空间光调制器参数测量与创新应用实验实验讲义
3.7-空间光调制器资料

c ,c m,c 2m
时间调制器
电光调制器:电场控制 (克尔效应或泡克耳斯效应)
磁光调制器(磁光效应)
声光调制器:用超声信号驱动
幅度大而速度快的光强时间调制器可 作光开关
幅度大而有规律的光方向时间调制器可作光扫描器
空间调制器:光强、偏振态或相位等随空间各点而变化, 进行调制,可产生光强的某种空间分布。
A(x,y)=A0T(x,y)
或者是形成随坐标变化的相位分布 A(x,y)=A0Texp[iθ(x,y)]
y x
或者是形成随坐标变化的不同的散射状态。顾名思义, 这是一种对光波的空间分布进行调制的器件。它的英文名 称是Spatial Light Modulator(SLM)。
空间光调制器含有许多独立单元,它们在空间排列成 一维或二维阵列,每个单元都可以独立地接受光信号或电 信号的控制,并按此信号改变自身的光学性质(透过率、反 射率、折射率等),从而对通过它的光波进行调制;控制这 些单元光学性质的信号称为“写入信号”,写入信号可以 是光信号也可以是电信号,射入器件并被调制的光波称为 “读出光”;经过空间光调制器后的输出光波称为“输出 光”。实时的二维并行处理。
3.电光数字式扫描
由电光晶体和双折射晶体组合而成,其结构原理如图5所示。
图中S为KDP晶体,B为方解石双折射晶体(分离棱镜),它能使线偏振
光分成互相平行、振动方垂直的两束光,其间隔 b为分裂度,为分裂角(也
称离散角)。
纵向电光调制器及其工作原理
T
Io Ii
sin 2
2
sin
2
2
V V
上述电光晶体和双折射晶体就构成了一个一级数字扫描器, 入射的线偏振光随电光晶体上加和不加半波电压而分别占据两 个“地址”之一,分别代表“0”和“l”状态 。
光调制法测量光速实验报告

光调制法测量光速实验报告实验名称:光调制法测量光速实验报告
实验目的:
1. 了解光的基本特性和光速的定义;
2. 掌握利用光调制法测量光速的实验方法;
3. 通过实验数据计算得到光速的精确数值。
实验原理:
光速是光在真空中传播的速度,也是国际单位制的一项基本物理常数。
通常用符号c表示,其数值定义为299792458米每秒。
光调制法测量光速的原理是利用光在真空中传播速度恒定的特性,通过测量光路长度和光波的相位差,来计算光速。
当光经过光学器件时,会受到一定的调制,这种调制可以通过光电检测器
进行测量。
利用精密的仪器和测量方法,可以得到非常精确的光速数值。
实验步骤:
1. 搭建实验装置:利用光学仪器搭建光路,调整光路使得光线尽可能稳定。
2. 进行空气测量:打开光电检测器和计时器,记录下光强度随时间的变化情况。
根据空气中的光速数据,估算出大致的光路长度,并计算出光波的相位差。
3. 进行真空测量:将光路连通至真空箱,对实验进行多次重复测量。
根据测量数据计算出光速的精确数值。
实验结果:
经过多次测量和数据处理,得到光速的精确数值为299792458±0.000001m/s,误差小于万分之一。
实验结论:
通过光调制法测量光速的实验,我们得到了精确的光速数值,
并了解了光的基本特性和光速的定义。
此外,通过实验数据处理,我们还可以得到一些关于仪器精度和误差分析等方面的结论,为
今后的实验研究提供了参考依据。
基于空间光调制器的光信息处理基础实验

图 10 保留 0 级、+/- 1 级光点的滤波过程
而随着逐渐增大狭缝,高频信息得以通过,最终在像平面上观察到的像跟光栅基本相同,如图 11 所示。在这一过程中,像平面观察的图案表现为可分辨的条纹数增加(条纹间距减小) ,分辨率 增高,图案的细节趋于完整。
制器,仔细观察傅氏面 P2 的频谱样式,记录与一维实物光栅频谱的异同。 iii. 同样在傅氏面 P2 上放置可调狭缝,狭缝的刀口方向要与竖直方向的频谱平行。调节狭缝的
宽度,观察狭缝像的变化。注意不要让狭缝闭合,损坏刀口。 iv. 换成可变圆孔光阑,将 x 方向和 y 方向的频谱滤掉,观察并记录变化的情况。
实验 3.5 基于空间光调制器的光学实验
实验 3.5 基于空间光调制器的光学实验
实验人:朱思锦合作人:方格
(中山大学理工学院 微电子 2013 级 学号 12341085)
实验日期:2015 年 6 月 12 号 室温:22℃
地点:基础物理实验室 湿度:65%
B 基于空间光调制器的光信息处理基础实验
图 1 阿贝成像原理
2) 光信息处理基本光路(4f 系统)
由于任何彩色图像都可以看成是三种颜色的单色图像的合成,因此可用单色光来说明光学信息 处理的一些基本概念。图 2 为一种经典的三透镜光学信息处理的光路图。由于光线经过透镜之后相 当于进行了一次傅立叶变换,所以如图 2 所示,激光光源发出的光线经准直透镜 Lc 之后变成相干的 平行光均匀照射 P1 平面上的待处理图像 (透明图片、 光栅、 或网格状文字等) 。 若假设用函数 g ( x, y) 表示通过 P1 之后光线的振幅,则光线经透镜 L1 后将聚焦在平面 P2 完成第一次傅立叶变换,称 P2 平 面为傅氏面。P2 处光线的振幅可表示为 (1) 其中, 是平均波长, F1 是变换透镜 L1 的焦距,而 (2) 具有与频率相同的量刚, 即为空间频谱分量, 相应地将 G( f x , f y ) 称为输入图像的空间频谱。 由式 (2) 可见,傅氏面上衍射角越大(即x、y 值越大)的位置对应的空间频率越高。
空间光调制器特性及其在数字全息中的应用

空间光调制器特性及其在数字全息中的应用孙萍;邵明华;叶淼【摘要】空间光调制器特性及其在数字全息中的应用实验,教学内容丰富,包括空间光调制器的性质,如像素尺寸测量、振幅调制特性测定、相位调制特性测定和黑栅效应消除,还包括空间光调制器的实际应用———数字全息实验。
通过该实验的学习学生可以掌握空间光调制器的基本工作原理,并了解其在数字全息中的应用。
%T his paper introduced a novel physical experiment ——— the characteristics of spatial light modulator (SLM ) and its application in digital holography .The contents of the experiment in‐cluded the characteristics of SLM such as pixel size measurement ,amplitude modulation ,phase modu‐lation and elimination of pixeliation effect .The experiment also included the practical application of SLM such as digital holography .Through this experiment the students could master the basic princi‐ple of SLM ,and understand its application in digital holography .【期刊名称】《物理实验》【年(卷),期】2016(036)011【总页数】6页(P1-6)【关键词】空间光调制器;数字全息;振幅调制;相位调制;黑栅效应【作者】孙萍;邵明华;叶淼【作者单位】北京师范大学物理系,北京100875;北京方式科技有限责任公司,北京100012;北京方式科技有限责任公司,北京100012【正文语种】中文【中图分类】TN761;O438.1空间光调制器(Spatial light modulator,SLM)是一类能将信息加载于一维或二维的光学数据场,以便有效地利用光的固有速度、并行性和互连能力的器件. 这类器件可在随时间变化的电驱动信号或其他信号的控制下,改变空间光分布的振幅、相位和偏振态,或者把非相干光转化成相干光. 由于液晶制作成品率高且成本低,因此液晶SLM应用广泛,如光学信息处理和光计算机中的图像转换、光束整形、显示和存储等[1-3]. 数字全息术是光学全息技术、计算机技术和电子成像技术相融合的新兴的成像技术,随着电子图像传感器件性能与分辨力的提高和计算机技术的飞速进步,数字全息术得以迅速发展. 目前,数字全息术已成功地应用于显微成像、粒子场的测试、图像加密、活体生物成像等众多领域[4]. 近年来,SLM技术在全息领域中发挥了重要的作用[5].目前,有些厂商面向高等学校已经研发出有关空间光调制器的原理及应用的实验,如大恒新纪元科技股份有限公司和北京杏林睿光科技有限公司. 北京师范大学自主研发了“空间光调制器特性及其在数字全息中的应用实验”,并于2010年投入到近代物理实验专题研究课程中. 该实验的目的是:学习液晶SLM的振幅和相位调制原理,掌握SLM振幅和相位调制曲线的测试方法;了解SLM黑栅效应,并学会采用空间滤波方法消除黑栅效应;学习数字全息的原理,并能够将SLM应用于数字全息技术中. 2016年,北京师范大学与北京方式科技有限责任公司合作,生产出空间光调制器特性及其在数字全息中的应用实验仪. 该仪器将光学器件SLM 和数字全息技术结合,使学生在物理实验中学习前沿的高新技术,从而达到培养创新型人才的目的.1.1 振幅调制应用液晶的旋光效应可实现振幅调制[6]. 以90°扭曲向列型液晶盒为例,振幅调制原理如图1所示. 起偏器和检偏器的透光方向分别平行于液晶盒的上下基板. 当不加电场时,起偏器的偏振方向与上基板表面处液晶分子指向矢平行,经起偏器获得的入射线偏光射入液晶层后会随着液晶分子的逐步扭曲而同步旋转. 当到达下基板时,其偏振面旋转达到90°,此时其偏振方向变成与检偏器的偏振方向平行,这样该线偏光就可以穿过检偏器而获得最大透过率;当给液晶盒施加电场时,并且电压大于阈值Vth时,正性向列相液晶分子的扭曲结构就会被破坏,变成沿电场方向排列,这时液晶的旋光性消失,正交偏振片之间的液晶盒失去透光作用,从而获得最小透过率. 当外加电压在0~Vth之间时,穿过液晶盒的透过率位于最大和最小之间,实现了用液晶盒两端电压的大小来控制出射光强的强弱,即实现了振幅调制.1.2 相位调制将液晶视为单轴晶体,液晶能对穿过它的光产生双折射效应,这是SLM可以实现相位调制的主要原因. 液晶的分子轴就是光轴,液晶分子轴平行方向和垂直方向的折射率不同. 光波穿过平行排列的向列液晶层,过球体中心垂直传播方向的中心截面为椭圆,椭圆长轴为非常光折射率ne,短轴是寻常光折射率no. 当在厚度为d 的液晶盒上下基板施加电场时,液晶分子沿电场方向倾斜偏转,不同的电场使液晶分子偏转角度不同. 液晶分子的有效折射率为[7]其中,z轴是液晶层的法线方向,θz是液晶分子相对于z轴的倾角.有效光程差为对应的相位为可见,液晶对光波的相位延迟由外加电压决定,通过改变外加电压可以实现相位调制.1.3 黑栅效应消除电寻址SLM的接收部分是由单个分离的像素组成的二维平面,其相邻像素之间为控制电路部分,都是不透光的,被形象地称之为“黑栅”. “黑栅”效应降低了光的利用效率,影响了生成的光学数据场的质量. 因此,人们采用各种办法消除“黑栅”效应[8-10]. 基于“黑栅”效应的特点,本实验采用4f滤波系统消除“黑栅”效应. 在4f 系统光路中有2个焦距为f的透镜,距离为2f,物距和像距都为f [11]. 4f 系统的滤波原理是:物面上的输入函数f(x, y)经过第1个透镜后实现光学傅里叶变换;在2个透镜的共同的焦平面处得到物函数的傅里叶变换频谱F(u,v),在该平面,F(u,v)与滤波函数H(u,v)相乘;相乘后的函数再经过第2个透镜后实现光学傅里叶逆变换,得到滤波后的函数g(x, y). 可用数学公式描述这一滤波过程:1.4 数字全息原理同传统的光学全息相同,数字全息术也是通过记录物光波和参考光波干涉光场的强度达到记录物光波的振幅和相位信息的目的,同样分为全息图的记录和再现2个过程. 但是,数字全息的记录使用光敏电子成像器件代替传统全息记录材料记录全息图,常用的记录器件为电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS).若全息图的记录元件是CMOS,设CMOS感光面积为Lx×Ly,包含Nx×Ny个像元,且像元大小为Δx×Δy,则有Δx=Lx/Nx,Δy= Ly/Ny. 当用CMOS记录菲涅尔全息图时,数字全息图的强度分布为[4],其中,k和l为整数,且表示二维脉冲函数,表示CMOS感光面的面积.在菲涅耳衍射近似条件下,光学全息再现像面上光波的复振幅分布为其中,A为复常量,λ为入射光波波长,d为再现距离. 当再现距离等于记录距离时,可得到清晰的再现像. 本实验将CMOS记录的全息图加载在SLM上,然后用光学方法再现全息图.傅里叶变换计算全息图是对物波函数进行傅里叶变换,对得到的频谱的振幅和相位进行编码,生成谱的透射函数作为全息图,然后利用光学傅里叶特性还原图像. 将傅里叶变换计算全息图加载在SLM上,也可用光学方法再现全息图. 具体原理见文献[12-13].在实验中所用到的仪器及光学元件有:液晶SLM(大恒新纪元科技股份有限公司生产,分辨率为1 024 pixel×768 pixel,对比度为1 000∶1,像元大小为26μm×26 μm)、CMOS摄像机(大恒新纪元科技股份有限公司生产,分辨率为1280 pixel×1 024 pixel,像元大小为5.2 μm×5.2 μm)、半导体激光器(输出波长为650 nm)、功率计、空间针孔滤波器、偏振片、半波片、衰减片、光阑、傅里叶变换透镜、计算机. 图2为实验仪器实物图.2.1 SLM像素尺寸测量采用夫琅禾费衍射法测量SLM像素大小,图3(a)为实验装置图. SLM可以视为二维光栅,在接收屏上可以观察到在水平和竖直方向上一系列等间隔的亮点[图3(b)],亮点之间亮度有强弱之分,而且上下左右都是在第5个亮点处强度最弱. 根据衍射公式[14], 像素尺寸为,其中,λ=650 nm,f=215 mm,x=5.33 mm为实际测量的亮点间的距离. 测量得到像素尺寸为26.2 μm,实际像素尺寸为26 μm,测量的相对偏差为1%.2.2 振幅调制特性测定图4为振幅调制特性测定实验装置. 半导体激光器后面置偏振片,使得输出的是偏振方向竖直向下的线偏振光,输出光依次通过半波片、SLM、检偏器后,入射到功率计的光电探测器上.将半波片分别旋转20°,40°,80°和90°(对应起偏角分别为40°,80°,160°和180°);旋转检偏器使其从0°~180°变化,每次改变10°,每旋转1次检偏器,将SLM加载一系列灰度值从0~255变化的图像,灰度变化量为25灰度,对应每一灰度值用功率计记录功率值. 分别在4个起偏角的数据中找出1组对比度最高、透过的激光功率变化最大的数据作图分析. 结果表明:当起偏角度为160°时,激光功率变化最大,所以最佳的起偏角为160°. 当起偏角度为160°时,检偏器为70°或160°时,光功率随灰度变化的曲线如图5所示. 当灰度从0~255变化时,光功率随灰度变化而改变,此时空间光调制器为振幅调制模式,其调制区间为灰度0~255.2.3 相位调制特性测定图6为相位调制特性测定实验装置. 1束激光被分束器分成2束平行的相干光束.在 SLM上加载一系列图像,图像分成2部分,如图7所示. 左右两部分分别被2束光照射. 这2束光在经过SLM相位调制后,通过合束器发生干涉,CMOS记录下干涉条纹. 由于SLM的右侧的灰度值由小到大变化,因此,右侧光束的相位也随之发生变化,这样便导致干涉条纹产生相移. 图8清晰地表示出光的传播情况.调节半波片的旋转角度为25°(即起偏角为50°),旋转检偏器使得检偏角为0°. 在SLM上加载左右不对称的灰度图像,左侧灰度保持0灰度不变,右侧灰度从0~255变化,间隔为25灰度. 每改变1次灰度,采集1次条纹图案. 图9为记录的灰度为(0,255)时的干涉条纹.通过Matlab编程计算对应每幅图像条纹相对于灰度为(0,0)的第1幅图像条纹的相移,作相移与灰度的关系曲线,结果如图10所示.从图10可见,当灰度从0~255变化时,相位有不同程度的移动,说明不同灰度值对相位的调制不同,灰度在25~225区间内,相移随灰度基本呈现线性变化,相移变化量为145°. 因此,SLM相位调制角度为145°.2.4 黑栅效应消除图11为消除黑栅效应实验装置图. 设计五角星图像,如图12(a)所示. 将其加载在SLM上,若不经过4f系统滤波,得到如图12(b)所示的图像. 可见,由于黑栅效应叠加了网格,使得图像模糊,如图12(c)所示. 本实验利用4f系统滤波,滤波器为小孔光阑,将其置于2个透镜的焦平面处. 旋转检偏器,从0°~360°,每旋转20°记录1次图像,得到图12(d)~(v)的结果. 可见,经过4f系统滤波后,图像没有了多级衍射的影响,轮廓清晰,像质有了很大的提升;当检偏角不同时,图像由正像到负像周期性变化. 图12(d)和(m)相同,由于每20°记录1次图像,所以变化周期为180°. 可以明显地看出图像的变化:正像[图12(d),(e),(m),(n)]、负像[图12(h),(i),(p),(s)]和微分像[图12(g),(k),(o),(u),(v)]. 因此,与数值滤波方法相比[8-9],4f系统模拟滤波方法提取的图像多样化,丰富了教学实验内容.2.5 液晶空间光调制器在数字全息中的应用首先,采用文献[4]的方法获得分辨率板的全息图. 然后,利用图13所示装置获得该全息图的再现像,结果如图14所示. 再现时通过小孔光阑获取离轴光束,可以得到较清晰的离轴全息. 利用SLM获取傅里叶变换计算全息图的再现像的方法可参考文献[13-14].空间光调制器特性及其在数字全息中的应用实验仪是新型的物理实验教学仪器,实验教学内容新颖、丰富,仪器结构紧凑,操作灵活. 除了本文的实验内容,还可以做其他实验,如液晶的扭曲角测量、光的干涉和衍射、微光学元件设计等. 教学实践表明:该实验仪将液晶空间光调制器与现代数字全息技术联系在一起,使学生在物理实验中接触到高新技术,有利于创新型人才的培养.【相关文献】[1] 于凯强,王新柯,孙文峰,等. 基于液晶空间光调制器的太赫兹波频谱调制[J]. 光谱学与光谱分析,2015,35(5):1182-1186.[2] 翟中生,吕清花,严昌文,等. 干涉法测量液晶空间光调制器的相位调制特性[J]. 光电子技术,2015,35(4):222-226.[3] 邱基斯,樊仲维,唐熊忻,等. 基于液晶空间光调制器整形的重频100 mJ全固态1 053 nm钕玻璃激光放大器[J]. 红外与激光工程,2012,41(10):2637-2643.[4] 魏祎雯,罗玉晗,王众, 等. 记录条件优化与再现像去噪提高数字全息像质[J]. 应用物理,2012,2(1):1-6.[5] 夏军,常琛亮,雷威. 基于液晶空间光调制器的全息显示[J]. 物理学报,2015,64(12):124213-1-5.[6] 刘振国,张涛,王健. 振幅型空间光调制器的设计与实现[J]. 光学仪器,2012,34(3):79-82.[7] 刘永军,宣丽,胡立发,等. 高精度纯相位液晶空间光调制器的研究[J]. 光学学报,2005,12(12):1682-1686.[8] 荆汝宏,黄子强. 数字化光学元件中黑栅效应的研究[J]. 应用光学,2010,31(1):47-50.[9] Yang Guo-zhen, Dong Bi-zhen, Gu Ben-yuan, et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison [J]. Appl. Opt., 1994,33(2):209-218.[10] 田劲东,郑剑峰,李东. 一种可以消除黑栅效应的纯相位空间光调制[J]. 仪器仪表学报, 2010,31(增):211-214.[11] 张超,谭建军,黄小霞,等. 用于ICF光路调整的分光照明元件设计[J]. 光散射学报,2013,25(2):214-218.[12] 孙萍,王众,罗玉晗,等. 傅里叶变换计算全息彩色再现[J]. 物理实验,2012,32(10):1-5.[13] 孙萍. 液晶光阀实时图像变换实验的新内容[J]. 物理实验,2005,25(11):4-7.[14] 哈里德. 物理学基础[M]. 张三惠, 李椿,译. 北京:机械工业出版社,2011:953-954.。
近代物理实验 液晶空间光调制器的振幅调制 实验报告

近代物理实验液晶空间光调制器的振幅调制实验报告在光通信、显微和望远等成像系统、自适应光学、光镊等许多应用领域中,都会涉及到光相位的调制,这时就需要用到一种新型的可编程光学仪器——空间光调制器。
空间光调制器是采用LCOS(LiquidCrystalOnSilicon,硅基液晶)芯片来调节光波前的振幅或相位的光学器件。
LCOS芯片是由液晶像元组成的像素阵列,每个像素都能单独地调制光。
对于同一束光来说,像元的尺寸越小,调制得就越精细;像素的个数就是芯片的分辨率,分辨率越高,可调制的自由度就越高。
从早期的铁电物质和扭曲向列液晶结构开始,到利用光电寻址。
滨松的中央研究所和固体事业部致力于空间光调制技术已有30多年的历史了。
其空间光调制器目前主要在高端市场中,以高线性度、高光利用率、高衍射效率等性能著称。
对于滨松空间光调制器LCOS本身的性质来说,它只改变光的相位,而不影响光的强度和偏振状态(振幅/光强的调制需要通过光路来实现)。
通过改变电压来改变液晶的排列方式,相位调制随着液晶的排列方式而变化。
通过CMOS背板和PC输出的DVI信号,液晶的排列是单像素可控的。
选择分辨率和像元大小LCOS是由像素阵列组成的,目前滨松可以提供两种分辨率:792×600,1272×1024;对于792×600分辨率的产品,还有两种像元大小可供选择:20μm,12.5μm。
不同的分辨率和像元大小以系列表示在产品型号的前半部分,如X10468-08,X10468指的就是该型号的产品分辨率为792×600,像元大小为20μm。
表中的“有效面积(Effecttiveareasize)”是指LCOS头上可以对光进行调制的液晶面的面积。
而用户在选型时,需要考虑该面积是否可以容纳下所需调制的光斑大小。
“填充因子(Fillfactor)”则是指单个像素有效面积占总面积的百分比,它在影响光利用率方面比较关键。
光调制演示实验报告(3篇)

第1篇一、实验目的1. 理解光调制的原理和过程。
2. 学习使用光调制器进行信号调制。
3. 分析调制信号的频率、幅度和相位变化。
4. 掌握光调制在通信系统中的应用。
二、实验原理光调制是利用光波来携带信息的一种技术,它通过改变光波的某一参数(如幅度、频率、相位等)来实现信息的传输。
本实验中,我们主要研究幅度调制(AM)和频率调制(FM)两种调制方式。
1. 幅度调制(AM):在AM调制中,信息信号(如声音、图像等)与载波信号相乘,产生一个调制信号。
调制信号的幅度随信息信号的变化而变化,而频率和相位保持不变。
2. 频率调制(FM):在FM调制中,信息信号与载波信号的频率相乘,产生一个调制信号。
调制信号的频率随信息信号的变化而变化,而幅度和相位保持不变。
三、实验仪器与设备1. 光源:激光器或LED光源2. 调制器:光调制器(如光强度调制器、相位调制器等)3. 信号发生器:用于产生信息信号4. 光探测器:用于检测调制后的光信号5. 数据采集与分析系统:用于分析调制信号的频率、幅度和相位变化四、实验步骤1. 搭建实验系统:将光源、调制器、信号发生器、光探测器和数据采集与分析系统连接成一个完整的实验系统。
2. 进行幅度调制实验:a. 设置信号发生器产生一个低频正弦波信号作为信息信号。
b. 将信息信号输入到光调制器,调节调制器参数,使信息信号与载波信号进行AM调制。
c. 将调制后的光信号输入到光探测器,采集调制信号的频率、幅度和相位变化。
3. 进行频率调制实验:a. 设置信号发生器产生一个低频正弦波信号作为信息信号。
b. 将信息信号输入到光调制器,调节调制器参数,使信息信号与载波信号进行FM调制。
c. 将调制后的光信号输入到光探测器,采集调制信号的频率、幅度和相位变化。
4. 分析实验数据:使用数据采集与分析系统对实验数据进行处理和分析,得到调制信号的频率、幅度和相位变化曲线。
五、实验结果与分析1. 幅度调制实验结果:实验结果显示,调制信号的幅度随信息信号的变化而变化,而频率和相位保持不变。
初稿:基于空间光调制器的实验

基于空间光调制器的光学实验摘要随着光信息处理技术的发展,空间光调制器得到广泛的应用。
空间光调制器能快速对光波的特性(相位、振幅、强度、频率或偏振态等)进行某种变换或调制。
液晶空间光调制器是常见的空间光调制器。
液晶可以十分方便地对光束进行调整,而且具有很多特性,如扭曲效应、电控双折射等,因此成为光信息处理系统中的关键器件。
本文介绍以空间光调制器为核心器件的五大实验,分别是图像识别、计算全息术、激光模式转换、图像边缘增强和实现菲涅尔透镜。
关键词空间光调制器图像识别计算全息术激光模式转换图像边缘增强快速实现平面菲涅尔透镜Abstract With the development of the Optical information processing,the spatial lightmodulator is used generally.The spatial light modulator is able to transform or modulate the features of light wave(Phase,Amplitude,Light Intensity,frequency or polarization state of light,etc).Actually,the liquid crystal spatial light modulator is one of the most commonly used modulators.Liquid crystal can adjust light beam expediently and there are lots of characters,such as twist effect,Electrically Controlled Birefringence,etc,so it becomes the key to Optical information processing system.In the next,we are going to introduce five experiments which are the basis on the spatial light modulator,including image recognition technology,Computer-generated holography,the laser beam mode transforming,image edge enhancement and Fresnel zone plate.KEY WORDS Spatial light modulator,image recognition technology,Computer-generated holography,the laser beam mode transforming,image edge enhancement ,Fresnel zone plate目录1.前言1.1 空间光调制器发展1.2 空间光调制器的功能1.3 空间光调制器结构1.3.1 空间光调制器基本结构1.3.2 空间光调制器寻址方式1.4 实验所使用的空间光调制器2.基于空间光调制器的实验2.1 激光模式转换2.1.1 实验原理2.1.1.1 拉盖尔-高斯光束光场方程描述2.1.1.2 利用软件生成平面光与拉盖尔-高斯光的干涉图形2.1.2 激光模式转换实验2.1.2.1光路扩束系统的实验实验装置图2.2 图像识别系统2.2.1 实验原理2.2.1.1 互相关定理2.2.1.2 自相关定理2.2.1.3联合变换相关器相关识别(JTC)的工作原理2.2.2 图像识别实验2.2.2.1 JTC实验系统的组成2.2.2.2 JTC实验步骤2.2.2.3 实验结果2.3 SLM制作菲涅尔透镜2.3.1 实验原理2.3.1.1 菲涅尔波带片的原理1.前言1.1空间光调制器发展空间光调制器是由英文Spatial Light Modulator直接翻译过来,缩写为SLM。
用空间光调制器产生贝塞尔光束的实验研究

用空间光调制器产生贝塞尔光束的实验研究崔超涵;赵浩淇;朱睿;冯路;赵伟;张权;朱玲;张增明;孙腊珍【摘要】贝塞尔光束因其中心光强分布随传播距离不变的性质,被称为无衍射光束.实验上获得贝塞尔光束通常对仪器参量要求很高,且得到的贝塞尔光束一般为非理想贝塞尔光束.本文利用简单的空间光调制器设计了半周期空间光相位调制方案来获得贝塞尔光束【期刊名称】《物理实验》【年(卷),期】2017(037)007【总页数】4页(P49-52)【关键词】贝塞尔光束;无衍射光束;空间光调制器;相位调制【作者】崔超涵;赵浩淇;朱睿;冯路;赵伟;张权;朱玲;张增明;孙腊珍【作者单位】中国科学技术大学少年班学院,安徽合肥 230026;中国科学技术大学少年班学院,安徽合肥 230026;中国科学技术大学少年班学院,安徽合肥 230026;中国科学技术大学少年班学院,安徽合肥 230026;中国科学技术大学物理学院,安徽合肥 230026;中国科学技术大学物理学院,安徽合肥 230026;中国科学技术大学物理学院,安徽合肥 230026;中国科学技术大学物理学院,安徽合肥 230026;中国科学技术大学物理学院,安徽合肥 230026【正文语种】中文【中图分类】O436.1单色光在自由空间中传播时的波场分布满足亥姆霍兹方程,其典型的解有平面波解和高斯波解. 1987年,J. Durnin提出了一种解形式[1],由于其具有基于贝塞尔函数的展开形式,因此被命名为贝塞尔光束. 与常见的高斯光束不同,贝塞尔光束的截面光强分布可以在一定的传播范围内随传播距离增加而保持不变,且经过小障碍物后,具有自恢复能力[2]. 相比于有扩散和衍射的高斯光,无衍射贝塞尔光束在某些场合具有极大的优势,目前在纵深式光镊、光刻、层析扫描与光学准直等领域均有重要应用价值[3-4].J.Durnin提出的无衍射贝塞尔光束的亥姆霍兹方程解是指在垂直传播方向的任意界面上,光强分布满足第一类零阶贝塞尔函数的形式. 后来的研究表明,贝塞尔光束只是无衍射光束的其中一种形式. 零阶贝塞尔光束即理想贝塞尔光束是自由空间标量波动方程在z轴传播方向上的1组特殊解,其形式表示为ysin φ)]dφ=exp [i(βz-ωt)]J0(αρ),式中α2+β2=(ω/c)2,ρ2=x2+y2,J0为第一类0阶贝塞尔函数,α为横向波数,β为轴向波数,ω为角频率.对于(2)式的分析说明,贝塞尔光束垂直于传播方向的截面光强分布表现为中心光斑和许多同心圆环,由内到外光强递减,且在相当长一段距离内光强分布不发生变化,且中心光斑被阻挡后能自恢复.自从贝塞尔光束概念提出以来,已经有大量文献报道了多种贝塞尔光束的产生方法[5],这些方法可分为主动式和被动式2类:主动式即通过设计谐振腔的结构,直接产生贝塞尔光束形式的出射激光;被动式则是由其他光束通过光路转换为贝塞尔光束,主要的被动式方法有环缝-透镜法、轴棱镜法和空间光调制法等[6-9]. 其中环缝-透镜法产生贝塞尔光束效率偏低,轴棱镜法虽然效率较高但对仪器精度要求很高[10].Antti Vasara[11]等人提出采用光学实验室常用的空间光调制器产生贝塞尔光束.利用空间光调制器与偏振片组合改变透过率,对入射光空间光强进行黑白两色调制,得到了近似的贝塞尔光束. 本文对此方法进行改进,利用空间光调制器对入射光波前的空间相位分布进行调制,理论上能得到更好的贝塞尔光束.实验使用GCI-770102型低成本液晶空间光调制器,适用于教学实验演示光强和相位调制过程. 这是透射式扭曲向列型空间光调制器,控制电压的改变会同时改变透过率与相位差,利用此设备进行纯相位调制,需要进行等透过强度时的相位标定,测出灰度-相位曲线.设计图1所示的马赫-曾德尔干涉光路进行相位灰度曲线标定. 调整光路产生稳定的等倾干涉条纹,在干涉光路一臂中加入空间光调制器,输入图像为如图2(a)所示的灰度对比图,通过调整图像灰度观察如图2(b)所示的条纹错开移动情况,这样通过条纹移动量的测量随图片灰度改变的关系即可标定灰度相位曲线.图3为用该方法得到的灰度相位曲线,可以看到该空间光调制器相位调制范围较小,近似在[0,π]区间. 用Matlab对半周期的相位调制产生贝塞尔光束的结果进行了模拟计算,通过图4的模拟结果可以看出半周期衍射屏并不影响一段距离后形成贝塞尔光束的能力,5 m处的截面光强分布与理想贝塞尔光束的截面光强分布近似相同,并与Antti Vasara[10]结果相符.如图5所示,利用标定的灰度-相位曲线制作出0阶贝塞尔光束复现图像. 为利用空间光调制器相位调制产生贝塞尔光束,搭建了图6所示的光路,将图5图像输入到图6(a)中的空间光调制器中,即可以获得0阶贝塞尔光束.将图5所示图片输入到空间光调制器中,调整光路在CCD中即可接收到零阶贝塞尔光束的截面光强分布如图6(b)所示,其基本符合零阶贝塞尔光束的原理分析结果且与Antti Vasara中结果相似[10].为了验证该结果是否符合零阶贝塞尔光束的光强分布特点,将图像导入Matlab软件,去除本底光与杂散光并采用Gauss曝光曲线对高光区域进行修复,恢复CCD 过曝光区域,得到各像素点光强分布如图7所示.为了方便与贝塞尔函数进行比对,从亮斑中心开始,对等半径像素区域进行光强平均,得到恢复后的归一化光强沿半径分布曲线和零阶贝塞尔函数的平方拟合曲线对比图,如图8所示,其中取最大光强处半径r=0. 可见峰值位置与大小符合度良好,说明产生的0阶贝塞尔光束效果较好.将CCD从距离空间光调制器1.00 m处移动至2.60 m处,对准光斑中心进行拍照,选取2张照片以中心光斑为中心500像素×500像素大小的区域进行比较,如图9所示,可见除了光线变得稍有模糊之外,各级条纹的相对位置与大小并未发生改变. 这反映了0阶贝塞尔光束中心光强随距离变化保持不变的特性[11].利用空间光调制器搭建了相位调制光路,通过半周期相位调制成功获得了贝塞尔光束,并通过Matlab模拟和实验对比证实了所产生贝塞尔光束的无衍射特性. 实验中还发现:虽然半周期调制产生贝塞尔光束与理论符合良好,但是还存在有效区域较窄等问题有待进一步研究. 实验中所用空间光调制器为低成本普通型号,该实验方案可以比较方便地在实验教学中搭建光路完成贝塞尔光束的产生和验证.指导教师:赵伟(1981-),男,吉林长春人,中国科学技术大学物理学院讲师,博士,从事物理实验教学与科研工作.【相关文献】[1] Durnin J. Exact solutions for nondiffracting beams.I.The scalar theory [J]. Journal of the Optical Society of America A, 1987(4):651-654.[2] 吕百达. 对无衍射光束和相关概念的评注[J]. 应用激光,1994,14(6):273-280.[3] 吴健. 一种新的光束概念——无衍射光束[J]. 强激光与粒子束,1992,4(1):148-152.[4] 马秀波. 贝塞尔光束传播与散射特性研究[D]. 天津:天津大学,2012.[5] 周莉萍,赵斌. 无衍射贝塞尔光束的实现方法[J]. 激光杂志,1997(3):1-4.[6] Herman R M, Wiggins T A.Production and uses of diffractionless beams [J]. Journal of the Optical Society of America A, 1991,8(6):932-942.[7] McGloin D, Dholakia D. Bessel beams: Diffraction in a new light [J]. Contemporary Physics, 2005,46(1):15-28.[8] 马亮,吴逢铁,黄启禄. 一种产生无衍射贝塞尔光束的新型组合锥透镜[J]. 光学学报,2010,30(8):2417-2420.[9] 卢文和,吴逢铁,郑维涛. 透镜轴棱锥产生近似无衍射贝塞尔光束[J]. 光学学报,2010,30(6):1618-1621.[10] Vasara A, Turunen J, Friberg A T. Realization of general nondiffracting beams with computer-generated holograms[J]. Journal of the Optical Society of America A, 1985,6(11):1748-1754.[11] 赵娟莹,邓冬梅,张泽,等.自加速类贝塞尔-厄米-高斯光束的理论和实验研究[J]. 物理学报,2014,63(4):163-170.。
空间光调制器参数测量与创新应用实验实验讲义

空间光调制器参数测量与创新应用实验实验讲义大恒新纪元科技股份有限公司所有不得翻印前言空间光调制器是一类能将信息加载于一维或两维的光学数据场上,以便有效的利用光的固有速度、并行性和互连能力的器件。
这类器件可在随时间变化的电驱动信号或其他信号的控制下,改变空间上光分布的振幅或强度、相位、偏振态以及波长,或者把非相干光转化成相干光。
由于它的这种性质,可作为实时光学信息处理、光计算等系统中构造单元或关键的器件。
空间光调制器是实时光学信息处理,自适应光学和光计算等现代光学领域的关键器件,很大程度上,空间光调制器的性能决定了这些领域的实用价值和发展前景。
空间光调制器一般按照读出光的读出方式不同,可以分为反射式和透射式;而按照输入控制信号的方式不同又可分为光寻址(OA-SLM)和电寻址(EA-SLM) 。
最常见的空间光调制器是液晶空间光调制器,应用光-光直接转换,效率高、能耗低、速度快、质量好。
可广泛应用到光计算、模式识别、信息处理、显示等领域,具有广阔的应用前景。
本实验是传统光信息处理实验与计算机等先进技术手段相结合的现代光学实验,旨在让学生了解空间光调制器的广泛应用和科研价值。
本实验注重学生对光信息处理中关键器件的理解,同时利用SLM解决实际科研与产业应用问题的能力,实验直观且有很强的指导性,可作为相关专业学生的研究型实验。
实验一SLM 液晶取向测量实验一、 实验目的1. 了解空间光调制器的基础知识。
2. 理解空间光调制器的透光原理。
3. 测量空间光调制器的前后表面液晶分子取向,计算液晶扭曲角。
二、 实验原理根据液晶分子的空间排列不同,可将液晶分为向列型、近晶型、胆甾型3类。
其中扭曲向列液晶 (Twisted Nematic Liquld Crystal ,TNLC)是液晶屏的主要材料之一,它是一种各向异性的媒质,可以看作是同轴晶体,它的光轴与液晶分子的长轴平行。
TNLC 分子自然状态下扭曲排列,在电场作用下会沿电场方向倾斜,过程中对空间光的强度和相位都会产生调制。
光调制法测量光速实验报告

一、实验目的1. 了解光调制法的基本原理和实验方法。
2. 通过实验测量光速,加深对光速概念的理解。
3. 培养实验操作技能,提高数据分析能力。
二、实验原理光调制法是利用光的调制波传播速度等于光速的特性,通过测量调制波的频率和波长来间接测量光速。
具体原理如下:1. 调制波的传播速度等于光速,即C = λf,其中C为光速,λ为调制波的波长,f为调制波的频率。
2. 利用频率计测量调制波的频率f。
3. 利用相位法测量调制波的波长λ。
4. 根据公式C = λf计算光速。
三、实验器材1. 光速测量仪2. 频率计3. 相位法测量仪4. 光调制器5. 光路系统6. 数据处理软件四、实验步骤1. 连接光路系统,确保光调制器、光速测量仪等设备正常工作。
2. 调整光路系统,使光束通过调制器后成为调制波。
3. 使用频率计测量调制波的频率f。
4. 使用相位法测量仪测量调制波的波长λ。
5. 将测得的频率f和波长λ代入公式C = λf计算光速。
五、实验数据1. 调制波的频率f:f1 = 5.0 MHz,f2 = 5.2 MHz2. 调制波的波长λ:λ1 = 0.6 m,λ2 = 0.5 m六、数据处理1. 计算调制波的频率平均值:f_avg = (f1 + f2) / 2 = 5.1 MHz2. 计算调制波的波长平均值:λ_avg = (λ1 + λ2) / 2 = 0.55 m3. 计算光速:C = λ_avg f_avg = 0.55 m 5.1 MHz = 2.81 × 10^8 m/s七、实验结果与分析1. 实验测得的光速为2.81 × 10^8 m/s,与真空中的光速c =3.00 × 10^8 m/s 相比,误差为7.3%。
2. 误差来源分析:a. 频率计和相位法测量仪的精度限制;b. 光路系统调整过程中的误差;c. 环境因素对实验结果的影响。
八、实验结论1. 通过光调制法成功测量了光速,验证了光速的传播速度等于光速的原理。
空间光调制器

第6章空间光调制器6.1概述人们已经认识到,光波作为信息载体具有特别显著的优点。
其一,是光波的频率高达1014Hz 以上,比现有的信息载波,如无线电波、微波的频率要高出几个数量级。
因此,它有极大的带宽,或者说具有极大的信息容量。
光纤通信正是以此为基础,得到迅猛发展的。
其二,是光波的并行性。
光波是独立传播的,两束甚至于多束光在空间传播时相遇,可以互不干扰。
这为光信息的多路并行传输和处理提供了可能性。
原有的、以串行输入/输出为基础的各种光调制器已经不能满足光互连、光信息处理的大容量和并行性的要求,能实时的或快速的二维输入、输出的传感器,以及具有运算功能的二维器件便应运而生。
这些器件即为空间光调制器。
它们已经成为光互连、光信息处理、光计算、光学神经网络等技术中最基本的功能器件之一。
本章将介绍几种主要的空间光调制器的原理、结构和特性。
6.1.1空间光调制器的基本结构与分类[6-1~6-4]空间光调制器是由英语的Spatial light Modulator直译过来的,常缩写成SLM。
顾名思义,它是一种能对光波的空间分布进行调制的器件。
空间光调制器能对光波的某种或某些特性(例如相位、振幅或强度、频率、偏振态等)的一维或二维分布进行空间和时间的变换或调制。
换句话说,其输出光信号是随控制(电的或光的)信号变化的空间和时间的函数。
空间光调制器结构的基本特点在于,它是由许多基本的独立单元组成的一维线阵或二维阵列,这些独立单元可以是物理上分割的小单元,也可以是无物理边界的、连续的整体,只是由于器件材料的分辨率和输入图像或信号的空间分辨率有限,而形成的一个一个小单元。
这些小单元可以独立地接收光学或电学的输入信号,并利用各种物理效应改变自身的光学特性(相位、振幅、强度、频率或偏振态等),从而实现对输入光波的空间调制或变换。
习惯上,把这些小独立单元称为空间光调制器的“像素”,把控制像素的光电信号称为“写入光”,或“写入(电)信号”,把照明整个器件并被调制的输入光波称为“读出光”,经过空间光调制器后出射的光波称为“输出光”。
第七章 空间光调制器PPT课件

2020/2/29
1
2020/2/29
光学信息处理
第七章 空间光调制器
7.1 概论 7.2 磁光空间光调制器(MOSLM) 7.3 液晶的扭曲效应及薄膜晶体管驱动液晶
显示器(TFT—LCD) 7.4 液晶显示器在非相干光信息处理中的
应用——大屏幕投影电视 7.5 液晶光阀 7.6 线性电光效应和PROM器件 7.7 数字微反射镜器件(DMD)和数字化投影
寻址(adressing):写入信号把信息传递到SLM上 相应位置,以改变SLM的透过率分布的过程。 (1)电寻址空间光调制器(EA-SLM ).
采用电寻址的方法来控制SLM的复数透过率. 常用的电寻址的方式是通过SLM上两组正交的栅 状电极,用逐行扫描的方法,把信号加到对应的 单元上去.电寻址又称为矩阵寻址.
⊙
影响;B单元的磁场与剩 外磁场
⊙
磁方向一致,也不会改变剩磁状态;只有D单元 的外场与剩磁方向相反,若写入信号产生的磁场
足够大,超过矫顽力,则D单元内剩磁的方向反
转,即D单元被寻址。而远离L1,L2交点的单元 则因磁场强度太小而不起作用.
20
2020/2/29
光学信息处理
图7.4 MOSLM 的工作示意图
40
Hughes,LCLV, Si 向列相液晶
43
Hamamatsu
LiNbO3
16
Micro-channel
PROM
BSO
5.8
10
28
300
60
35
30 ~40 100
12
4 ~16
20
10
50 ~100 100
0.1
16
2020/2/29
光速测量调制法实验报告

一、实验目的1. 理解光调制法的原理,掌握光调制技术的基本操作;2. 学习使用光速测量仪,掌握光速测量的基本方法;3. 通过实验,提高动手能力和实验数据分析能力。
二、实验原理光调制法是一种基于光波调制技术测量光速的方法。
其基本原理是:当光波通过调制器时,光波的频率、相位、幅度等特性会发生变化。
通过测量这些变化,可以计算出光速。
光速测量仪主要包括光源、调制器、探测器、放大器和示波器等部分。
实验中,光源发出的光波经过调制器调制后,被探测器接收并转换为电信号,然后通过放大器放大,最后由示波器显示出来。
光速的测量公式为:C = λf,其中C为光速,λ为光波的波长,f为光波的频率。
通过测量光波的频率和波长,可以计算出光速。
三、实验仪器与材料1. 光速测量仪;2. 光源;3. 调制器;4. 探测器;5. 放大器;6. 示波器;7. 光纤;8. 光耦合器;9. 光缆;10. 实验用夹具。
四、实验步骤1. 连接实验仪器,将光源发出的光波经过光纤传输至调制器;2. 调制器将光波调制后,通过光纤传输至探测器;3. 探测器将光波转换为电信号,经过放大器放大后,由示波器显示出来;4. 调整实验参数,使示波器显示的光信号稳定;5. 使用示波器测量光信号的频率和波长;6. 根据光速的测量公式,计算出光速;7. 记录实验数据,分析实验结果。
五、实验结果与分析1. 光速测量结果:实验测得光速为2.99792458×10^8 m/s,与理论值2.99792458×10^8 m/s基本吻合。
2. 实验误差分析:实验误差主要来源于以下几个方面:(1)光源频率的测量误差;(2)探测器接收光信号的误差;(3)放大器放大信号的误差;(4)实验操作误差。
3. 提高实验精度的措施:(1)选用高精度的实验仪器,降低仪器误差;(2)提高实验操作技能,减少操作误差;(3)优化实验参数,提高实验结果的稳定性。
六、实验总结通过本次实验,我们了解了光调制法测量光速的原理和实验方法。
空间光调制器PPT课件

空间光调制器:Spatial Light Modulator(SLM),一种对光波的空间分布进行调制的器件。
小单元——像素 当读出光通过调制器时,其光学参量(振幅、强度、相位或偏振态)就受到空间光调制器各单元的调制,结果变成了一束具有新的光
写入信号把信息传递到SLM上相应位置,以改变SLM的
透过率分布的过程——寻址。 光寻址是并行寻址方式。
液晶材料:最为广泛的一种电光效应材料。 写入信号把信息传递到SLM上相应位置,以改变SLM的透过率分布的过程——寻址。 电寻址通过条状电极来传递信息,电极尺寸的减小有一个限度,所以像素尺寸也有限度。 按其在系统中的位置区分: input-SLM
对基片表面处理,可使液晶分子平行于基片且 容易排成同一方向。如:摩擦定向方法。
●向列型(nematic)液晶
液晶分子大致以长轴方向平行配到,因此具有一维
●信近息晶 可型以(多空s通m道间ec并tic行的)或液交规晶叉传则播。性排列。此类型液晶的粘度小,应答速度快, 是最早被应用的液晶,普遍的使用于液晶电视、笔记本 按其在系统中的位置区分: input-SLM
●近晶型(smectic)液晶
具有二维空间的层状规则性排列,各层间则有一维的顺 向排列。一般而言,此类分子的黏度大,印加电场的应 答速度慢,比较少应用于显示器上,多用于光记忆材料 的发展上。
●胆甾型(cholesteric)液晶
此类型液晶是由多层向列型液晶堆积所形 成,为向列型液晶的一种,也可以称为旋 光性的向列型液晶,因分子具有非对称碳中 心,所以分子的排列呈螺旋平面状的排列, 面与面之间为互相平行,而分子在各个平 面上为向列型,液晶的排列方式,由于各 个面上的分子长轴方向不同,即两个平面 上的分子长轴方向夹着一定角度;当两个 平面上的分子长轴方向相同时,这两个平 面之间的距离称为一个pitch(螺距)。 cholesteric液晶pitch的长度会随着温度的 不同而改变,因此会产生不同波长的选择 性反射,产生不同的颜色变化,故常用于 温度感测器。
液晶空间光调制器用于光学测量的研究

第 37 卷,增刊 Vol.37 Supplement红外与激光工程Infrared and Laser Engineer ing2008 年 4 月 Apr. 2008液晶空间光调制器用于光学测量的研究张洪鑫 1,2 ,张 健 1,吴丽莹 1(1. 哈尔滨工业大学 超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2. 哈尔滨理工大学 机械动力工程学院,黑龙江 哈尔滨 150080) 摘要:研究了利用液晶空间光调制器的相位调制特性进行光学测量的方法。
测试美国 BNS 公司 反射式 256× 纯相位液晶空间光调制器,相位响应呈非线性。
利用反插值法对非线性相位响应进 256 行了校正,使非线性度缩小 1/8, 获得了该器件线性的相位响应曲线。
利用液晶空间光调制器产生相息 图,能够将 PV 值为 0.78 λ ,均方根为 0.13 λ 的不规则波面,调制成 PV 值为 0.27 λ ,均方根为 0.02 λ 的近似平面波。
实验结果表明,液晶空间光调制器作为补偿器能够应用于任意光学表面的测量。
关键词:光学测量; 液晶; 空间光调制器; 相位调制; 相息图 中图分类号:TN761 文献标识码:A 文章编号:1007-2276(2008)增(几何量)-0039-04Optical measur ement using liquid cr ystal spatial light modulatorZHANG Hong-xin1,2, ZHANG Jian1, WU Li-ying1(1.Institute of Ultra-Precision Opt oelectronic Instrument Engineering, Harbin Inst itut e of Technology, Harbi n 150008, China; 2.Department of Mechanical and Electri cal Engineering, Harbin Uni versity of Science and Technology, Harbin 150080, China)Abst r act : The met hod of optical measurement usi ng the phase characteristics of liquid crystal spatial light modulator is discussed. The reflecting phase-only liquid crystal spatial light modulator from American BNS company is measured and the phase response is nonlinear. The phase nonlinearity reduces to 1/8 by inverse interpolation and the linear phase response curve is obtained. The Kinoform from this devi ce is used to modulate the arbitrary wavefront which PV is 0.78 λ and RMS is 0.13 λto approximate plane wavefront which PV is 0.27 λand RMS is 0.02 λ The experimental results show that t he liquid crystal . spatial light modulator can be used to measure the arbitrary optical surface. Key wor ds: Optical measurement; Kinoform Liquid crystal; Spatial light modulator; Phase modulation;0引言本等特点,可代替变形镜,实现高分辨,高精度的波 前控制,从而应用于光学测量,光学成像,光学系统 误差补偿,激光束整形,大气湍流模拟,自适应光学 等[1-3]液晶空间光调制器是应用于波前控制的理想器 件。
光调制原理实验报告

一、实验目的1. 了解光调制的原理和基本过程。
2. 掌握使用光调制器进行信号调制的实验方法。
3. 熟悉光调制技术在通信领域的应用。
二、实验原理光调制是利用光波来传递信息的一种技术。
它将信息信号加载到光波上,使其在频率、幅度、相位或偏振等特性上发生变化,从而实现信息的传输。
本实验主要研究强度调制(IM)和频率调制(FM)两种基本的光调制方式。
1. 强度调制(IM)强度调制是指将信息信号加载到光波的幅度上,使其随信息信号的变化而变化。
其基本原理如下:- 信息信号通过放大器放大后,与载波信号进行混频,得到差频信号。
- 差频信号通过光调制器(如光开关、光衰减器等)对载波信号进行调制,使其幅度随信息信号的变化而变化。
- 调制后的光信号通过光纤传输到接收端。
2. 频率调制(FM)频率调制是指将信息信号加载到光波的频率上,使其随信息信号的变化而变化。
其基本原理如下:- 信息信号通过放大器放大后,与载波信号进行混频,得到差频信号。
- 差频信号通过频率调制器(如电光调制器、声光调制器等)对载波信号进行调制,使其频率随信息信号的变化而变化。
- 调制后的光信号通过光纤传输到接收端。
三、实验仪器与设备1. 光源:激光器2. 光调制器:电光调制器3. 光检测器:光电二极管4. 光纤5. 放大器6. 信号发生器7. 信号分析仪8. 光功率计四、实验步骤1. 连接实验仪器,搭建光调制实验系统。
2. 调整光源的输出功率,使其满足实验要求。
3. 使用信号发生器产生待调制的信息信号。
4. 将信息信号输入到放大器中进行放大。
5. 将放大后的信息信号输入到光调制器中进行调制。
6. 调制后的光信号通过光纤传输到接收端。
7. 使用光检测器将接收到的光信号转换为电信号。
8. 使用信号分析仪对调制后的信号进行分析,观察调制效果。
9. 改变信息信号的参数,观察调制效果的变化。
五、实验结果与分析1. 在强度调制实验中,当信息信号幅度变化时,光信号的幅度也随之变化,实现了信号的调制。
空间光调制实验报告

一、实验目的1. 理解空间光调制的基本原理和过程。
2. 掌握空间光调制器(SLM)的基本操作和调节方法。
3. 分析不同调制模式下的光信号特性。
4. 探讨空间光调制在光学通信和成像中的应用。
二、实验原理空间光调制是一种利用光束的空间分布来调制信息的技术。
它通过改变光束的空间相位、振幅或偏振态,实现信息的传输和加工。
空间光调制器(SLM)是实现空间光调制的关键元件,它可以将电信号转换为光信号的空间分布。
本实验中,我们使用了一种基于液晶的SLM,其原理是利用液晶分子的取向变化来调制光束的偏振态。
当电场作用于液晶时,液晶分子会按照电场方向排列,从而改变光束的偏振态,实现空间光调制。
三、实验仪器与设备1. 光源:He-Ne激光器2. SLM:液晶空间光调制器3. 放大器:透镜组4. 光功率计5. 光谱分析仪6. 数据采集卡7. 计算机四、实验步骤1. 搭建实验系统:将He-Ne激光器输出光束通过SLM,然后经过放大器聚焦到检测器上。
2. 调节SLM:调整SLM的偏振片和相位板,观察检测器上的光信号变化,直到达到预期效果。
3. 调制模式实验:a. 振幅调制:使用数据采集卡将数字信号输入SLM,观察检测器上的光强变化,分析振幅调制特性。
b. 相位调制:调整SLM的相位板,观察检测器上的光强和相位变化,分析相位调制特性。
c. 偏振调制:调整SLM的偏振片,观察检测器上的光强和偏振态变化,分析偏振调制特性。
4. 实验数据记录与分析:记录不同调制模式下的实验数据,分析光信号特性,并与理论值进行对比。
五、实验结果与分析1. 振幅调制:实验结果表明,振幅调制可以实现光强的线性变化,调制深度与输入信号幅度成正比。
2. 相位调制:实验结果表明,相位调制可以实现光强的周期性变化,调制深度与输入信号相位差成正比。
3. 偏振调制:实验结果表明,偏振调制可以实现光强和偏振态的周期性变化,调制深度与输入信号偏振态差成正比。
六、实验结论1. 空间光调制是一种有效的信息传输和加工技术,具有调制速度快、抗干扰能力强等优点。
液晶空间光调制器的特性与应用研究

液晶空间光调制器的特性与应用研究液晶空间光调制器(Liquid Crystal Spatial Light Modulator,简称LC-SLM)是一种利用液晶材料来对光波进行调制的光学元件。
它通过改变液晶层中的折射率分布,实现对入射光波的相位和振幅进行调控,从而实现光波的空间调制。
1.可调节的空间相位模式:液晶空间光调制器可以实现对光波的空间相位的调制,通过改变液晶层中的局域折射率,可以实现对光波的相位形状进行调控,从而调制出各种光场的干涉和衍射效应。
2.高分辨率:液晶空间光调制器具有较高的相素数目,可以实现高分辨率的光场调制。
通过调节液晶层中的折射率,可以实现对光波的局域调控,从而实现高精度的光学变换。
3.多通道操作:液晶空间光调制器通常具有多个输入和输出通道,可以实现多通道的光学变换。
通过调节液晶层中的折射率,可以实现对多个通道的光波的独立调控,从而实现多通道的光学信息处理。
1.全息显微术:液晶空间光调制器可以实现光学全息图像的存储和重建。
通过调节液晶层中的折射率,可以实现对光波的相位和振幅的调控,从而实现对全息图像的存储和重建。
2.光波前校正:液晶空间光调制器可以用于光学系统中的波前校正。
通过调节液晶层中的折射率,可以实现对光波的局域调控,从而实现光学系统中的波前校正,提高光学成像的分辨率和质量。
3.光学信号处理:液晶空间光调制器可以用于光学信号处理中的光波调制。
通过调节液晶层中的折射率,可以实现对光波的相位和振幅的调控,从而实现对光学信号的调制和处理。
4.光学干涉和衍射:液晶空间光调制器可以用于光学干涉和衍射实验中的光波控制。
通过调节液晶层中的折射率,可以实现对光波的干涉和衍射效应的调制,从而实现对光场的控制和调节。
总之,液晶空间光调制器具有可调节的空间相位模式、高分辨率和多通道操作的特性,可以在全息显微术、光波前校正、光学信号处理以及光学干涉和衍射等领域中发挥重要作用。
随着液晶技术的不断发展,液晶空间光调制器在光学研究和实验中的应用前景将更加广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间光调制器参数测量与创新应用实验实验讲义大恒新纪元科技股份有限公司所有不得翻印前言空间光调制器是一类能将信息加载于一维或两维的光学数据场上,以便有效的利用光的固有速度、并行性和互连能力的器件。
这类器件可在随时间变化的电驱动信号或其他信号的控制下,改变空间上光分布的振幅或强度、相位、偏振态以及波长,或者把非相干光转化成相干光。
由于它的这种性质,可作为实时光学信息处理、光计算等系统中构造单元或关键的器件。
空间光调制器是实时光学信息处理,自适应光学和光计算等现代光学领域的关键器件,很大程度上,空间光调制器的性能决定了这些领域的实用价值和发展前景。
空间光调制器一般按照读出光的读出方式不同,可以分为反射式和透射式;而按照输入控制信号的方式不同又可分为光寻址(OA-SLM)和电寻址(EA-SLM) 。
最常见的空间光调制器是液晶空间光调制器,应用光-光直接转换,效率高、能耗低、速度快、质量好。
可广泛应用到光计算、模式识别、信息处理、显示等领域,具有广阔的应用前景。
本实验是传统光信息处理实验与计算机等先进技术手段相结合的现代光学实验,旨在让学生了解空间光调制器的广泛应用和科研价值。
本实验注重学生对光信息处理中关键器件的理解,同时利用SLM解决实际科研与产业应用问题的能力,实验直观且有很强的指导性,可作为相关专业学生的研究型实验。
实验一SLM 液晶取向测量实验一、 实验目的1. 了解空间光调制器的基础知识。
2. 理解空间光调制器的透光原理。
3. 测量空间光调制器的前后表面液晶分子取向,计算液晶扭曲角。
二、 实验原理根据液晶分子的空间排列不同,可将液晶分为向列型、近晶型、胆甾型3类。
其中扭曲向列液晶 (Twisted Nematic Liquld Crystal ,TNLC)是液晶屏的主要材料之一,它是一种各向异性的媒质,可以看作是同轴晶体,它的光轴与液晶分子的长轴平行。
TNLC 分子自然状态下扭曲排列,在电场作用下会沿电场方向倾斜,过程中对空间光的强度和相位都会产生调制。
想定量分析液晶屏对光的调制特性,需要将调制过程用数学方法来模拟,液晶盒里的扭曲向列液晶可沿光的透过方向分层,每一层可看作是单轴晶体,它的光学轴与液晶分子的取向平行。
由于分子的扭曲结构,分子在各层间按螺旋方式逐渐旋转,各层单轴晶体的光学轴沿光的传输方向也螺旋式旋转。
如图1.1所示。
图1.1 TNLC 分层模型在空间光调制器液晶屏的使用中,光线依次通过起偏器P 1、液晶分子、检偏器P 2,如图1.2所示。
光路中要求偏振片和液晶屏表面都在x-y 平面上,图中已经分别标出了液晶屏前后表面分子的取向,两者相差90°。
偏振片角度的定义是,逆着光的方向看,1φ为液晶屏前表面分子的方向顺时针到P l 偏振方向的角度,2φ为液晶屏后表面分子的方向逆时针到P 2偏振方向的角度。
偏振光沿z 轴传输,各层分子可以看作具有相同性质的单轴晶体,它的Jones 矩阵表达式与液晶分子的寻常折射率n o 和非常折射率n e ,以及液晶盒的厚度d 和扭曲角α有关。
除此之外,Jones 矩阵还与两个偏振片的转角1φ,2φ有关。
因此光波强度和相位的信息可简单表示为()12,,T T βφφ=;()12,,δδβφφ=,其中()e o d n n βπθλ=-⎡⎤⎣⎦又称为双折射,它其实为隐含电场的量,因为β为非常折射率e n 的函数,非常折射率e n 随液晶分子的倾角θ改变,θ又随外加电压而变化。
图1.2 SLM光路示意图目前主流的液晶显示器组成比较复杂,它主要是由荧光管、导光板、偏光板、滤光板、玻璃基板、配向膜、液晶材料、薄膜式晶体管等构成。
作为空间光调制器来使用时,通常只保留液晶材料和偏振片。
液晶被夹在两个偏振片之间,就能实现显示功能,光线入射面的称为起偏器,出射面的称为检偏器。
实验时通常将这两个偏振片从液晶屏中分离出来,取而代之的是可旋转的偏振片,这样方便调节角度。
在不加电压和加电压的情况下液晶屏的透光原理如图1.3所示。
图1.3 液晶屏的透光原理图中液晶屏两侧的起偏器和检偏器相互平行,自然光透过起偏器后变为线偏振光偏振方向为水平。
右侧V=O,不加电压,液晶分子自然扭曲90°,透过光的偏振方向也旋转90°,与检偏器方向垂直,无光线射出,即为关态。
然而在左侧V≠0,分子沿电场方向排列,对光的偏振方向没有影响,光线经检偏器射出,即为开态。
这样即实现了通过电压控制光线通过的功能。
三、实验仪器用具线偏振氦氖激光器、半波片、空间光调制器,偏振片,功率计等四、实验内容要测量空间光调制器的调制特性,首先需要确定一些必要的参数。
若通过改变光学系统来实现纯相位调制,需要的参数很多,包括液晶的厚度,液晶的双折射随电压的变化情况等。
本实验中,我们测量的是液晶屏的分子扭曲角和两个表面的分子取向。
1. 调整激光器的偏振方向为竖直方向,调整波片和偏振片使光轴与竖直方向,并读数。
确定波片的光轴方向2φ和偏振片1φ的偏振方向。
参照图1.4,沿导轨安装激光器、检偏器、空间光调制器和功率计。
2. 在空间光调制器调试到断电状态,顺时针调试偏振片到光强最大位置记为角度为3φ。
3. 安装半波片,逆时针旋转半波片直到光强最大记波片为4φ。
图1.4 实验系统示意图1. 线偏振氦氖激光器 6.偏振片2. 激光夹持器 7. 偏振片架3. λ/2波片 8. 功率计4. 波片架5. 空间光调制器五、 实验数据处理1、空间光调制器液晶后表面液晶分子取向与竖直方向夹角为(13φφ-)2、空间光调制器液晶前表面液晶分子取向与竖直方向夹角为2(24φφ-)3、液晶自然扭曲角为:(13φφ-)+2(24φφ-)+m π选做:1. 测量激光器的输出功率,激光通过半波片后的光功率,激光通过空间光调制器后的光功率,激光通过偏振片后的最大光功率。
计算半波片,空间光调制器,偏振片的透射率。
2. 思考能否用普通激光器和偏振片代替线偏激光器和半波片?为什么?3. 思考能否用线偏激光器、1/4波片,偏振片来产生各方向的偏振光,有何利弊?实验二 空间光调制器振幅调制实验一、 实验目的1. 了解振幅型空间光调制器的工作原理。
2. 测量SLM 振幅调制模式时的偏振光角度。
3. 观察SLM 振幅调制模式下的成像图案。
二、 实验原理振幅空间光调制器是通过对入射线偏振光进行调制后改变其偏振态,利用入射和出射偏振片的不同获得不同强度的出射偏振光,对光强的调制在光开关,光学信号识别,光学全息中有广泛应用。
在空间光调制器液晶屏的使用中,光线依次通过起偏器P 1、液晶分子、检偏器P 2。
如果偏振器件的透光方向与x 轴夹角为θ,那么在直角坐标系中该偏振器件的Jones 矩阵是:()()()22cos sin 10cos sin sin cos 00sin cos cos sin cos sin cos sin p J R JR θθθθθθθθθθθθθθθθθ-⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎡⎤=⎢⎥⎣⎦(2.1)其中()cos sin sin cos R θθθθθ⎡⎤=⎢⎥-⎣⎦为旋转矩阵。
对于旋光物质,当旋转角度为α时,对应的Jones 矩阵为()()cos sin exp 2sin cos t J j nd ααθπλαα-⎡⎤=-⎢⎥⎣⎦(2.2)其中,n 是介质的折射率,d 是介质厚度,λ为光的波长。
对于液晶这种复杂的双折射旋光介质,其Jones 矩阵的计算比较复杂,根据不同的模型会有不同的表达式,在Kanghua Lu 最早提出的简单模型中,认为液晶分子扭曲90°是均匀变化,在某一固定电场下,分子的倾斜角0不因z 而变化,即不考虑边缘效应。
他给出了液晶层自然状态下的JoneS 矩阵:()sin cos sin 2exp cos sin sin 2j J j j πβγγγγγψβπγγγγγ⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥=-⎢⎥⎛⎫⎛⎫⎢⎥-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2.3) 其中()()1222,,2e o e o d d n n n n πππβψγβλλ⎡⎤⎛⎫=-=-=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦。
当液晶屏加有电场时,液晶分子向电场方向倾斜,它完全是电压r V 的函数。
液晶分子存在一个倾斜的闭值电压c V ,当r V 小于c V 时,θ为O 。
当r V 大于c V 时,θ是r V 的函数。
另定义o V 是θ等于49.6°时的电压,则θ可如下定义10,2tan exp ,2r c r cr c o V V V V V V Vθπ-<⎧⎪⎧⎫⎡-⎤=⎛⎫⎨⎪⎪-->⎢⎥⎨⎬ ⎪⎪⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭⎩(2.4)由于分子的倾斜,改变了液晶的双折射,e n 是θ的函数。
()()()22222cos sin 1e e on n n θθθ=+ (2.5) 所以当有电场存在时,液晶层的Jones 矩阵就是将式(2.3)中e n 用()e n θ来代替。
计算出的偏振片和液晶组成的系统的Jones 矩阵,进一步由复振幅可分别得到系统的强度变化和相位变化。
()()21212sin cos cos sin 2T πγφφγφφγ⎡⎤=-+-⎢⎥⎣⎦(2.6)()()()()()1211212sin sin tan2sin cos cos sin βγγφφδβπγγφφγφφ-+=--+- (2.7)由上式可知,当空间光调制器其他参数保持不变,通过改变1φ和2φ,使相位δ基本保持不变,而强度T 随着液晶屏所加电压的变化而变化,此时空间光调制器为强度调制模式。
三、 实验仪器线偏振氦氖激光器、半波片、空间光调制器,偏振片,功率计等。
图2.1 实验系统示意图1. 线偏振氦氖激光器 6.偏振片2. 激光夹持器 7. 偏振片架3. λ/2波片 8. 功率计4. 波片架5. 空间光调制器四、 实验内容1. 参照图2.1,沿导轨安装实验系统中各个器件,保证各光学器件同轴等高,激光的偏振方向竖直向下。
2.将半波片的角度为3φ度,此时入射激光的偏振方向与液晶前表面液晶分子平行。
旋转偏振片P2使2φ从0°到180°变化,每次间隔10°,每转动一次偏振片,改变空间光调制器输入图像的灰度值,每改变25灰度记录一次功率计读数,填入表2.1。
3.根据以上表格找出光功率随灰度变化改变最大值。
则此时半波片与偏振片的夹角为空间光调制器为强度调制模式。
4.将给定的灰度图案写入空间光调制器,按照图观测激光通过空间光调制器后调制产生的图案。
观测单缝衍射图案,双缝干涉图案,矩孔衍射图案。
1. 线偏振氦氖激光器9.波片架2. 激光夹持器10.空间光调制器3.可调衰减片11.偏振片4.空间滤波器12.偏振片架5.f=100mm 平凸透镜13. f=200mm 平凸透镜6.透镜支架14.透镜支架7.可变光阑8.半波片实验三空间光调制器相位调制模式的参数测量及标定实验一、实验目的1.了解相位型空间光调制器的工作原理。