2019中考数学专题复习之最值问题典例分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019中考数学专题复习之最值问题典例分析

解决几何最值问题的通常思路

两点之间线段最短;

直线外一点与直线上所有点的连线段中,垂线段最短;

三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.

1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=PMN的周长的最小值为.

分析:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.

解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD

与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.

∵PC关于OA对称,

∴∠COP=2∠AOP,OC=OP

同理,∠DOP=2∠BOP,OP=OD

∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

∴△COD是等腰直角三角形.

则CD=2OC=2×32=6.

2.如图,当四边形PABN的周长最小时,a= .

分析:因为AB,PN的长度都是固定的,所以求出PA+NB的长度就行了.问题就是PA+NB什么时候最短.

把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时PA+NB最短.

设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),

作B′关于x轴的对称点B″,根据作法知点B″(2,1),

设直线AB″的解析式为y=kx+b,

12

3

k b

k b

=+

-=+

,解得k=4,b=﹣7.

∴y=4x﹣7.当y=0时,x=7

4

,即P(

7

4

,0),a=

7

4

故答案填:7

4

3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|PA﹣PB|的最大值为.

分析:作点B于直线l的对称点B′,则PB=PB′因而|PA

﹣PB′|,则当A,B′、P在一条直线上时,|PA﹣PB|

大.根据平行线分线段定理即可求得PN和PM

勾股定理求得PA、PB′的值,进而求得|PA﹣PB|

解:作点B于直线l的对称点B′,连AB′并延长交直线

于P.

∴B′N=BN=1,

过D点作B′D⊥AM,

利用勾股定理求出AB′=5

∴|PA﹣PB|的最大值=5.

4.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.

分析:本题关键在于找到两个极端,即BA′取最大或最小值时,点P或Q的位置.经实验不难发现,分别求出点P与B重合时,BA′取最大值3和当点Q与D重合时,BA′的最小值1.所以可求点A′在BC边上移动的最大距离为2.解:当点P与B重合时,BA′取最大值是3,

当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3﹣1=2.

故答案为:2

5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD 内部时,PD的最小值等于.

分析:如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.

解:如图,

∵当点P落在梯形的内部时,∠P=∠A=90°,

∴四边形PFAE是以EF为直径的圆内接四边形,

∴只有当直径EF最大,且点A落在BD上时,PD最小,

此时E与点B重合;

由题意得:PE=AB=8,

由勾股定理得:

BD2=82+62=80,

∴BD=45,

∴PD=458

6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.

分析:取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.

解:如图,取AB的中点E,连接OD、OE、DE,

∵∠MON=90°,AB=2

∴OE=AE=1

2

AB=1,

∵BC=1,四边形ABCD是矩形,

∴AD=BC=1,

∴DE=2,

根据三角形的三边关系,OD<OE+DE,

∴当OD过点E是最大,最大值为2+1.故答案为:2+1.

相关文档
最新文档