<(Δζj )^2> = <(ζj-ζi )^2> = 1-<ζj >^25、分离谱:A|α> =a|α>; <α|α’>=δαα’; ∑|α><α|=1;连续谱:ξ|ξ’>=ξ’|ξ’> ; <ξ|ξ’> = δ(ξ’-ξ’’); ⎰d ξ’|ξ’><ξ’| = 1;6、sxhrodinger 图景:态矢 |ψ(t)>含t ,基矢|x>不含t ;Heisenberg 图景:态矢 |ψ(t)>不含t ,基矢|x>含t ;一般:H=p^2/2m+V;<x|V|x ’> = V (x )<x|x ’> = V(x)δ(x-x ’);<x|p^2/2m|x ’> = ⎰dp<x|p>(p^2/2m)<p|x ’>态矢:跟表象无关,跟图景有关;包函数:与表象有关,与图景无关(此为态矢在基矢上的投影);7、基态|0>:基态波函数:ψ0(x ) = <x|0>;第一激发态|1> = a+|0>: ψ1(x ) = <x ’|1>;第n 激发态: ψn (x ) = <x ’|n>;8、<(ΔA^2)><(ΔB^2)> ≥ 1/4|<[A,B]>|^2 ;对于任意的态矢:|α>=ΔA|>|β>=ΔB|>;<(ΔA^2)><(ΔB^2)> ≥ |(ΔA ,ΔB )|^2;9、谐振子不确定关系:基态:<(Δx^2)><(Δp^2)> = ^2/4;激发态: <(Δx^2)><(Δp^2)> =(n+1/2)^2 ^2;10、相干态:也是谐振子的量子态与经典粒子运动最为接近.相干态不是N 的本正态,但有确定的粒子数;不同本证值的相干态一般不正交;虽不正交,但有完备性;全部的相干态,过完备性;11、压缩态:算符:S(r)为幺正算符;在正则变换下:保持了对易关系:[b,b+]=[a,a+]=1;真空态:|0,r>= S(r)|0>;一般压缩态:|z,r>= D (z )S (r )|0>;12、经典力学到量子力学:薛定谔表述形成(波动力学),重视描述粒子的波粒二象性运动的波函数,服从薛定谔方程;heisenberg 矩阵力学,重视可观测量,算符;dirac 和feyman 路径积分,着眼于经典作用量和量子力学中相位之间的关系,重视传播函数 或传播子的作用.基本思想:一个粒子在某一时刻的运动情况决定于他们的过去或一切历史;在复z 平面上,半经为1/2的圆,面积为1*pi/4,相干态;在复z 平面上的椭圆,面积1*pi/4 测量精度在I 上提高了,在另一个方向降低了,压缩态;第四章 对称性和角动量1、力学量成算符:{A,B}--->1/i [A,B];[F ,H]--->F 为守恒量;F 的一个守恒性必与体系的不可观测量的对称性变换直接联系;定态间的跃迁定则;分离对 称性;每个定态波函数必有严格的对称性;无限自由度的量子场论:H 中某一连续对称性在 真空有破坏,真空存在简并,但实际上对称也存在,表现为一个无质量的标量粒子; 2、F (r ,p )的平均值:<F> = <ψ(r)|F |ψ(r)>;3、态的无限小转动:自旋为零:|ψ’(r)> = |ψ(R -1r)>=ψ(x+y δθ,y-x δθ,z )R(n,δθ) = 1-i δθ*L*n/ ; L 是标量场无穷小生成元;自旋为1/2的粒子波函数:波函数为二分量的旋量:1/2)(x (x1/2)(r)(r)(r)-ϕ+ϕ=⎪⎪⎭⎫ ⎝⎛ϕϕ=φ2121; Φ’(r)=(1-i δθ( /2ζz+Lz ))Φ(r)/转动算符:(1-i δθ( /2ζz+Lz ))/ ;任意轴:R (n ,δθ)= 1-(i δθ/ )n (( /2)δ+I );粒子的总角动量:J= /2δ+L ,J 是旋量场的无限小生成元;4、角动量算符的一般性质:j^2=jx^2+jy^2+jz^2;[j^2,ji] = 0;[jz,j]=i j;[j+,j-] = 2 jz;5、标量算符:F=RFR -1 -- 转动不变;6、若态|ψ>在Rz 的作用下不变,则Rz|ψ> = exp (-i δ)|ψ>;假定体系在变换Q 下具有对称性,|ψ>=Q|ψ>,则保持几率不变,运动规律不变; 总之:量子力学中一个不可观测量的对称性变换往往联系于一个可观测量的守恒性;7、将体系沿x 轴平移一无限小距离,体系具有平移不变性:[Px (ε),H] = 0;ψ’(x) = Dx (ε)ψ(x)=ψ(x-ε);体系沿时间平移一无限小量η:|ψ’(t)> = D (η)|ψ(x)>=|ψ(t+η)>;ψ(x,t)=ψ(x)exp(-iEt);8、本证态:ψ(-x ) = ψ(x ) 偶宇称态ψ(-x ) = -ψ(x ) 奇宇称态宇称本征值:pi=(-1)l变换方式:主动式:坐标系不动,算符动;被动式,算符不动,坐标系反向;P*X ---> 标量P*S ---> 赝标量9、支配运动的H 在空间反演中是标量,可能含有的项是:P^2,L*S,P*X ;不可有的项:P*S(赝标量);宇称守恒在强相互作用下,电磁相互作用中有充分的实验支持;则在弱相互作用下有赝标量项,宇称不再守恒;原子核自旋S 在低温下沿外磁场固定方向排列,测量这种“极化核”β衰变时放出电子对S 方向存在一定角分布;10、实算符,时间反演不变:THT -1=T -1 TXT -1=X ;虚算符:TPT -1= - P TJT -1= - J ;第五章 量子力学中的相位1、经典物理中:H ,A, θ(四维矢量),代替E,B (二阶反对称张量);量子物理中:A, θ,代替E,B 为本质上的需求;规范变换: A ’=A + ▽Λ(x );若要要求薛定谔方程在此变换下不变,否则物理规律就变了,就要求波函数做相应变化: Ψ’(x )= Ψ(x )exp[Λ(x )iq/ c ];薛定谔方程在定域规范变化下的不变性,是一种对称性,根据波函数的几率解释,这一变换 不影响可观测量;2、A--B 效应--->A 比B 更基本;因为表达了量子力学的相位差;确切的说不是相位, 而是相位因子: )dx A cie (⎰-μμ exp ; 才为描述电磁场最恰当的量,在物理上既不丢失信息,也不会附加非物理(不确定)信息, 称此因子为规范场的不可积相位因子. 在磁场中:总的波函数:)'x )d 'x (A exp()'x ()'x (c ie (0)1→→→→→⎰+ϕ=ϕ ,相位差改变了φc e , 称:φ=ce AB S (AB 相); 在电场中:总的波函数:t)(x,)dt't)),x (A -)t x,(A (cic -exp(t),x (t),x ((0)20102(0)1ϕ⎰+ϕ=ϕ→→→→ , φ=ce AB S --- 规范不变 AB 相不依赖于速度等力学量,属于几何相,也是拓扑相;3、在超导体圆柱磁通量是量子化的,且磁通量的值为e 2c ,后来,N.Byers 和杨指出这是超导 体内形成copper 对的结果;copper 对波函数是单值的,有: n 2s d s ⋅π=⋅∇⎰→Γ,即相角沿Γ走一圈回到原处,值只能变化n 2π.4、Berry 相:量子力学的量可分为两类:随时间变化的快变量;随时间变化的慢变量; 方法:现将慢变量固定,解决快变量,然后让慢变量变化,得到正确的解; e )(i (t)t 0n (t)R n,|))dt'(t'i -(ν→>⎰ε=ϕexp t 其中,e i (t)ν为Berry 相因子;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等量子力学笔记
考虑积分
当大于0时,积分位于复平面的下半平面,存在单极点,根据留数定理可得
当小于0时,根据约当引理
因此,有
将小于0与大于0两种情况整理
将替换成,则容易知道时间演化算符
将可得
其中,对于自由系统而言,
所以
稍作变换,
与互为傅里叶变换,因此对于也可写作
定义=
为方便起见以为例,=
根据卷积定理:若,则
其中.
因此,
根据的性质,上式积分在满足且时才不为0. 因此
稍作变换
此处,在相互作用图像下,
因此
其中
同理,=
作为对比
时,
做变换:
去掉、角标,
引入时间顺序算符
可以写做和
因此
推广到。