高一数学必修4试题

合集下载

(完整word版)高一数学(必修4)试题

(完整word版)高一数学(必修4)试题

高一数学<必修4>期中试题说明:1. 试卷答题时间120分钟,满分150分。

2.选择题和填空题的答案直接写在答题卡上。

一.选择题(共12题,每题5分,满60分,四选一):1. 已知扇形的周长是6cm ,面积是22cm ,则扇形的圆心角的弧度数是A .1B .4C .1或4D .2或4 2. 已知1cos(π)2α+=-,3π2π2α<<,则sin(2π)α-等于A .12B .3±C .3D .3-3. 函数sin()(002π)y x x ωϕωϕ=+∈><R ,,≤的部分图象如图1,则A .ππ24ωϕ==, B .ππ36ωϕ==, C .ππ44ωϕ==,D .Dπ5π44ωϕ==,. 4. 已知平面向量(3,1)a =r ,(,3)b x =-r ,且a b ⊥rr ,则x =A 3-B 1-C 1D 35. 已知(,0)2x π∈-,4cos 5x =,则=x 2tanA247 B 247-C724 D 724-6. 函数x x y 24cos sin +=的最小正周期为A4π B 2πC πD 2π7. 已知向量(12)(24)5==--=,,,,a b c ,若5()2a b c +=·,则a 与c 的夹角为A .30oB .60oC .120oD .150o8. 设2132tan131cos50cos6sin 6,,,221tan 132a b c -=-==+o o o oo 则有A a b c >>B a b c <<C a c b <<D b c a <<9. 已知平面上三点,,A B C 满足345AB BC CA ===u u u r u u u r u u u r,,,则AB BC BC CA CA AB ++u u u r u u u r u u u r u u u r u u u r u u u r ···的值等于A .0B .25-C .25D .15-10. 函数y=3sin(2x+3π)的图象可以看作是把函数y=3sin2x 的图象作下列移动而 得到 A.向左平移3π单位 B.向右平移3π单位 C.向左平移6π单位 D.向右平移6π单位 11.设0<α<β<2π,sin α=53,cos(α-β)=1312,则sin β的值为A.6516B.6533C.6556 D.656312. ,D E 是ABC △中AB AC ,边的中点,M N ,分别是DE BC ,的中点,设BC =u u u r1e ,BD =u u u r2e ,以12e e ,为基底的向量表示u u u u r MN 的结果为A .1214-e e B .1214e e -+C .1214e e -D .1214e e +二.填空题(共4题,每题5分,满20分):13. 已知1cos()3αβ+=,1cos()2αβ-=,则5log (tan tan )αβ=· .14. 若3a =r ,2b =r ,且与的夹角为060,则a b -r r15. 设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 .16. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________三.解答题(共6题,满70分):17.(满10分):求值:0010001cos 20sin10(tan 5tan 5)2sin 20-+-- 18.(满12分):已知△ABC 的内角B 满足2cos 28cos 50,B B -+=,若BC a =u u u r r ,CA b =u u u r r 且,a b rr 满足:9a b =-r r g,3,5a b ==r r,θ为,a b r r 的夹角 求sin()B θ+ 19.(满12分):已知向量(12)(32)==-,,,a b ,当k 为何值时,(1)k +a b 与3a b -垂直?(2)k +a b 与3a b -平行?平行时它们是同向还是反向?20.(满12分):设函数()sin(2)(π0)()f x x y f x ϕϕ=+-<<=,的图象的一条对称轴是π8x =. (1)求ϕ值;(2)求函数()y f x =的单调增区间. 21.(满12分):已知点(00)(12)(45)O A B ,,,,,,且(R)=+∈u u u r u u u r u u u rOP OA t AB t ,求:(1)t 为何值时,点P 到x 轴上?点P 在二、四象限的角平分线上?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由.22.(满12分):已知函数)64cos()43sin()(ππ-++=x x x f(1)求该函数的最小正周期。

北师大版高一数学必修4第二章平面向量测试题及答案

北师大版高一数学必修4第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。

A、-9B、-6C、9D、62.已知=(2,3), b=(-4,7),则在b上的投影为()。

A、B、C、D、3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得向量为()。

A、(2,3)B、(1,2)C、(3,4)D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。

A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。

A、B、C、D、6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。

A、B、C、D、7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。

A、重心B、垂心C、内心D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b|(3)| +b|2=( +b)2(4)(b) -(a)b与不一定垂直。

其中真命题的个数是()。

A、1B、2C、3D、49.在ΔABC中,A=60°,b=1,,则等于()。

A、B、C、D、10.设、b不共线,则关于x的方程x2+b x+ =0的解的情况是()。

A、至少有一个实数解B、至多只有一个实数解C、至多有两个实数解D、可能有无数个实数解二、填空题:(本大题共4小题,每小题4分,满分16分.).2,则 =_________ 11.在等腰直角三角形ABC中,斜边AC=212.已知ABCDEF为正六边形,且AC=a,AD=b,则用a,b表示AB为______.13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。

高中数学 第二章 平面向量 2.1向量的加法 新人教A版必修4-新人教A版高一必修4数学试题

高中数学 第二章 平面向量 2.1向量的加法 新人教A版必修4-新人教A版高一必修4数学试题

§2 从位移的合成到向量的加法2.1 向量的加法,)1.问题导航(1)任意两个向量都可以应用向量加法的三角形法则吗?(2)向量加法的三角形法则与平行四边形法则的使用条件有何不同?2.例题导读教材P77例1,例2,P78例3.通过此三例的学习,熟悉向量加法运算,学会利用向量加法解决实际生活问题.试一试:教材P81习题2-2 B组T1,T2,T3你会吗?1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法法则三角形法则前提已知向量a,b,在平面内任取一点A 作法作AB→=a,BC→=b,再作向量AC→结论向量AC→叫做a与b的和,记作a+b,即a+b=AB→+BC→=AC→图形平行四边形法则前提已知不共线的两个向量a,b,在平面内任取一点O 作法以同一点O为起点的两个已知向量a,b为邻边作▱OACB 结论对角线OC→就是a与b的和图形规定零向量与任一向量a的和都有a+0=0+a=a. 2.向量加法的运算律运算律交换律 a +b =b +a结合律 (a +b )+c =a +(b +c )1.判断正误.(正确的打“√”,错误的打“×”) (1)任意两个向量的和仍然是一个向量.( )(2)|a +b |≤|a |+|b |等号成立的条件是a ∥b .( )(3)任意两个向量的和向量不可能与这两个向量共线.( ) 解析:(1)正确.根据向量和的定义知该说法正确. (2)错误.条件应为a ∥b ,且a ,b 的方向相同.(3)错误.当两个向量共线时,两向量的和向量与这两个向量中的任意一个都共线. 答案:(1)√ (2)× (3)×2.若a ,b 为非零向量,则下列说法中不正确的是( )A .若向量a 与b 方向相反,且|a |>|b |,则向量a +b 与a 的方向相同B .若向量a 与b 方向相反,且|a |<|b |,则向量a +b 与a 的方向相同C .若向量a 与b 方向相同,则向量a +b 与a 的方向相同D .若向量a 与b 方向相同,则向量a +b 与b 的方向相同解析:选B.因为a 与b 方向相反,|a |<|b |,所以a +b 与a 的方向相反,故B 不正确. 3.化简下列各向量: (1)AB →+BC →=________. (2)PQ →+OM →+QO →=________.解析:根据向量加法的三角形法则及运算律得: (1)AB →+BC →=AC →.(2)PQ →+OM →+QO →=PQ →+QO →+OM →=PO →+OM →=PM →.答案:(1)AC → (2)PM →4.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.解析:由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 答案:01.对向量加法的三角形法则的四点说明 (1)适用X 围:任意向量.(2)注意事项:①两个向量一定首尾相连;②和向量的起点是第一个向量的起点,终点是第二个向量的终点. (3)方法与步骤:第一步,将b (或a )平移,使一个向量的起点与另一个向量的终点相连; 第二步:将剩下的起点与终点用有向线段相连,且有向线段的方向指向终点,则该有向线段表示的向量即为向量的和.也称“首尾相连,连首尾”.(4)图示:如图所示2.对向量加法的平行四边形法则的四点说明 (1)适用X 围:任意两个非零向量,且不共线.(2)注意事项:①两个非零向量一定要有相同的起点; ②平行四边形中的一条对角线所对应的向量为和向量.(3)方法与步骤:第一步:先把两个已知向量a 与b 的起点平移到同一点; 第二步:以这两个已知向量为邻边作平行四边形,则两邻边所夹的对角线所表示的向量即为a 与b 的和.(4)图示:如图所示已知向量作和向量如图,已知向量a ,b ,c 不共线,求作向量a +b +c .(教材P 81习题2-2 A 组T 3)[解] 法一:如图(1),在平面内作OA →=a ,AB →=b ,则OB →=a +b ;再作BC →=c ,则OC →=a +b +c .法二:如图(2),在平面内作OA →=a ,OB →=b ,以OA 与OB 为邻边作平行四边形OADB ,则OD →=a +b ;再作OC →=c ,以OD 与OC 为邻边作平行四边形ODEC ,则OE →=a +b +c .方法归纳已知向量求作和向量的方法(1)用三角形法则,在平面内任取一点,顺次作两个向量等于已知向量,从起点到终点的向量就是两个向量的和.(2)用平行四边形法则,在平面内任取一点,从此点出发分别作两个向量等于已知向量,以它们为邻边作平行四边形,共起点的对角线对应的向量就是这两个向量的和.1.(1)如图所示,已知向量a 和b ,求作a +b .(2)如图,已知a ,b ,c 三个向量,试求作和向量a +b +c .解:(1)法一:(三角形法则)如图所示.①在平面上任取一点O ,作OA →=a ,AB →=b ;②连接OB ,则OB →=a +b .法二:(平行四边形法则)如图所示.①在平面上任取一点O ,作OA →=a ,OB →=b ;②以OA ,OB 为邻边作平行四边形OACB ,则OC →=a +b .(2)作出来的和向量如图,首先在平面内任取一点O ,作向量OA →=a ,再作向量AB →=b ,则得向量OB →=a +b ,然后作向量BC →=c ,则向量OC →即为所求.向量的加法运算(1)下列等式不正确的是( )①a +(b +c )=(a +c )+b ;②AB →+BA →=0;③AC →=DC →+AB →+BD →. A .②③ B .② C .① D .③(2)设A ,B ,C ,D 是平面上任意四点,试化简: ①AB →+CD →+BC →; ②DB →+AC →+BD →+CA →.(教材P 81习题2-2A 组T 5(1)(2))[解] (1)选B.由向量的加法满足结合律知①正确;因为AB →+BA →=0,故②不正确;DC →+AB →+BD →=AB →+BD →+DC →=AC →成立,故③正确.(2)①AB →+CD →+BC →=(AB →+BC →)+CD →=AC →+CD →=AD →. ②DB →+AC →+BD →+CA →=(DB →+BD →)+(AC →+CA →)=0+0=0.方法归纳向量加法运算律的意义和应用原则 (1)意义向量加法的运算律为向量加法提供了变形的依据,实现恰当利用向量加法法则运算的目的.实际上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可以按照任意的次序、任意的组合来进行.(2)应用原则利用代数方法通过向量加法的交换律,使各向量“首尾相连”,通过向量加法的结合律调整向量相加的顺序.2.(1)在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → (2)化简下列各式: ①(AD →+MB →)+(BC →+CM →)=________. ②AB →+DF →+CD →+BC →+FA →=________.解析:(1)因为AO →+OD →=AD →,AC →+CD →=AD →,所以AO →+OD →=AC →+CD →.(2)①(AD →+MB →)+(BC →+CM →)=AD →+MB →+BM →=AD →+0=AD →. ②AB →+DF →+CD →+BC →+FA →=(AB →+BC →)+(DF →+FA →)+CD →=AC →+DA →+CD →=(AC →+CD →)+DA →=AD →+DA →=0.答案:(1)C (2)①AD →②0向量加法的应用(1)已知图中电线AO 与天花板的夹角为60°,电线AO 所受拉力|F 1|=24 N ;绳BO 与墙壁垂直,所受拉力|F 2|=12 N ,则F 1与F 2的合力大小为________N ;方向为________.(2)如图是中国象棋的部分棋盘,“马走日”是象棋中“马”的走法,如果不从原路返回,那么“马”从A 经过B 再走回到A 最少需几步?(教材P 77例1,例2,P 78例3) [解](1)如图,根据向量加法的平行四边形法则,得合力F 1+F 2=OC →.在△OAC 中,|F 1|=24,|AC →|=12,∠OAC =60°,所以∠OCA =90°,|OC →|=123, 所以F 1与F 2的合力大小为12 3 N ,方向为竖直向上.故填123和竖直向上.(2)如图,如果不从原路返回,那么所走路线为A →B →C →D →A ,即AB →+BC →+CD →+DA →=0,所以最少需四步.本例(2)条件不变,若不限步数,那么“马”从A 经过B 再走回A 时,所走的步数有什么特点?解:若不限步数,则“马”从A 经过B 再走回A 时,不论如何走,均需走偶数步,且不少于四步.方法归纳向量加法应用的关键及技巧(1)三个关键:一是搞清构成平面图形的向量间的相互关系;二是熟练找出图形中的相等向量;三是能根据三角形法则或平行四边形法则作出向量的和向量.(2)应用技巧:①准确画出几何图形,将几何图形中的边转化为向量;②将所求问题转化为向量的加法运算,进而利用向量加法的几何意义进行求解.3.(1)若a 表示向东走8 km ,b 表示向北走8 km ,则|a +b |=________km ,a +b 的方向是________.(2)如图所示,在某次抗震救灾中,一架飞机从A 地按北偏东35°的方向飞行800 km 到达B 地接到受伤人员,然后又从B 地按南偏东55°的方向飞行800 km 送往C 地医院,求这架飞机飞行的路程及两次位移的和.解:(1)设OA →=a ,OB →=b ,则OC →=a +b .又因为|OA →|=8,|OB →|=8,所以|OC →|=|a +b |=8 2. 又因为∠AOC =45°,所以a +b 的方向是北偏东45°.故填82和北偏东45°.(2)设AB →,BC →分别表示飞机从A 地按北偏东35°的方向飞行800 km ,从B 地按南偏东55°的方向飞行800 km ,则飞机飞行的路程指的是|AB →|+|BC →|;两次飞行的位移的和指的是AB →+BC →=AC →.依题意有|AB →|+|BC →|=800+800=1 600(km),又α=35°,β=55°,∠ABC =35°+55°=90°,所以|AC →|=|AB →|2+|BC →|2 =8002+8002=8002(km).易错警示未能正确理解向量加法致误小船以10 3 km/h 的静水速度按垂直于对岸的方向行驶,同时河水的流速为10km/h ,则小船实际航行速度的大小为________km/h.[解析] 如图,设船在静水中的速度为|v 1|=10 3 km/h ,河水的流速为|v 2|=10 km/h ,小船实际航行速度为v 0,则由|v 1|2+|v 2|2=|v 0|2,得(103)2+102=|v 0|2,所以|v 0|=20 km/h ,即小船实际航行速度的大小为20 km/h.[答案] 20[错因与防X] (1)解答本题,易将船的实际速度当成河水的流速与静水速度之和,导致得不到正确的实际航速关系式而出错.(2)①向量的和一般不能直接用模作和;要注意向量的方向的合成,如本例中用两个速度不能直接作和;②船在静水中的航行速度,水流的速度,船实际的航行速度三者间当航行方向与水流方向不共线时不能直接某某际航行速度,如本例中两个方向垂直,利用勾股定理求速度的大小.4.(1)一艘船以4 km/h 的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h ,若船的实际航行方向与水流方向垂直,则经过3 h ,该船的实际航程为________km.(2)在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.解:(1)由题意,如图,OA →表示水流速度,OB →表示船在静水中的速度,则OC →表示船的实际速度.因为|OA →|=2,|OB →|=4,∠AOB =120°,则∠CBO =60°, 又因为∠AOC =∠BCO =90°,所以|OC →|=23,所以船的实际航行速度为2 3 km/h ,则实际航程为23×3=63(km).故填6 3. (2)作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形,在Rt △ACD 中, |CD →|=|AB →|=|v 水|=10 m/min , |AD →|=|v 船|=20 m/min ,所以cos α=|CD →||AD →|=1020=12,所以α=60°,从而船与水流方向成120°的角. 故船行进的方向是与水流的方向成120°角的方向.1.已知下面的说法:①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向与a 或b 的方向相同;②在△ABC 中,必有AB →+BC →+CA →=0;③若AB →+BC →+CA →=0,则A ,B ,C 为一个三角形的三个顶点; ④若a ,b 均为非零向量,则|a +b |与|a |+|b |一定相等. 其中正确的个数为( ) A .0 B .1 C .2 D .3解析:选B.①当a +b =0时,不成立;②说法正确;③当A ,B ,C 三点共线时,也可以有AB →+BC →+CA →=0,故此说法不正确;④当a ,b 共线时,若a ,b 同向,则|a +b |=|a |+|b |;若a ,b 反向,则|a +b |=||a |-|b ||;当a ,b 不共线时,|a +b |<|a |+|b |,故此说法不正确.2.如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中正确的是( )A.FD →+DA →=FA →B.FD →+DE →+FE →=0C.DE →+DA →=EB →D.DA →+DE →=FD →解析:选A.如题图,可知FD →+DA →=FA →, FD →+DE →+FE →=FE →+FE →≠0, DE →+DA →=DF →,故A 正确.3.化简(AB →+MB →)+(BO →+BC →)+OM →=________.解析:原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →.答案:AC →, [学生用书单独成册])[A.基础达标]1.在四边形ABCD 中,若AC →=AB →+AD →,则( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形 D .四边形ABCD 是平行四边形解析:选D.由向量加法的平行四边形法则知四边形ABCD 是平行四边形.故选D.2.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →=( )A.BD →B .DB → C.BC →D .CB →解析:选C.BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →.3.已知a ,b ,c 是非零向量,则(a +c )+b ,b +(a +c ),b +(c +a ),c +(a +b ),c +(b +a )中,与向量a +b +c 相等的个数为( )A .5B .4C .3D .2解析:选A.依据向量加法的交换律及结合律,每个向量式均与a +b +c 相等,故选A.4.如图所示的方格中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH → B .OG →C.FO →D .EO →解析:选C.设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则夹在OP ,OQ 之间的对角线对应的向量即为向量a =OP →+OQ →,则a 与FO →长度相等,方向相同,所以a =FO →.5.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则在下列结论中,正确的为( ) ①a∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |; ⑤|a +b |=|a |+|b |. A .①② B .①③ C .①③⑤ D .③④⑤解析:选C.因为(AB →+CD →)+(BC →+DA →) =AB →+BC →+CD →+DA →=a =0. 所以a∥b ,a +b =b ,即①③正确,②错误,而a =0时,|a +b |=|b |=|a |+|b |,故④错误,⑤正确. 6.当非零向量a ,b 满足________时,a +b 平分以a 与b 为邻边的平行四边形的内角. 解析:由平面几何知识知,在平行四边形中,菱形的对角线平分其内角. 答案:|a |=|b |7.矩形ABCD 中,|AB |=3,|BC →|=1,则向量AB →+AD →+AC →的长度等于________. 解析:因为ABCD 为矩形,所以AB →+AD →=AC →,所以AB →+AD →+AC →=AC →+AC →,如图,过点C 作CE →=AC →,则AC →+AC →=AE →,所以|AB →+AD →+AC →|=|AE →|=2|AC →|=2|AB →|2+|BC →|2=4. 答案:48.在平行四边形ABCD 中,若|BC →+BA →|=|BC →+AB →|,则四边形ABCD 是________(图形).解析:如图所示,BC →+BA →=BD →,BC →+AB →=AC →, 又|BC →+BA →|=|BC →+AB →|,所以|BD →|=|AC →|,则四边形ABCD 是矩形. 答案:矩形9.如图所示,P ,Q 是三角形ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.证明:AB →=AP →+PB →,AC →=AQ →+QC →,所以AB →+AC →=AP →+PB →+AQ →+QC →.因为PB →与QC →大小相等,方向相反,所以PB →+QC →=0, 故AB →+AC →=AP →+AQ →+0=AP →+AQ →. 10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.解:如图,在平行四边形OACB 中,∠AOC =30°,∠BOC =60°,则在△OAC 中,∠ACO=∠BOC =60°,∠OAC =90°,设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体的重力,|CO →|=300 N ,所以|OA →|=|CO →|cos 30°=150 3 N ,|OB →|=|CO →|cos 60°=150 N.所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.[B.能力提升] 1.设A 1,A 2,A 3,A 4是平面上给定的4个不同的点,则使MA 1→+MA 2→+MA 3→+MA 4→=0成立的点M 的个数为( )A .0B .1C .2D .4解析:选B.根据所给的四个向量的和是一个零向量,即MA 1→+MA 2→+MA 3→+MA 4→=0.当A 1,A 2,A 3,A 4是平面上给定的4个不同点确定以后,在平面上有且只有一个点满足使得四个向量的和等于零向量,故选B.2.已知|OA →|=3,|OB →|=3,∠AOB =60°,则|OA →+OB →|=( )A.3B .3C .23D .3 3解析:选D.在平面内任取一点O ,作向量OA →,OB →,以OA →,OB →为邻边作▱OACB ,则OC →=OA →+OB →.由题意知四边形OACB 为菱形,又∠AOB =60°,所以|OC →|=2×3×sin 60°=3 3.3.已知G 是△ABC 的重心,则GA →+GB →+GC →=________.解析:如图,连接AG 并延长交BC 于E ,点E 为BC 中点,延长AE 到D ,使GE =ED ,则GB →+GC→=GD →,GD →+GA →=0,所以GA →+GB →+GC →=0.答案:04.若|AB →|=10,|AC →|=8,则|BC →|的取值X 围是________.解析:如图,固定AB →,以A 为起点作AC →,则AC →的终点C 在以A 为圆心,|AC →|为半径的圆上,由图可见,当C 在C 1处时,|BC →|取最小值2,当C 在C 2处时,|BC →|取最大值18.答案:[2,18]5.一艘船在水中航行,水流速度与船在静水中航行的速度均为5 km/h.如果此船实际向南偏西30°方向行驶2 km ,然后又向西行驶2 km ,你知道此船在整个过程中的位移吗?解:如图,用AC →表示船的第一次位移,用CD →表示船的第二次位移,根据向量加法的三角形法则知AD →=AC →+CD →,所以AD →可表示两次位移的和位移.由题意知,在Rt △ABC 中,∠BAC =30°,所以BC =12AC =1,AB = 3. 在等腰△ACD 中,AC =CD =2, 所以∠D =∠DAC =12∠ACB =30°, 所以∠BAD =60°,AD =2AB =23,所以两次位移的和位移的方向是南偏西60°,位移的大小为2 3 km.6.(选做题)在四边形ABCD 中,对角线AC ,BD 交于点O ,且|AB →|=|AD →|=1,OA →+OC →=OB →+OD →=0,cos ∠DAB =12.求|DC →+BC →|与|CD →+BC →|.解:因为OA →+OC →=OB →+OD →=0,所以OA →=CO →,OB →=DO →,所以四边形ABCD 为平行四边形,又|AB →|=|AD →|=1,知四边形ABCD 为菱形.因为cos ∠DAB =12,∠DAB ∈(0,π), 所以∠DAB =π3,所以△ABD 为正三角形, 所以|DC →+BC →|=|AB →+AD →|=|AC →|=2|AO →|= 3.|CD →+BC →|=|BD →|=|AB →|=1.。

高一必修四数学正切函数练习

高一必修四数学正切函数练习

§1.4.3正切函数的性质和图象班级 姓名 学号 得分一、选择题 1.函数y =tan (2x +6π)的周期是 ( ) (A) π (B)2π (C)2π (D)4π 4、函数⎪⎭⎫ ⎝⎛+=42tan πx y 的周期是 A .πB .π2C .2πD .4π3.在下列函数中,同时满足(1)在(0,2π)上递增;(2)以2π为周期;(3)是奇函数的是 ( ) (A) y =|tanx | (B) y =cos x (C) y =tan 21x (D) y =-tanx4.函数y =lgtan2x的定义域是 ( ) (A){x |k π<x <k π+4π,k ∈Z} (B) {x |4k π<x <4k π+2π,k ∈Z} (C) {x |2k π<x <2k π+π,k ∈Z} (D)第一、三象限 5.已知函数y =tan ωx 在(-2π,2π)内是单调减函数,则ω的取值范围是 ( ) (A)0<ω≤ 1 (B) -1≤ω<0 (C) ω≥1 (D) ω≤ -1*6.如果α、β∈(2π,π)且tan α<tan β,那么必有 ( ) (A) α<β (B) α>β (C) α+β>32π (D) α+β<32π 1、tan (,)2y x x k k Z ππ=≠+∈在定义域上的单调性为( ).A .在整个定义域上为增函数B .在整个定义域上为减函数C .在每一个开区间(,)()22k k k Z ππππ-++∈上为增函数 D .在每一个开区间(2,2)()22k k k Z ππππ-++∈上为增函数2、下列各式正确的是( ).A .1317tan()tan()45ππ-<-B .1317tan()tan()45ππ->- C .1317tan()tan()45ππ-=- D .大小关系不确定 3、若tan 0x ≤,则( ).A .22,2k x k k Z πππ-<<∈ B .2(21),2k x k k Z πππ+≤<+∈21世纪教育网C .,2k x k k Z πππ-<≤∈ D .,2k x k k Zπππ-≤≤∈5、函数sin tan y x x =+的定义域为( ).A .|22,2x k x k k ππππ⎧⎫≤<+∈⎨⎬⎩⎭ B . |22,2x k x k k ππππ⎧⎫<≤+∈⎨⎬⎩⎭{}C.|22,|2,2x k x k k x x k k Z ππππππ⎧⎫≤<+∈⋃=+∈⎨⎬⎩⎭D .|222x k x k πππ⎧≤<+⎨⎩且}2,x k k Zππ≠+∈6、直线y a =(a为常数)与正切曲线tan (y x ωω=为常数,且0)ω>相交的两相邻点间的距离为( ). A .π B .2πωC .πωD .与a 值有关二.填空题 7.函数y =2tan(3π-2x)的定义域是 ,周期是 ;8.函数y =tan 2x -2tan x +3的最小值是 ;9.函数y =tan(2x +3π)的递增区间是 ;3、函数⎪⎭⎫ ⎝⎛+=3tan πx y 的单调区间是_________________6.函数y=tan(2x+π4)的单调递增区间是__________.15.求函数y =3tan (6π-4x)的周期和单调区间. 7、函数tan()4y x π=-的定义域是_____________8、函数tan()(0)6y ax a π=+≠的周期为_______三. 解答题11.不通过求值,比较下列各式的大小 (1)tan(-5π)与tan(-37π) (2)tan(78π)与tan (16π)12.求函数y =tan 1tan 1x x +-的值域.*14.已知α、β∈(2π,π),且tan(π+α)<tan(52π-β),求证: α+β<32π. 2、函数⎥⎦⎤⎝⎛-∈=4,3,tan ππx x y 的值域是A .(]1,∞- B .(]1,3-C .()+∞∞-,D .()+∞-,35、要得到函数x y 2tan =的图象,只须把⎪⎭⎫ ⎝⎛+=32tan πx y 的图象A .左移3π个单位 B .右移3π个单位 C .左移6π个单位 D .右移6π个单位6、观察正切曲线,满足条件1tan <x 的x 的取值范围是(其中k ∈Z) ( )A .(2k π-4π,2k π+4π)B .(k π,k π+4π) C .(k π4π-,k π+4π)D .(k π+4π,k π+43π)二、填空题 1、函数xy tan 11-=的定义域是 2、函数x y tan =图象的对称中心是5、观察正切曲线,满足条件3tan >x 的x 的取值范围是6、4tan ,3tan ,2tan ,1tan 由小到大排列为1、 求函数()()3tan 13tan 2-++-=x x x f 的定义域.2、 已知()1tan sin ++=x b x a x f ,75=⎪⎭⎫ ⎝⎛πf ,求⎪⎭⎫⎝⎛599πf 的值.4.若sin α>tan α>cot α(-π2 <x<π2 ),则α的取值范围是( )A.(- π2 ,π4 )B. (-π4 ,0)C.(0, π4 )D.( π4 ,π2 )7.函数 y=sinx 与 y=tanx 的图象在区间[0,2π]上交点的个数是________.9.函数y=lg tanx+1tanx-1 的奇偶性是__________.10.函数的y=|tan(2x-π3 )|周期是___________.13. 求函数y =)6πtan(1tan +-x x 的定义域 14. 求下列函数的值域:(1)y =2cos 2x +2cos x -1; (2)y =1cos 21cos 2-+x x .9、下列函数不等式中正确的是( ).A .43tan tan 77ππ>B .23tan tan 55ππ<[来源:21世纪教育网] C . 1315tan()tan()78ππ-<- D .1312tan()tan()45ππ-<- 一、选择题1、下列不等式中,正确的是( )A . tan74π>tan73π B . tan(-413π)>tan(-512π)C . tan 4<tan3D . tan281°>tan665° 2、下列命题中正确的是( )A .x y tan =在第一象限单调递增.B . 在x y tan =中,x 越大,y 也越大C . 当x >0时,x tan >0.D . x y tan =的图象关于原点对称3、若βαππβα22tan tan ),23,(,>∈且,则 ( )A .α<βB .α>βC .α+β>3πD .α+β<2π4、直线y = a (a 为常数)与y = tan ωx (ω>0)的相邻两支的交点距离为 ( )A .πB .ωπ C .ωπ2 D .与a 有关的值5、在下列函数中,同时满足的是( )①在(0,2π)上递增 ②以2π为周期 ③是奇函数 A .y =tan x B .y =cos x C .y =tan 21x D .y =-tan x6、在区间(-π23,π23)内,函数x y tan =与函数x y sin =图象交点的个数为( )A .1B .2C .3D .5二、填空题1、使函数y=tanx 和y=sinx 同时为单调递增函数的区间是.2、函数y=3tan(21x 4π-)的定义域是 ,值域是 .3、函数y=3tan(2x +3π)的对称中心的坐标是 .4、函数⎪⎭⎫ ⎝⎛+=42tan πx y 的图象被平行直线 隔开,图象与x 轴交点的横坐标是 ,与y 轴交点的纵坐标是 ,函数的周期是 ,定义域是 ,值域是,它的奇偶性是 . 5、比较大小: (1)︒222tan︒223tan ; (2)31)44(tan ︒ 21)44(tan ︒。

高一数学必修4 模块测试卷

高一数学必修4 模块测试卷

高一数学必修4 模块测试卷试卷满分:100分 考试时间:60分钟一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 在0到2π范围内,与角3π-终边相同的角是( )A. 3πB. 23πC. 43πD. 53π2.α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( ) A. (4,2)- B. (4,2)-- C. (4,2) D. (4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( ) A. 3- B. 3 C. 13-D. 135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是)0,2(π,那么()f x 的解析式可以是( )A. sin xB. cos xC. sin 1x +D. cos 1x +6. 已知向量(1,=a ,(2,=-b ,则a 与b 的夹角是( )A.6π B. 4π C. 3π D. 2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos 2y x =的图象( )A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度 D. 向右平移π3个单位长度8. 函数212cos y x =- 的最小正周期是( ) A. 4π B. 2πC. πD. 2π9. 设角θ的终边经过点(3,4)-,则)4cos(πθ+的值等于( )A.B.C.D. 10. 在矩形ABCD中,AB =1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅ 的值为( )A .3B .2 C.2 D.3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11. sin34π=______. 12. 若1cos , (0,)2αα=-∈π,则α=______.13. 已知向量(1,3)=-a ,(3,)x =-b ,且⊥a b ,则x =_____. 14.已知sin cos αα-=,则sin 2α=______.15. 函数2cos y x =在区间[,]33π2π-上的最大值为______,最小值为______. 16. 已知函数()sin f x x x =,对于ππ[]22-,上的任意12x x ,,有如下条件:①2212x x >;②12x x >;③12x x >,且1202x x +>.其中能使12()()f x f x >恒成立的条件序号是_______.(写出所有满足条件的序号) 三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知2απ<<π,4cos 5α=-. (Ⅰ)求tan α的值; (Ⅱ)求sin 2cos2αα+的值.18.(本小题满分12分)已知函数2()sin 12xf x x =+. (Ⅰ)求()3f π的值;(Ⅱ)求()f x 的单调递增区间;(Ⅲ)作出()f x 在一个周期内的图象.19.(本小题满分12分)如图,点P 是以AB 为直径的圆O 上动点,P '是点P 关于AB 的对称点,2(0)AB a a =>.(Ⅰ)当点P 是弧 上靠近B 的三等分点时,求AP AB ⋅的值;(Ⅱ)求AP OP '⋅的最大值和最小值.参考答案及评分标准一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.A;3.D;4.A;5.B;6.C;7.B;8.C;9.C; 10.B.二、填空题:本大题共6小题,每小题4分,共24分.11. 2-; 12.32π; 13. 1-; 14. 1-; 15. 2,1-; 16. ①③. 注:一题两空的试题每空2分;16题,选出一个正确的序号得2分,错选得0分. 三、解答题:本大题共3小题,共36分.17.解:(Ⅰ)因为4cos 5α=-,2απ<<π,所以3sin 5α=, …………………3分 所以sin 3tan cos 4ααα==-. …………………5分(Ⅱ)24sin 22sin cos 25ααα==-, …………………8分27cos 22cos 125αα=-=, …………………11分 所以24717sin 2cos 2252525αα+=-+=-. …………………12分18.解:(Ⅰ)由已知2()sin 1363f πππ=+ …………………2分1122=+=. …………………4分(Ⅱ)()cos )sin 1f x x x =-+ …………………6分sin 1x x =-+2sin()13x π=-+. …………………7分函数sin y x =的单调递增区间为[2,2]()22k k k πππ-π+∈Z , …………………8分 由 22232k x k ππππ-≤-≤π+,得2266k x k π5ππ-≤≤π+.所以()f x 的单调递增区间为[2,2]()66k k k π5ππ-π+∈Z . …………………9分(Ⅲ)()f x 在[,]33π7π上的图象如图所示. …………………12分19.解:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系.因为P 是弧AB 靠近点B 的三等分点, 连接OP ,则3BOP π∠=, …………………1分 点P 坐标为1(,)22a a . …………………2分又点A 坐标是(,0)a -,点B 坐标是(,0)a ,所以3()2AP a = ,(2,0)AB a =, …………………3分 所以23AP AB a ⋅=. …………………4分 (Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'-所以(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. …………所以22222cos cos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+- (222119)2(cos cos )2168a a θθ=++- 222192(cos )48a a θ=+-. …………当1cos 4θ=-时,AP OP '⋅ 有最小值298a -当cos 1θ=时,AP OP '⋅ 有最大值22a . …………………12分。

高一数学必修4复习题

高一数学必修4复习题

高一数学必修4复习题高一数学必修4一、选择题1.将函数()sin 43f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移()0ϕϕ>个单位后关于直线12x π=对称,则ϕ的最小值为( )A .6πB .524π C .4π D .724π2.将函数()sin 43f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移()0ϕϕ>个单位后关于直线12x π=对称,则ϕ的最小值为( )A .6πB .524π C. 4π D .724π 3.将函数()2cos 2f x x =的图象向右平移6π个单位后得到函数()g x 的图象,若函数()g x 在区间0,3a ⎡⎤⎢⎥⎣⎦和72,6a π⎡⎤⎢⎥⎣⎦上均单调递增,则实数a 的取值范围是( )A .,32ππ⎡⎤⎢⎥⎣⎦B .,62ππ⎡⎤⎢⎥⎣⎦C .,63ππ⎡⎤⎢⎥⎣⎦D .3,48ππ⎡⎤⎢⎥⎣⎦4.已知函数()()⎪⎭⎫⎝⎛<>>+=2,0,0sin πϕωϕωA x A x f 的部分图像如图所示,若将()x f 图像上的所有点向右平移12π个单位得到函数()x g 的图象,则函数()x g 的单调递增区间为( )A .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,6,3ππππ B .Z k k k ∈⎥⎦⎤⎢⎣⎡++,32,6ππππC .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,12,12ππππ D .Z k k k ∈⎥⎦⎤⎢⎣⎡--,12,127ππππ5.若函数3cos y x x=-的图象向右平移m (0m >)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .6πB .4π C. 23πD .3π6.当4x π=时,函数()()()sin 0f x A x A φ=+>取得最小值,则函数34y f x π⎛⎫=-⎪⎝⎭是( ) A .奇函数且图象关于直线2x π=对称 B .偶函数且图象关于点()0π,对称C.奇函数且图象关于点02π⎛⎫⎪⎝⎭,对称D .偶函数且图象关于点02π⎛⎫ ⎪⎝⎭,对称 7.已知函数()()12cos cos 3f x x x ϕ=++是偶函数,其中0 2πϕ⎛⎫∈ ⎪⎝⎭,,则下列关于函数()()cos 2g x x ϕ=-的正确描述是( )A .()g x 在区间 123ππ⎡⎤-⎢⎥⎣⎦,上的最小值为1- B .()g x 的图象可由函数()f x 的图象先向上平移2个单位,再向右平移3π个单位得到 C. ()g x 的图象可由函数()f x 的图象向左平移3π个单位得到D .()g x 的图象可由函数()f x 的图象向右平移3π个单位得到8.三角函数()sin cos f x a x b x =-,若()()44f x f x ππ-=+,则直线0ax by c -+=的倾斜角为( )A .4πB .3π C. 23π D .34π9.函数cos 2y x =的图象向右平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位后,与函数sin 26y x π⎛⎫=- ⎪⎝⎭的图像重合,则ϕ=( ) A .12π B .6π C .3πD .512π 10.函数()sin(2)f x A x ϕ=+(2πϕ≤,0A >)部分图像如图所示,且()()0f a f b ==,对不同的1x ,[]2,x a b ∈,若12()()f x f x =,有12()3f x x +=,则( )A .()f x 在5(,)1212ππ-上是减函数B .()f x 在5(,)1212ππ-上是增函数C .()f x 在5(,)36ππ上是减函数D .()f x 在5(,)36ππ上是增函数 11.设函数()()()sin 30,2f x x x πωϕωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期为π,且()()f x f x -=,则( ) A.()f x 在0,2π⎛⎫⎪⎝⎭单调递减B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 12.函数xx y 2cos 32sin -=的图象的一条对称轴方程为( )A .12π=xB .12π-=x C. 3π=x D .6π-=x13.已知函数2()sin ()f x x ω=12-(0ω>)的周期为π,若将其图象沿x 轴向右平移a 个单位(0a >),所得图象关于原点对称,则实数a 的最小值为( )A .πB .34πC .2π D .4π 14.若x 是三角形的最小内角,则函数sin cos sin cos y x x x x=+-的最小值是( )A .122-+.122+.1 D 2 15.设动直线x a=与函数2()2sin ()4f x x π=+和()32g x x=的图象分别交于M 、N 两点,则||MN 的最大值为( )A 2B 3.2 D .316.已知函数()()()2sin 20f x x θθπ=-+<<,14f π⎛⎫=- ⎪⎝⎭则()f x 的一个单调递减区间是( )A .5,1212ππ⎛⎫- ⎪⎝⎭B .7,1212ππ⎛⎫ ⎪⎝⎭C .,63ππ⎛⎫- ⎪⎝⎭D .5,1212ππ⎛⎫-⎪⎝⎭17.函数()sin 31f x x x ωω=+的最小正周期为π,当[]x m n ∈,时,()f x 至少有12个零点,则n m -的最小值为( )A .12πB .73πC .6πD .163π18.如图,某地一天从6:14时的温度变化曲线近似满足函数:sin()y A x b ωϕ=++,则中午12点时最接近的温度为( )A .26C ︒B .27C ︒ C .28C ︒D .29C ︒ 19.已知()510sin ,ααβαβ=-=均为锐角, 则cos 2β=( )A .3B .1-C .0D .120.已知),0(πα∈,若31)4tan(=-απ,则=α2sin ( ) A .-54 B .54 C .45- D .45 21.已知24cos 0352παπα⎛⎫+=-<< ⎪⎝⎭,,则sin sin 3παα⎛⎫++ ⎪⎝⎭等于( )A.43B.33C.33D.4322.已知1sin()63πα-=,则cos 2()3πα⎡⎤+⎢⎥⎣⎦的值是( ) A .79- B .79 C .13- D .1323.已知tan 3θ=,则sin 21cos 2θθ=+( ) A .3 B .3-3.324.在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断① tan 1tan AB= ②2sin sin 0≤+<B A ③1cos sin22=+B A④CB A 222sin cos cos=+其中正确的是( )(A)①③ (B )②④ (C )①④ (D )②③25.已知在ABC ∆中,3sin 4cos 6,4sin 3cos 1A B B A +=+=,则角C 的大小为 ( )(A)30︒ (B)150︒ (C)30︒或150︒ ( D)90︒26.将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向右平移14个周期后,所得图象对应的函数为()f x ,则函数()f x 的单调递增区间( )A.()5 1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,B.()511 1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, C.()57 2424k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, D.()719 2424k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 27.将函数sin(4)6y x π=-图象上各点横坐标伸长到原来的2倍,再向左平移4π个单位,纵坐标不变,所得函数图象的一条对称轴的方程是( )A .12x π=B .6x π=C .3x π=D .12x π=- 28.已知函数()sin x 3f x x π=+-,则12340332017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L 的值为( )A .4033B .-4033C .8066D .-8066 二、解答题29.已知函数()2cos sin()3f x x x π=-23sin cos x x x++.(1)求函数()f x 的最小正周期;(2)若()0f x m -=在20,3π⎡⎤⎢⎥⎣⎦恰有一实根,求m 的取值范围.30.已知函数()23sin 22cos f x x x a=--在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值为2.(1)求函数()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的值域;(2)设11016,0,,,221213235f f πππαβαβ⎛⎫⎛⎫⎛⎫∈+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求()sin αβ-的值.31.已知函数()xx x x x f 44cos cos sin 2cos--=.(1)若x 是某三角形的一个内角,且()22-=x f ,求角x 的大小;(2)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,求()x f 的最小值及取得最小值时x 的集合.32.已知函数()21sin 23cos 2f x x x=⑴求()f x 的最小正周期和最小值;⑵将函数()f x 的图象上每一点横坐标伸长到原来的两倍,纵坐标不变,得到函数()g x 的图象,当2x ππ⎡⎤∈⎢⎥⎣⎦,时,求()g x 的值域.33.已知函数()23)sin()sin 244f x x x x aππωωω=+-++(0ω>)的图象与直线y m =(0m >)相切,并且切点横坐标依次成公差为π的等差数列,且()f x 的最大值为1.(2)将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,若函数()y g x m =-在0,2π⎡⎤⎢⎥⎣⎦上有零点,求实数m 的取值范围.34.已知函数()4sin cos 4f x x x ωπω⎛⎫=-⋅ ⎪⎝⎭在4x π=处取得最值,其中()0,2ω∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)将函数()f x 的图象向左平移36π个单位,再将所得图象上各点的横坐标伸长为原来的3倍,纵坐标不变,得到函数()y g x =的图象,若α为锐角,()23g α4=cos α.35.已知函数2()2sin cos()42f x x x π=--. (1)求()f x 的最小正周期;(2)设(0)2πα∈,,且3()285f απ+=,求tan()4πα+.36.已知函数f(x)2cos 12x π⎛⎫- ⎪⎝⎭,x ∈R. (1)求f 6π⎛⎫- ⎪⎝⎭的值; (2)若cos θ=35,θ∈3,22ππ⎛⎫ ⎪⎝⎭,求f 23πθ⎛⎫+ ⎪⎝⎭. 37.已知函数Rx x x x x f ∈+=,cos sin cos )(2(1)求)6(πf 的值; (2)若53sin =α,且),2(ππα∈,求)242(πα+f .38.已知函数()2()23sin cos 2cos y f x x x x a x R ==++∈,其中a 为常数.(1)求函数()y f x =的周期;(2)如果()y f x =的最小值为0,求a 的值,并求此时)(x f 的最大值及图像的对称轴方程.39.已知函数()sin 2cos 2()f x a b x c x x R =++∈的图像过点(0,1),(,1)4A B π,且b >0,又()f x 的最大值为221.(1)将写成含的形式;(2)由函数y =()f x 图像经过平移是否能得到一个奇函数y =()g x 的图像?若能,请写出平移的过程;若不能,请说明理由.40.(本小题满分10分)3tan123︒- .41. 已知函数⎤⎡πππ。

(word完整版)高一数学必修四第一章测试题

(word完整版)高一数学必修四第一章测试题

宣威市第九中学第一次月考高一数学试卷本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟.第Ⅰ卷(选择题 共60分)一.选择题(每小题5分,共60分) 1.与32︒-角终边相同的角为( )A .36032k k Z ︒︒⋅+∈, B. 360212k k Z ︒︒⋅+∈, C .360328k k Z ︒︒⋅+∈, D. 360328k k Z ︒︒⋅-∈, 2. 半径为1cm ,中心角为150o 的弧长为( )A .cm 32B .cm 32πC .cm 65D .cm 65π3.点A(x,y)是300°角终边上异于原点的一点,则yx值为( ) A.3 B. - 3 C. 33 D. -334.下列函数中属于奇函数的是( )A. y=cos(x )2π+B. sin()2y x π=- C. sin 1y x =+ D.cos 1y x =-5.要得到函数x y sin =的图象,只需将函数⎪⎭⎫ ⎝⎛-=3sin πx y 的图象 ( )A. 向左平移3π B. 向右平移3π C. 向左平移32π D. 向右平移32π6. 已知点(sin cos tan )P ααα-,在第一象限,则在[02π],内α的取值范围是( ) A.π3π5ππ244⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, B.ππ5ππ424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, C.π3π53ππ2442⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,, D.ππ3ππ424⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,,7. 函数2sin(2)6y x π=+的一条对称轴是( )A. x = 3πB. x = 4πC. x = 2πD. x = 6π8. 函数)32sin(π-=x y 的单调递增区间是( )A .5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ B .52,21212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ C .5,66k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈ D .52,266k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈9.已知函数sin()(0,)2y x πωϕωϕ=+><的部分图象如图所示,则此函数的解析式为( ) A .sin(2)2y x π=+ B .sin(2)4y x π=+C .sin(4)2y x π=+ D .sin(4)4y x π=+ 10.在函数22sin ,sin ,sin(2),cos()323x y x y x y x y ππ===+=+中,最小正周期为π的函数的个数是( )A. 1个B. 2个C. 3个D.4个11.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )B. 1C. 0D.12.设a 为常数,且1>a ,[0,2x ∈π],则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共20分)13. 设角α的终边过点(4,3)P t t -(,0)t R t ∈>且,则2sin cos αα+=14. 函数1y tan 34x π⎛⎫=- ⎪⎝⎭的定义域为15.求使sin α>成立的α的取值范围是 16 关于函数f(x)=4sin ⎪⎭⎫⎝⎛+3π2x (x ∈R),有下列论断:①函数y=f(x)的表达式可改写为y=4cos(2x-π6); ②函数y=f(x)的最小正周期为2π;③函数y=f(x)的图象关于点⎪⎭⎫⎝⎛-0 6π,对称; ④函数y=f(x)的图象可由y=4sin2x 向左平移3π个单位得到. 其中正确的是 .(将你认为正确的论断的序号都填上) 一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13、 14、 15、 16、三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)(1) ;(2)已知=αsin 21-,且α是第四象限角,求αcos 、αtan 的值.18.(本小题满分12分)已知51cos sin =+θθ,其中θ是ABC ∆的一个内角. (1)求θθcos sin 的值;(2)判断ABC ∆是锐角三角形还是钝角三角形; (3)求θθcos sin -的值.19.(本小题满分12分)已知tan 1tan 1αα=--,求(1)21sin sin cos ααα+的值;(2)设222sin ()sin (2)sin()322()cos ()2cos()f πθθθθθθπ++π-+--=π+--,求()3f π的值.20.(本小题满分12分)已知函数()2sin sin f x x x =+,02x π≤≤. 若方程m x f =)(有两个不同的实数根,求实数m 的取值范围.21(本小题满分12分)已知函数a x x +-=)62sin(2)(f π.(1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间;(3)若]2,0[x π∈时,f(x)的最小值为-2,求a 的值.22.(本小题满分12分)函数)2||,0,0)(sin(πϕωϕω<>>+=A x A y 的一段图象如图所示,根据图象求:(1))(x f 的解析式;(2)函数)(x f 的图象可以由函数sin ()y x x R =∈ 的图象经过怎样的变换得到?。

(完整word版)高一数学必修4试题附答案详解

(完整word版)高一数学必修4试题附答案详解

高一数学必修4试题附答案详解第I 卷一、选择题:(每小题5分,共计60分) 1. 下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是( ) A .1或-1 B .52或 52- C .1或52- D .-1或52 3. 下列命题正确的是( )A 若→a ·→b =→a ·→c ,则→b =→c B 若||||b -=+,则→a ·→b =0 C 若→a //→b ,→b //→c ,则→a //→c D 若→a 与→b 是单位向量,则→a ·→b =1 4. 计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan 16tan 2ππ-,结果为3的是( ) A.①② B. ①③ C. ①②③ D. ①②③④5. 函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6. △ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是( )A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形7. 将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A x y sin =B )34sin(π+=x yC )324sin(π-=x y D )3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( )A -2sin5B -2cos5C 2sin5D 2cos59. 函数f(x)=sin2x ·cos2x 是 ( )A 周期为π的偶函数B 周期为π的奇函数C 周期为2π的偶函数 D 周期为2π的奇函数. 10. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( )(A )6π (B )4π (C )3π(D )π125 11. 正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是 A .(→a -→b )·→c =0 B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→0 D .|→a +→b +→c |=212. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于( )A .1B .2524-C .257D .-257二、填空题(本大题共4小题,每小题4分,共16分)13. 已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 。

高一数学必修4试题——答案详解

高一数学必修4试题——答案详解

必修四 第1卷一 选择题: (每小题5分, 共计60分)1.下列命题中正确的是... .A. 第一象限角必是锐角B. 终边相同的角相等C. 相等的角终边必相同D. 不相等的角其终边必不相同2.已知角 的终边过点 , , 则 的值是( )A. 1或-1B. 或C. 1或D. -1或3.下列命题正确的是...)A 若 · = · , 则 =B 若 , 则 · =0C 若 // , // , 则 //D 若 与 是单位向量, 则 · =14.计算下列几个式子,① ,②2(sin35(cos25(+sin55(cos65(), ③ , ④ , 结果为 的是( )A.①...B.①...C.①②...D.①②③.5.函数y =cos( -2x)的单调递增区间..... )A. [k π+ , k π+ π]B. [k π- π, k π+ ]C. [2k π+ , 2k π+ π]D. [2k π- π, 2k π+ ](以上k ∈Z )6.△ABC 中三个内角为A 、B 、C, 若关于x 的方程 有一根为1, 则△ABC 一定是( )A.直角三角.B.等腰三角...C.锐角三角.D.钝角三角形7.将函数 的图像左移 ,再将图像上各点横坐标压缩到原来的 ,则所得到的图象的解析式为..)A x y sin =B )34sin(π+=x yC )324sin(π-=x y D )3sin(π+=x y 8.化简 + , 得到...)A -2sin5B -2cos5C 2sin5D 2cos59.函数f(x)=sin2x ·cos2x.....)A 周期为π的偶函数B 周期为π的奇函数C 周期为2π的偶函数 D 周期为2π的奇函数. 10.若|., .且( )⊥., 则 与 的夹角..... )(A )6π (B )4π (C )3π (D )π125 11.正方形ABCD 的边长为1, 记 = , = , = , 则下列结论错误的是A. ( - )· =0B. ( + - )· =0C. (| - | -| |) =D. | + + |=12.2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为 ,大正方形的面积是1,小正方形的面积是 的值等于.. )A. 1B.C.D. -二、填空题(本大题共4小题, 每小题4分, 共16分)13.已知曲线y=Asin((x +()+.(A>0,(>0,|(|<π)在同一周期内的最高点的坐标为 ( , 4), 最低点的坐标为( , -2), 此曲线的函数表达式是 。

高一数学必修4模块期末试题

高一数学必修4模块期末试题

高一数学必修4模块期末试题 时间:120分钟 满分:150分第I 卷(选择题, 共60分)一 、选择题(本大题共10小题,每小题5分,共60分) 1.0sin390=( ) A .21 B .21- C .23D .23-2.下列区间中,使函数sin y x =为增函数的是( )A .[0,]πB .3[,]22ππC .[,]22ππ-D .[,2]ππ 3.下列函数中,最小正周期为2π的是( ) A .sin y x = B .sin cos y x x = C .tan2xy = D .cos4y x = 4.已知(,3)a x =,(3,1)b =, 且a b ⊥ , 则x 等于 ( ) A .-1 B .-9C .9D .15.已知1sin cos 3αα+=,则sin 2α=( ) A .21 B .21- C .89D .89-6.要得到2sin(2)3y x π=-的图像, 需要将函数sin 2y x =的图像( ) A .向左平移23π个单位 B .向右平移23π个单位 C .向左平移3π个单位 D .向右平移3π个单位 7、函数xxy sin 3sin 3+-=的值域为A .[-1,1]B .[0,1]C .[-21,2]D .[21,2]8、若f(cosx)=cos3x ,则f(sin30°) 的值为A .1 B.-1 C.0 D.219、己知P 1(2,-1) 、P 2(0,5) 且点P 在P 1P 2的延长线上,12||2||PP PP =, 则P 点坐标为A.(-2,11)B.()3,34C.(32,3) D.(2,-7) 10、对于函数f(x)=sin(2x+6π),下列命题: ①函数图象关于直线x=-12π对称; ②函数图象关于点(125π,0)对称;③函数图象可看作是把y=sin2x 的图象向左平移个6π单位而得到; ④函数图象可看作是把y=sin(x+6π)的图象上所有点的横坐标缩短到原来的21倍(纵坐标不变)而得到;其中正确的命题的个数是A.0B.1C.2D.311.已知2tan()5αβ+=, 1tan()44πβ-=, 则tan()4πα+的值为 ( ) A .16 B .2213 C .322 D .131812.函数)sin(ϕω+=x y 的部分图象如右图,则ϕ、ω可以取的一组值是( )A. ,24ππωϕ==B. ,36ππωϕ==C. ,44ππωϕ==D. 5,44ππωϕ==第II 卷(非选择题, 共90分)二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上)13.已知扇形的圆心角为0120,半径为3,则扇形的面积是 14.已知ABCD 为平行四边形,A(-1,2),B (0,0),C(1,7),则D点坐标为 15.函数sin y x =的定义域是 .16. 给出下列五个命题: ①函数2sin(2)3y x π=-的一条对称轴是512x π=;②函数tan y x =的图象关于点(2π,0)对称;③正弦函数在第一象限为增函数;④若12sin(2)sin(2)44x x ππ-=-,则12x x k π-=,其中k Z ∈以上四个命题中正确的有 (填写正确命题前面的序号)三、解答题(本大题共6小题,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分) (1)已知4cos 5a =-,且a 为第三象限角,求sin a 的值 (2)已知3tan =α,计算 ααααs i n 3c o s 5c o s2s i n 4+- 的值18.(本题满分12分)已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----. xO y1 2 3(1)化简()f α (2)若31cos()25πα-=,求()f α的值19.(本小题满分12分)已知向量a , b 的夹角为60 , 且||2a = , ||1b = , (1) 求 a b; (2) 求||a b +.20.(本小题满分12分)已知(1,2)a =,)2,3(-=b ,当k 为何值时,(1) ka b + 与3a b - 垂直? (2) ka b + 与3a b -平行?平行时它们是同向还是反向?21.(本题满分14分)已知,432παβπ<<<且53)sin(1312)cos(-=+=-βαβα,,求:α2cos 的值.22.(本题满分14分)设函数f (x )=sin 2x +2sin2x +3cos 2x (x ∈R ). ⑴ 将函数写成f (x )=A sin(ωx +ϕ)+k (A >0,ω>0,|ϕ|<2π)的形式; ⑵ 在直角坐标系中,用“五点”法作出函数f (x )在一个周期内的大致图象;⑶ 求f (x )的周期、最大值和最小值及当函数取最大 值和最小值时相应的x 的值的集合;。

高中数学习题必修4及答案

高中数学习题必修4及答案

高中数学习题必修4及答案篇一:人教版高一数学必修四测试题(含详细答案)高一数学考试(必修4)(特别适合按14523顺序的省份)必修4第1章三角函数(1)一、选择题:1.如果a={第一象限角},B={锐角},C={角度小于90°},那么a,B和C之间的关系是()a.b=a∩cb.b∪c=cc.acd.a=b=c2sin21200等于()?133c?d22223.已知sin??2cos?3sin??5cos5,那么tan?的值为b.2c.()16164.在下列函数中,最小正周期为π的偶数函数为()A.-223D.-23x1?tan2xa.y=sin2xb.y=cosc.sin2x+cos2xd.y=21?tan2x5.转角600的端边是否有点??4,a那么a的值是()04b?43c?43d6.得到函数y=cos(a.向左平移x?x?)的图象,只需将y=sin的图象()242??个单位b.同右平移个单位22c、将装置向左移动D.将装置向右移动447.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移?1个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象22Y=f(x)是()a.y=1?1?sin(2x?)?1b.y=sin(2x?)?122221.1.c、 y=sin(2x?)?1d。

罪(2x?)?一万二千四百二十四8.函数y=sin(2x+5?)的图像的一条对轴方程是()25.a、 x=-b.x=-c.x=d.x=42481,则下列结论中一定成立的是229.如果罪??余弦??()罪恶??2b.罪22罪??余弦??1d.罪??余弦??0c。

()10.函数y?2sin(2x??3)形象a.关于原点对称b.关于点(-11.功能y?罪(x?a.[,0)对称c.关于y轴对称d.关于直线x=对称66?2x?r是()??,]上是增函数b.[0,?]上是减函数22c、 [?,0]是减法函数D.[?,?]上限是一个减法函数12.功能y?()3,2k??a、 2k b、 2k??,2k??(k?z)(k?z)3.66??2??3.c、 2k3,2k(k?Z)d?2k23,2k2(kz)3二、填空:13.函数y?cos(x2)(x?[,?])的最小值是.863和2002年相同端边的最小正角度为_________015.已知sin??cos??1??,且,则cos??sin??.842如果设置一个??x | kx?k???,k?z?,b??x|?2?x?2?,3?然后是a?b=_______________________________________三、解答题:17.认识辛克斯吗?Coxx?1和0?x??。

高一数学必修4测试题(含答案)

高一数学必修4测试题(含答案)

高一数学必修4测试题一、选择题(本大题共12小题,每小题3分,共36分) 1.下列各角中,与角330°的终边相同的有是( )A .510°B .150°C .-150°D .-390° 2.若点P 在4π-的终边上,且|OP |=2,则点P 的坐标为( )A .(2,2)B .(2,2-)C .(2,2-)D .(2,2--)3.已知(2,3)a =,(,6)b x =-,若a 与b 共线,则x = ( )A .4B .3C .-3D .-4 4.若0cos sin >⋅θθ,则θ为( ) A .第一或第三象限角 B .第二或第三象限角C .第一或第四象限角D .第三或第四象限角5.设向量1(cos ,)2a α=的模为2,则cos 2α= ( )A .41-B .21-C .21 D .23 6.函数()sin()cos()1212f x x x ππ=--,则()f x 的最小正周期是( )A .2πB .2π C .πD .4π7.设M 是□ABCD 的对角线的交点,O 为任意一点(且不与M 重合),则OD OC OB OA +++ 等于( )A .OMB .2OMC .3OMD .4OM8.把函数x y sin =的图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),然后把图 象向左平移4π个单位,则所得到图象对应的函数解析式为 ( )A .)421sin(π+=x yB .)42sin(π+=x yC .)821cos(π+=x yD .)22sin(π+=x y。

高一数学试题(必修4).

高一数学试题(必修4).

2012—2013学年(下)期末教学质量检测高一数学(必修4)试题注意事项:1.考试时间120分钟,试题分值120分(含卷面分4分)。

2. 请将第Ⅰ卷选择题答案用2B 铅笔填涂在机读卡上,第Ⅱ卷非选择题答案填在答题纸上。

3.答题前先填好密封线内的各项内容。

第Ⅰ卷 选择题(共50分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.的值是( ) A .12B .32C .32-D. 12-2. 在ABC △中,AB =c ,AC =b ,若点D 满足2BD DC =,则AD =( ) A .2133+b c B .5233-c b C .2133-b c D .1233+b c 3. 一钟表的分针长10 cm ,经过15分钟,分针的端点所转过的长为A .30 cmB .5cmC .π5cmD .325πcm 4. 函数1cos ,[0,2]y x x π=-∈的大致图象是( )AB C D5.已知a b a ,2||,1||==与b 的夹角为600,若ka b +与b 垂直,则k 的值为A .4-B .4C .43-D .436.若()βα-cos =53,βsin =135-,且⎪⎭⎫ ⎝⎛∈2,0πα,⎪⎭⎫⎝⎛-∈0,2πβ,则sin α等于 A.6365B. 3365-C.3365D. 6365-7.与)4,3(-→a 共线的单位向量是A. )54,53(-B. )53,54(C. )54,53(-和)54,53(-D. )53,54(和)53,54(--8.函数5sin(2)2y x π=+的图像的一条对轴方程是 A . 2x π=-B .4x π=-C .8x π=D .54x π=9.把函数y =cos x 的图象上的所有点的横坐标缩小到原来的一半,纵坐标扩大到原来的两倍,然后把图象向左平移π4 个单位.则所得图象表示的函数的解析式为A. y =2sin2xB. y =-2sin2xC. y =2cos(2x +π4)D. y =2cos(+2x 4π) 10.定义一种向量之间的⊗运算:⊗a b =c ,若()()1212,,,a a b b a =b =,则向量()1122,a b a b c =. 已知1,2,,026π⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭m n ,且点(,)P x y 在函数cos 2y x =的图象上运动,点Q 在函 数()y f x =的图象上运动,且点P 和点Q 满足:OQ OP =⊗+m n (其中O 为坐标原点),则函数()y f x =的最大值A 及最小正周期T 分别为A .122,πB .12,πC .22,πD .2,π高一数学(必修4)试题 第1页 (共4页)o | | | | | | | |2ππ23ππ221-1xy| | | | | | | |2ππ23ππ22 1 -1 xy | | | | | | | |2ππ23ππ221-1x y| | | | | | | |2ππ23ππ22 1-1xy高一数学(必修4)试题 第2页 (共4页)600sin第Ⅱ卷 非选择题(共70分,含卷面分4分)二、填空题(本大题共5小题,每小题4分,共20分。

高一数学必修4第一章测试题

高一数学必修4第一章测试题

第一章 三角函数一、选择题1.已知 α 为第三象限角,则 2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限C .第一、四象限 D .第二、四象限3.sin3π4cos 6π5tan ⎪⎭⎫ ⎝⎛3π4-=( ). A .-433B .433 C .-43 D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于( ). A .2B .2C .-2D .±25.已知sin x +cos x =51(0≤x <π),则tan x 的值等于( ). A .-43B .-34 C .43 D .34 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3π2,k ∈Z },C = {γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ). A .A ⊆B ⊆CB .B ⊆A ⊆CC .C ⊆A ⊆BD .B ⊆C ⊆A8.已知cos (α+β)=1,sin α=31,则sin β 的值是( ).A .31B .-31C .322 D .-322 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫⎝⎛4π5 ,πB .⎪⎭⎫⎝⎛π ,4πC .⎪⎭⎫ ⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π510.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ⎪⎭⎫ ⎝⎛3π - 2x ,x ∈RB .y =sin ⎪⎭⎫⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫ ⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2 x +3tan x 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是 .12.已知sin α=552,2π≤α≤π,则tan α= . 13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π= .14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫ ⎝⎛6π + x ω的图象重合,则ω的最小值为 .15.已知函数f (x )=21(sin x +cos x )-21|sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos ⎪⎭⎫ ⎝⎛6π - 2x ;②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称; ④函数y =f (x )的图象关于直线x =-6π对称. 其中正确的是______________.三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xax sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2 x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<α<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z .2.B解析:∵ sin θcos θ>0,∴ sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限. 3.A解析:原式=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433. 4.D 解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin θ cos θ=21.(sin θ+cos θ)2=1+2sin θcos θ=2.sin θ+cos θ=±2. 5.B解析:由 得25cos 2 x -5cos x -12=0.解得cos x =54或-53. 又 0≤x <π,∴ sin x >0.⎩⎨⎧1=cos +sin 51=cos +sin 22x x x x若cos x =54,则sin x +cos x ≠51,∴ cos x =-53,sin x =54,∴ tan x =-34.6.D解析:若 α,β 是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β 的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合. 8.B解析:∵ cos (α+β)=1, ∴ α+β=2k π,k ∈Z . ∴ β=2k π-α.∴ sin β=sin (2k π-α)=sin (-α)=-sin α=-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.10.C解析:第一步得到函数y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象. 二、填空题 11.415. 解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan 3π=415. 12.-2. 解析:由sin α=552,2π≤α≤π⇒cos α=-55,所以tan α=-2. 13.53. (第6题`)解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos α=53,∴ sin ⎪⎭⎫⎝⎛α - 2π=cos α=53.14.21.解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω (ω>0)的图象向右平移6π个单位长度后得到函数y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ),ω=6k +21,又ω>0,所以当k =0时,ωmin =21. 15.⎥⎦⎤⎢⎣⎡221,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sinsin cos ≥sincos 即 f (x )等价于min {sin x ,cos x },如图可知, f (x )max =f ⎪⎭⎫⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:① f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx=4cos ⎪⎭⎫ ⎝⎛+-6π2x=4cos ⎪⎭⎫ ⎝⎛-6π2x .② T =22π=π,最小正周期为π.③ 令 2x +3π=k π,则当 k =0时,x =-6π, ∴ 函数f (x )关于点⎪⎭⎫ ⎝⎛0 6π-,对称. ④ 令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾. (第15题)∴ ①③正确. 三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }. 解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2①>0 sin x x先在[0,2π)内考虑x 的取值,在单位圆中,做出三角函数线. 由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π].二者的公共部分为x ∈⎥⎦⎤⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }. 18.(1)-1;(2) ±αcos 2. 解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=α cos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sin k k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ). 解析:∵ y =sin x 的对称中心是(k π,0),k ∈Z ,∴ 令2x -6π=k π,得x =2πk +12π. ∴ 所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z . 又 y =sin x 的图象的对称轴是x =k π+2π, ∴ 令2x -6π=k π+2π,得x =2πk +3π. ∴ 所求的对称轴方程为x =2πk +3π(k ∈Z ). 20.(1)有最小值无最大值,且最小值为1+a ; (2)0. 解析:(1) f (x )=x a x sin sin +=1+xa sin ,由0<x <π,得0<sin x ≤1,又a >0,所以当sin x =1时,f (x )取最小值1+a ;此函数没有最大值.(2)∵-1≤cos x ≤1,k <0,(第17题)∴ k (cos x -1)≥0, 又 sin 2 x ≥0,∴ 当 cos x =1,即x =2k π(k ∈Z )时,f (x )=sin 2 x +k (cos x -1)有最小值f (x )min =0.期末测试题一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的. 1.sin 150°的值等于( ).A .21 B .-21C .23D .-23 3.在0到2π范围内,与角-34π终边相同的角是( ).A .6π B .3π C .32π D .34π 4.若cos α>0,sin α<0,则角 α 的终边在( ). A .第一象限B .第二象限C .第三象限D .第四象限5.sin 20°cos 40°+cos 20°sin 40°的值等于( ). A .41B .23 C .21 D .43 7.下列函数中,最小正周期为 π 的是( ). A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos4x 10.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-1 12.下列函数中,在区间[0,2π]上为减函数的是( ). A .y =cos xB .y =sin xC .y =tan xD .y =sin (x -3π) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 α 的终边经过点P (3,4),则cos α 的值为 . 16.已知tan α=-1,且 α∈[0,π),那么 α 的值等于 . 18.某地一天中6时至14时的温度变化曲线近似 满足函数T =A sin (ωt +ϕ)+b (其中2π<ϕ<π),6 时至14时期间的温度变化曲线如图所示,它是上 述函数的半个周期的图象,那么这一天6时至14 时温差的最大值是 °C ;图中曲线对应的函数解析式是________________.三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.19.(本小题满分8分) 已知0<α<2π,sin α=54.(1)求tan α 的值;(2)求cos 2α+sin ⎪⎭⎫ ⎝⎛2π + α的值.21.(本小题满分10分) 已知函数f (x )=sin ωx (ω>0).(1)当 ω=1时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式; (2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求 ω 的值.期末测试题参考答案一、选择题:1.A 解析:sin 150°=sin 30°=21.2.B =0+9=3. 3.C 解析:在直角坐标系中作出-34π由其终边即知. 4.D 解析:由cos α>0知,α 为第一、四象限或 x 轴正方向上的角;由sin α<0知,α 为第三、四象限或y 轴负方向上的角,所以 α 的终边在第四象限.5.B 解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 7.B 解析:由T =ωπ2=π,得 ω=2.10.B 解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.12.A 解析:画出函数的图象即知A 正确. 二、填空题: 15.53.解析:因为r =5,所以cos α=53. 16.43π.解析:在[0,π)上,满足tan α=-1的角 α 只有43π,故 α=43π. 18.20;y =10sin (8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin (ωx +ϕ)+b 的半个周期的图象,所以A =21(30-10)=10,b =21(30+10)=20. 因为21·ωπ2=14-6,所以 ω=8π,y =10sin ⎪⎭⎫⎝⎛ϕ + 8πx +20.将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<ϕ<π,可得 ϕ=43π.综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<α<2π,sin α=54, 故cos α=53,所以tan α=34.(2)cos 2α+sin ⎪⎭⎫⎝⎛α + 2π=1-2sin 2α +cos α=1-2532+53=258.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫⎝⎛0 , 32π点,得sin 32πω=0,所以32πω=k π,k ∈Z .即 ω=23k ,k ∈Z .又ω>0,所以k ∈N*. 当k =1时,ω=23,f (x )=sin 23x ,其周期为34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数; 当k ≥2时,ω≥3,f (x )=sin ωx 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,ω=23.。

高一数学必修4练习题

高一数学必修4练习题

高一数学必修4练习题一、三角函数1. 判断下列函数的奇偶性:(1) y = sin(x)(2) y = cos(x + π)(3) y = tan(2x)2. 求下列函数的定义域:(1) y = arcsin(x 1)(2) y = arccos(2x^2 3)3. 化简下列表达式:(1) sin^2(x) + cos^2(x)(2) tan(x) cot(x)(3) sin(x + π/2) cos(x π/2)二、三角恒等变换1. 利用三角恒等变换化简下列表达式:(1) sin^2(x) + cos^2(x)(2) 1 2sin^2(x)(3) tan^2(x) + 12. 求证下列等式:(1) sin(α + β)sin(α β) = sin^2(α) sin^2(β)(2) cos(α + β)cos(α β) = cos^2(α) sin^2(β)三、解三角形1. 在△ABC中,已知a=5,b=8,A=45°,求B的度数及边c的长度。

2. 在△AB C中,已知b=10,c=12,B=60°,求A的度数及边a的长度。

3. 在△ABC中,已知a=6,b=8,C=120°,求A、B的度数。

四、平面向量1. 已知向量a=(2,3),求向量a的模长。

2. 已知向量a=(4,3),求向量a的单位向量。

3. 已知向量a=(1,2),向量b=(2,3),求向量a与向量b的夹角。

五、复数1. 写出下列复数的代数形式:(1) 2(cosπ/3 + isinπ/3)(2) 3e^(iπ/4)2. 求下列复数的模:(1) 1 + i(2) 3 4i3. 已知复数z满足|z 1| = |z + 1|,求复数z在复平面上的几何位置。

六、空间几何与立体几何1. 在空间直角坐标系中,点A(1, 2, 3)到原点的距离是多少?2. 给定平面方程3x 4y + z = 7,求该平面上的一个单位法向量。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。

(word完整版)高一数学必修四综合试题及详细答案

(word完整版)高一数学必修四综合试题及详细答案

1.下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是 ( )A .1或-1B .52或52-C .1或52- D .-1或523.下列命题正确的是( )A .若→a ·→b =→a ·→c ,则→b =→cB .若|||b -=+,则→a ·→b =0C .若→a //→b ,→b //→c ,则→a //→c D .若→a 与→b 是单位向量,则→a ·→b =14.计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan16tan2ππ-,结果为3的是( )A .①②B .③C .①②③D .②③④5.函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6.△ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是 ( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形 7.将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A .x y sin =B .)34sin(π+=x yC .)324sin(π-=x y D .)3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( ) A .-2sin5 B .-2cos5 C .2sin5 D .2cos59.函数f(x)=sin2x·cos2x 是( )A .周期为π的偶函数B .周期为π的奇函数C .周期为2π的偶函数 D .周期为2π的奇函数. 10.若|2|= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是( )A .6πB .4πC .3πD .π125 11.正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是( )A .(→a -→b )·→c =0B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→D .|→a +→b +→c |=213.已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 .14.设sin α-sin β=31,cos α+cos β=21, 则cos(α+β)= .15.已知向量OP X OB OA OP 是直线设),1,5(),7,1(),1,2(===上的一点(O 为坐标原点),那么⋅的最小值是___________.16.关于下列命题:①函数x y tan =在第一象限是增函数;②函数)4(2cos x y -=π是偶函数; ③函数)32sin(4π-=x y 的一个对称中心是(6π,0);④函数)4sin(π+=x y 在闭区间]2,2[ππ-上是增函数; 写出所有正确的命题的题号: 。

北师大版高一数学必修4《三角恒等变换》测试题

北师大版高一数学必修4《三角恒等变换》测试题

三角恒等变换测试题参考答案及评分标准学校:斗鸡中学 命题人:张力珺 胡亚睿一、选择题(本大题共10小题,每小题5分,共50分)二、填空题(本大题共6小题,每小题5分,共30分)13.212m - 14.4π3 15.]65,3[ππ16.[解析]①②.③中π45=x 是)252sin(π+=x y 的对称中心. 17.[解析]sinA +cosA =2cos(A -45°)=22, ∴cos(A -45°)=12. ∵0°<A <180°,∴A -45°=60°,A =105°,∴tanA =tan(60°+45°)=―2―3, sinA =sin(60°+45°)=6+24, ∴S △ABC =12AC ·AB .s5inA =12×2×3×6+24=34(6+2).三.解答题本题共小题(,每小题12分,满分60分,解答应写出文字说明,证明过程或演算步骤)四. 18.[解析]因为12cos 13α=>0,且cos α≠1,所以α是第一或第四象限的角. 当α是第一象限的角时,sin α>0.5sin ,13sin 5135tan .cos 131212αααα=====⨯=当α是第四象限角时,sin 0.α<5s i n ,13sin 5tan .cos 12αααα==-==-(参考评分说明:写对角所在象限得2分,分两中情况每种得6分.)19.[解析]:∵α+β2=(α―β2)―(α2-β).∵α∈(π2,π)β∈(0, π2).∴π4<α-β2<π,-π4<α2-β<π2.∴由cos(α-β2)=-19得sin(α-β2)=459,由sin(α2-β)=23.得cos(α2-β)=53.∴cos α+β2=cos[(α―β2)―(α2―β)]=…=7527.∴cos(α+β)=2×(7527)2-1=-239729.(参考评分说明:把角分解得2分,求出角的范围的2分,求出三角函数值的6分,求出数值的2分)20.[解析]:依题知α≠π2,cos α≠0.方程可化为6tan 2α+tan α-2=0.⇒tan α=-23或12 (舍).∴sin(2α+π3)=sin2αcos π3+cos2α·sin π3=sin αcos α+32(cos 2α-sin 2α)=sin αcos αsin 2α+cos 2α+32·cos 2α-sin 2α cos 2α+sin 2α=tan α1+tan 2α+32×1-tan 2α1+tan 2α=-613+5326. (参考评分说明:求出正切值得5分,两角和公式求值共7分,可按步骤给分)21.[解析]:如图作PE ⊥AD 于E .设BP =X . 则x +a =(2a -x)2+a 2,∴x =2a 3,∴AE =BP =2a 3,DE =PC =43a ,∴tan ∠APD =tan(∠1+∠2)=23+431-23×43=18.(参考评分说明:作出辅助线的1分,设出未知角得1分,列方程得3分,求出未知角得2分,求出正切值得5分.)22.[解析](1)2239()2cossin 4cos 12333344f ππππ=+-=-+-=-(2) 22()2(2cos 1)(1cos )4cos f x x x x =-+--2273(cos ),,33x x R =--∈23c o s 4c o s 1x x =-- 因为cos [1,1],x ∈-所以当cos 1x =-时,()f x 取最大值6;当2cos 3x =时,()f x 取最小值73- (参考评分说明:第一问5分; 第二问7分解析式5分,,最值2分.)第三章学校:斗鸡中学 命题人:张力珺 胡亚睿第Ⅰ卷一、选择题(本题共12小题,每小题5分,满分60分) 1.277sin 16812π-的值为( )7.16A 7.32BCD 2.若sin()cos cos()sin m αβααβα---=,且β) .B C 3.在△ABC 中,已知A .直角三角形D .正三角形4.2cos10°-sin20°sin70°的值是A .12 B .32 C 5.已知x ∈(-π2,0),A .724 B .-724 C 3.53 D .53- 7=4m -64-m 有意义,则m 的取值范围是 ( )A .(-1,73)B .[-1,73]C .[-1,73]D .[―73,―1]8.在△ABC 中,已知tan A +B2=sinC ,则以下四个命题中正确的是 ( )(1)tanA ·cotB =1.(2)1<sinA +sinB ≤2.(3)sin 2A +cos 2B =1.(4)cos 2A +cos 2B =sin 2C .A .①③B .②④C .①④D .②③9.已知α∈(0,π),且sin α+cos α=15,则tan α的值为 ( )A .-43B .-43 或-34C .-34D .43 或-3410.函数)cos (sin sin 2x x x y +=的最大值为( ) A.21+ B.12- C.2 D.211.将函数212sin 22y x x =+-的图象进行下列哪一种变换就变为一个奇函数的图象 ( ( )A .向左平移12π个单位 B .向左平移6π个单位C .向右平移12π个单位D .向右平移6π个单位cos 2x x a +=- 15.22A a ≤≤ 12-二.填空题(本题共5小题13.已知sin cos ,x x m -=14.函数x x f 32sin()(+= 15.若x =π3是方程2cos(x16.个命题:(1)函数|)32sin(|π+=x y 的最小正周期是2π;(2)函数)23,[ππ上单调递增;(3)45π=x 是函数)252sin(π+=x y 的图其中正确命题的序号是. 17.在△ABC 中,sinA +cosA =22,AC =2,AB =3,则tanA= ,△ABC 的面积为 第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)11.________________________ 12._______________________ 13._________________________ 14.______________________ 15._________________________ 16._______________________三.解答题本题共小题(,每小题12分,满分60分,解答应写出文字说明,证明过程或演算步骤)18.已知12cos ,13α=求sin α和tan α19.设cos(α-β2)=-19,求cos (α+β).20.已知6sin 2α+sin αcos α-2cos 2α=0,α∈[π2,π],求sin(2α+π3)的值.21.在矩形ABCD 中,AB =a ,BC =2a ,在BC 上取一点P ,使得AB +BP =PD ,求tan ∠APD 的值.22.已知函数2()2cos2sin 4cos f x x x x =+-(1)求()3f值的;(2)求()f x的最大值和最小值。

高一数学必修4第13章测试题及答案

高一数学必修4第13章测试题及答案

安庆一中高一数学测试卷2007年12月一、 选择题(本大题共11小题,每题3分,共33分)一、1160-︒2sin ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒二、把π411-表示成)(2Z k k ∈+θπ的形式,使|θ|最小的θ值是( ) A π43- B π41- C π41 D π433、已知)2,23(,1312cos ππαα∈=,那么=+)4(cos πα ( ) A.1325 B. 1327 C. 26217 D. 26274、若).(),sin(32cos 3sin 3ππφφ-∈-=-x x x ,那么=φ( )A. 6π-B.6πC. 65πD. 65π-五、函数)sin(ϕω+=x A y 在一个周期内的图象如下,此函数的解析式为( ) A .)322sin(2π+=x yB .)32sin(2π+=x yC .)32sin(2π-=x yD .)32sin(2π-=x y六、已知关于x 的方程02sin2cos cos 22=+⋅-CB A x x 的两根之和等于两根之积的一半,那么ΔABC 必然是( )A .直角三角形B .钝角三角形 C.等腰三角形 D.等边三角形 7、=-+0tan50tan703tan50tan70 ( )A.3 B.33 C. 33- D. 3-八、函数472cos sin cos 2+--=x x x y 的最大值为( ) A. 74 B. 2 C. 411 D. 415九、函数1cos sin xy x-=的周期是( )A .2πB .πC .2πD .4π10、已知函数)2cos()(),2sin()(ππ-=+=x x g x x f ,那么以下结论中正确的选项是( )A .函数)()(x g x f y ⋅=的最小正周期为2πB .函数)()(x g x f y ⋅=的最大值为1C .将函数)(x f y =的图象向左平移2π单位后得)(x g y =的图象D .将函数)(x f y =的图象向右平移2π单位后得)(x g y =的图象 11、 2002年8月,在北京召开的国际数学家大会会标如下图,它是由4个相同的直角三角形与中间的小正方形拼成的一大正 方形,假设直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于( ) A .1 B .2524-C .257D .725-安庆一中高一数学测试卷2007年12月 姓名____________班级_____________得分______________一、选择题(本大题共11小题,每题3分,共33分)题号1234567891011二、 填空题(本大题共4小题,每题3分,共12分)12、函数sin 1y a x =+的最大值是3,那么它的最小值______________________; 13、若21tan =α,那么ααααcos 3sin 2cos sin -+= ; 14、求值:00cos20sin202cos10-=_______________; 1五、给出以下命题:①)227cos(2)(x x f --=π是奇函数;②若βα,都是第一象限角且βα<,那么βαtan tan >;③83π-=x 是)432sin(3π-=x y 的图像的一条对称轴;④12sin 3)(2+=xx f π,使)()(x f c x f =+对任意实数x 成立的正数c 的最小值是2.其中正确命题的序号是_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修4试题
一 、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.cos690=( )
A
21 B 2
1- C 23 D 23-
2.已知(,3)a x =, (3,1)b =, 且a b ⊥, 则x 等于 ( )
A -1
B -9
C 9
D 1 3.下列函数中, 最小正周期为π的是( )
A sin y x =
B 2sin cos y x x =
C tan
2
x
y = D cos 4y x = 4.要得到22sin(2)3y x π=+的图像, 需要将函数22sin(2)3
y x π
=-的图像
A 向左平移23π个单位
B 向右平移23π
个单位
C. 向左平移3π个单位 D 向右平移3
π
个单位
5.下列命题正确的个数是 ( )
① 0·
a =0;② a ·
b =b ·a ;③ a 2=|a |2 ④ |a ·b |≤a ·b A 1 B 2 C 3 D 4
6.已知1(2,1)P -, 2(0,5)P 且点P 在12P P 的延长线上, 12||2||PP PP =, 则点P 的坐标为 ( ) A. (2,7)-
B. 4(,3)3
C. 2(,3)3
D . (2,11)-
7.已知2tan()5αβ+=, 1tan()44πβ-=, 则tan()4
π
α+的值为( ) A 16 B 2213 C 322 D 1318
8.cos 2cos sin 2sin
5
5
y x x π
π
=+的单调递减区间是( )
A 5,()1212k k k Z ππππ⎡⎤-
+∈⎢⎥⎣⎦ B 3,()105k k k Z ππππ⎡
⎤++∈⎢⎥⎣⎦ C 55,()126k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D 52,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣
⎦ 9.已知cos()1αβ+=-,且tan 2α=,则tan β的值等于( )
A 2
B 12
C -2
D 1
2

B
第II 卷(非选择题, 共60分)
二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上)
11.已知扇形半径为8, 弧长为12, 则中心角为 弧度, 扇形面积是
12.若OA =(4,8),OB =(7,2)--,则
3
1
AB =_________ 13.已知sin cos αβ+13=,sin cos βα-1
2
=,则sin()αβ-=__________
14.设3(,sin )2a α=,1
(cos ,)3
b α=,且//a b ,则锐角α为
三、解答题(本大题共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)
15(本小题满分8分)
已知tan 34πα⎛⎫
+=
⎪⎝⎭
, 计算: (1) tan α; (2) 2sin cos 3cos 25cos 23sin 2ααα
αα
+-
16(本小题满分10分)
已知向量a , b 的夹角为60, 且||2a =, ||1b =, 若4c a b =-, 2d a b =+, 求 (1) a b ; (2) ||c d +.
17(本小题满分12分)
已知(1,2)a =,)2,3(-=b ,当k 为何值时, (1) ka b +与3a b -垂直?
(2) ka +与3a -平行?平行时它们是同向还是反向?
18(本小题满分14分)
已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+, 且()f x a b = (1) 求函数()f x 的解析式; (2) 当,63x ππ⎡⎤
∈-
⎢⎥⎣
⎦时, ()f x 的最小值是-4 , 求此时函数()f x 的最大值, 并求出相应的x 的值.。

相关文档
最新文档