高中总复习之二倍角公式

合集下载

高考数文一轮总复习课件 两角和差及二倍角公式

高考数文一轮总复习课件   两角和差及二倍角公式

解析: (2)正确.如 α ,β中有一个为 0,此式即可成立.
(3)错误.两角和的余弦公式为 cos(α +β)=cos α cos β -sin α sin β两项中间应为“-”.
(4)正确.tan α +tan β=tan(α +β) (1-tan α tan β). ∵α +β=45°,∴tan(α +β)=1, ∴tan α +tan β=1-tan α tan β.
基础梳理
1. 两角和与差的三角函数公式
S(α ±β) :sin(α ±β)= sinαcosβ±cosαsinβ C(α ±β) :cos(α ±β)= cosαcosβ∓sinαsinβ ; tanα ±tanβ T(α ±β) :tan(α ±β)= 1∓tanα tanβ .
2. 二倍角公式
3sin 10° 规范解答: 原式=2sin 50°+sin 10°×1+ × cos 10° cos 10°+ 3sin 10° =2sin 50°+sin 10°× × cos 10°
2sin 80°
2sin 80°(2 分)
最新考纲
§3.3 两角和、差及二倍角公式
1. 能用向量数量积推导出两角差的余弦公式. 2. 能利用两角差的余弦公式推导出两角差的正弦、正切公式. 3. 能利用两角和的余弦公式推导出两角和的正弦、余弦、正切公式
及二倍角的正弦、余弦、正切公式,了解它们的内在联系.
最新考纲 基础梳理
第 三 节
自主测评 典例研析 特色栏目 备课优选
题型分类 ·典例研析
题型1 · 三角函数式的求值
例 1 求[2sin 50°+sin 10°×(1+ 3tan 1 0°)]× 2sin 2 80° 的值.

高中数学3_2二倍角的三角函数教材梳理素材苏教版必修4

高中数学3_2二倍角的三角函数教材梳理素材苏教版必修4

高中数学 3.2 二倍角的三角函数教材梳理素材 苏教版必修4知识·巧学 1.二倍角公式在两角和三角公式中,令α=β就可以得到下面的结论: sin2α=2sinαcosα,cos2α=cos 2α-sin 2α, tan2α=αα2tan 1tan 2-,由于sin 2α+cos 2α=1,所以公式cos2α=cos 2α-sin 2α还可以变形为cos2α=2cos 2α-1,cos2α=1-2sin 2α.上面的几个等式称为倍角公式.倍角公式是和角公式的特例.记忆要诀 在两角和的正弦、余弦、正切公式和二倍角公式的推导的基础上进行记忆. 深化升华 倍角公式的推导,是化一般为特殊的化归思想的具体运用. 对于倍角公式应注意以下几点: (1)在二倍角的正、余弦公式中,角α的取值范围可以是全体实数,在二倍角的正切公式中,α≠2πk +4π,α≠kπ+2π(k ∈Z ).特别地,当α=2π+kπ(k∈Z )时,显然tanα的值不存在,但tan 2α的值是存在的,这时求tan2α的值,可用诱导公式进行,即tan2(2π+kπ)=tan(π+2kπ)=tanπ=0.公式中的角可以是具体的数,也可以是字母和代数式.(2)二倍角只是一个相对的概念,如:4α是8α的倍角,α±β是2βα±的倍角,在公式中角α可以是数、字母或代数式,是一个不可分割的整体.在运用倍角公式对半角的三角函数进行变换时,无论正用还是逆用,都可直接使用这一公式.例sin 3α=2sin 6αcos 6α,cos3α=cos26α-sin26α=2cos26α-1=1-2sin 26α;sin3α·cos3α=21(2sin3αcos3α)=21sin6α;cos 22α-sin 22α=cos4α;21sin 63αcos 63α=41sin3α;tan3x=23tan123tan22x x -;︒-︒35tan 135tan 22=tan70°等.应熟悉倍角公式的结构特点,加强训练.(3)二倍角公式的几种变形形式:(sinα±cosα)2=1±sin2α;1+cos2α=2cos 2α;1-cos2α=2sin 2α;cos 2α=22cos 1α+;sin 2α=22cos 1α-. 其中升幂换半角公式是1+cosα=2cos 22α,1-cosα=2sin 22α,利用该公式能消去常数项,便于提取公因式化简三角函数式;降幂换倍角公式是cos 2α=22cos 1α+,sin 2α=22cos 1α-,利用该公式能使之降次,便于合并同类项化简三角函数式. 深化升华 由二倍角公式及同角三角函数的基本关系式,可得sin2α=αα2tan 1tan 2+、cos2α=αα22tan 1tan 1+-,利用这两个公式我们可以用单角的正切表示二倍角的三角函数. 2.二倍角公式的应用利用倍角公式可以求值、证明三角恒等式和化简三角函数式.在运用公式时,要注意审查公式成立的条件,要做到三会:会正用;会逆用;会变形应用.公式的正用是常见的,但逆用和变形使用往往容易被忽视,而公式的逆用和变形使用更能开拓思路.只有熟悉了公式的逆用和变形应用后,才真正掌握了公式的应用.学法一得 运用二倍角公式的先决条件是认识它的本质,要善于避开表面的东西,正确捕捉公式的原形,更好地运用公式. 典题·热题知识点1 二倍角公式 例1 已知sinα=135,α∈(2π,π),求sin2α,cos2α,tan2α的值. 思路分析:本题是倍角公式、同角三角函数基本关系的应用及已知一个三角函数值求其他三角函数值的方法.思路一:可根据已知条件求出cosα,再利用倍角公式求出sin2α,cos2α,进而利用同角三角函数基本关系求出tan2α.此外,也可以求出tanα的值利用倍角公式求tan2α.思路二:也可以只求出sin2α,cos2α,tan2α中的一个,其余的利用同角三角函数基本关系求解.解:方法一∵sinα=135,α∈(2π,π), ∴cosα=-α2sin 1-=-1312.∴sin2α=2sinαcosα=-169120,cos2α=1-2sin 2α=169119,tan2α=-119120. 方法二∵sinα=135,∴cos2α=1-2sin 2α=169119.又∵α∈(2π,π),∴2α∈(π,2π).∴sin2α=-α2cos 12-=-169120,tan2α=-119120.方法归纳 在三角部分经常用到“凑公式”的方法解题,但要注意已知条件和所求式子中角之间的关系.当已知一个三角函数值而求其他的三角函数值时,一定要注意角的范围,若角的范围没给,这就需要分类讨论. 例2 求证:θθθtan 24cos 4sin 1-+=θθθ2tan 14cos 4sin 1-++.思路分析:可将等式进行等价变形,再利用倍角公式进行证明.证明:原式等价于θθθθθθ2tan 1tan 44cos 4sin 14cos 4sin 1-=++-+=tan2θ, 左边=)2cos 2(sin 2cos 2)2sin 2(cos 2sin 22cos 22cos 2sin 22sin 22cos 2sin 2)4cos 1(4sin )4cos 1(4sin 22θθθθθθθθθθθθθθθθ++=++=++-+ =tan2θ=右边.方法归纳 在三角恒等式的证明中,如果原等式不易证明时,可将等式进行适当的等价变形,转化为较易证明的等式. 例3 若23π<x <2π,化简x 2cos 21212121++. 思路分析:本题的关键是将根号下的式子化为完全平方式以便于去掉根号.根据本题的式子特点,可重复利用二倍角余弦公式的变形. 解:由于23π<x <2π,则43π<2x <π. 所以原式=2cos 2cos cos 212122cos 121212xx x x -==+=++. 方法归纳 解答这类题,在实施脱根号的过程中要注意对符号的选取.深化升华 对于三角函数式的化简,要明确化简的目标和标准.化简的最后结果,三角函数的个数应最少,次数应尽可能地低,能化为常数的一定要化为常数,能不用分式就尽可能地不用分式.例4 求sin6°cos24°sin78°cos48°的值.思路分析:将78°的正弦值化为12°的余弦值,重复利用二倍角公式化简求值. 解:由于sin78°=cos12°,所以原式=sin6°cos12°cos24°cos48°=︒︒︒︒︒︒6cos 48cos 24cos 12cos 6cos 6sin=21·︒︒︒︒︒6cos 48cos 24cos 12cos 12sin =41·︒︒︒︒6cos 48cos 24cos 24sin =161·︒︒6cos 96sin =161. 方法归纳 形如cos αcos2αcos4α…cos2n-1α(n ∈N 且n >1)或能够化为cos αcos2αcos4α…cos2n-1α(n ∈N 且n >1)的三角函数式,由于它们的角是2倍关系,可将分子、分母同乘以最小角的正弦,运用二倍角公式进行化简. 例5 求(tan10°-3)sin40°的值.思路分析:利用切割化弦,再逆用差角公式和倍角公式. 解法一:(tan10°-3)sin40°=(︒︒-︒10cos 10cos 310sin )sin40°=︒︒-=︒︒︒-=︒︒︒︒-︒︒10cos 80sin 10cos 40sin 50sin 210cos 40sin )60sin 10cos 60cos 10(sin 2=-1.解法二:(tan10°-3)sin40°=(tan10°-tan60°)sin40°=(︒︒-︒︒60cos 60sin 10cos 10sin )sin40°=︒︒︒︒-︒︒60cos 10cos 60sin 10cos 60cos 10sin ·sin40° =︒︒-=︒︒︒-10cos 80sin 10cos 2140sin 50sin =-1. 方法归纳 (1)根据本题的特点,采用切割化弦是解答本题的关键一步,它为逆用差角公式和倍角公式铺平了道路.(2)在三角函数式的化简或求值的过程中,还要注意利用和、差的三角函数公式,它可将三角函数式化为一个角的三角函数式,为化简或求值提供方便. 例6 已知tanα=71,tanβ=31,α、β均为锐角,求α+2β的值. 思路分析:根据已知条件选择正切函数,先求出α+2β的正切值,再根据题设条件求出α+2β的范围,并使正切函数在此范围内只有一个值,然后即可求α+2β的值.解:∵tanα=71,tanβ=31,α、β均为锐角, ∴0<α,β<4π.∴0<α+2β<43π.又∵tan2β=ββ2tan 1tan 2-=43,∴tan(α+2β)=βαβα2tan tan 12tan tan -+=437114371⨯-+=1.∴α+2β=4π. 方法归纳 在给值求角时,一般是选择一个适当的三角函数,根据题设确定角的范围,利用三角函数的值求出角的大小,其中确定角的范围是一个关键,一定要使角在此范围内和三角函数值是一一对应的.此外也可根据角的范围来选择三角函数的名称. 问题·探究 交流讨论探究问题 是否存在三个内角都适合方程cos2x+2sinxsin2x=2cosx 的三角形? 探究过程:师:这是一个探索性问题,解决这类题时可先假设结论存在,然后再利用所学知识进行推理,探求结论.如果能求出,则结论存在,否则不存在.对于这个问题考查的知识是什么? 学生甲:由于所给的等式中既有单角又有倍角,则用到了二倍角公式.处理这个问题可先从已知条件cos2x+2sinxsin2x=2cosx 入手,将二倍角的正弦展开建立关于x 的三角方程,再结合三角形三个内角和是π这一性质即可. 师:处理这个问题的具体操作步骤是怎样的?学生乙:我知道,显然方程可化为cos2x+4sin 2xcosx=2cosx, 即cos2x(2cosx-1)=0,解得cos2x=0或cosx=21. 但接下来怎样求x 的值我还不清楚.学生丙:可以三角形这一前提条件,在这一前提下可得x 的取值只能是4π,43π,3π.而在这些值中只有3π+3π+3π=π,所以存在三个内角都适合cos2x+2sinxsin2x=2cosx 的三角形,它是一个正三角形.探究结论:存在,它是一个正三角形. 思维陷阱探究问题 在处理问题“已知cos(x+4π)=53,2π≤x<23π,求cos(2x+4π)的值”时,一个同学给出了下面的解题过程: 因为cos(x+4π)=53,所以cos(2x+4π)=2cos 2(2x+4π)-1=2×259-1=-257.上述解法是否正确?探究过程:二倍角只是一个相对的概念,在公式中角α可以是数、字母或代数式,是一个不可分割的整体.在上面的解题过程中以为2x 是x 的二倍,则2x+4π也是x+4π的两倍了,说明片面地理解了二倍角的概念.而事实上x+4π的二倍应是2x+2π. 探究结论:上面的解法不正确,正确的解法如下: cos(2x+4π)=cos2xcos 4π-sin2xsin 4π=22(cos2x-sin2x). 因为2π≤x<2π,则43π≤x+4π<47π,又cos(x+4π)=53>0,则sin(x+4π)=-54,则cos2x=sin(2x+2π)=2sin(x+4π)cos(x+4π)=-2524, sin2x=-cos(2x+2π)=2cos 2(x+4π)-1=257,所以cos(2x+4π)=22(cos2x-sin2x)=-50231.。

高考数学复习点拨 二倍角公式的两个特殊变式及应用

高考数学复习点拨 二倍角公式的两个特殊变式及应用
4
- ). ).其
以上两个变式的形式与二倍角正、公式再结合倍角公式即可解决.由sin2 =-cos(2 + =-cos2( + 二、应用 变式1、2主要用于题中含有2 与 例1 已知cos( +

2
)

4
),及cos2 =sin2( +

4
),再用倍角公式即可.

4
± 问题的转化.

3 )= ,求 4 5
sin 2 . sin 4
分析:本题只需将sin2 及sin( +

4
- ),运用变式及诱导公式转化成cos(

4
)形式即可解决问题.
3 )= ,由变式1,得 4 5 7 sin2 =1-2cos2( + )= . 4 25 3 sin( - )=cos( + )= . 4 4 5 7 7 ∴ 原式= 25 . 3 15 5
二倍角公式的两个特殊变式及应用
一、变式 变式1:sin2 =sin2( + =2sin2( +

4 4
)-cos2( + )-1

4
)
=1-2cos2( + 变式2:cos2 =2sin( +

4
).

4
) cos( +

4
)=2sin(

4
+ ) sin(


4
)=-cos(x+

4
). )=-
1 . 2


2
4
)=1或cos(x+ ),

4


4
2
=0或x+

数学二倍角公式有哪些

数学二倍角公式有哪些

数学二倍角公式有哪些数学中的二倍角公式是指将一个角度的度数加倍后得到的角度,可以用于简化求解三角函数、三角方程等各种数学问题。

以下是数学中常用的二倍角公式及其推导过程。

1. 正弦函数的二倍角公式sin 2θ = 2 sin θ cos θ该公式表示一个角度的正弦值的二倍等于该角度的正弦值的两倍角(即sin 2θ),等于该角度的正弦值与余弦值的积的两倍(即2 sin θ cos θ)。

可以通过以下步骤推导出该公式:根据正弦函数的定义,sin θ = 对边 / 斜边,即 sin θ = a / c。

则有:sin 2θ = sin (θ + θ)用三角恒等式sin (α + β) = sin α cos β + cos α sin β,将sin 2θ 分解成两个角度的正弦值乘积之和,即: sin 2θ = sin (θ + θ) = sin θ cos θ + cos θ sin θ = 2 sin θ cos θ2. 余弦函数的二倍角公式cos 2θ = cos² θ - sin² θ该公式表示一个角度的余弦值的二倍等于该角度的余弦值的平方减去正弦值的平方(即cos 2θ),等于1减去2倍该角度正弦值的平方(即cos 2θ=1-2sin² θ)。

可以通过以下步骤推导出该公式:根据余弦函数的定义,cos θ = 邻边 / 斜边,即 cos θ = b / c。

则有:cos 2θ = cos (θ + θ)用三角恒等式cos (α + β) = cos α cos β - sin αsin β,将cos 2θ 分解成两个角度的余弦值乘积之差,即:cos 2θ = cos (θ + θ) = cos ²θ − sin ²θ3. 正切函数的二倍角公式tan 2θ = (2 tan θ) / (1 - tan² θ)该公式表示一个角度的正切值的二倍等于2倍该角度的正切值除以1减去该角度的正切值的平方(即tan 2θ=2tanθ / (1-tan² θ))。

高中数学-二倍角的正弦、余弦、正切公式

高中数学-二倍角的正弦、余弦、正切公式
二倍角的正弦、余弦、 正切
1.二倍角的正弦、余弦、正切
∵ sin(α+β)=sinαcos β+cosαsin β,
∴ 当α=β 时,sin(α+β)=sin2α=2sinαcosα
sin2α=2sinαcosα ∵ cos(α +β)=cosαcosβ -sinαsinβ
(S2 α)
∴ 当α = β时, cos(α+β)=cos2α =cos2α -sin2α
例6. 求值: cos215°+sin250°–cos175°·cos95°

解:原式=
1 cos30 1 cos100 sin5
2
2
cos 5
1 1 cos30 1 sin10 1 sin10
2
2
2
1 3 4
例7. 已知sin( ) 5 ,且0 ,
4
13
4
求3sin2 4sin cos cos2 的值。
3. 6
(4)1-cos 2 π=-1(2cos 2π -1)
2
82
8
=-1cosπ=- 2.
24
4
练习1.已知sinα=5 ,α∈( ,π),求sin2α,
13
cos2α,tan2α的值.
2
解:∵sinα= 5 ,α∈( , π ),
13
2
∴cosα=- 1 sin 2 1 ( 5 )2 12.
例13 化简
2
2,
2 2cos
1
其中180 360.
4
例14 已知: x+y=3–cos4θ,x – y=4sin2θ,
1
1
求证:x 2 y2 2.
例15 求证 sin4 cos2 cos tan .

第4课时二倍角公式

第4课时二倍角公式
第36页
高考调研 ·高三总复习·数学(理)
方法四:从“形”入手,利用配方法,先对二次项配方
原式=(sinα·sinβ-cosα·cosβ)2+2sinα·sinβ·cosα·cos
β-12cos2α·cos2β=cos2(α+β)+12sin2α·sin2β-12cos2α·cos2
β=cos2(α+β)-12·cos(2α+2β)=cos2(α+β)-21·[2cos2(α+β)-1]=21.
【思路】 (1)注意到π9 ,29π,49π之间的关系,可考虑分子 分母同时乘以 sinπ9 ,这样即可连续使用二倍角的正弦公式,从 而实现化简的目的.
(2)切化弦、通分.
第17页
高考调研 ·高三总复习·数学(理)
【解析】 (1)方法一:cosπ9 cos29πcos39πcos49π
π π 2π 4π
第25页
高考调研 ·高三总复习·数学(理)
=cos10°-2(122csoisn1100°°-
23sin10°)=
3 2.
【答案】
1 (1)4
3 (2) 2
第26页
高考调研 ·高三总复习·数学(理)
cos2α 已知 cos(π4 -α)=1123,α∈(0,π4 ),则sin(π4 +α)= ________.
第31页
高考调研 ·高三总复习·数学(理)
∴sin21x-+ta2nsxin2x=2sinxc1o-tsaxn+x2sin2x
=2(-7102)·(- 110-27)+2(-7102)2=-2785.
【答案】
28 -75
第32页

二倍角的全部公式

二倍角的全部公式

二倍角的全部公式
二倍角公式:2cosθ=cos2θ-1
二倍角公式在数学中是一个比较常见的公式,它的推导相对简单,主要步骤如下:
1.首先,我们从基本的三角函数开始,有cosθ=sin(π/2-θ),这是一个基本的三角函数,是一个定值公式。

2.接下来,我们将上面的基本三角函数代入到二倍角公式中,即2cosθ=cos(2π/2-2θ)=cos2θ-1。

3.最后,我们将上面的结果代入到二倍角公式中,得到最终的二倍角公式:2cosθ=cos2θ-1。

这个二倍角公式可以用来解决许多三角函数问题,它主要用来解决关于角度和弧度的问题,它也可以用来求出三角形面积、三角形周长等数学问题。

此外,它还可以用来解决一些更复杂的数学问题,如求解一元二次方程、求解抛物线等。

总之,二倍角公式是一个十分重要的数学公式,它的推导相对比较简单,但是它可以用来解决许多三角函数问题,以及一些更复杂的数学问题,因此,它是一个非常有用的公式,也是一个我们应该牢记的公式。

高中总复习之二倍角公式

高中总复习之二倍角公式

【学习目标】1.能从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式,并了解它们之间的内在联系.2.能熟练运用二倍角公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式.但不要求记忆),能灵活地将公式变形并运用.3.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想、方程思想等在三角恒等变换中的作用.【要点梳理】要点一:二倍角的正弦、余弦、正切公式 1.二倍角的正弦、余弦、正切公式 要点诠释:(1)公式成立的条件是:在公式22,S C αα中,角α可以为任意角,但公式2T α中,只有当2k παπ≠+及()42k k Z ππα≠+∈时才成立; (2)倍角公式不仅限于2α是α的二倍形式,其它如4α是2α的二倍、2α是4α的二倍、3α是32α的二倍等等都是适用的.要熟悉多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键. 如:2cos2sin2sin ααα=;11sin2sincos ()222nn n n Z ααα++=∈2.和角公式、倍角公式之间的内在联系在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式,它们的内在联系如下:要点二:二倍角公式的逆用及变形要点三:两角和与差的三角函数公式能够解答的三类基本题型 求值题、化简题、证明题1.对公式会“正着用”,“逆着用”,也会运用代数变换中的常用方法:因式分解、配方、凑项、添项、换元等;2.掌握“角的演变”规律,寻求所求结论中的角与已知条件中的角的关系,如(),2()()ααββααβαβ=-+=++-等等,把握式子的变形方向,准确运用公式,也要抓住角之间的规律(如互余、互补、和倍关系等等);3.将公式和其它知识衔接起来使用,尤其注意第一章与第三章的紧密衔接. 【典型例题】类型一:二倍角公式的简单应用 例1.化简下列各式: (1)4sincos22αα;(2)22sincos 88ππ-;(3)2tan 37.51tan 37.5︒-︒.【思路点拨】逆用二倍角的正弦、余弦和正切公式. 【答案】(1)2sin α(2)22-(3)232+【解析】 (1)4sincos22sincos2sin 2222ααααα=⋅=.(2)22222sincos cos sin cos 888842πππππ⎛⎫-=--=-=-⎪⎝⎭. (3)22tan 37.512sin 37.5123tan 751tan 37.521tan 37.522︒︒+=⋅=︒=-︒-︒.【总结升华】本题的解答没有去就单个角求其函数值,而是将所给式子作为一个整体变形,逐步向二倍角公式的展开形式靠近,然后逆用倍角公式,要仔细体会本题中的解题思路.举一反三:类型二:利用二倍角公式求非特殊角的三角函数值 例2. 求sin10°sin30°sin50°sin70°的值. 【思路点拨】解这类题型有两种方法: 方法一:适用sin 2sin 2cos ααα=,不断地使用二倍角的正弦公式方法二:将正弦题目中的正弦形式全部转化为余弦形式,利用sin 2cos 2sin ααα=进行化简.【答案】116【解析】方法一:sin 20sin 50sin 70sin10sin 50sin 702cos10︒︒︒︒︒︒=︒sin 20cos 20sin 50sin 40sin 50sin 40cos 402cos104cos104cos10︒︒︒︒︒︒︒===︒︒︒sin 8018cos108︒==︒. ∴1sin10sin 30sin 50sin 7016︒︒︒︒=方法二:原式1cos 20cos 40cos802=︒︒︒2sin 20cos 20cos 40cos804sin 20︒︒︒︒=︒sin 40cos 40cos80sin80cos801sin16014sin 202sin 2016sin 2016︒︒︒︒︒︒===⋅=︒︒︒.【总结升华】本题是二倍角公式应用的经典试题.方法一和方法二通过观察角度间的关系,发现其特征(二倍角形式),逆用二倍角的正弦公式,使得问题出现连用二倍角的正弦公式的形式.在此过程中还应该看到化简以后的分子分母中的角是互余(补)的关系,从而使最终的结果为实数.利用上述思想,我们还可以把问题推广到一般的情形:一般地,若sin 0α≠,则11s i n 2c o sc o s 2c o s 4c o s 22s i nn nn αααααα++=.举一反三:【变式1】求值:sin10°cos40°sin70°. 【解析】原式2sin 20cos 20cos 40cos80cos 20cos 40cos802sin 20︒︒︒︒=︒︒︒=︒sin160sin 2018sin 208sin 208︒︒===︒︒.类型三:利用二倍角公式化简三角函数式例3.化简下列各式: (1)4sin 1)2(2cos cos 12sin sin -+++θθθθ【思路点拨】(1)观察式子分析,利用二倍角公式把倍角展开成单角,再进行化简.(2)观察式子分析,利用二倍角公式把倍角展开成单角,利用平方差公式进行化简.【答案】(1)tan θ(2)sin 2cos2- 【解析】(1).tan )cos 21(cos )cos 21(sin cos 2cos cos sin 2sin 2cos cos 12sin sin 2θθθθθθθθθθθθθθ=++=+⋅+=+++ (2)4sin 1-【总结升华】①余弦的二倍角公式的变形形式:αααα22sin 22cos 1,cos22cos 1=-=+.经常起到消除式子中1的作用.②由于2)cos (sin sin21cos sin 22sin αααααα±=±⋅=,从而,可进行无理式的化简和运算.例4.化简:222cos 12tan sin 44αππαα-⎛⎫⎛⎫-⋅+ ⎪ ⎪⎝⎭⎝⎭.【解析】 原式2cos 22sin 4cos 4cos 4απαπαπα=⎛⎫- ⎪⎛⎫⎝⎭⋅- ⎪⎛⎫⎝⎭- ⎪⎝⎭cos 21cos 2αα==.【总结升华】 三角函数的化简要从减少角的种类、函数的种类入手.通过切化弦、弦化切、异化同、高次降幂等手段,使函数式的结构化为最简形式.举一反三:【变式1】(1)1sin 6-的化简结果是 .(2)已知3sin 5α=,且α∈(2π ,π),则2sin 2cos αα的值为 . 【答案】(1)sin3cos3-(2)32-【解析】(1)原式=1sin 3cos3-=2(sin3cos3)-=|sin3cos3|- =sin3cos3-(2)因为3s i n 5α=,且α∈(2π ,π),所以4cos 5α=-,原式=22sin cos 3532()cos 542ααα=⨯⨯-=-. 类型四:二倍角公式在三角函数式给值求值题目中的应用 【高清课堂:倍角、半角公式370633 例2】 例5.求值: (1)已知3sin()1225πθ-=,求cos()6πθ-.(2)已知sin()4m πα+=,求sin2α.【思路点拨】观察所求的角与已知角的关系,发现它们是二倍的关系,所以用二倍角公式去求解. 【答案】(1)725(2)221m - 【解析】 (1)cos()cos cos 266122πππθθθ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭=212sin 122πθ⎛⎫-- ⎪⎝⎭ =91225-⨯ =725(2)sin 2cos(2)2παα=-+=212sin 4πα⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦=212sin 4πα⎛⎫-++⎪⎝⎭=221m -【总结升华】给值求值是求值问题中常见的题型,求解的要点是利用公式沟通已知条件和所求式子之间的联系,考查公式运用和变换的技巧. 举一反三:【变式1】 已知1sin cos 3αα+=,且0απ<<,求sin 2α,cos2α,tan 2α的值.【答案】89-179- 81717【解析】由1sin cos 3αα+=,得21(sin cos )9αα+=,即112sin cos 9αα+=,∴8sin 22sin cos 9ααα==-由1sin cos 3αα+=,得1cos sin 3αα=-,∴221cos sin 3αα⎛⎫=- ⎪⎝⎭.即22121sinsin sin 93ααα-=-+.整理得29sin 3sin 40αα--=.解得117sin 6α+=或117sin 6α-=(舍去). ∴2211717cos 212sin 1269αα⎛⎫+=-=-⨯=- ⎪ ⎪⎝⎭. ∴sin 2817tan 2cos 217ααα==.【总结升华】解题过程中注意角α的范围的判定.【变式2】已知1tan 42πα⎛⎫+= ⎪⎝⎭,(1)求tan α的值;(2)求2sin 2cos 1cos 2ααα-+的值.【解析】 (1)tantan 1tan 14tan 41tan 21tan tan 4παπααπαα++⎛⎫+=== ⎪-⎝⎭-,解得1tan 3α=-.(2)222sin 2cos 2sin cos cos 2sin cos 1cos 212cos 12cos αααααααααα---==++-1115t a n 2326α=-=--=-. 【总结升华】 第(1)问中利用了方程的思想求tan α的值;对于第(2)问的题型,一般需要将分式转化为含tan α的式子求解,或者通过消元转化的方法求解. 类型五:二倍角公式的综合应用【高清课堂:倍角、半角公式370633 例3】例6.已知22()sin 2sin cos 3cos f x x x x x =++,求:(1)f (x )的最大值以及取得最大值的自变量的集合; (2)f (x )的单调区间.【思路点拨】用降幂公式把原式降幂,然后用辅助角公式化成sin()A x k ωϕ++的形式.【答案】(1)22+ |,8x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭(2)单增区间 3,,88k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦ 单减区间 5,,88k k k z ππππ⎡⎤++∈⎢⎥⎣⎦ 【解析】(1)原式=1sin 2cos21x x +++ =sin 2cos22x x ++ =2sin(2)24x π++则当22,42x k πππ+=+即|,8x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭时,(2)f (x )的单调递增区间为:222242k x k πππππ-≤+≤+,则f (x )的单调递减区间为:3222242k x k πππππ+≤+≤+,则 【总结升华】本题主要考查特殊角的三角函数值、两角和的正弦、二倍角的正弦与余弦公式及sin()y A x ωϕ=+的性质等知识.要记住倍角公式两类重要变形并能熟练应用:(1)缩角升幂公式21sin sin cos 22ααα⎛⎫+=+ ⎪⎝⎭,21sin sin cos 22ααα⎛⎫-=- ⎪⎝⎭.21cos 2cos 2αα+=,21cos 2sin 2αα-=.(2)扩角降幂公式21cos 2cos 2αα+=,21cos 2sin 2αα-=. 例7. 已知向量(1sin 2,sin cos )x x x =+-a ,(1,sin cos )x x =+b ,求函数()f x =⋅a b . (1)求()f x 的最大值及相应的x 值;(2)若8()5f θ=,求cos 224πθ⎛⎫- ⎪⎝⎭的值. 【思路点拨】利用向量数量积公式的坐标形式,将题设条件中所涉及的向量数量积转化为三角函数中的“数量关系”,从而建立函数f(x)关系式.【答案】(1)21+ 3()8x k k Z ππ=+∈(2)1625【解析】 (1)因为(1sin 2,sin cos )x x x =+-a ,(1,sin cos )x x =+b ,所以22()1sin 2sin cos 1sin 2cos 22sin 214f x x x x x x x π⎛⎫=++-=+-=-+ ⎪⎝⎭.因此,当2242x k πππ-=+,即3()8x k k Z ππ=+∈时,()f x 取得最大值21+. (2)由()1s i n 2c o s f θθθ=--及8()5f θ=得3sin 2cos 25θθ-=,两边平方得91sin 425θ-=,即16sin 425θ=.因此,16cos 22cos 4sin 44225ππθθθ⎛⎫⎛⎫-=-== ⎪ ⎪⎝⎭⎝⎭.举一反三:【变式1】已知函数2()sin cos cos 1222x x xf x =+-.(Ⅰ)求函数()f x 的最小正周期及单调递减区间; (Ⅱ)求函数()f x 在[,]π3π42上的最小值. 【答案】(Ⅰ)2π,52,244k k ππππ⎡⎤++⎢⎥⎣⎦,k z ∈(Ⅱ)212+- 【解析】(Ⅰ)1cos ()sin cos 1222x x xf x +=+-所以函数()f x 的最小正周期为2π.由322242k x k ππππ+≤+≤π+,k ∈Z ,则52244k x k πππ+≤≤π+. 函数()f x 单调递减区间是5[2,2]44k k πππ+π+,k ∈Z . (Ⅱ)由342x ππ≤≤,得7244x πππ≤+≤.则当342x ππ+=,即54x π=时,()f x 取得最小值212+-.【变式2】已知向量m =(sinA ,cosA ),(3,1)=-n ,m ·n =1,且A 为锐角. (1)求角A 的大小;(2)求函数()cos 24cos sin f x x A x =+(x ∈R )的值域.【答案】(1)3π(2)33,2⎡⎤-⎢⎥⎣⎦【解析】(1)由题意,得3sin cos 1m n A A ⋅=-=,2sin 16A π⎛⎫-= ⎪⎝⎭,1sin 62A π⎛⎫-= ⎪⎝⎭.由A 为锐角得66A ππ-=,3A π=.(2)由(1)知1cos 2A =,所以2213()cos 22sin 12sin 2sin 2sin 22f x x x x x x ⎛⎫=+=-+=-⋅-+ ⎪⎝⎭.因为x ∈R ,所以sinx ∈[-1,1].因此,当1sin2x=时,()f x有最大值32,当sin x=-1时,()f x有最小值-3,所以所求函数()f x的值域是3 3,2⎡⎤-⎢⎥⎣⎦.。

二倍角公式大全及推导过程

二倍角公式大全及推导过程

二倍角公式大全及推导过程二倍角公式是通过角α的三角函数值的一些变换关系来表示其二倍角2α的三角函数值,接下来分享二倍角公式大全及推导过程。

Sin2a=2Sina*Cosa;Cos2a=Cosa^2-Sina^2=1-2Sina^2=2Cosa^2-1;tan2a=(2tana)/(1-tana^2)。

二倍角公式大全及推导过程三角函数的二倍角公式Sin2a=2Sina*CosaCos2a=Cosa^2-Sina^2=1-2Sina^2=2Cosa^2-1tan2a=(2tana)/(1-tana^2)二倍角公式推导过程①正弦二倍角公式:sin2α=2cosαsinα推导:sin2a=sin(a+a)=sinacosa+cosasina=2sinacosa拓展公式:sin2a=2sinacosa=2tanacosa^2=2tana/[1+tana^2] 1+sin2a=(sina+cosa)^2②余弦二倍角公式:余弦二倍角公式有三组表示形式,三组形式等价:1.Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2]2.Cos2a=1-2Sina^23.Cos2a=2Cosa^2-1推导:cos2a=cos(a+a)=cosacosa-sinasina=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2。

③正切二倍角公式:tan2α=2tanα/[1-(tanα)^2]推导:tan2a=tan(a+a)=(tana+tana)/(1-tanatana)=2tana/[1-(tana)^2]。

三角函数的半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/((1+cosα))二倍角公式推导过程在二角和的公式中令两个角相等(B=A),就得到二倍角公式。

二倍角公式

二倍角公式

二倍角公式
二倍角公式是三角函数中的一种重要的公式,它用于计算角度的倍数。

在三角函数中,角度的一倍被称为原角,两倍被称为二倍角。

二倍角公式可以通过原角的余弦、正弦或正切来表示。

下面我们将介绍正弦、余弦和正切的二倍角公式。

1. 正弦的二倍角公式:
根据三角函数的定义,正弦函数表示一个角的对边与斜边的比值。

正弦的二倍角公式可以表示为:
sin(2θ) = 2sinθcosθ
2. 余弦的二倍角公式:
余弦函数表示一个角的邻边与斜边的比值。

余弦的二倍角公式可以表示为:
cos(2θ) = cos²θ - sin²θ
或者
cos(2θ) = 2cos²θ - 1
或者
cos(2θ) = 1 - 2sin²θ
3. 正切的二倍角公式:
正切函数表示一个角的对边与邻边的比值。

正切的二倍角公式可以表示为:
tan(2θ) = (2tanθ) / (1 - tan²θ)
这些二倍角公式可以用于计算二倍角的正弦、余弦和正切值。

在实际问题中,二倍角公式在三角函数的求解和应用中具有广泛的应用。

例如,在解三角方程、证明三角恒等式和计
算三角函数值等方面都会用到二倍角公式。

总结起来,二倍角公式是三角函数中的重要公式,包括正弦、余弦和正切的二倍角公式。

它们可以通过原角的正弦、余弦或正切来计算二倍角的值。

这些公式在解决实际问题和证明三角恒等式时起到了重要的作用。

高考数学复习知识点讲义课件46---二倍角的正弦、余弦、正切公式

高考数学复习知识点讲义课件46---二倍角的正弦、余弦、正切公式

7
·cos
7
2sin =-
7
·cos
7 π
·cos
7
2sin7
4sin7
4π 4π

=-2sin87sin·cπ7os 7 =-s8isnin7π7=18.
(2)cos51ππ6-sin51ππ6=cos51π6cos1π6π-sinπ51π6sin1π6=c1os38ππ=2cosπ2-π π8=2sinππ8=2.
(2)对于 S2α 和 C2α,α∈R ,但是在使用 T2α 时,要保证分母 1-tan2α≠0 且 tan α 有意义,即 α≠π4+kπ 且 α≠-π4+kπ 且 α≠π2+kπ(k∈Z ).当 α=π4+kπ 及 α=-π4+kπ(k∈Z )时,tan 2α 的值不存在;当 α=π2+kπ(k∈Z )时,tan α 的 值不存在,故不能用二倍角公式求 tan 2α,此时可以利用诱导公式直接求出 tan 2α=tan(π+2kπ)=0.
答案:C
3.(2021·全国乙卷)cos21π2-cos251π2=
()
1 A.2
C.
2 2
3 B. 3
D.
3 2
解析:因为1π2+51π2=π2,所以 cos51π2=cosπ2-1π2=sin 1π2,所以 cos21π2-cos251π2 =cos21π2-sin21π2=cos2×1π2=cosπ6= 23.故选 D.
矢×矢).弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成
的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在
圆的半径与圆心到弧田弦的距离之差,现有一弧田,其弧田弦 AB 等于 6
米,其弧田弧所在圆为圆 O,若用上述弧田面积计算公式算得该弧田的面

二倍角公式及其变形公式

二倍角公式及其变形公式

二倍角公式及其变形公式一、二倍角公式在三角函数中,二倍角公式是指将一个角的两倍表示为与该角有关的函数值的等式。

根据不同的三角函数,二倍角公式可以分为正弦函数、余弦函数和正切函数的二倍角公式。

1.正弦函数的二倍角公式:sin(2θ) = 2sinθcosθ这个等式表示,将一个角的两倍的正弦值表示为该角的正弦值和余弦值的乘积。

2.余弦函数的二倍角公式:cos(2θ) = cos^2θ - sin^2θ= 2cos^2θ - 1= 1 - 2sin^2θ这些等式分别表示,将一个角的两倍的余弦值表示为该角的正弦值和余弦值的乘积;将一个角的两倍的余弦值表示为该角的余弦值的平方和该角的正弦值的平方之差;将一个角的两倍的余弦值表示为2倍该角的余弦值的平方减去1;将一个角的两倍的余弦值表示为1减去2倍该角的正弦值的平方。

3.正切函数的二倍角公式:tan(2θ) = (2tanθ)/(1 - tan^2θ)这个等式表示,将一个角的两倍的正切值表示为该角的正切值的两倍除以1减去该角的正切值的平方。

二、二倍角公式的变形公式根据二倍角公式,我们还可以推导出一些二倍角公式的变形公式,这些变形公式可以通过将二倍角公式进行代数运算和变形得到。

1.正弦函数的变形公式:sinθ = (2sin(θ/2)cos(θ/2))这个等式是将sin(2θ)的二倍角公式进行变形得到的,将θ替换为θ/22.余弦函数的变形公式:cosθ = (cos^2(θ/2) - sin^2(θ/2))这个等式是将cos(2θ)的二倍角公式进行变形得到的,将θ替换为θ/23.正切函数的变形公式:tanθ = (2tan(θ/2))/(1 - tan^2(θ/2))这个等式是将tan(2θ)的二倍角公式进行变形得到的,将θ替换为θ/2这些变形公式在解决一些特殊问题时非常有用,因为通过将角度减半,可以将原问题转化为更简单的问题,从而得到更方便的解法。

总结:二倍角公式和其变形公式是三角函数中的重要概念,它们可以将一个角的两倍的函数值表示为该角的函数值的乘积或平方之差。

高中三角函数二倍角公式及推导过程

高中三角函数二倍角公式及推导过程
高中三角函数二倍角公式及推导过程
二倍角公式是数学三角函数中常用的一组公式,在高中数学中,也是重
点考察的内容。下面小编整理了一些相关信息,供大家参考!
1三角函数二倍角公式是什幺两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cot(A/2)=√((1+cosA)/((1-cosA))
cot(A/2)=-√((1+cosA)/((1-cosA))
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
1三角函数二ቤተ መጻሕፍቲ ባይዱ角公式推导过程在二角和的公式中令两个角相等(B=A),就
得到二倍角公式.
sin(A+B)=sinAcosB+cosAsinB
--->sin2A=2sinAcosA
cos(A+B)=cosAcosB-sinAsinB
--->cos2A=(cosA) -(sinA) =(1-(sinA) -(sinA) =1-2(sinA) =2(cosA) -1.
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
--->tan2A=2tanA/[1-(tanA) ]
在余弦的二倍角公式中,解方程就得到半角公式.
cosx=1-2[sin(x/2)]
--->sin(x/2)=+’-√[(1-cosx)/2]符号由(x/2)的象限决定,下同.
cosx=2[cos(x/2)]
--->cos(x/2)=+’-√[1+cosx)/2]

高中数学知识点:二倍角公式

高中数学知识点:二倍角公式

第 1 页 共 1 页 高中数学知识点:二倍角公式
1. 在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:
sin 2α= 2()S α;
cos2α= 2()C α;
tan 2α= 2()T α.
要点诠释:
1.在公式22,S C αα中,角α没有限制,但公式2T αα中,只有当)(2
24Z k k k ∈+≠+≠ππαππ
α和时才成立; 2. 余弦的二倍角公式有三种:ααα22s i n c o s 2c o s -==1cos 22-α=α2sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用.
3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332
αα是的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.。

专题57 高中数学二倍角的正弦、余弦、正切公式(解析版)

专题57 高中数学二倍角的正弦、余弦、正切公式(解析版)

专题57 二倍角的正弦、余弦、正切公式1.二倍角的正弦、余弦、正切公式记法 公式 S 2α sin 2α=2sin αcos α C 2α cos 2α=cos 2α-sin 2α T 2αtan 2α=2tan α1-tan 2α2.余弦的二倍角公式的变形3.二倍角余弦公式的重要变形——升幂公式和降幂公式(1)升幂公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α,1+cos α=2cos 2α2,1-cos α=2sin 2α2.(2)降幂公式:sin αcos α=12sin 2α,cos 2α=1+cos2α2,sin 2α=1-cos2α2.4.要牢记二倍角公式的几种变形(1)sin2x =cos ⎝⎛⎭⎫π2-2x =cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2cos 2⎝⎛⎭⎫π4-x -1=1-2sin 2⎝⎛⎭⎫π4-x ; (2)cos2x =sin ⎝⎛⎭⎫π2-2x =sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x ; (3)cos2x =sin ⎝⎛⎭⎫π2+2x =sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4+x =2sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x . (4)1±sin 2α=(sin α±cos α)2.5.用正切来表示正弦、余弦的倍角公式,也叫“万能公式”,公式如下:(1)sin2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α,即sin2α=2tan α1+tan 2α. (2)cos2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α,即cos2α=1-tan 2α1+tan 2α.题型一 给角求值1.下列各式中,值为32的是( ) A .2sin 15°cos 15° B .cos 215°-sin 215° C .2sin 215°D .sin 215°+cos 215°[解析]2sin 15°cos 15°=sin 30°=12;cos 215°-sin 215°=cos 30°=32;2sin 215°=1-cos 30°=1-32;sin 215°+cos 215°=1,故选B.2.求下列各式的值:(1)cos 415°-sin 415°;(2)1-2sin 275°;(3)1-tan 275°tan 75°;(4)cos 72°cos 36°;(5)2tan150°1-tan 2150°;[解析] (1)cos 415°-sin 415°=(cos 215°-sin 215°)(cos 215°+sin 215°)=cos 215°-sin 215°=cos 30°=32. (2)1-2sin 275°=1-(1-cos 150°)=cos 150°=-cos 30°=-32. (3)1-tan 275°tan 75°=2×1-tan 275°2tan 75°=2×1tan 150°=-2 3.(4)cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14.(5) 原式=tan(2×150°)=tan300°=tan(360°-60°)=-tan60°=- 3. 3.求下列各式的值.(1)sin π8sin 3π8=________;(2)12-cos 215°=________;(3)1-tan 215°tan15°=________.[解析] (1)∵sin 3π8=sin ⎝⎛⎭⎫π2-π8=cos π8,∴sin π8sin 3π8=sin π8cos π8=12·2sin π8cos π8=12sin π4=24. (2)原式=12(1-2cos 215°)=-12cos30°=-34.(3)原式=2tan30°=2 3.4.cos 275°+cos 215°+cos75°cos15°的值等于 [解析]原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=1+14=54.5.sin 4π12-cos 4π12等于[解析] 原式=⎝⎛⎭⎫sin 2π12+cos 2π12⎝⎛⎭⎫sin 2π12-cos 2π12=-⎝⎛⎭⎫cos 2π12-sin 2π12=-cos π6=-32 6.sin 20°cos 20°cos 2155°-sin 2155°的值是 [解析]原式=12sin 40°cos 310°=12sin 40°cos 50°=12sin 40°sin 40°=12.7.求下列各式的值:(1)1sin 10°-3cos 10°;(2)1sin 50°+3cos 50°.[解析] (1)1sin 10°-3cos 10°=cos 10°-3sin 10°sin 10°cos 10°=2⎝⎛⎭⎫12cos 10°-32sin 10°sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10°cos 10°=4sin 20°sin 20°=4.(2)原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝⎛⎭⎫12cos 50°+32sin 50°12×2sin 50°cos 50°=2sin 80°12sin 100°=2sin 80°12sin 80°=4.8.sin65°cos25°+cos65°sin25°-tan 222.5°2tan22.5°=[解析] 原式=sin90°-tan 222.5°2tan22.5°=1-tan 222.5°2tan22.5°=1tan45°=1.9.cos20°cos40°cos80°值为 .[解析]原式=2sin20°·cos20°·cos40°·cos80°2sin20°=2sin40°·cos40°·cos80°4sin20°=2sin80°·cos80°8sin20°=sin160°8sin20°=18.10.cos π7cos 3π7cos 5π7的值为[解析] ∵cos 3π7=-cos 4π7,cos 5π7=-cos 2π7,∴cos π7cos 3π7cos 5π7=cos π7cos 2π7cos 4π7=8sin π7cos π7cos 2π7cos 4π78sin π7=4sin 2π7cos 2π7cos 4π78sin π7=2sin 4π7cos 4π78sin π7=sin8π78sinπ7=-18.11.sin6°sin42°sin66°sin78°=________.[解析] 原式=sin6°cos12°cos24°cos48°=sin6°cos6°cos12°cos24°cos48°cos6°=12sin12°cos12°cos24°cos48°cos6°=14sin24°cos24°cos48°cos6°=18sin48°cos48°cos6°=116sin96°cos6°=116cos6°cos6°=116题型二 给值求值1.设α是第四象限角,已知sin α=-35,则sin2α,cos2α和tan2α的值分别为( )A .-2425,725,-247 B.2425,725,247 C .-2425,-725,247 D.2425,-725,-247[解析]因为α是第四象限角,且sin α=-35,所以cos α=45,所以sin2α=2sin αcos α=-2425,cos2α=2cos 2α-1=725,tan2α=sin2αcos2α=-247.2.已知α是第三象限角,cos α=-513,则sin2α等于[解析] ∵cos α=-513,α是第三象限角,∴sin α=-1-cos 2α=-1213(舍正)因此,sin2α=2sin αcos α=2×⎝⎛⎭⎫-1213×⎝⎛⎭⎫-513=120169. 3.若tan θ=2则tan 2θ=________. [解析]tan 2θ=2tan θ1-tan 2θ=2×21-22=-43.4.已知sin α-cos α=43,则sin 2α=[解析]∵sin α-cos α=43,∴1-2sin αcos α=169,即1-sin 2α=169,∴sin 2α=-79.5.若sin α+cos αsin α-cos α=12,则tan 2α=[解析]因为sin α+cos αsin α-cos α=12,整理得tan α=-3,所以tan 2α=2tan α1-tan 2 α=2×(-3)1-(-3)2=34.6.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.[解析]∵sin 2α=-sin α,∴2sin αcos α=-sin α.由α∈⎝⎛⎭⎫π2,π知sin α≠0, ∴cos α=-12,∴α=2π3,∴tan 2α=tan 4π3=tan π3= 3.7.已知α∈⎝⎛⎭⎫0,π2,2sin2α=cos2α+1,则sin α= [解析]∵2sin2α=cos2α+1,∴4sin α·cos α=2cos 2α.∵α∈⎝⎛⎭⎫0,π2,∴cos α>0,sin α>0,∴2sin α=cos α, 又sin 2α+cos 2α=1,∴5sin 2α=1,sin 2α=15,又sin α>0,∴sin α=558.已知等腰三角形底角的正弦值为53,则顶角的正弦值是 [解析]设底角为θ,则θ∈⎝⎛⎭⎫0,π2,顶角为180°-2θ.∵sin θ=53,∴cos θ=1-sin 2θ=23, ∴sin(180°-2θ)=sin 2θ=2sin θcos θ=2×53×23=459. 9.已知π2<α<π,cos α=-45.(1)求tan α的值;(2)求sin 2α+cos 2α的值.[解析] (1)因为cos α=-45,π2<α<π,所以sin α=35,所以tan α=sin αcos α=-34.(2)因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=725,所以sin 2α+cos 2α=-2425+725=-1725.10.已知π2<α<π,sin α=45.(1)求tan 2α的值;(2)求cos ⎝⎛⎭⎫2α-π4的值. [解析](1)由题意得cos α=-35,所以tan α=-43,所以tan 2α=2tan α1-tan 2α=-831-169=247. (2)因为sin α=45,所以cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫452=-725, sin 2α=2sin α·cos α=2×45×⎝⎛⎭⎫-35=-2425. 所以cos ⎝⎛⎭⎫2α-π4=cos 2α·cos π4+sin 2α·sin π4=⎝⎛⎭⎫-725×22+⎝⎛⎭⎫-2425×22=-31250. 11.已知角α在第一象限且cos α=35,求1+2cos ⎝⎛⎭⎫2α-π4sin ⎝⎛⎭⎫α+π2的值.[解析]∵cos α=35且α在第一象限,∴sin α=45.∴cos2α=cos 2α-sin 2α=-725,sin2α=2sin αcos α=2425,∴原式=1+2⎝⎛⎭⎫cos2αcos π4+sin2αsin π4cos α=1+cos2α+sin2αcos α=145.12.已知cos ⎝⎛⎭⎫x -π4=210,则sin2x =__________. [解析] ∵cos ⎝⎛⎭⎫x -π4=210,∴sin 2⎝⎛⎭⎫x -π4=98100而sin2x =cos ⎝⎛⎭⎫2x -π2=cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4=2100-98100=-96100=-2425. 13.若cos ⎝⎛⎭⎫π4-α=35,则sin2α等于 [解析]因为sin2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1,又cos ⎝⎛⎭⎫π4-α=35,所以sin2α=2×925-1=-725 14.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4=________. [解析]cos 2⎝⎛⎭⎫α+π4=1+cos ⎝⎛⎭⎫2α+π22=1-sin 2α2=1-232=16.15.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________.[解析]sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1=2sin αcos α-cos 2α2cos 2α=tan α-12=-56. 16.已知α是第二象限的角,tan(π+2α)=-43,则tan α=________.[解析]∵tan(π+2α)=tan 2α=2tan α1-tan 2α=-43,∴tan α=-12或tan α=2. ∵α在第二象限,∴tan α=-12.17.已知tan αtan ⎝⎛⎭⎫α+π4=-23,则sin ⎝⎛⎭⎫2α+π4的值是________. [解析]由tan αtan ⎝⎛⎭⎫α+π4=tan αtan α+11-tan α=tan α(1-tan α)tan α+1=-23,得3tan 2α-5tan α-2=0,解得tan α=2,或tan α=-13.sin ⎝⎛⎭⎫2α+π4=sin2αcos π4+cos2αsin π4=22(sin2α+cos2α)=22⎝ ⎛⎭⎪⎫2sin αcos α+cos 2α-sin 2αsin 2α+cos 2α =22⎝ ⎛⎭⎪⎫2tan α+1-tan 2αtan 2α+1, 当tan α=2时,上式=22×⎝ ⎛⎭⎪⎫2×2+1-2222+1=210; 当tan α=-13时,上式=22×⎣⎢⎡⎦⎥⎤2×⎝⎛⎭⎫-13+1-⎝⎛⎭⎫-132⎝⎛⎭⎫-132+1=210. 综上,sin ⎝⎛⎭⎫2α+π4=210. 18.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为 [解析]cos 2α=sin ⎝⎛⎭⎫π2-2α=sin 2⎝⎛⎭⎫π4-α=2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α,代入原式, 得6sin ⎝⎛⎭⎫π4-α·cos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α.因为α∈⎝⎛⎭⎫π2,π,所以cos ⎝⎛⎭⎫π4-α=16, 所以sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1=-1718. 19.若tan α+1tan α=103,α∈⎝⎛⎭⎫π4,π2,则sin ⎝⎛⎭⎫2α+π4+2cos π4cos 2α=________. [解析]由tan α+1tan α=103,得tan α=13或tan α=3.又∵α∈⎝⎛⎭⎫π4,π2,∴tan α=3.∴sin α=310,cos α=110. ∴sin ⎝⎛⎭⎫2α+π4+2cos π4cos 2α=sin2αcos π4+cos2αsin π4+2cos π4cos 2α=22×2sin αcos α+22(2cos 2α-1)+2cos 2α=2sin αcos α+22cos 2α-22=2×310×110+22×⎝⎛⎭⎫1102-22=5210-22=0.20.已知cos ⎝⎛⎭⎫α-π4=-13,则sin(-3π+2α)= [解析]易得cos ⎝⎛⎭⎫2α-π2=2cos 2⎝⎛⎭⎫α-π4-1=2×⎝⎛⎭⎫-132-1=-79. 又cos ⎝⎛⎭⎫2α-π2=cos ⎝⎛⎭⎫π2-2α=sin 2α,所以sin(-3π+2α)=sin(π+2α)=-sin 2α=-⎝⎛⎭⎫-79=79. 21.若1+tan α1-tan α=2019,则1cos 2α+tan 2α=________.[解析]1cos 2α+tan 2α=1cos 2α+sin 2αcos 2α=1+sin 2αcos 2α=(cos α+sin α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2 019.22.已知θ为锐角,cos(θ+15°)=35,则cos(2θ-15°)=________.[解析]∵θ为锐角,cos(θ+15°)=35,∴sin(θ+15°)=45,∴sin(2θ+30°)=2sin(θ+15°)cos(θ+15°)=2425, cos(2θ+30°)=2cos 2(θ+15°)-1=2×925-1=-725.∴cos(2θ-15°)=cos(2θ+30°-45°)=cos(2θ+30°)cos45°+sin(2θ+30°)sin45°=-725×22+2425×22=17250. 23.已知θ∈⎝⎛⎭⎫π2,π,1sin θ+1cos θ=22,则sin ⎝⎛⎭⎫2θ+π3=________. [解析]1sin θ+1cos θ=22⇒sin θ+cos θsin θcos θ=22⇒sin θ+cos θ=22sin θcos θ⇒1+sin 2θ=2sin 22θ,因为θ∈⎝⎛⎭⎫π2,π,所以2θ∈(π,2π),所以sin 2θ=-12,所以sin θ+cos θ<0, 所以θ∈⎝⎛⎭⎫3π4,π,所以2θ∈⎝⎛⎭⎫3π2,2π, 所以cos 2θ=32,所以sin ⎝⎛⎭⎫2θ+π3=sin 2θ·cos π3+sin π3cos 2θ=12. 24.已知cos x =1010,且x ∈⎝⎛⎭⎫-π2,0,求22cos ⎝⎛⎭⎫2x +π4+sin 2x 的值. [解析]∵cos x =1010,x ∈⎝⎛⎭⎫-π2,0,∴sin x =-1-cos 2x =-31010, ∴sin 2x =2sin x cos x =-35,∴22cos ⎝⎛⎭⎫2x +π4+sin 2x =22⎝⎛⎭⎫cos 2x cos π4-sin 2x sin π4+1-cos 2x 2=12-12sin 2x =12-12×⎝⎛⎭⎫-35=45. 25.已知sin x 2-2cos x2=0.(1)求tan x 的值; (2)求cos2xcos ⎝⎛⎭⎫5π4+x sin (π+x )的值.[解析] (1)由sin x 2-2cos x 2=0,知cos x 2≠0,∴tan x2=2,∴tan x =2tanx21-tan 2x 2=2×21-22=-43. (2)由(1),知tan x =-43,∴cos2xcos ⎝⎛⎭⎫5π4+x sin (π+x )=cos2x-cos ⎝⎛⎭⎫π4+x (-sin x )=cos 2x -sin 2x ⎝⎛⎭⎫22cos x -22sin x sin x=(cos x -sin x )(cos x +sin x )22(cos x -sin x )sin x =2×cos x +sin x sin x =2×1+tan x tan x =24.26.已知0<x <π2,sin 2x 2+3sin x 2cos ⎝⎛⎭⎫π+x 2=-110,求tan ⎝⎛⎭⎫2x +π3的值. [解析]∵sin 2x 2+3sin x 2cos ⎝⎛⎭⎫π+x 2=1-cos x 2-3sin x 2cos x 2=12-⎝⎛⎭⎫32sin x +12cos x =12-sin ⎝⎛⎭⎫x +π6, ∴由已知得12-sin ⎝⎛⎭⎫x +π6=-110,∴sin ⎝⎛⎭⎫x +π6=35.∵0<x <π2, 结合sin ⎝⎛⎭⎫x +π6=35<32,易知π6<x +π6<π2.∴cos ⎝⎛⎭⎫x +π6=45,∴tan ⎝⎛⎭⎫x +π6=34. ∴tan ⎝⎛⎭⎫2x +π3=2tan ⎝⎛⎭⎫x +π61-tan 2⎝⎛⎭⎫x +π6=2×341-916=247. 27.已知函数f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x -cos 2x +23sin x cos x . (1)化简f (x );(2)若f (α)=17,2α是第一象限角,求sin2α.[解析] (1)f (x )=12cos2x -32sin2x -cos2x +3sin2x =32sin2x -12cos2x =sin ⎝⎛⎭⎫2x -π6.(2)f (α)=sin ⎝⎛⎭⎫2α-π6=17,2α是第一象限角,即2k π<2α<π2+2k π(k ∈Z), ∴2k π-π6<2α-π6<π3+2k π,k ∈Z ,∴cos ⎝⎛⎭⎫2α-π6=437, ∴sin2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α-π6+π6=sin ⎝⎛⎭⎫2α-π6cos π6+cos ⎝⎛⎭⎫2α-π6sin π6=17×32+437×12=5314. 28.已知sin 2θ=34,则cos 2⎝⎛⎭⎫θ-π4=________. [解析]cos 2⎝⎛⎭⎫θ-π4=1+cos ⎣⎡⎦⎤2⎝⎛⎭⎫θ-π42=1+cos ⎝⎛⎭⎫2θ-π22=1+sin 2θ2,∵sin 2θ=34, ∴cos 2⎝⎛⎭⎫θ-π4=1+342=78. 29.已知cos ⎝⎛⎭⎫α+π4=35,π2≤α<3π2,求cos ⎝⎛⎭⎫2α+π4的值; [解析]∵π2≤α<3π2,∴3π4≤α+π4<7π4.∵cos ⎝⎛⎭⎫α+π4>0,∴3π2<α+π4<7π4, ∴sin ⎝⎛⎭⎫α+π4=-1-cos 2⎝⎛⎭⎫α+π4=-1-⎝⎛⎭⎫352=-45, ∴cos 2α=sin ⎝⎛⎭⎫2α+π2=2sin ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫α+π4=2×⎝⎛⎭⎫-45×35=-2425, sin 2α=-cos ⎝⎛⎭⎫2α+π2=1-2cos 2⎝⎛⎭⎫α+π4=1-2×⎝⎛⎭⎫352=725, ∴cos ⎝⎛⎭⎫2α+π4=22cos 2α-22sin 2α=22×⎝⎛⎭⎫-2425-22×725=-31250. 30.已知sin ⎝⎛⎭⎫π6+α=13,则cos ⎝⎛⎭⎫2π3-2α的值等于 [解析]因为cos ⎝⎛⎭⎫π3-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α=sin ⎝⎛⎭⎫π6+α=13, 所以cos ⎝⎛⎭⎫2π3-2α=2cos 2⎝⎛⎭⎫π3-α-1=2×⎝⎛⎭⎫132-1=-79. 31.设sin ⎝⎛⎭⎫π6+θ=23,则sin ⎝⎛⎭⎫2θ-π6= [解析]因为sin ⎝⎛⎭⎫π6+θ=23,所以sin ⎝⎛⎭⎫2θ-π6=sin ⎣⎡⎦⎤⎝⎛⎭⎫2θ+π3-π2=-cos ⎝⎛⎭⎫2θ+π3=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π6+θ=-59. 32.已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值. [解析] (1)因为tan α =sin α cos α =43,所以sin α=43cos α .因为sin 2α+cos 2α=1,所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.33.已知sin α+cos α=15,且α∈(0,π).(1)求tan 2α的值;(2)求2sin 2⎝⎛⎭⎫α2+π6-sin ⎝⎛⎭⎫α+π6. [解析] (1)由sin α+cos α=15,得sin αcos α=-1225,因为α∈(0,π),所以α∈⎝⎛⎭⎫π2,π, 所以sin α-cos α=2-(sin α+cos α)2=75,解得sin α=45,cos α=-35,故tan α=-43,所以tan 2α=2tan α1-tan 2α=247. (2)2sin 2⎝⎛⎭⎫α2+π6-sin ⎝⎛⎭⎫α+π6=1-cos ⎝⎛⎭⎫α+π3-sin ⎝⎛⎭⎫α+π6 =1-12cos α+32sin α-32sin α-12cos α=1-cos α=85.34.如图所示,在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿由点B 到点E 的方向前进30 m 至点C ,测得顶端A 的仰角为2θ,再沿刚才的方向继续前进10 3 m 到点D ,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高.[解析]∵∠ACD =θ+∠BAC =2θ,∴∠BAC =θ,∴AC =BC =30 m. 又∠ADE =2θ+∠CAD =4θ,∴∠CAD =2θ,∴AD =CD =10 3 m. ∴在Rt △ADE 中,AE =AD ·sin 4θ=103sin 4θ(m),在Rt △ACE 中,AE =AC ·sin 2θ=30sin 2θ(m),∴103sin 4θ=30sin 2θ, 即203sin 2θcos 2θ=30sin 2θ,∴cos 2θ=32,又2θ∈⎝⎛⎭⎫0,π2,∴2θ=π6,∴θ=π12, ∴AE =30sin π6=15(m),∴θ=π12,建筑物AE 的高为15 m.题型三 给值求角1.已知sin 22α+sin 2αcos α-cos 2α=1,则锐角α=________.[解析]由原式,得sin 22α+sin 2αcos α-2cos 2α=0,∴(2sin αcos α)2+2sin αcos 2α-2cos 2α=0,∴2cos 2α(2sin 2α+sin α-1)=0,∴2cos 2α(2sin α-1)(sin α+1)=0.∵α为锐角,∴cos 2α≠0,sin α+1≠0,∴2sin α-1=0,∴sin α=12,∴α=π6. 2.已知α,β均为锐角,且3sin α=2sin β,3cos α+2cos β=3,则α+2β的值为[解析]由题意得⎩⎨⎧ sin α=23sin β, ①cos α=1-23cos β, ②,①2+②2得cos β=13,cos α=79, 由α,β均为锐角知,sin β=223,sin α=429, ∴tan β=22,tan α=427,∴tan 2β=-427, ∴tan(α+2β)=0.又α+2β∈⎝⎛⎭⎫0,3π2,∴α+2β=π. 3.已知α∈⎝⎛⎭⎫-π2,π2,且sin 2α=sin ⎝⎛⎭⎫α-π4,则α= . [解析]∵sin 2α=-cos ⎝⎛⎭⎫2α+π2=-⎣⎡⎦⎤2cos 2⎝⎛⎭⎫α+π4-1=1-2cos 2⎝⎛⎭⎫α+π4, sin ⎝⎛⎭⎫α-π4=-sin ⎝⎛⎭⎫π4-α=-cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=-cos ⎝⎛⎭⎫π4+α, ∴原式可化为1-2cos 2⎝⎛⎭⎫α+π4=-cos ⎝⎛⎭⎫α+π4,解得cos ⎝⎛⎭⎫α+π4=1或cos ⎝⎛⎭⎫α+π4=-12. ∵α∈⎝⎛⎭⎫-π2,π2,∴α+π4∈⎝⎛⎭⎫-π4,3π4,故α+π4=0或α+π4=2π3,即α=-π4或α=5π12. 4.已知角α,β为锐角,且1-cos2α=sin αcos α,tan(β-α)=13,则β=________. [解析]由1-cos2α=sin αcos α,得1-(1-2sin 2α)=sin αcos α,即2sin 2α=sin αcos α.∵α为锐角,∴sin α≠0,∴2sin α=cos α,即tan α=12. 解法一:由tan(β-α)=tan β-tan α1+tan βtan α=tan β-121+12tan β=13,得tan β=1.∵β为锐角,∴β=π4. 解法二:tan β=tan(β-α+α)=tan (β-α)+tan α1-tan (β-α)tan α=13+121-13×12=1.∵β为锐角,∴β=π4. 5.已知tan α=17,sin β=1010,且α,β为锐角,求α+2β的值. [解析]∵tan α=17<1,且α为锐角,∴0<α<π4, 又∵sin β=1010<22,且β为锐角,∴0<β<π4,∴0<α+2β<3π4. 由sin β=1010,β为锐角,得cos β=31010,∴tan β=13, ∴tan(α+β)=tan α+tan β1-tan αtan β=12,∴tan(α+2β)=tan (α+β)+tan β1-tan (α+β)tan β=12+131-12×13=1,故α+2β=π4. 6.已知tan α=13,tan β=-17,且α,β∈(0,π),求2α-β的值. [解析]∵tan α=13>0,α∈(0,π),∴α∈⎝⎛⎭⎫0,π2,2α∈(0,π), ∴tan2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0,∴2α∈⎝⎛⎭⎫0,π2. 又∵tan β=-17<0,β∈(0,π),∴β∈⎝⎛⎭⎫π2,π, ∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34-⎝⎛⎭⎫-171+34×⎝⎛⎭⎫-17=1 又∵2α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫π2,π,∴2α-β∈(-π,0),∴2α-β=-3π4. 题型四 化简问题1.2sin2α1+cos2α·cos 2αcos2α等于 [解析]原式=4sin αcos α1+2cos 2α-1·cos 2αcos2α=2sin αcos αcos2α=sin2αcos2α=tan2α. 2.化简:sin 235°-12sin10°cos10°=________. [解析]原式=2sin 235°-12sin10°cos10°=-cos70°sin20°=-cos70°sin (90°-70°)=-13.化简2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α= . [解析]解法一:原式=2cos 2α-12·sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α=2cos 2α-12·sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π4-α=2cos 2α-1sin ⎝⎛⎭⎫π2-2α=cos2αcos2α=1. 解法二:原式=cos2α2·1-tan α1+tan α⎝⎛⎭⎫22sin α+22cos α2=cos2αcos α-sin αcos α+sin α(sin α+cos α)2 =cos2α(cos α-sin α)(cos α+sin α)=cos2αcos 2α-sin 2α=1. 4.化简:1tan θ+1+1tan θ-1=________. [解析]原式=tan θ-1+tan θ+1(tan θ+1)(tan θ-1)=2tan θtan 2θ-1=-2tan θ1-tan 2θ=-tan 2θ. 5.化简:tan 70°cos 10°(3tan 20°-1)=________.[解析]原式=sin 70°cos 70°·cos 10°·⎝⎛⎭⎫3sin 20°cos 20°-1=sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20°=sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°=-sin 70°cos 70°·sin 20°cos 20°=-1. 6.化简cos10°+3sin10°1-cos80°=________; [解析]cos10°+3sin10°1-cos80°=2(sin30°cos10°+cos30°sin10°)2sin 240°=2sin40°2sin40°= 2. 7.在△ABC 中,若sin B sin C =cos 2A 2,则△ABC 是( ) A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形 [解析]由sin B sin C =cos 2A 2得sin B sin C =1+cos A 2,∴2sin B sin C =1+cos A , ∴2sin B sin C =1+cos[π-(B +C )]=1-cos(B +C ),∴2sin B sin C =1-cos B cos C +sin B sin C ,∴cos B cos C +sin B sin C =1,∴cos(B -C )=1,又∵-180°<B -C <180°,∴B -C =0°,∴B =C ,∴△ABC 是等腰三角形.8.1+cos100°-1-cos100°=( )A .-2cos5°B .2cos5°C .-2sin5°D .2sin5°[解析] 原式=2cos 250°-2sin 250°=2(cos50°-sin50°)=2⎝⎛⎭⎫22cos50°-22sin50° =2sin(45°-50°)=-2sin5°.[答案] C9.若α为第三象限角,则1+cos 2αcos α-1-cos 2αsin α=________. [解析] 因为α为第三象限角,所以cos α<0,sin α<0, 所以1+cos 2αcos α-1-cos 2αsin α=2cos 2αcos α-2sin 2αsin α=-2cos αcos α--2sin αsin α=0. 10.设-3π<α<-5π2,化简 1-cos (α-π)2的结果是( ) A .sin α2B .cos α2C .-cos α2D .-sin α2 [解析] 因为-3π<α<-5π2,-3π2<α2<-5π4,所以1-cos (α-π)2=1+cos α2=⎪⎪⎪⎪cos α2=-cos α2. 11.化简tan 14°1-tan 214°·cos 28°的结果为( ) A.sin 28°2B .sin 28°C .2sin 28°D .sin 14°cos 28° [解析]tan 14°1-tan 214°·cos 28°=12×2tan 14°1-tan 214°·cos 28°=12tan 28°·cos 28°=sin 28°2,故选A. 12.1-2sin 20°cos 20°2cos 210°-1-cos 2160°-1=________. [解析] 1-2sin 20°cos 20°2cos 210°-1-cos 2160°-1=(cos 20°-sin 20°)2cos 20°-sin 20°=cos 20°-sin 20°cos 20°-sin 20°=1. 13.化简:(1)1+sin20°+1-sin20°;(2)1+sin4α+cos4α1+sin4α-cos4α. [解析] (1)原式=sin 210°+cos 210°+2sin10°cos10°+sin 210°+cos 210°-2sin10°cos10° =(sin10°+cos10°)2+(sin10°-cos10°)2=|sin10°+cos10°|+|sin10°-cos10°|=sin10°+cos10°+cos10°-sin10°=2cos10°.(2)原式=1+2sin2αcos2α+2cos 22α-11+2sin2αcos2α+2sin 22α-1=2cos 22α+2cos2αsin2α2sin 22α+2sin2αcos2α=2cos2α(cos2α+sin2α)2sin2α(sin2α+cos2α)=1tan2α. 14.求值:sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°. [解析] ∵sin 50°(1+3tan 10°)=sin 50°·cos 10°+3sin 10°cos 10°=sin 50°·2sin 40°cos 10°=1, cos 80°1-cos 20°=sin 10°2sin 210°=2sin 210°, ∴sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°=1-cos 20°2sin 210°= 2. 题型五 证明问题1.证明:3tan 12°-3sin 12°(4cos 212°-2)=-4 3. [解析] 左边=3sin 12°-3cos 12°cos 12°2sin 12°(2cos 212°-1)=23⎝⎛⎭⎫12sin 12°-32cos 12°2sin 12°cos 12°cos 24°=23sin (12°-60°)sin 24°cos 24°=-23sin 48°12sin 48° =-43=右边,所以原等式成立.2.求证:(1)cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B ;(2)cos 2θ(1-tan 2θ)=cos 2θ.[解析] (1)左边=1+cos (2A +2B )2-1-cos (2A -2B )2=cos (2A +2B )+cos (2A -2B )2=12(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B )=cos 2A cos 2B =右边,∴等式成立. (2)法一:左边=cos 2θ⎝⎛⎭⎫1-sin2θcos 2θ=cos 2θ-sin 2θ=cos 2θ=右边. 法二:右边=cos 2θ=cos 2θ-sin 2θ=cos 2θ⎝⎛⎭⎫1-sin2θcos 2θ=cos 2θ(1-tan 2θ)=左边. 3.求证:1-cos θ+sin θ1+cos θ+sin θ=tan θ2. [解析] 1-cos θ+sin θ1+cos θ+sin θ=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2=2sin θ2⎝⎛⎭⎫sin θ2+cos θ22cos θ2⎝⎛⎭⎫cos θ2+sin θ2=tan θ2.4.求证:(sin2x +cos2x -1)(sin2x -cos2x +1)sin4x=tan x . [解析] 证法一:左边=(2sin x cos x -2sin 2x )(2sin x cos x +2sin 2x )sin4x =4sin 2x (cos 2x -sin 2x )sin4x =4sin 2x cos2x 2sin2x cos2x=4sin 2x 2×2sin x cos x=tan x =右边.故原等式成立.证法二:左边=(sin2x +cos2x -1)(sin2x -cos2x +1)(sin2x +cos2x )2-1=(sin2x +cos2x -1)(sin2x -cos2x +1)(sin2x +cos2x -1)(sin2x +cos2x +1) =sin2x +1-cos2x sin2x +1+cos2x =2sin x cos x +2sin 2x 2sin x cos x +2cos 2x =2sin x (cos x +sin x )2cos x (sin x +cos x )=tan x =右边. 故原等式成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【学习目标】1.能从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式,并了解它们之间的在联系.2.能熟练运用二倍角公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式.但不要求记忆),能灵活地将公式变形并运用.3.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想、方程思想等在三角恒等变换中的作用.【要点梳理】要点一:二倍角的正弦、余弦、正切公式 1.二倍角的正弦、余弦、正切公式2sin 22sin cos ()S αααα=⋅22222cos 2cos sin ()2cos 112sin C αααααα=-=-=-222tan tan 2()1tan T αααα=-要点诠释:(1)公式成立的条件是:在公式22,S C αα中,角α可以为任意角,但公式2T α中,只有当2k παπ≠+及()42k k Z ππα≠+∈时才成立; (2)倍角公式不仅限于2α是α的二倍形式,其它如4α是2α的二倍、2α是4α的二倍、3α是32α的二倍等等都是适用的.要熟悉多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键.如:2cos2sin2sin ααα=;11sin2sincos ()222nn n n Z ααα++=∈2.和角公式、倍角公式之间的在联系在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式,它们的在联系如下:要点二:二倍角公式的逆用及变形要点三:两角和与差的三角函数公式能够解答的三类基本题型 求值题、化简题、证明题 1.对公式会“正着用”,“逆着用”,也会运用代数变换中的常用方法:因式分解、配方、凑项、添项、换元等;2.掌握“角的演变”规律,寻求所求结论中的角与已知条件中的角的关系,如(),2()()ααββααβαβ=-+=++-等等,把握式子的变形方向,准确运用公式,也要抓住角之间的规律(如互余、互补、和倍关系等等);3.将公式和其它知识衔接起来使用,尤其注意第一章与第三章的紧密衔接. 【典型例题】类型一:二倍角公式的简单应用 例1.化简下列各式:(1)4sincos22αα;(2)22sincos 88ππ-;(3)2tan 37.51tan 37.5︒-︒.【思路点拨】逆用二倍角的正弦、余弦和正切公式. 【答案】(1)2sin α(2)22-(3)232+ 【解析】 (1)4sincos22sincos2sin 2222ααααα=⋅=.(2)22222sin cos cos sin cos 888842πππππ⎛⎫-=--=-=-⎪⎝⎭(3)22tan 37.512sin 37.5123tan 751tan 37.521tan 37.522︒︒+=⋅=︒=-︒-︒.【总结升华】本题的解答没有去就单个角求其函数值,而是将所给式子作为一个整体变形,逐步向二倍角公式的展开形式靠近,然后逆用倍角公式,要仔细体会本题中的解题思路.举一反三:类型二:利用二倍角公式求非特殊角的三角函数值 例2. 求sin10°sin30°sin50°sin70°的值. 【思路点拨】解这类题型有两种方法: 方法一:适用sin 2sin 2cos ααα=,不断地使用二倍角的正弦公式方法二:将正弦题目中的正弦形式全部转化为余弦形式,利用sin 2cos 2sin ααα=进行化简.【答案】116【解析】方法一: sin 20sin 50sin 70sin10sin 50sin 702cos10︒︒︒︒︒︒=︒sin 20cos 20sin 50sin 40sin 50sin 40cos 402cos104cos104cos10︒︒︒︒︒︒︒===︒︒︒sin 8018cos108︒==︒. ∴1sin10sin 30sin 50sin 7016︒︒︒︒=方法二:原式1cos 20cos 40cos802=︒︒︒2sin 20cos 20cos 40cos804sin 20︒︒︒︒=︒sin 40cos 40cos80sin80cos801sin16014sin 202sin 2016sin 2016︒︒︒︒︒︒===⋅=︒︒︒.【总结升华】本题是二倍角公式应用的经典试题.方法一和方法二通过观察角度间的关系,发现其特征(二倍角形式),逆用二倍角的正弦公式,使得问题出现连用二倍角的正弦公式的形式.在此过程中还应该看到化简以后的分子分母中的角是互余(补)的关系,从而使最终的结果为实数.利用上述思想,我们还可以把问题推广到一般的情形:一般地,若sin 0α≠,则11sin 2cos cos 2cos 4cos 22sin n nn αααααα++=.举一反三:【变式1】求值:sin10°cos40°sin70°. 【解析】原式2sin 20cos 20cos 40cos80cos 20cos 40cos802sin 20︒︒︒︒=︒︒︒=︒2sin 40cos 40cos802sin80cos804sin 208sin 20︒︒︒︒︒==︒︒ sin160sin 2018sin 208sin 208︒︒===︒︒. 类型三:利用二倍角公式化简三角函数式 例3.化简下列各式: (1)4sin 1)2(2cos cos 12sin sin -+++θθθθ【思路点拨】(1)观察式子分析,利用二倍角公式把倍角展开成单角,再进行化简.(2)观察式子分析,利用二倍角公式把倍角展开成单角,利用平方差公式进行化简.【答案】(1)tan θ(2)sin 2cos2-【解析】(1).tan )cos 21(cos )cos 21(sin cos 2cos cos sin 2sin 2cos cos 12sin sin 2θθθθθθθθθθθθθθ=++=+⋅+=+++(2)4sin 1-.2cos 2sin |2cos 2sin |)2cos 2(sin 2cos 2cos 2sin 22sin 222-=-=-=+⋅-=【总结升华】①余弦的二倍角公式的变形形式:αααα22sin 22cos 1,cos 22cos 1=-=+.经常起到消除式子中1的作用.②由于2)cos (sin sin21cos sin 22sin αααααα±=±⋅=,从而,可进行无理式的化简和运算.例4.化简:222cos 12tan sin 44αππαα-⎛⎫⎛⎫-⋅+ ⎪ ⎪⎝⎭⎝⎭.【解析】 原式2cos 22sin 4cos 4cos 4απαπαπα=⎛⎫- ⎪⎛⎫⎝⎭⋅- ⎪⎛⎫⎝⎭- ⎪⎝⎭cos 2cos 22sin cos sin 2442ααπππααα==⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 21cos 2αα==.【总结升华】 三角函数的化简要从减少角的种类、函数的种类入手.通过切化弦、弦化切、异化同、高次降幂等手段,使函数式的结构化为最简形式.举一反三: 【变式1】(1的化简结果是.(2)已知3sin 5α=,且α∈(2π,π),则2sin 2cos αα的值为. 【答案】(1)sin3cos3-(2)32-【解析】(1)原式=|sin3cos3|- =sin3cos3- (2)因为3sin 5α=,且α∈(2π,π),所以4cos 5α=-,原式=22sin cos 3532()cos 542ααα=⨯⨯-=-. 类型四:二倍角公式在三角函数式给值求值题目中的应用【高清课堂:倍角、半角公式370633 例2】 例5.求值: (1)已知3sin()1225πθ-=,求cos()6πθ-.(2)已知sin()4m πα+=,求sin2α.【思路点拨】观察所求的角与已知角的关系,发现它们是二倍的关系,所以用二倍角公式去求解.【答案】(1)725(2)221m - 【解析】 (1)cos()cos cos 266122πππθθθ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭=212sin 122πθ⎛⎫-- ⎪⎝⎭ =91225-⨯ =725(2)sin 2cos(2)2παα=-+=212sin 4πα⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦ =212sin 4πα⎛⎫-++ ⎪⎝⎭=221m -【总结升华】给值求值是求值问题中常见的题型,求解的要点是利用公式沟通已知条件和所求式子之间的联系,考查公式运用和变换的技巧. 举一反三:【变式1】 已知1sin cos 3αα+=,且0απ<<,求sin 2α,cos2α,tan 2α的值. 【答案】89-【解析】由1sin cos 3αα+=,得21(sin cos )9αα+=, 即112sin cos 9αα+=,∴8sin 22sin cos 9ααα==- 由1sin cos 3αα+=,得1cos sin 3αα=-,∴221cos sin 3αα⎛⎫=- ⎪⎝⎭.即22121sinsin sin 93ααα-=-+.整理得29sin 3sin 40αα--=.解得1sin 6α=或1sin 6α=(舍去).∴221cos 212sin 1269αα⎛+=-=-⨯=- ⎝⎭.∴sin 2tan 2cos 2ααα==.【总结升华】解题过程中注意角α的围的判定.【变式2】已知1tan 42πα⎛⎫+= ⎪⎝⎭,(1)求tan α的值;(2)求2sin 2cos 1cos 2ααα-+的值.【解析】 (1)tantan 1tan 14tan 41tan 21tan tan 4παπααπαα++⎛⎫+=== ⎪-⎝⎭-,解得1tan 3α=-.(2)222sin 2cos 2sin cos cos 2sin cos 1cos 212cos 12cos αααααααααα---==++- 1115tan 2326α=-=--=-.【总结升华】 第(1)问中利用了方程的思想求tan α的值;对于第(2)问的题型,一般需要将分式转化为含tan α的式子求解,或者通过消元转化的方法求解. 类型五:二倍角公式的综合应用【高清课堂:倍角、半角公式370633 例3】例6.已知22()sin 2sin cos 3cos f x x x x x =++,求:(1)f (x )的最大值以及取得最大值的自变量的集合; (2)f (x )的单调区间.【思路点拨】用降幂公式把原式降幂,然后用辅助角公式化成sin()A x k ωϕ++的形式.【答案】(1)2|,8x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭(2)单增区间3,,88k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦单减区间 5,,88k k k z ππππ⎡⎤++∈⎢⎥⎣⎦ 【解析】(1)原式=1sin 2cos21x x +++ =sin 2cos22x x ++)24x π++则当22,42x k πππ+=+即|,8x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭时,max ()2f x =(2)f (x )的单调递增区间为:222242k x k πππππ-≤+≤+,则3,,88x k k k z ππππ⎡⎤∈-+∈⎢⎥⎣⎦f (x )的单调递减区间为:3222242k x k πππππ+≤+≤+,则 5,,88x k k k z ππππ⎡⎤∈++∈⎢⎥⎣⎦【总结升华】本题主要考查特殊角的三角函数值、两角和的正弦、二倍角的正弦与余弦公式及sin()y A x ωϕ=+的性质等知识.要记住倍角公式两类重要变形并能熟练应用:(1)缩角升幂公式21sin sin cos 22ααα⎛⎫+=+ ⎪⎝⎭,21sin sin cos 22ααα⎛⎫-=- ⎪⎝⎭.21cos 2cos 2αα+=,21cos 2sin 2αα-=.(2)扩角降幂公式21cos 2cos 2αα+=,21cos 2sin 2αα-=. 例7. 已知向量(1sin 2,sin cos )x x x =+-a ,(1,sin cos )x x =+b ,求函数()f x =⋅a b . (1)求()f x 的最大值及相应的x 值;(2)若8()5f θ=,求cos 224πθ⎛⎫- ⎪⎝⎭的值. 【思路点拨】利用向量数量积公式的坐标形式,将题设条件中所涉及的向量数量积转化为三角函数中的“数量关系”,从而建立函数f(x)关系式.【答案】(113()8x k k Z ππ=+∈(2)1625【解析】 (1)因为(1sin 2,sin cos )x x x =+-a ,(1,sin cos )x x =+b ,所以22()1sin 2sin cos 1sin 2cos 2214f x x x x x x x π⎛⎫=++-=+-=-+ ⎪⎝⎭.因此,当2242x k πππ-=+,即3()8x k k Z ππ=+∈时,()f x 1.(2)由()1sin 2cos 2f θθθ=--及8()5f θ=得3sin 2cos 25θθ-=,两边平方得91sin 425θ-=,即16sin 425θ=.因此,16cos 22cos 4sin 44225ππθθθ⎛⎫⎛⎫-=-== ⎪ ⎪⎝⎭⎝⎭.举一反三:【变式1】已知函数2()sincos cos 1222x x xf x =+-. (Ⅰ)求函数()f x 的最小正周期及单调递减区间; (Ⅱ)求函数()f x 在[,]π3π42上的最小值.【答案】(Ⅰ)2π,52,244k k ππππ⎡⎤++⎢⎥⎣⎦,k z ∈(Ⅱ)12- 【解析】(Ⅰ)1cos ()sincos 1222x x x f x +=+- 111sin cos 222x x =+-1).42x π=+-所以函数()f x 的最小正周期为2π.由322242k x k ππππ+≤+≤π+,k ∈Z ,则52244k x k πππ+≤≤π+. 函数()f x 单调递减区间是5[2,2]44k k πππ+π+,k ∈Z .(Ⅱ)由342x ππ≤≤,得7244x πππ≤+≤.则当342x ππ+=,即54x π=时,()f x 取得最小值【变式2】已知向量m =(sinA ,cosA ),1)=-n ,m ·n =1,且A 为锐角. (1)求角A 的大小;(2)求函数()cos 24cos sin f x x A x =+(x ∈R )的值域. 【答案】(1)3π(2)33,2⎡⎤-⎢⎥⎣⎦【解析】(1)由题意,得cos 1m n A A ⋅=-=,2sin 16A π⎛⎫-= ⎪⎝⎭,1sin 62A π⎛⎫-= ⎪⎝⎭.由A 为锐角得66A ππ-=,3A π=.(2)由(1)知1cos 2A =,所以2213()cos 22sin 12sin 2sin 2sin 22f x x x x x x ⎛⎫=+=-+=-⋅-+ ⎪⎝⎭.因为x ∈R ,所以sinx ∈[-1,1].因此,当1sin 2x =时,()f x 有最大值32,当sin x=-1时,()f x 有最小值-3,所以所求函数()f x 的值域是33,2⎡⎤-⎢⎥⎣⎦.。

相关文档
最新文档