现代控制理论_第4章_稳定性理论

合集下载

现代控制理论-4-控制系统的稳定性分析

现代控制理论-4-控制系统的稳定性分析
2、内部稳定性:指系统在零输入条件下通过其内部状态变化 所定义的内部稳定性。状态稳定。
外部稳定性只适用于线性系统,内部稳定性不但适用于线性系 统,而且也适用于非线性系统。对于同一个线性系统,只有在 满足一定的条件下两种定义才具有等价性。
不管哪一种稳定性,稳定性是系统本身的一种特性,只和系统 本身的结构和参数有关,与输入-输出无关。
V ( x)半负定
同时有
& V
(
x
)
-
2
x22
不可能恒为零。
由判据2可知,系统在原点处的平衡状态是渐近稳定的。
27
4.5 李雅普诺夫方法 在线性系统中的应用
28
一、线性定常连续系统的稳定性分析
目的:将李氏第二法定理来分析线性定常系统 x& Ax 的稳定性
讨论:V选&(x择) 二(x次T P型x)函 x&数T PVx +(xx)TPxx& TP(xAx为)T P李x +氏x函T PA数x。
如果d 与初始时刻 t0无关,则称平衡状态xe为一致渐近稳定。
渐近稳定几何表示法:
10
3、大范围渐近稳定
如果对状态空间的任意点,不管初始偏差有多大,都有渐
近稳定特性,即:lim x t
- xe
0
对所有点都成立,称平衡状态xe为大范围渐近稳定的。其
渐近稳定的最大范围是整个状态空间。
必要性:整个状态空间中,只有一个平衡状态。 (假设有2个平衡状态,则每个都有自己的稳定范 围,其稳定范围不可能是整个状态空间。)
(2) 求系统的特征方程:
det(lI
-
A)
l
- 1
求得: l1 2,l2 -3

现代控制理论稳定性的判定优秀详解

现代控制理论稳定性的判定优秀详解

现代控制理论稳定性的判定优秀详解现代控制理论是工程控制科学的重要组成部分,它主要研究动态系统的稳定性问题。

在工程实践中,通过判定系统的稳定性,可以评估控制系统的性能和可靠性,为系统设计和运营提供重要依据。

本文将详细介绍现代控制理论中稳定性的判定方法和优点。

一、稳定性判定方法1. 传递函数法传递函数法是现代控制理论中最常用的一种稳定性判定方法。

它通过分析系统的传递函数,确定系统的极点位置,从而判断系统是否稳定。

对于一般系统,只需要确定传递函数的分母多项式的根的位置即可。

如果所有根的实部均小于零,则系统是稳定的;如果存在一个或多个根的实部大于零,则系统是不稳定的。

2. 状态方程法状态方程法是另一种常用的稳定性判定方法。

它将系统的动态行为表示为一组状态方程,通过求解状态方程的特征根来判断系统的稳定性。

如果所有特征根的实部均小于零,则系统是稳定的;如果存在一个或多个特征根的实部大于零,则系统是不稳定的。

3. 极点分布法极点分布法是一种图形法,通过绘制系统的极点在复平面上的分布图,可以直观地判断系统的稳定性。

如果所有极点都位于左半平面,则系统是稳定的;如果存在极点位于右半平面,则系统是不稳定的。

此外,如果存在虚轴上的极点,系统可能是临界稳定或者边界稳定。

二、稳定性判定方法的优点1. 灵活性现代控制理论中的稳定性判定方法具有很高的灵活性。

不同方法可以根据具体问题的特点选择使用,如传递函数法适合分析线性时不变系统,而状态方程法适合分析非线性或时变系统。

这样,工程师可以根据实际情况选择最合适的稳定性判定方法,保证判定结果的准确性。

2. 准确性现代控制理论中的稳定性判定方法基于严格的数学推导和分析,具有很高的准确性。

通过这些方法所得到的稳定性判定结果经过验证,在工程实践中得到了广泛应用。

3. 直观性极点分布法是现代控制理论中一种直观的稳定性判定方法。

通过绘制极点的分布图,可以直观地了解系统的稳定性状况。

这种直观性可以帮助工程师更好地理解和分析系统的动态行为,为控制系统的设计和调试提供有价值的参考。

现代控制理论-稳定性的判定

现代控制理论-稳定性的判定
定义为系统的有界输入 输出稳定或称 BIBO 稳定。
BIBO 稳定的充要条件是
G ( s )的 所 有 极 点 都 在 s 平 面 的 左 半 平 面 。
( 3 )、BIBO 稳定和渐进稳定的关系 由于 G ( s )
N (s) D( s) C ( sI A )
1
det( sI A ) sI A
1 2 Cu
2
[1] 思路 :
电感中储能
1 2
Li
2
[ 2 ] 系统的复杂性和多样性 ,使得一个具体的系统 的能量 函数不好直观的找出。李雅普诺夫定义了一个 正定的标量函数
V ( X ) ,作为虚 构的广义能量函数。 然后,根据 V ( X ) 的符号特征
来判断系统 的稳定性。
V (X )
V (X )
[ 2]、若 A的特征值,至少有一个 具有正实部,则原系统 的平
衡状态 X e是不稳定的。
[ 3 ]、若 A 的特征根至少有一个实 部为零,则原非线性系 统的
平衡状态 X e的稳定性取决于高阶导 数项 ( X ),而不能用
A 的特征值符号确定。
例:系统状态方程为
x1 x1 x1 x 2 x 2 x 2 x1 x 2
当 t t 0后, ( t )的运动轨迹始终在 S ( ) 的范围内,称这种系统 为 X
稳定系统。
电气工程学院
( 2 )、
即 如果存在
X 0 X e ( , t 0 ) 或 S
X (t ) X e

欧几里德范数
1 2
或 S ( )
结论:系统是稳定的。
2
式中; X ( t ) X e x 1 x 1 e ) ( x 2 x 2 e ) ( x x ) 2 ( n ne x2 S( )

现代控制理论第四章-李雅普诺夫稳定性

现代控制理论第四章-李雅普诺夫稳定性

0s
0
1
s
0 1 1 1 1
(s
s 1 1)(s 1)
s
1 1
可见传递函数的极点 s 1位于s的左半平面,故系统
输出稳定。这是因为具有正实部的特征值2 1 被系统的零
点 s 1 对消了,所以在系统的输入输出特性中没被表现出
来。由此可见,只有当系统的传递函数W(s)不出现零、极
点对消现象,并且矩阵A的特征值与系统传递函数W(s)的
2020/3/22
6
现代控制理论
第4章 李亚普诺夫稳定性分析
4.2 李亚普诺夫第二法的概述
1892年俄国学者李亚普诺夫发表了《运动稳定性一般 问题》,最早建立了运动稳定性的一般理论,并把分析常 微分方程组稳定性的全部方法归纳为两类。第一类方法先 求出常微分方程组的解,而后分析其解运动的稳定性,称 为间接方法;第二类方法不必求解常微分方程组,而是提 供出解运动稳定性的信息,称为直接方法,它是从能量观 点提供了判别所有系统稳定性的方法。
即Xe f ( X e ,t) ,0 则把 叫X e做系统的平衡状态。
对于线性定常系统 X AX而言,其平衡状态满足
Xe AX e ,0 若A是非奇异矩阵,则只有 X e ,0 即对线性系 统而言平衡状态只有一个,在坐标原点;反之,则有无限
多个平衡状态。
对于非线性系统而言,平衡状态不只一个。
2020/3/22
9
现代控制理论
第4章 李亚普诺夫稳定性分析
3、李亚普诺夫第二法
李亚普诺夫第二法建立在这样一个直观的物理事实上:
如果一个系统的某个平衡状态是渐近稳定的,即
im
t
X
X,e 那么随着系统的运动,其储存的能量将随时间

《现代控制理论(第3版)》刘豹 唐万生课件 第4章

《现代控制理论(第3版)》刘豹 唐万生课件 第4章

的。李雅普诺夫根据系统自由响应是否有界把系统的稳定性定义为四种情况。
1.李雅普诺夫意义下稳定 2.渐近稳定 3.大范围渐近稳定 4.不稳定
4.2 李雅普诺夫第一法
4.2.1 线性系统的稳定判据 线性定常系统
(1) 平衡状态 实部。 以上讨论的都是指系统的状态稳定性,或称内部稳定性。但从工程意义 渐近稳定的充要条件是矩阵A的所有特征值均具有负
是从
开始观察的时间变量。 式(2)实际上描述了系统式(1)在n 维状态空间中从初始条件 发的一条状态运动的轨迹,简称系统的运动或状态轨线。 若系统式(1)存在状态矢量 ,对所有 ,都使: (3) 成立,则称 为系统的平衡状态。 出
对于一个任意系统,不一定都存在平衡状态,有时即使存在也未必是唯
一的,例如对线性定常系统:
1.标量函数的符号性质 设 为由 维矢量 所定义的标量函数, ,如果: ,且在 处恒

所有在域

中的任何非零矢量
2.二次型标量函数 二次型函数在李雅普诺夫第二方法分析系统的稳定性中起着很重要的作 用。 设 为n个变量,定义二次型标量函数为:
(8)
矩阵 P 的符号性质定义如下: 设P 为 实对称方阵, 为由P 所决定的二次型函数。
称稳定判据。 ②若 来说,除去 为负定;或者虽然 外,对 为半负定.但对任意初始状态 不恒为零。那么原点平衡状态是渐近稳 ,则系统是大范围渐近稳定
定的。如果进一步还 的。此称渐近稳定判据。
③若 4.3.3
1)
为正定,那么平衡状态 对李雅普诺夫函数的讨论
是不稳定的。此称不稳定判据。
是满足稳定性判据条件的一个正定的标量函数,且对x应具
由稳定性判据可知,当
为正定对称矩阵时,若

现代控制理论-07(第4章Lyapunov稳定性理论)

现代控制理论-07(第4章Lyapunov稳定性理论)

−1 ⎤ 1 + ( s + 1) ( s + 2) ⎥ ⎥ −1 2 ⎥ + ( s + 1) ( s + 2) ⎥ ⎦
q ⎤ ⎡ 2e −t − e−2t ⎡ ⎢Ψ ⎥ = ⎢ ⎣ ⎦ ⎢ −2e−t + 2e−2t ⎣
e−t − e−2t ⎤ ⎡ q0 ⎤ ⎥⋅⎢ ⎥ −e−t + 2e−2t ⎥ ⎣Ψ 0 ⎦ ⎦
dΨ = −VC = −Cq. dt
dq Ψ = iL = , dt L
电路无外界的能量输入, 同时电路中没有耗能元件, 所以电路总能量W恒定不变.
W = WL + WC = ∫ 0
Ψ
Cq 2 iL (τ1 )dτ1 + ∫ VC (τ 2 )dτ 2 = + ≡ W0 . 0 2L 2
q
Ψ2
从上述式子的最后一个等号看出系统的轨迹是 一个椭圆, 见图4.2.
Ψ2
= 0.
16
Ψ
q
图4.3 例4.2.2状态方程相图
图4.3表明, 从原点很小的领域出发的轨迹能保持在 原点附近, 并能逐渐趋向于原点, 或者说是渐近稳 定的. 17
例4.2.3 图4.1所示的电路中, 设电感是线性的, 电 vC = q3 − q , 阻 R = 0 , 而电容具有非线性的库伏特性 则状态方程是 dq Ψ
dq Ψ = iL = , dt L
此电路中电阻是耗能元件, 所以电路总能量是不断 减少的.为简单起见, 设C=2, R=3, L=1, 再令初始状 态为 (Ψ 0 , q0 ) . dq =Ψ ,
dt
dΨ = −2q − 3 . Ψ dt
14
利用拉普拉斯反变换求解上述方程, 先求预解矩阵

现代控制理论习题之李雅普诺夫稳定判据

现代控制理论习题之李雅普诺夫稳定判据

⎡ 8 4.5 7 ⎤ = ⎢⎢4.5 6 1.5⎥⎥
⎢⎣ 7 1.5 8 ⎥⎦
8 4.5 7 因为 8>0, 8 4.5 = 27.75 > 0 , 4.5 6 1.5 = 4.5 > 0 ,所以 P 正定。
4.5 6 7 1.5 8
∆v(k) 为正定,所以系统在原点不稳定。
⎢⎡0 1 0⎥⎤
4-5 设离散系统状态方程为 x(k +1) = ⎢0 0 1⎥ x(k)
x2 = −x2
v(x2 ) = 0.5x2 2

v(x2 )
=
x2 x2
=

x
2
2
⎧≤ ⎩⎨=
0 0
(x ≠ 0) (x = 0)
所以系统不稳定。
4-4 试确定下列系统平衡状态的稳定性。
⎡1 3 0⎤ x(k + 1) = ⎢⎢− 3 − 2 − 3⎥⎥ x(k)
⎢⎣ 1 0 0 ⎥⎦
【解】: 方法一: 采用第一方法,确定特征多项式对应的特征值是否在单位圆内。
(2) v(x) = −x12 −10x2 2 − 4x32 + 6x1 x2 + 2x3 x2
(3) v(x) = 10x12 + 4x2 2 + x32 + 2x1x2 − 2x3 x2 − 4x1 x3
【解】: (1)
⎡ 1 1 −1⎤
1 1 −1
P
=
⎢ ⎢
1
⎢⎣− 1
4 −3
− 3⎥⎥, 1 ⎥⎦
P12 ⎤⎡ 0
P22
⎥ ⎦
⎢⎣−
2
1⎤ − 1.5⎥⎦
=
⎡− 1
⎢ ⎣

现代控制理论第四章稳定性理论及Lyapunov方法

现代控制理论第四章稳定性理论及Lyapunov方法

【解】(1) 平衡状态为: xe 0 0 T
构造李雅普诺夫函数 V (x) x12 x22 V (x) (2x12 6x22 ) 0
系统在平衡状态渐近稳定,并且 x ,V (x) ,是
大范围渐近稳定。
(2) 平衡状态为: xe 0 0 T
主要知识点: 1、 BIBO (有界输入有界输出)稳定的定义、定理。
§4-3 李雅普诺夫稳定性的概念
主要知识点:
1、系统状态的运动和平衡状态
2、李雅普诺夫意义下稳定、渐近稳定、全局渐近稳 定和不稳定的定义
§4-4 李雅普诺夫间接法(第一法)/线性化局部稳定 主要知识点: 1、线性系统的稳定性判别定理 2、内部稳定和外部稳定的关系 3、非线性系统线性化方法和稳定性判别定理(李雅普诺夫间 接法/第一法)
1 2

x1 x2


x14

x12

2
x22

2
x1
x2

0
V(x) 4x13x1 2x1 x1 4x2 x2 2x1 x2 2x1 x2 2(x14 x22) 0
因此系统在坐标原点是渐近稳定的,并且 x ,V (x) ,
1 0 0
19/ 78 10/ 39 1/ 2
由方程 GT PG P I 解出 P 10 / 39 49 / 78
19
/13 26
不定号,因此系统不渐近稳定。
实际上,该系统的特征值为0.1173+2.6974i, 0.1173-2.6974i, -1.2346都在单位圆外,系统是不稳定的。
试确定其平衡状态的稳定性。
【解】 系统平衡状态为: xe 0 0 T

《现代控制理论》李雅普诺夫稳定性分析

《现代控制理论》李雅普诺夫稳定性分析
向量和矩阵的范数
1、向量空间上的欧几里德范数(即向量长度)
其欧几里德范数定义为:
一般
一、向量和矩阵的范数
预备知识
矩阵范数
矩阵 的范数定义为:
【例】
Hale Waihona Puke , 则即:矩阵每个元素平方和开根号
预备知识
2、矩阵范数
1.二次型函数:由n个变量
组成的二次齐次多项式,称(n元)二次型函数
2.二次型函数的矩阵表示
则系统在原点处的平衡状态是不稳定的。
为唯一的平衡状态。
定理4:设系统状态方程为
李雅普诺夫主要的稳定性定理
例题
[例] 设系统状态方程为
试确定系统的稳定性。
解 xe=0
,
是该系统惟一的平衡状态。
由于当

,所以系统在原点处的平衡状态是
大范围渐近稳定的。
选取
李雅普诺夫主要的稳定性定理
例题
[例] 已知定常系统状态方程为
定义:若所有有界输入引起的零状态响应输出有界,则称系统为有界输入输出稳定。
李雅普诺夫第一方法—间接法
定理3:连续定常系统 传递函数为: 系统 BIBO 稳定的充要条件为:传递函数的所有极点均位于S左半平面。
【例】试分析系统渐近稳定和BIBO稳定。
李雅普诺夫主要的稳定性定理
讨论续
这是一个矛盾的结果,表明
也不是系统的
受扰运动解。综合以上分析可知,

时,显然有
根据定理9-12可判定系统的原点平衡状态是大范围渐近稳定的。
李雅普诺夫主要的稳定性定理
线性系统稳定性分析
一.线性定常系统李雅普诺夫稳定性分析
线性定常连续系统
系统状态方程为

现代控制理论 第四章 李雅普诺夫稳定性理论

现代控制理论 第四章 李雅普诺夫稳定性理论

p11 p11 0, p21
p12 p22
0, ,
p 0
30
2.如果P是奇异矩阵,且它的所有主子行列式均非负,则
V ( x) x Px
T
是正半定的。
3.如果矩阵P的奇数阶主子行列式为负值, T 偶数阶主子行列式为正值,则 V ( x) x Px 是负定的。 即:
p11 p12 p1n p11 p12 n (1) p11 0, (1) 0, , (1) p21 p22
16
4.3 李雅普诺夫第一法(间接法) 利用状态方程解的特性来判断系统稳定性。 1. 线性定常系统稳定性的特征值判据
Ax x(0) x0 t 0 x
1)李雅普诺夫意义下的稳定的充要条件:
Re(i ) 0
Re( i ) 0
i 1,2, n i 1,2, n
17
19
上式为向量函数的雅可比矩阵。
f f1

f2 fn
T
x x1 x2 xn
T
x x f ( xe )
x x xe
f A T x
x xe
则线性化系统方程为: x
Ax
20
结论: 1) 若 Re(i ) 0 i 1,2,, n ,则非线性系 统在xe 处是渐近稳定的,与 g ( x) 无关。 2) 若 Re(i ) 0 , Re( j ) 0 , i j 1,, n 则非线性系统不稳定。 3) 若Re(i ) 0,稳定性与g ( x) 有关,
9
4.2 李雅普诺夫稳定性的定义
1.李雅普诺夫意义下的稳定
如果对每个实数 0 都对应存在另一 个实数 ( , t0 ) 0 满足

现代控制理论课后习题及答案

现代控制理论课后习题及答案

《现代控制理论》课后习题及答案第一章控制系统的状态空间表达式1-1.试求图1-1系统的模拟结构图,并建立其状态空间表达式。

图1-27系统方块结构图图1-1 系统结构方块图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图图1-2 双输入—双输出系统模拟结构图系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••6543211654321111111126543210000010000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp n p b1-2.有电路如图1-3所示。

以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

U图1-28 电路图图1-3 电路图解:由图,令32211,,x u x i x i c===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。

现代控制理论4稳定性

现代控制理论4稳定性

4 稳定性分析4.1李氏稳定性分析 (1) 平衡状态设系统 [],x f x t = x —n 维状态向量。

f —n 维函数向量。

若存在状态向量ex ,对所有的t ,使得 []0ef x t ≡成立,则称ex 为系统的平衡状态。

例如 系统1132122x x x x x x =-⎧⎨=+-⎩解:有3个平衡点 100e x⎡⎤=⎢⎥⎣⎦,201e x⎡⎤=⎢⎥-⎣⎦,301e x⎡⎤=⎢⎥⎣⎦(2) 稳定性分析1) 李亚普诺夫意义下的稳定 对于任选0ε>,都对应存在0(,)0t δε>的实数,当00(,)e x x t δε-≤时其解满足 00(,,)x t t εΦ≤ 0t t ≤<∞则称平衡状态ex 为李亚普诺夫意义下的稳定,如果δ与t 无关,则称ex 是一致稳定2) 渐近稳定由非0初始状态引起的自由运动是衰减的,当t →∞时, 0(,,)0et x t x Φ-=则ex 平衡点是渐近稳定的。

3) 大范围稳定如果ex 稳定,而且对于所有的0x ,00(,,)0et x t x Φ-→,则称平衡状态是大范围渐近稳定的。

4) 不稳定由初始状态引起的运动无论0ex x δ-≤,δ多么小,至少有一个状态超出任意指定的空间范围,则称平衡点ex 是不稳定的。

4.2李氏第一方法(1) 线性定常系统的稳定判据:x Ax Bu =+ y Cx =系统稳定的充要条件是0SI A -=的特征根全位于S 左半面,输出稳定的充要条件是B A SI C S W 1)()(--=的极点全位于S 左半面,当存在零、极点对消情况时两者是不一致的。

101-=A ,11B ⎡⎤=⎢⎥⎣⎦, []10C = 0)1()1(=+∙-=-S S A SI 11S =-,21S =状态不全稳定,属于状态不稳系统, 而输出为[]1)1)(1(111100101)()(1+=-+-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-+=-=-S S S S S S B A SI C S W 是输出稳定系统。

现代控制理论-稳定性_图文

现代控制理论-稳定性_图文

设 为动力学系统
的一
个孤立平衡状态。如果对球域S( )
或任意正实数 >0,都可找到另一
个正实数
或球域 S( ),当
初始状态 满足
时,
对由此出发的X 的运动轨迹有
,则此系统为李亚普诺夫意义下的稳
定。如果 与初始时刻 无关,则 称平衡状态 为一致稳定。
2.渐近稳定和一致渐近稳定
设 为动力学系统
的一个孤立平衡状
然而,由于
对于任意
和任意
在 时不恒等于零
,所以典型点就不可能保持在切点处
(在切点上
),而必须运动
到原点.
例3.2 设系统方程为
确定系统平衡状态的稳定性。
解: 显然,原点(0,0)为给定系统的唯一 平衡状态。选取标准型二次函数为李氏函数, 即
(V(X)为正定)

时,
因此
是负半定的。
下面我们进一步分析 的定号性,即当
因此在构造 函数时,或者先试构造出 是正定 的,然后考察 的符号;或者先给出 是负定的, 然后确定 是否为正定;或者使 为正定,从系统 稳定性要求出发,推导出对于系统的限制。由上一 节例题可见,对于某些简单系统,特别是线性系统 或近似线性系统,通常可取 为X 的二次型。
一、线性定常系统的稳定性分析 设线性定常系统为 (3.2)
(1)正定性 当且仅当 X=0 时,才有V(X)=0; 对任意非零X,恒有V(X)>0,则V(X)为正定。
(2)负定性 当且仅当X=0时.才有V(X)=0; 对任意非零X,恒有V(X)<0,则V(X)为负定。
(3)正半定性与负半定性 如果对任意X≠0,恒有V(X)≥0,则V(X)为正半定。 如果对任意X≠0,恒有V(X)≤0,则V(X)为负半定。

现代控制理论稳定性的判定课件

现代控制理论稳定性的判定课件
李雅普诺夫稳定性判据是通过分析系 统在平衡状态下的行为,判断系统是 否具有抵御外部扰动的能力。
李雅普诺夫稳定性判据的应用
01
李雅普诺夫稳定性判据可以应用 于各种控制系统的稳定性分析, 包括线性控制系统、非线性控制 系统、时变控制系统等。
02
在应用李雅普诺夫稳定性判据时 ,需要选择适当的李雅普诺夫函 数,通过计算函数的导数来判断 系统的稳定性。
鲁棒控制理论
鲁棒控制理论:鲁棒控制理论是一种研究不确定系统 稳定性的方法,能够在存在不确定性和干扰的情况下 保证系统的稳定性和性能。在稳定性判定中,鲁棒控 制理论可用于设计鲁棒控制系统,提高系统的稳定性 和性能。
鲁棒控制理论主要研究不确定系统在干扰下的稳定性 和性能问题。其中,不确定系统指的是系统参数或结 构发生变化时,系统性能发生变化的情况。在鲁棒控 制中,通常假设不确定因素是已知的或在一定范围内 变化的。通过设计鲁棒控制器,可以使系统在存在不 确定性和干扰的情况下保持稳定性和性能。在稳定性 判定中,鲁棒控制理论可帮助设计者提高系统的稳定 性和性能。
霍尔稳定性判据应用案例
总结词
霍尔稳定性判据是一种基于系统模型的稳定性判据,它 通过分析系统的动态性能来判断系统的稳定性。
详细描述
霍尔稳定性判据是一种适用于非线性系统的稳定性判据 ,它通过分析系统的动态性能来判断系统的稳定性。霍 尔稳定性判据基于系统的模型和参数,考虑了系统的非 线性特性,能够更准确地判断系统的稳定性。
现代控制理论稳定性的判定
• 稳定性概述 • 李雅普诺夫稳定性判据 • 劳斯稳定性判据 • 霍尔稳定性判据 • 现代控制理论在稳定性判定中的应用 • 案例分析
01
稳定性概述
稳定性的定义
稳定性的定义

第4章 李雅普诺夫稳定性分析

第4章 李雅普诺夫稳定性分析

t e
i
i t j i t
ˆ ) A , i ji i ( A i
(4 394)
2)结论2)证明
由式(4-390)可知,当且仅当‖eAt‖ 对一切 t≥0为有界,且当t→0时 ‖eAt‖ →0,零平衡状态 xe= 0 为渐近稳定。如上所证,当且仅当 A 的所有特征 值均具有负或零实部时,‖eÂt‖有界。又根据式(4-393)和式(4-394)可知 当且 t j t 0 t→0时‖eAt‖→0,这就等价于A的特征值均具 仅当t→∞时 t e ,可保证 有负实部。结论2)证毕。
t
则称此平衡状态是渐近稳定的。这时,从S(δ)出发的轨迹不仅不会超出 S(ε),且当t→∞时收敛于xe,显见经典控制理论中的稳定性定义与渐近稳定 性对应。
若δ 与t0无关,且上式的极限过程与t0无关,则称平衡状态是一致渐近 稳定的。 4 大范围(全局)渐近稳定性 当初始条件扩展至整个状态空间,且平衡状态均具有渐近稳定性时,称 此平衡状态是大范围渐近稳定的。此时,δ→∞,S(δ) →∞。当t→∞时,由状 态空间中任一点出发的轨迹都收敛于xe 。 对于严格线性的系统,如果它是渐近稳定的,必定是大范围渐近稳定, 这是因为线性系统的稳定性与初始条件的大小无关。而对于非线性系统来说, 其稳定性往往与初始条件大小密切相关,系统渐近稳定不一定是大范围渐近 稳定。

S ( ) x0

xe

xe

xe
x1
x1
x1
(a) 李雅普诺夫意义下的稳定性
(b) 渐近稳定性
(c) 不稳定性
4.2 李雅普诺夫第一法(间接法)
间 接 法:利用状态方程解的特性来判断系统稳定性的方法。 适应范围:线性定常系统、线性时变系统、非线性函数可线性化的系统。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这里 t , 为时变系统的状态转移矩阵。如果由系统的初始 x 引 0 起的状态响应(4-6)满足:
lim t , t0 x 0 0
t
(4-7)
则称系统是内部稳定的或是渐近稳定的。若系统是定常的,
A t t 则 t , t0 e ,令t0 0,这时
本章首先介绍外部温度性和内部稳定性的概念,然后讨论 李亚普诺夫稳定性的定义,定理,李亚普诺夫方法在线性系统 中的应用。
第一节
外部稳定性和内部稳定性
一 外部稳定性
定义4.1 (有界输入,有界输出稳定性)
对于零初始条件的因果系统,如果存在一个固定的有限常 数 k 及一个标量 ,使得对于任意的 t t0, ,当系统的 输入 u t 满足 u t k 时,所产生的输出y t 满足 y t ak 则称该因果系统是外部稳定的,也就是有界输入-有界输出 稳定的,简记为BIBO稳定。
二 内部稳定性
考虑如下的线性时变系统
A t x B t u t ,x t0 x 0,t t0 , t x y C t X t D t u t
设系统的外输入 u t 0 ,初始状态 x 0是有界的。系统的状 态解为 (4-6) x t t , t0 x t0
这里必须指出,讨论外部稳定性时,是以系统的初始条 件为零作为基本假设的,在这种假设下,系统的输入-输出描 述是唯一的。线性系统的BIBO稳定性可由输入-输出描述中 的脉冲响应阵或传递函数矩阵进行判别。
定理4.1 [时变情况] 对于零初始条件的线性时变系统,设 G t,
为其脉冲响应矩阵,则系统为BIBO稳定的充分必要条件为, 存在一个有限常数k,使得对于一切 t t0, , G t , 的每一个元 满足 gij t, i 1,2,, q, j 1,2,, p
现在将上述结论推广到多输入-多输出的情况。考察系统输出 y(t)的任一分量yi (t )
yi t

t
t0 t
gi1 t , u1 d gip t , u p d
t0
t
t0
gi1 t , u1 d
y t1 g t1 , u d g t1 , d
t0 t0 t1 t1
这表明系统输出是无界的,同系统是BIBO稳定的已知条件 矛盾。因此,式(4-3)的假设不成立,即必定有
g t , d k
t0 1
t
t1 [t , )
先证充分性
y t

t
t0
g t , u d
t t0

t
t0
g t , u d
k1 g (t , ) d kk1
从而根据定义4.1知系统是BIBO稳定的。
再证必要性 采用反证法,假设存在某个
t1 t0 , 使得

t
t0
g t1 , d
(4-3)
定义如下的有界输入函数 u t
1 当g t1 , t 0 u t Sgn t1 , t 0 当g t1 , t 0 1 当g t , t 0 1
在上述输入激励下,系统的输出为
f x,t x
式中 x 为 n 1维状态向量,且显含时间变量 t 。f x,t 为任意 的线性或非线性、定常或时变的 n 维函数,其展开式为:
1 f1 x1, x ,xn,t n f n x1, x ,xn,t
假定方程的解为 x t;x 0,t0 式中x 0 、 t 0 分别为初始状态向量及初 始时刻,那么,初始条件 x 0 必满足 x t0;x 0,t0 x 0
0
x t t ,0 x 0 e At x 0
假定系统矩阵 A 具有两两相异的特征值,则
e At 1 sI A
1 1
adj sI A s-1 s-2 s-n
i 为A之特征值
进一步可得
n Qi e Qi ei t i 1 sI A i 1 At 1 n
定理4.5 线性定常系统如果是完全能控,完全 能观测的,则内部稳定性与外部稳定性是等价 的
证明 利用定理4.3和定理4.4易于推出该结论。定理4.3给出:
内部稳定性可推出外部稳定性。定理4.4给出:外部稳定性在定 理4.5的条件下即意味着内部稳定性,证毕。
第二节 李雅普诺夫对稳定性的有关定义
系统 设系统方程为
第四章 稳定性理论
在控制系统的分析和设计中,首先要解决系统的稳定性问 题。动力学系统的稳定机制与其本身的结构密切相关,如何根 据动力学系统的构成分析其稳定性受到普遍的重视。
导弹稳定控制
倒立摆稳定控制
在控制系统稳定性研究中,李亚普诺夫(A.M.Lyapunov)方法 得到了广泛的应用。李亚普诺夫方法包括第一方法(也称为间接 法)和第二方法(通常称为直接法)。
三、内部稳定性和外部稳定性的关系
内部稳定关心的是系统内部状态的自由运动,这种运动必须满 足渐近稳定条件,而外部稳定性是对系统输入量和输出量的约 束,这两个稳定性之间的联系必然通过系统的内部状态表现出 来,这里仅就线性定常系统加以讨论。
点击观看
定理4.3 线性定常系统如果是内部稳定的,则系统一定 是BIBO稳定的
(4-10)
则称该平衡状态是稳定的,通常称为李雅普诺夫意义下的稳定 性。其平面表示见图4-1(a)。
式中 称为向量的范数, x 0 x e 为平衡状态向量端点至初始向 量端点和“初始状态偏差向量”的范数,其几何意义为“初始 状态偏差向量”的空间距离的尺度,其定义式为:
平衡状态
对于所有
t ,满足
(4-8)
c f x c,t 0 x
的状态 x c 称平衡状态。平衡状态的各分量相对时间不再发生 0 所求得的解 x 变化。已知状态方程,令 x 便是平衡状态。
线性定常系统 x Ax ,其平衡状态满足 Ax c 0 ,只要A非 奇异,系统只有唯一的零解,即存在一个位于原点的平衡状态。 至于非线性系统, f x c,t的解可能有多个,取决于系统方程。 0


0
gij
t dt
k
s 或者 G s 为真有理分式函数矩阵,且其每一个元传递函数 gij的 所有极点处在左半复平面。
证明 定理4.2第一部分结论可直接由定理4.1得到,下面只
要证明定理的第二部分。 由假设条件,gij s 为真有理分式,则利用部分分式法将其展 开为有限项之和的形式,其中每一项均具有形式为
这里顺便说说有界输入,有界状态稳定性(简记为BIBS) 问题。在内部稳定性的定义中,要求系统的输入u t 0 。如 k x t0 果对于任意有界输入 u t 以及任意有界初始状态 ,存 x t 在一个 0 k , t0 , x标量使得系统状态解满足 ,则该系 t0 统称之为有界输入-有界状态稳定的。对于线性定常系统而言, 满足渐近定常系统而言,满足渐近稳定性时,一定是BIBS稳定 的,详细讨论见参考文献[9]。
其中
Qi
s i adj sI A s i s 2 s n
s i
显然,当矩阵 A 的一切特征值满足
Re i A 0 i 1, 2, , n
则式(4-7)成立。
内部稳定性描述了系统状态的自由运动的稳定性。
证明 对于线性定常系统,其脉冲响应矩阵为:
G t t B D t
这里 t e At ,当系统满足内部稳定性时,由式(5-7)有
lim t lim e At 0
t t
这样, G t 的每一个元gij t i 1, 2,, q, j 1, 2,, p 均是由一些指 数衰减项构成的,故满足
李雅普诺夫的稳定性定义均针对平衡状态而言。它反映了平 衡状态邻域的局部(小范围)稳定性。鉴于线性系统只唯有 一个平衡状态,平衡状态的稳定性便表征了系统的稳定性。 对于具有多个平衡状态的非线性系统来说,因为各平衡状态 的稳定性一般并不相同,故需逐个加以考虑:至于全局(大 范围)稳定性,需结合具体初始条件下的运动轨迹来考虑。

t
t0
gip t , u p d
t t0
gi1 t , u1 d gip t , u p d
t0
t
i 1, 2,3,,q
由于有限个有界函数之和仍为有界函数,利用单输入-单位输出 系统的结果,即可证明定理4.1的结论。证毕。

t
t0
gij t , d k
(4-1)
证明 为了方便,先证单输入-单输出情况,然后推广到多输入
-多输出情况。在单输入-单输出条件下,输入-输出满足关系
y t

t
t0
g t , u d
(4-2)
已知式(4-1)成立,且对任意输入u t 满 足 u t k1 , t t0, , 要证明输出 y t 有界。由(4-2)式, 可以方便得到
定理4.2 [定常情况] 对于零初始条件的定常系统,设初始时
刻 t0 0 ,单位脉冲响应矩阵为 G t ,传递函数矩阵为G s ,则 系统为BIBO稳定的充分必要条件为,存在一个有限常k,使 G t 的每一个元gij t i 1, 2,, q, j 1, 2, , p 满足


0
gij t dt k
相关文档
最新文档