电机设计第4部分

合集下载

《电机设计》(陈世坤)课后习题答案(期末复习资料).

《电机设计》(陈世坤)课后习题答案(期末复习资料).

电机设计第一章1.电机设计的任务是什么?答:电机设计的任务是根据用户提出的产品规格(功率、电压、转速)与技术要求(效率、参数、温升、机械可靠性),结合技术经济方面国家的方针政策和生产实际情况,运用有关的理论和计算方法,正确处理设计时遇到的各种矛盾,从而设计出性能好、体积小、结构简单、运行可靠、制造和使用维修方便的先进产品。

2.电机设计过程分为哪几个阶段?答:电机设计的过程可分为:①准备阶段:通常包括两方面内容:首先是熟悉国家标准,收集相近电机的产品样本和技术资料,并听取生产和使用单位的意见与要求;然后在国家标准有关规定及分析相应资料的基础上,编制技术任务书或技术建议书。

②电磁设计:本阶段的任务是根据技术任务书的规定,参照生产实践经验,通过计算和方案比较,来确定与所设计电机电磁性能有关的尺寸和数据,选定有关材料,并核算电磁性能。

③结构设计:结构设计的任务是确定电机的机械结构,零部件尺寸,加工要求与材料的规格及性能要求,包括必要的机械计算、通风计算和温升计算。

3.电机设计通常给定的数据有哪些?答:电机设计时通常会给定下列数据:(1)额定功率(2)额定电压(3)相数及相同连接方式(4)额定频率(5)额定转速或同步转速(6)额定功率因数感应电动机通常给定(1)~(5);同步电机通常给定(1)~(6); 直流电机通常给定(1)(2)(5)第二章1.电机常数C A 和利用系数K A 的物理意义是什么?答:C A :大体反映了产生单位计算转矩所消耗的有效材料(铜铝或电工钢)的体积,并在一定程度上反映了结构材料的耗用量。

K A :表示单位体积的有效材料所能产生的计算转矩,它的大小反映了电机有效材料的利用程度。

2.什么是主要尺寸关系式?根据它可以得出什么结论? 答:主要尺寸关系式为:δαAB K K n dp Nm ef 'p '2 6.1p l D =,根据这个关系式得到的重要结论有:①电机的主要尺寸由其计算功率P ˊ和转速n之比n p '或计算转矩T ˊ所决定;②电磁负荷A 和B δ不变时,相同功率的电机,转速较高的,尺寸较小;尺寸相同的电机,转速较高的,则功率较大。

微特电机第四章旋转变压器

微特电机第四章旋转变压器

微特电机第四章旋转变压器1.引言旋转变压器是一种特殊类型的变压器,它采用旋转结构来实现变压变比的调节。

与传统的固定变压器相比,旋转变压器具有更大的灵活性和可调节性,可以适应不同负载条件下的电压需求。

本章将介绍微特电机公司研发的一款旋转变压器,包括其工作原理、结构设计、性能参数以及应用领域等内容。

2.工作原理旋转变压器的工作原理基于电磁感应定律和旋转结构的机械转动。

通过调整转子与固定绕组之间的相对位置,可以改变绕组之间的耦合系数,从而实现变压变比的调节。

当转子与绕组之间没有相对运动时,变压器的变比为1:1,即输入电压等于输出电压。

当转子旋转时,绕组之间的耦合系数发生变化,从而实现不同的变比输出。

3.结构设计微特电机的旋转变压器采用了先进的磁力平衡技术和高强度材料制成的磁芯。

磁芯的设计旨在减小磁场漏磁和铁心损耗,提高变压器的效率和性能。

同时,采用了特殊的绕组结构和绝缘材料,确保了电压输出的稳定性和可靠性。

除此之外,旋转变压器还配备了高精度的角度传感器和控制单元,用于实时监测和调节转子位置,保证变压器的稳定工作。

4.性能参数微特电机的旋转变压器具有以下主要性能参数:-额定功率:根据客户需求可定制,通常范围在1kVA到100kVA之间。

-输入电压范围:根据客户需求可定制,通常范围在220V到660V之间。

-输出电压范围:根据客户需求可定制,通常范围在0V到440V之间。

-效率:高达98%,具有较高的能量转换效率。

-变比调节范围:根据客户需求可定制,通常范围在1:1到1:10之间。

-响应时间:微秒级响应速度,适用于需要快速反应的应用场景。

5.应用领域微特电机的旋转变压器广泛应用于各种工业领域,包括:-变频器和电机驱动系统:用于变频器输出电压的稳定调节。

-电力系统:用于电网电压调节和负载均衡控制。

-物流设备和自动化系统:用于包括输送带、起重机和机器人在内的设备的电压供应和控制。

-光伏发电系统:用于光伏逆变器中的电压调节和能量转换。

电机与运动控制课程设计

电机与运动控制课程设计

电机与运动控制课程设计一、课程目标知识目标:1. 理解电机的基本原理和分类,掌握电机在运动控制中的应用。

2. 学习电机的主要参数,如电压、电流、功率、转速等,并能运用相关公式进行计算。

3. 掌握电机运动控制的基本方法,包括启动、停止、正反转、调速等。

技能目标:1. 能够正确选择和使用电机,进行简单的运动控制电路设计。

2. 学会使用运动控制相关器件,如继电器、接触器、控制器等,完成电机控制电路的搭建。

3. 培养实际操作能力,能够独立完成电机运动控制实验,并对实验结果进行分析。

情感态度价值观目标:1. 培养学生对电机与运动控制技术的好奇心和探索精神,激发学生学习兴趣。

2. 培养学生的团队合作意识,学会在小组合作中共同解决问题,提高沟通与协作能力。

3. 增强学生的环保意识,了解电机在节能减排方面的作用,培养学生的社会责任感。

本课程针对高中年级学生,结合电机与运动控制相关知识,注重理论与实践相结合。

在教学过程中,关注学生特点,充分调动学生的主观能动性,培养其创新思维和实践能力。

通过本课程的学习,使学生能够掌握电机与运动控制的基本知识和技能,为后续相关专业学习打下坚实基础。

同时,注重培养学生的情感态度和价值观,使其成为具有创新精神和责任感的新时代青年。

二、教学内容1. 电机原理及分类:介绍电机的基本工作原理,包括电磁感应定律;讲解直流电机、交流电机、步进电机等常见电机类型及其特点和应用场景。

教材章节:第一章 电机原理与分类2. 电机主要参数:学习电机的主要技术参数,如电压、电流、功率、转速等;掌握相关计算公式和相互之间的关系。

教材章节:第二章 电机的主要技术参数3. 运动控制基本方法:讲解电机启动、停止、正反转、调速等基本控制方法;介绍相应控制器件,如继电器、接触器、控制器等。

教材章节:第三章 电机运动控制基本方法4. 运动控制电路设计:学习运动控制电路的设计原理,包括控制电路的搭建、调试和优化;进行实际操作练习。

电机型号各部分代表的意思(可编辑修改版).

电机型号各部分代表的意思(可编辑修改版).

电机型号含义系列+机座号+极数如:Y132S1-2第一部分汉语拼音字母Y表示异步电动机;第二部分数字表示机座中心高(机座不带底脚时,与机座带底脚时相同);第三部分英文字母为机座长度代号(S-短机座、M-中机座、L-长机座),字母后的数字为铁心长度代号;使用条件环境温度:不超过40℃。

海拔:不超过1000米。

相对湿度:不超过95℅额定电压:380伏。

额定频率:50赫兹。

接法:3千瓦及以下为Y接,4千瓦及以上为Δ接。

工作方式:连续(S1)。

三相异步电动机型号字母含义:J——异步电动机;O——封闭;L——铝线缠组;W——户外;Z——冶金起重;Q——高起动转轮;D——多速;B——防爆;R一绕线式;S——双鼠笼;K一—高速;H——高转差率。

JQO 2-52-4表示为封闭式高起动转矩异少电动机、5号机座、2号铁芯长度、4极。

电动机型号由产品代号,规格代号,特殊环境代号,补充代号等4部分组成。

并按下列顺序排列:[1]-[2]-[3]-[4]1-产品代号2-规格代号3-特殊环境代号4-补充代号产品代号包括类型代号,电动机特点代号,设计序号和励磁代号组成。

类型代号名称代号名称代号“交流”“异” Y{J} “安”全A 封闭型O “阀”门F “绕”线型R “管”道G 隔“爆”型 B 水“泵” B “多”速 D 采“煤”机用C{M}高“起”动转矩Q 装“岩”机用I “高”速K 回“柱”绞车Z 双鼠笼运输机S “通”风机T 高“滑”差H特点代号为表征电机的性能,结构或用途而采用汉语拼音字母。

如B{隔爆型},YB隔爆型异步电动机。

设计序号表示产品设计顺序,对第一次设计产品,不标设计序号。

电动机的规格代号包括机座号或中心高尺寸,功率,转速或极数,电压等级等。

其中机座长度采用国际通用字母表示,S-短机座,M-中机座,L 长机座。

特殊环境代号“高”原用G“船”{海}用H户“外”用W化工防“腐”用F“热”带用T“湿热”带用TH“干热”带用TA注:如同时适用于1个以上的特殊环境时,则按顺序排列。

电机学课程设计报告PPT课件

电机学课程设计报告PPT课件
常闭触点
(a) 外形图
常开触点 (b) 结构
按钮开关的外形和符号
7

构1 符 号
2 3
SB
1 43
SB
按钮帽
复位弹簧 支柱连杆
常闭静触头
2
桥式静触头
4
常开静触头
外壳
SB
动画
名 常闭按钮 称 (停止按钮)
常开按钮 (起动按钮)
复合按钮
8
4.1.3 接触器
用于频繁地接通和断开大电流电路的开关电器。
(a) 外形
用于控制电路流 过的小电流 (无 需加灭弧装置)
属于同一器件的线圈和触点用相同的文字表示
常用的交流接触器有CJ10、CJ12、CJ20和3TB等系列。
接触器技术指标:额定工作电压、电流、触点数目等。
如CJ10系列主触点额定电流5、10、20、40、75、 120A等数种;额定工作电压通常是220V或380V。 11
KM 复合按钮
34
点动时: 按下SB3
电机运转 FR
~ SB1
先断开
SB2 SB3
KM
KM
通电 闭合
后闭合 自锁触点不起作用
35
松开SB3 FR
~ SB1
后闭合
SB2 SB3
KM
KM
断电 断开
先断开
36
松开SB3 电机停转 实现点动 用途:试车、检修以及车床主轴的调整等。
FR
~ SB1
后闭合
SB2 SB3
常用的熔断器有插入式熔断器、螺旋式熔断 器、管式熔断器和有填料式熔断器。 符号 FU
(熔1)断电器灯额、定电电炉流等IF电的阻选性择负

IF > IL

电机电机设计第2版——高等学校教材陈世坤主编

电机电机设计第2版——高等学校教材陈世坤主编

m1 m2
(
N1Kdp1 N2 Kdp2
)2
R2
m1, m2 定转子相数
N1, N2 每相串联匝数 Kdp1, Kdp2 基波绕组系数
4.1 绕组电阻的计算
二、感应电机 2、感应电机转子绕组每相电阻 (2)鼠笼绕组
特点:ⅰ) m2 Z2 是多相绕组,相数等于转子槽数;
Kdp2 1
N2
1 2
4.3 主电抗计算
二、异步电机励磁电抗的计算方法
2、计算 X m
(7)
X
* m
Xm U N
I N1X m U N
EN1 U N
N1 N
FN1 FN
IN1
FN1, N1, EN1 —由定子额定电流产生的基波磁势、基波磁通及所感生电势
( I0 IN1 假想) EN1 I0Zm IN1(rm xm ) Im xm
m1 (2 lef 0
2m
p
NKdp1I
1
ef
)N1Kdp1
0
2m
p
(
NKdp1)2
I
2
lef
ef
4.3 主电抗计算
二、异步电机励磁电抗的计算方法
2、计算 X m
(6)
Xm
m1 2I
2
f
4
f 0
N2 pq
lef
m
4
f
0
(NKdp1)2 p
lef
ef
m
2
m Kd2p1
q ef
主磁路的比磁导
ⅰ)端环电阻 → 导条
端环电阻:
RR
DR w
Z2 AR
RR
w
DR
Z2 AR

电机第四章《电机设计(第2版)——高等学校教材》陈世坤 主编

电机第四章《电机设计(第2版)——高等学校教材》陈世坤 主编

2 2 IB RR I R RR IR 2 RR ( ) RR IB
4.1 绕组电阻的计算
二、感应电机 2、感应电机转子绕组每相电阻 (2)鼠笼绕组
IR 2p 如何求 的关系:每相邻导条电流之间相位差等于槽距电角 Z2 IB
相邻两段端环的电流相位差也等于
ⅰ)端环电阻 → 导条
4.4 漏电抗计算
一、槽漏抗的计算
1、单层整距绕组的槽漏抗 槽高部分( h 1) (2)矩形开口槽单层整距绕组的槽漏抗
2 I 2 IN S
x F s2 h 1
F s2 dx b s dxl 0 ef x d d N x xh s 1 h h 2 1 2I 1 d l N x s2 0 0 ef s 3b s
交流电阻: 绕组通以交流时,由于集肤效应,电阻值较通直流时增大。
Rc K F R
K F 电阻增加系数( K F 1) R 电流电阻
4.1 绕组电阻的计算
一、直流电机
N a lc Ra w Ac (2a ) 2
N a 导体总数 lc 线圈或元件平均半匝长 Ac 导体截面积 2a 并联支路数
IB IR
∴导条电流等于相邻两端环电流之差(∵
很小)
Z IR 2 I B 2 p

IR
IR
IB 2sin

2
IB 2sin源自p 2IB
p

Z2 Z2 Z I RR ( R )2 RR ( 2 )2 RR IB 2 p
4.1 绕组电阻的计算
二、感应电机 2、感应电机转子绕组每相电阻 (1)鼠笼绕组
二、异步电机励磁电抗的计算方法

第四章定子尺寸与电机结构设计

第四章定子尺寸与电机结构设计

第四章定子尺寸与电机结构设计本章主要讨论定子的结构及其材料和压电陶瓷选取,从而根据公式确定定子的尺寸结构,山于在同一种材料中纵向振动的声速与弯曲振动的声速不同,且弯曲振动的声速还与频率有关。

为了保证两种振动模式在高频信号激励下能同时处于共振状态在设讣的过程中也尽量的考虑纵振与弯振的频率兼并问题;在定子尺寸确定之后设计了儿种不同结构的电机。

4.1电机定子部分设计4・1丄纵弯复合模式换能器的设计原理I旳一维结构的纵弯换能器中有两组陶瓷片,一组产生纵振动,一组产生弯曲振动•本文研究的换能器结构如图1所示・1, 3部分为陶瓷片(箭头表示极化方向)o对祚面图4・1纵弯复合换能器的几何示意图2, 4部分为前后盖板,换能器关于中心面对称.产生纵振动和产生弯曲振动的陶瓷片在电端上并联,以便获得较高的激励电压。

弯曲振动方程,细棒弯曲振动的波动方程为:(4-1)空+竺•空=0式中,y为振动位移Q凡•为曲劇径。

E为杨氏模量。

p为振子材料密度。

(1)式的通解为:y = (Achnix+Bshnix+C cos nix+£> sin nix) cos(ax + &), (4-2) 式中m =Je/cQ”;3 = 2兀仁为激励电压频率。

c0= JE/p为纵波速度。

把波动方程的通解应用于压电陶瓷片,由于换能器关于中心对称,可考虑用偶对称振动模式,即振动位移关于中心对称的振动模式,不用奇对称振动模式.奇振动模式的中心为节面,难以激发横向振动.在偶对称振动模式中,只有含chmx 和cosmx的项存在,所以,压电陶瓷片的振动位移yi为(略去时间因子)(4-3))1 = \chtn{x{ + C| cos 加內式中加= 为陶瓷片中纵波波速,因为压电陶瓷存在压电效应,可用1 /话代替杨氏模量,弯曲振动的应变S3为式中Z 为陶瓷片上任意一点到中性面的距离,y 为横向位移。

纵向力相对于中性面产生的弯矩为(4-5)M x = j zT.dS *由压电方程:, 亠企肱+ 2 = g + dg把(4・4)式代入上式,计算等号右边第一项得把上式与(4・1)式比较,即得:(4-12) 5=0打将波动方程通解(4-2)式应用于换能器前盖板,可得盖板振动位移y2为y 2 = A 2chm 2x 2 + B 2shm 2x 2 + C 2 cos m 2x 2 + D 2 sin nt 2x 2 & 】3)式中叫; 5 = 页7为盖板中纵波波速.换能器在陶瓷片和前盖板连 接处的边界条件为弯曲位移连续:即有(4-14) >i 桁4 =力心给出,从而有(4・7)把(4-7)式代入(4-5)式,得:(4-8) (4-9)式中A 为陶瓷片的横截面积・, 陶瓷片为薄片,故有(4・10) dx=0利用(4-10) X 可得:(4-11)(缈21 科 询盖板输出端弯矩为零:(4硼「2今 ox 9 前盖板输出端剪力为零:£2几2(話|A 2=/2 = °・ 式中r 为截面回转半径,Si 和S2分别为陶瓷片和前盖板横截面积,把(4-3)、(4-13) 式相应代入(4-14)〜(4-19)式,可得6个方程,写成矩阵形式有式中Pi = E£用;E = E^m. 7;为截面的二次矩,% =叫川= 1,2由(4_2)式可得弯曲 振动的频率方程为:(4-22)图4・1中3, 4部分弯曲振动的频率方程同右半部分一样.因为换能器关于中 心对称,有,设稼衅部分计算,左半部分尺寸与右半部分相同.激发图4-1中第3部分,可在换能器中产生纵振动.换能器左半部分纵振动 频率方程为(4-23) tgkJ 3tgk 4l A = % / ◎式中処直驱思总能券庖衣独莎週临各鑼弹应相等,即有余类推.右半部分纵 振动频率方程类似(4-23)式燥朝邸较成1,4换成2即可.根据换能器频率方程,可求出换能器各部分尺寸li,l2,h,14,利用(4-22)和(4-23) 式,即可设计换能器在单一模式下的谐振尺寸,但对于复合振动模式,必须使纵振 动和弯曲振动同时匸作在谐振状态.因此要调整换能器尺寸,使两种振动模式在 同一频率下都达弯矩连续: (4-16)爲尹》空1dx[.r 2-()剪力连续: =0.其中 ⑷[企人 q]" = Q4-20)10 1 0 一 ch i -COS M) 0 m 20 m 2 sinq P10 -Pl 0 一讨叫 p 、cos 0 T 2 0-T 2 一邛叫 sinz/j chi* ■ si 叫 -cos 妁 ■ -sin “2 0 0 shu 、 chu 2 sinz/2 -cos 心 ■ 0 0 (4-21) H =o到谐振.由于纵振动频率高,弯曲振动频率较低,可使纵振动工作在基频模式,弯曲振动工作在泛频模式.(4-22)和(4-23)式是超越方程,很难求得解读解,必须借助计算机用数值法求解•我们设计了一个纵弯复合振动换能器,其纵振动为基频模式,弯曲振动为第二偶振动模式为实现电机的运动机理和提高电机的输出性能,电机的设讣应满足以下儿个方面的要求:a.选择合适阶次的纵、弯振模态。

电机设计精华

电机设计精华

电机设计第一篇旋转电机设计 (3)第一章电机设计概述 (3)§1-1 电机制造工业的近况与发展趋势 (3)§1-2 电机设计的任务与过程 (4)§1-3 1-4 国家标准国际标准 (5)第二章电机的主要参数之间的关系 (6)§2-1 电机的主要参数之间的关系式 (6)§2-2 电机中的几何相似定律概述 (12)§2-3 电磁负荷的选择 (14)§2-4 电机主要尺寸比的选择及确定主要尺寸的一般方法 (17)§2-5 系列电机及其设计特点 (20)第三章磁路计算 (21)§3-1 概述 (21)§3-2 空气隙磁压降的计算 (23)§3-3 齿部磁压降的计算 (30)§3-4 轭部磁压降的计算 (34)第四章参数计算 (39)§4-1 绕组电阻的计算 (40)§4-2 绕组电抗的一般计算方法 (43)§4-3 主电抗计算 (44)§4-4 漏电抗计算 (47)§4-5 漏抗标么值 ............................................................................................... 错误!未定义书签。

§4-6 集肤效应对电机参数的影响.................................................................... 错误!未定义书签。

§4-7 饱和对电机参数的影响 ........................................................................... 错误!未定义书签。

§4-8 斜槽漏抗计算 ........................................................................................... 错误!未定义书签。

第四章 三相感应电动机

第四章 三相感应电动机

• 短距角:
y1 1800

短距线圈的感应电势:Ey
2En1 cos 2
4.44 fNy1ky1

短距系数:
k y1
短距线圈电势= 2En1 cos
整距线圈电势
2En1
2
cos
2
sin( y1 900 )
• 短距系数小于1,故短距线圈感应电势有所损失;但短距 可以削弱高次谐波.
线圈组的感应电势
基本步骤:
1. 分极分相: • 将总槽数按给定的极数均匀分开(N、S极相邻分布)并标 记假设的感应电势方向。 • 将每个极域的槽数按三相均匀分开。三相在空间错开120电 角度。
每极每相槽数 q Z 2 pm
q Z 2 pm
连线圈和线圈组
2. 连线圈和线圈组: • 将一对极域内属于同一相的某两个线圈边连成一个线 圈,共有q个线圈。 • 将一对极域内属于同一相的q个线圈连成一个线圈组; (共有多少个线圈组?) • 以上连接应符合电势相加原则。
旋转磁场是交流电机工作的基础。在交流电机理论中有两种旋 转磁场: (1) 机械旋转磁场
通过原动机拖动磁极旋转可以产生机械旋转磁场; (2) 电气旋转磁场
三相对称的交流绕组通入三相对称的交流电流时会在电机 的气隙空间产生电气旋转磁场; 交流绕组处于旋转磁场中,并切割旋转磁场,产生感应电势。
旋转磁场
机械旋转磁场
• 每对极下属于同一相的q个线圈,构成一个线圈组。图中q=3 • 每个线圈的感应电势由两个线圈边的感应电势矢量相加而成。 • 整个线圈组的感应电势由所有属于该组的导体电势矢量相加。
线圈组的感应电势
• 矢量式
E yz E y1 E y2 E y3
• 分布系数:

电机设计课后答案(陈世坤第二版)

电机设计课后答案(陈世坤第二版)

电机设计复习重点和课后答案(世坤第二版)第二章1电机的主要尺寸是指什么?[P9]它们由什么决定?[P12]答:电机的主要尺寸是指电枢铁心的直径和长度。

对于直流电机,电枢直径是指转子外径;对于一般结构的感应电机和同步电机,则是指定子径。

它们由计算功率P ’决定。

2电机的主要尺寸间的关系是什么?[P10]根据这个关系式能得出哪些重要结论?[P12]答:电机的主要尺寸间的关系是D 2l ef n/P ’=6.1/(αp ’K Nm K dp AB δ).根据这个关系式得到的重要结论有:①电机的主要尺寸由其计算功率P ’和转速n 之比P ’/n 或计算转矩T所决定;②电磁负荷A 和B δ不变时,相同功率的电机,转速较高的,尺寸较小;尺寸相同的电机,转速较高的,则功率较大。

这说明提高转速可减小电机的体积和重量。

③转速一定时,若直径不变而采取不同长度,则可得到不同功率的电机。

④由于极弧系数αp ’、 K Nm 与K d 的数值一般变化不大,因此电机的主要尺寸在很大程度上和选用的电磁负荷A 和B δ有关。

电磁负荷选得越高电机的尺寸就越小。

第三章3磁路计算的目的?[P23]答:磁路计算的目的在于确定产生主磁场所必需的磁化力或励磁磁动势,并进而计算励磁电流以与电机的空载特性。

通过磁路计算还可以校核电机各部分磁通密度选择是否适宜。

4磁路计算所依据的基本原理?[P23] 答:磁路计算所依据的基本原理是安培环路定理⎰l d H =∑I 。

积分路径沿着磁场强度矢量取向(磁力线),则⎰=dl H ∑I 。

等式左边为磁场H 在dl 方向上的线积分;所选择的闭合回路一般通过磁极的中心线,等式右边为回路包围的全电流,即等于每对极的励磁磁势。

5电机的磁路可分为几段进行?[P23]为什么气隙磁压降占整个回路磁压降很大的比例?答:电机的磁路可分为如下各段:1)空气隙;2)定子齿(或磁极);3)转子齿(或磁极);4)定子轭;5)转子轭。

电机设计流程

电机设计流程

电机设计流程电机设计是一个复杂而又精密的过程,需要经过多个步骤和环节才能完成一个稳定可靠的产品。

下面将详细介绍电机设计的流程。

首先,电机设计的第一步是需求分析。

在这一阶段,设计师需要与客户充分沟通,了解客户对电机性能、尺寸、成本等方面的具体要求。

同时,也需要对电机的使用环境和工作条件进行深入分析,为后续的设计工作奠定基础。

第二步是电机设计的理论分析。

在这一阶段,设计师需要运用电机设计的相关理论知识,对电机的结构、磁路、绕组、散热等方面进行深入研究和分析,以确保设计方案的科学性和可行性。

接下来是电机设计的参数计算。

在这一阶段,设计师需要根据客户的需求和电机的工作条件,对电机的参数进行精确计算,包括磁场强度、磁通量、电磁力、转矩、效率等方面的参数,以保证电机的性能达到设计要求。

然后是电机设计的结构设计。

在这一阶段,设计师需要根据参数计算的结果,设计电机的具体结构,包括定子、转子、绕组、轴承、外壳等部件的形状、尺寸、材料等方面的设计,以确保电机的结构稳定可靠。

接着是电机设计的仿真分析。

在这一阶段,设计师需要利用专业的仿真软件,对电机的结构和性能进行仿真分析,以验证设计方案的有效性和合理性,同时也可以通过仿真分析找出设计中的不足和问题,并及时进行调整和改进。

最后是电机设计的样机制造和测试。

在这一阶段,设计师需要根据最终的设计方案,制造电机的样机,并进行严格的测试和验证,确保电机的性能和可靠性达到设计要求,同时也可以通过测试结果对设计方案进行最终的确认和修正。

总结来说,电机设计是一个系统工程,需要设计师在需求分析、理论分析、参数计算、结构设计、仿真分析、样机制造和测试等多个环节中进行全面而深入的工作,才能最终完成一个稳定可靠的电机产品。

希望以上内容对电机设计的流程有所帮助。

电机拖动课程设计直流电动机调速系统设计

电机拖动课程设计直流电动机调速系统设计

直流电动机调速系统设计直流电动机直流电机是生产和使用直流电能的机电能量转换机械;直流电动机是将直流电能转换为机械能的旋转机械;它与交流电动机如三相异步电动机相比,虽然因结构比较复杂、生产成本较高、故障较多等,目前已不如交流电动机应用普遍,但由于它具有优良的调速性能和较大的启动转矩,得到广泛应用;本节仅就直流电动机的结构与工作原理、直流电动机的分类及在印刷设备中的应用、直流电动机的启动与调速做一简单介绍;下图为直流电动机的结构原理图,图中的N和S是一对固定不动的磁极,用以产生所需要的磁场;容量较大一些的电机,磁场都是由直流励磁电流通过绕在磁极铁心上的励磁绕组产生;为了清晰,图中只画出了磁极的铁心,没有画出励磁绕组;在N极和S极之间有一个可以绕轴旋转的绕组;直流电机这部分称为电枢,而实际电机的电枢绕组嵌在铁心槽内,电枢绕组的电流称为电枢电流;线圈两端分别与两个彼此绝缘而且与线圈同轴旋转的铜片连接,铜片上有各压着一个固定不动的电刷;在直流电动机中,为了产生方向始终如一的电磁转矩,外部电路中的直流电流必须改变成电机内部的交流电流,这一过程称为电流的换向;换向的铜片称为换向片;互相绝缘的换向片组合的总体称为换向器;图1:直流电动机原理图一、直流电动机的结构与工作原理直流电动机的结构直流电动机主要由磁极、电枢、换向器三部分组成;1磁极;磁极是电动机中产生磁场的装置,如图2所示;它分成极心1和极掌2两部分;极心上放置励磁绕组3,极掌的作用是使电动机空气隙中磁感应强度的分布最为合适,并用来挡住励磁绕组;磁极是用钢片叠成的,固定在机座4即电机外壳上,机座也是磁路的一部分;机座常用铸钢制成;图2直流电动机的磁极及磁路1-极心 2-极掌 3-励磁绕组 4-机座2电枢;电枢是电动机中产生感应电动势的部分;直流电动机的电枢是旋转的,电枢铁心呈圆柱状,由硅钢片组成,表面冲有槽,槽中放有电枢绕组;3换向器整流子;换向器是直流电动机的一种特殊装置,其外形如图3所示,主要由许多换向片组成,每两个相邻的换向片中间是绝缘片;在换向器的表面用弹簧压着固定的电刷,使转动的电枢绕组得以同外电路联结;换向器是直流电动机的结构特征,易于识别;图3:换向器1—换向片 2—连接部分图4 直流电机装配结构图图5 直流电机纵向剖视图1—换向器 2—电刷装置 3—机座 4—主磁极 5—换向极6—端盖 7—风扇 8—电枢绕组 9—电枢铁心直流电动机的工作原理U + -ABNSII FFCabd图6 直流电动机原理图图6是直流电动机的示意图;若在A、B之间外加一个直流电压,A接电源正极,B接负极,则线圈中有电流流过;当线圈处于图5所示位置时,有效边ab在N 极下,cd在s极上,两边中的电流方向为a→b,c→d;由安培定律可知,ab边和cd 边所受的电磁力为:F=BIL式中,I为导线中的电流,单位为安A;根据左手定则知,两个F的方向相反,如图6所示,形成电磁转矩,驱使线圈逆时针方向旋转;当线圈转过180°时,cd边处于N极下,ab边处于S极上;由于换向器的作用,使两有效边中电流的方向与原来相反,变为d→c、b→a,这就使得两极面下的有效边中电流的方向保持不变,因而其受力方向、电磁转矩方向都不变;由此可见,正是由于直流电动机采用了换向器结构,使电枢线圈中受到的电磁转矩保持不变,在这个电磁转矩作用下使电枢按逆时针方向旋转;这时电动机可作为原动机带动生产机械旋转,即由电动机向机械负载输出机械功率;在直流电动机中,除了必须给电枢绕组外接直流电源外,还要给励磁绕组通以直流电流用以建立磁场;电枢绕组和励磁绕组可以用两个电源单独供电,也可以由一个公共电源供电;按励磁方式的不同,直流电动机可以分为他励、并励、串励和复励等形式;由于励磁方式不同,它们的特性也不用;他励电动机的励磁绕组和电枢绕组分别由两个电源供电,如图7所示;他励电动机由于采用单独的励磁电源,设备较复杂;但这种电动机调速范围很宽,多用于主机拖动中;图7 他励电动机二、 他励直流电动机的调速与交流电动机相比,直流电动机具有较好的调速性能,它能在宽广的范围内平滑而经济的调速,因此多用于调速要求较高的场合;根据直流电动机调速公式n=ψ+-Ce Rpa Ra Ia U )(可见,当电枢电流不变时即负载不变,只要在电枢电压U 、电枢电路附加电阻和每极磁通ф三个参数中,任意改变一个,都能引起转速的变化;因此,他励直流电动机可以有三种调速方法;为了评价各种调速方法的优缺点,对对调速方法提出了一定的技术经济指标,通常称为调速指标;下面下面对调速指标做一简要说明;调速指标1调速范围调速范围是只指电动机在额定负载下调素时,其最高转速与最低转速之比,用D 表示,即 D=m in m axn n不同的生产机械对对调速范围的要求不同,如车床D=20~100,龙门刨床D=10~40,扎钢机D=~3等;电动机最高转速nmax 受电动机的换向及机械强度限制,最低转速相对稳定即静差率要求的限制;2静差率调速的相对稳定性静差率或转速变化率是指电动机在一条机械特性上额定负载时的转速降落△n 与该机械特性的理想空载转速n0之比,用表示,即σ=0n n∆=00n n n -式中,n 为额定负载转矩Tem=TL 时的转速图8从上式可以看出,在△n相同时,机械特性越“硬”,额定负载时转速降越小,静差率σ越小,转速的相对稳定性越好,负载波动时,转速变化也越小;图3-1中机械特性1比机械特性2“硬”;静差率除了与机械特性硬度有关外,还与理想空载转速n0成反比;对于同样“硬度”的特性,如图3-2中特性1和特性3,虽然转速将相同,但其静差率却不同;为了保证转速的相对稳定性,常要求静差率应不大于某一允许值允许值;图9调速范围D与静差率σ两项性能指标是相互制约的,当采用同一种方法调速时,静差率要求较低时,则可以得到较低的调速范围;反之,静差率要求较高时,则调速范围小;如果静差率要求一定时,采用不同的调速方法,其调速范围不同,如果改变电枢电压调速比电枢串电阻调速的调速范围大;调速范围与静差率是相互制约的,因此需要调速生产机械,必须同时给出静差率与调速范围这两项指标,以便选择适当的调速方法;3调速的平滑性调速的平滑性是指相邻两级转速的接近程度,用平滑系数ψ表示,即Ψ=1 i inn平滑系数Ψ越接近1,说明调速的平滑性越好;如果转速连续可调,其级数趋于无穷多,称为无级调速,Ψ=1,其平滑性最好;调速不连续,级数有限,称为有级调速;4调速的经济性经济性包含两方面的内容,一是指调速所需的设备和调速过程中的能量损耗,另一方面是指电动机调速时能否得到充分的利用;一台电动机当采用不同的调速方法时,电动机容许输出的功率和转矩随转速变化的规律是不同的,但电动机实际输出的功率和转矩是有负载需要所决定的,而不同的负载,其所需要的功率和转矩随转速的变化的规律也是不同的,因此在选择调速方法时,既要满足伏在要求,又要尽可能是电动机得到充分利用;经分析可知,电枢回路串电阻调速以及降低电枢电压调速适用于恒转矩负载的调速,而若此调速适用于恒功率负载的调速;电枢串电阻调速他励直流电动机拖动负载运行时,保持电源电压及励磁电流为额定值不变,在电枢回路中串入不同阻值的电阻,电动机将运行于不同的转速,如图3—3所示,图中的负载为恒转矩负载;从图10可以看到,当电枢回路串入电阻R时,电动机的机械特性的斜率将增大,电动机和负载的机械特性的交点将下移,即电动机稳定运行转速降低;nnT L T em a +R 1图10电枢串电阻调速机械特性如图10中传入的电阻2R >1R ,交点2A 的转速2n 低于交点1A 的转速1n ,它们都比原来没有外串电阻的交点A 的转速n 低;电枢回路串电阻调速方法的优点是设备简单,调节方便,缺点是调速范围小,电枢回路串入电阻后电动机的机械特性变“软”,使负载变动时电动机产生较大的转速变化,即转速稳定性差,而且调速效率较低改变电枢电源电压调速他励直流电动机的电枢回路不串接电阻,由一可调节的直流电源向电枢供电,最高电压不应超过额定电压;励磁绕组由另一电源供电,一般包保持励磁磁通为额定值;电枢电压不同时,电动机拖动负载将运行于不同的转速上从图11中可以看出,当电枢电源电压为额定值时,电动机和负载的机械特性的交点为A,转速为n ;电压降到1U 后,交点为1A ,转速为`1n ;电压为2U ,交点为2A ,转速为2n ;电压为3U ,交点为3A ,转速为3n ;电枢电源电压越低,转速也越低;同样,改变点数电源电压调速方法的范围也只能在额定转速与零转速之间调节;改变电枢电源电压调速时,电动机机械特性的“硬度”不变,因此,集市电动机在低速运行时,转速随附在变动而变化的幅度较小,即转速稳定性好;当电枢电源电压连续调节时,转速变化也是连续的,所以这种调速称为无级调速;n0nn nU1U23U NT L T em 图11改变电枢电源电压调速方法的有电视调速的平滑性好,即可实现无级调速,调速效率高,转速稳定性好,缺点是所需的可调电源设备投资较高;这种调速方法在直流电力拖动系统中被广泛使用;弱磁调速励直流电机电枢电流电压不变,电枢回路也不串接电阻,在电动机拖动负载转矩不很大小于额定转矩时,减少直流电动机的励磁磁通,可使电动机的转速提高;他励直流电动机带恒转矩负载时弱磁调速,如图12所示;从图12中可以看出,当励磁磁通为额定值ΦN时,电动机和负载的机械特性的交点为A,转速为n:励磁磁通减少为Φ2时,理想空载转速增大,同时机械特性斜率也变大,交点为A1,转速为n1;励磁电流减少为Φ1,交点为A2,转速为n2;弱磁调速的范围是在额定转速与电动机的所允许最高转速之间进行调节,至于电动机所允许最高转速值是受换向与机械强度所限制,一般约为1.2m左右,特殊设计的调速电动机,可达3 nN或更高;弱磁调速的优点是设备简单,调节方便,运行效率也较高,适用于恒功率负载,缺点是励磁过弱时,机械特性的斜率大,转速稳定性差,拖动恒转矩负载时,可能会使电枢电流过大;在实际的电力拖动系统中可以将几种调速方法结合起来,这样,可以得到较宽的调速范围,电动机可以在调速范围之内任何转速上运行,而且调速时的损耗较小,运行效率较高,能很好的满足各种生产机械对调速的要求;n o2n o1n oT L T em图12弱磁调速机械特性三、课程设计内容第四章课程设计内容一台他励直流电动机,参数如下:P N=6KWU aN=200VI aN=42An N=1500r/minR L=Ω1. 用其拖动通风机负载运行,若采用电枢串电阻调速时,要使转速降至200r/min,试设计电枢电路中的调速电阻;2. 用其拖动恒转矩负载运行,负载转矩等于电动机的额定转矩,采用改变电枢电压调速时,要使转速降至1000r/min,试设计电枢电压值;3. 用其拖动恒功率负载运行,采用改变励磁电流调速,要使转速增至1800r/min,试设计CeΦ的值;内容解析:1.采用电枢串电阻调速:电动机的电枢电阻Ra=U aN - P N I aN/ I aN =200-6000/42/42Ω=Ω在额定状态运行时E= U aN -R a I aN =×42V=CeΦ=E/ n N =1500=C TΦ=60CeΦ/2π=60/2××=T N=60 P N /2πn N =60/2××6000/=. m由于通风机负载的转矩与转速的平方成反比,故n=1200r/min时的转矩为T=n/ n N2T N=1200/1500 2×n0= U aN/ CeΦ=200/min=2100r/min∆n= n0-n=2100-1500r/min =600r/min由于∆n= Ra +RrT/ C T CeΦ2由此求得Rr=∆n CT CeΦ2/T- Ra =600××采用电枢电压调速:由上题求得:Ra=ΩCeΦ=C TΦ=T N =电枢电压减小后∆n=Ra T N / C T CeΦ2=××r/min=minn0=n+∆n=1000+r/min=min由此求得Ua= CeΦn0=×=3.采用改变励磁电流调速由上求得R a=ΩT N=由于恒功率负载的转矩与转速成正比关系,故忽略空载转矩时,调速后的电磁转矩为T= n N T N /n=1500×= 1800=200/ CeΦ×C T CeΦ2得CeΦ=或结论三种调速方法各有优缺点,改变电枢电阻调速的缺点较多,所以只适用于调速范围不大,调速时间不长的小容量电动机中;改变电枢电压调速是一种性能优越的调速方法,被广泛应用于对调速性能要求较高的电力拖动系统中;改变励磁电流调速通常与改变电枢电压同时应用于对调速要求很高的电力拖动系统中,来扩大调速范围和实现双向调速;对容量较大的直流电动机,通常采用降电压起动;即由单独的可调压直流电源对电机电枢供电,控制电源电压既可使电机平滑起动,又能实现调速;此种方法电源设备比较复杂;本设计采用增加电枢电阻启动非常简单,设备轻便,广泛应用于各种中小型直流电动机中;设计体会经过一周的奋战,课程设计完成了,在没有做课程设计之前觉得课程设计只是对这个学科所学知识的总结,但通过这次课程设计发现自己的看法片面;课程设计不仅是对所学知识的一种检验,而且也是对自己能力的提高;通过课程设计,让我更加明白学习是一个长期的积累过程,经后的工作、生活中应该不段的学习,努力提高知识和综合能力;设计过程中,我查阅了大量的有关资料,并与同学交流,学到了不少知识,也经历了不少艰辛,但收获还是很多的;在设计中培养了我独立工作的能力,树立了对自己工作能力的信心;让我充分体会到在创造过程中探索的艰辛和成功的喜悦;经过对这些资料的整理、理解和消化,使我对直流电机的调速尤其是对他励直流电动机的串电阻调速有了更深一层的理解;这次课程设计也许会又很多不足的地方,希望老师多多批评,我也会在以后的日子里不断学习提高自己动手的能力,使以后的设计会更好,也使自己得到更全面的提高参考文献1.唐介. 电机与拖动. 北京:高等教育出版社.2.唐介. 控制微电机. 北京:高等教育出版社.3.周绍英.电机与拖动.中国广播电视大学出版社1995年出版4.李海发. 电机学.科学出版社2001年出版5.刘起新. 电机与拖动基础. 中国电力出版社2005年出版。

《电机设计》(陈世坤)课后习题答案(期末复习资料).pdf

《电机设计》(陈世坤)课后习题答案(期末复习资料).pdf

电机设计第一章1.电机设计的任务是什么?答:电机设计的任务是根据用户提出的产品规格(功率、电压、转速)与技术要求(效率、参数、温升、机械可靠性),结合技术经济方面国家的方针政策和生产实际情况,运用有关的理论和计算方法,正确处理设计时遇到的各种矛盾,从而设计出性能好、体积小、结构简单、运行可靠、制造和使用维修方便的先进产品。

2.电机设计过程分为哪几个阶段?答:电机设计的过程可分为:①准备阶段:通常包括两方面内容:首先是熟悉国家标准,收集相近电机的产品样本和技术资料,并听取生产和使用单位的意见与要求;然后在国家标准有关规定及分析相应资料的基础上,编制技术任务书或技术建议书。

②电磁设计:本阶段的任务是根据技术任务书的规定,参照生产实践经验,通过计算和方案比较,来确定与所设计电机电磁性能有关的尺寸和数据,选定有关材料,并核算电磁性能。

③结构设计:结构设计的任务是确定电机的机械结构,零部件尺寸,加工要求与材料的规格及性能要求,包括必要的机械计算、通风计算和温升计算。

3.电机设计通常给定的数据有哪些?答:电机设计时通常会给定下列数据:(1)额定功率(2)额定电压(3)相数及相同连接方式(4)额定频率(5)额定转速或同步转速(6)额定功率因数感应电动机通常给定(1)~(5);同步电机通常给定(1)~(6); 直流电机通常给定(1)(2)(5)第二章1.电机常数C A 和利用系数K A 的物理意义是什么?答:C A :大体反映了产生单位计算转矩所消耗的有效材料(铜铝或电工钢)的体积,并在一定程度上反映了结构材料的耗用量。

K A :表示单位体积的有效材料所能产生的计算转矩,它的大小反映了电机有效材料的利用程度。

2.什么是主要尺寸关系式?根据它可以得出什么结论? 答:主要尺寸关系式为:δαAB K K n dp Nm ef 'p '2 6.1p l D =,根据这个关系式得到的重要结论有:①电机的主要尺寸由其计算功率P ˊ和转速n之比n p '或计算转矩T ˊ所决定;②电磁负荷A 和B δ不变时,相同功率的电机,转速较高的,尺寸较小;尺寸相同的电机,转速较高的,则功率较大。

电机设计流程

电机设计流程

电机设计流程电机设计是一个复杂而又精密的工程,需要经过一系列的流程来完成。

在电机设计的过程中,需要考虑到各种因素,包括功率、效率、尺寸、成本等。

下面将介绍电机设计的一般流程,以供参考。

首先,电机设计的第一步是确定需求和规格。

在这一阶段,需要明确电机的使用环境、工作条件、功率需求、效率要求等。

这些因素将直接影响到电机的设计方案和参数选择。

其次,进行电机的设计方案选择。

在确定了需求和规格之后,需要根据实际情况选择合适的设计方案。

这包括电机的类型选择(直流电机、交流电机、步进电机等)、结构形式(内置式、外置式等)、工作原理(感应电机、永磁电机等)等。

接下来,进行电机的参数计算和优化。

在确定了设计方案之后,需要进行电机参数的计算和优化。

这包括电机的电磁设计(磁路设计、绕组设计等)、热设计(散热设计、温升计算等)、机械设计(轴承选型、转子设计等)等方面。

然后,进行电机的样机制作和测试。

在完成了电机的设计和参数优化之后,需要进行样机的制作和测试。

通过样机测试,可以验证电机设计的合理性和可行性,同时也可以为后续的生产和应用提供参考。

最后,进行电机的生产和应用。

在完成了样机测试之后,需要进行电机的批量生产和应用。

在生产过程中,需要严格控制质量,确保电机的稳定性和可靠性。

在应用过程中,需要根据实际情况进行调试和优化,以确保电机能够达到预期的效果。

总之,电机设计是一个系统工程,需要经过多个环节的精心设计和严格控制。

只有在每个环节都做到位,才能设计出性能优良、稳定可靠的电机产品。

希望本文介绍的电机设计流程对您有所帮助,谢谢阅读!。

机电一体化系统设计第4章伺服系统设计1

机电一体化系统设计第4章伺服系统设计1
由上式知,直流伺服电机的控制方式如下: (1)调压调速(变电枢电压,恒转矩调速) (2)调磁调速(变励磁电流,恒功率调速) (3)改变电枢回路电阻调速
常用的是前面2种调速方式。
晶闸管的结构与符号
晶闸管是具有三个PN 结的四层结构, 其外形、 结构及符号如图。


A



G
K
(a) 符号
A 阳极

二、步进电动机及其控制
1、工作原理:
当第一个脉冲通入A相时,磁通企图沿着磁阻最小的 路径闭合,在此磁场力的作用下,转子的1、3齿要和A 级对齐。当下一个脉冲通入B相时,磁通同样要按磁阻最 小的路径闭合,即2、4齿要和B级对齐,则转子就顺逆 时针方向转动一定的角度。
三、步进电动机及其控制
若通电脉冲的次序为A、C、B、A…,则不 难推出,转子将以顺时针方向一步步地旋转。这 样,用不同的脉冲通入次序方式就可以实观对步 进电动机的控制。
B
W 2 sin
W
2
由于θ值很小,条纹近似与栅线的方向 垂直,故称为横向莫尔条纹。
横向莫尔条纹重要特性: ①莫尔条纹运动与光栅运动具有对应关系 ②莫尔条纹具有位移放大作用 ③莫尔条纹具有平均光栅误差作用
原理图1
退出
4.2 伺服系统执行元件及其控制
一、执行元件类型及特点 二、步进电机及其控制 三、伺服电机及其控制
(1) 原理: 励磁绕组WF接到电压为的交流电网上,控制
绕组接到控制电压上,当有控制信号输入时,两 相绕组便产生旋转磁场。该磁场与转子中的感应 电流相互作用产生转矩,使转子跟着旋转磁场以 一定的转差率转动起来,其旋转速度为
n 6f( 0 1 s )p n 0 ( 1 s )

电机设计课程设计

电机设计课程设计

第三章:三相异步电动机设计已 知:发电机输出功率:P N =6.1KW ,效率为90.9%,电动机输出功率:P N =6.1/87%=7.01KW根据已经设计的发电机,可选择Y132M-4作为它的原动机拖动发电。

Y132-M4异步电动机设计及磁路计算已知数据:输出功率 kw p 5.71=额定电压 V U 3801=相数 3=m频率 HZ f 50=极数 2=pB 级绝缘,连续运行(一)额定数据和主要尺寸:1. 额定功率:KW P n 5.7=2. 额定电压:V U U N N 380==Φ (∆接)3. 功电流:A A mU P I N N kW 58.63803105.73=⨯⨯==Φ 4. 效率:87.0'=η5. 功率因素:85.0cos '=ϕ6. 极对数:2=p7. 定转子槽数每相每极槽数取整数31=q则363232211=⨯⨯⨯==mpq Z322=Z 并采用斜肩平底槽8. 定转子每极槽数 9436211===p Z Z p 8432222===p Z Z p9.确定电机电机主要尺寸主要尺寸来确定l D i 和ef l927.0931.02013.05.7ln 0108.0931.0013.0ln 0108.0'=+⨯-=+-=p P K N E计算功率KWP K P NE 4.985.087.0105.7927.0cos 3''''=⨯⨯⨯==ϕη初选68.0'=p a ,095.1'Nm K ,96.0'1=dp K 可取m A A 25600'=,取T B 67.0'=δ,假定min 1440'r n =。

33'''''''00324.01440104.967.025600196.0095.168.01.611.61m np B A K K a V dp Nm p =⨯∙⨯∙⨯⨯=∙∙=δ取5.1=λ则m m V p D il 141.000324.05.14233'=⨯⨯=πλπ按定子内外径比求出定子冲片外径m D D D D i i 2203.064.0141.0/11'1=='= 取m D 22.01= m D D D D i i 141.064.0/22.0)(111==⨯=铁心的有效长度:m D V l i ef 163.0141.000324.0221===取铁心长m l i 160.0=10.气隙的确定 mm l D i i 3331104.010)160.0141.074.0(3.010)74.0(3.0---⨯≈⨯⨯+⨯=⨯+=δ于是铁心有效长度m m l l i ef 161.0)0004.02160.0(2=⨯+=+=δ转子外径m m D D i 140.0)0004.02141.0(212=⨯-=-=δ转子内径先按转轴直径:m D i 048.02=11.极距 m p D i 111.04141.021=⨯==ππτ12.定子齿距 m Z D t i 0123.036141.0111=⨯==ππ 转子齿距 m Z D t 0161.032140.0222=⨯==ππ 13.定子绕组采用单层绕组,交叉式,节距1-9,2-10,11-1214.为了削弱齿谐波磁场的影响,转子采用斜槽,一般斜一个定子齿距1t ,于是转子斜槽宽m b sk 0130.0=15.设计定子绕组并联支路11=a .每槽导体数321=s N16.每相串联匝数 38413363211111=⨯⨯==Φa m Z N N s 每相串联匝数 1922384211===ΦN N 17.绕组线规设计 初选定子电密2'10.4mm A J =,计算导线并绕根数和每根导线截面积的乘积。

电机设计

电机设计

电机设计电机设计电机设计第一章电机设计概述 (5)§1-1 电机制造工业的近况与发展趋势 (5)§1-2 电机设计的任务与过程 (6)§1-3 1-4 国家标准国际标准 (7)第二章电机的主要参数之间的关系8§2-1 电机的主要参数之间的关系式 (8)§2-2 电机中的几何相似定律概述 (14)§2-3 电磁负荷的选择 (16)§2-4 电机主要尺寸比的选择及确定主要尺寸的一般方法 (19)§2-5 系列电机及其设计特点 (22)第三章磁路计算24§3-1 概述 (24)§3-2 空气隙磁压降的计算 (25)§3-3 齿部磁压降的计算 (33)§3-4 轭部磁压降的计算 (37)第四章参数计算42§4-1 绕组电阻的计算 (43)§4-2 绕组电抗的一般计算方法 (46)§4-3 主电抗计算 (47)§4-4 漏电抗计算 (51)§4-5 漏抗标么值 (64)§4-6 集肤效应对电机参数的影响 (66)§4-7 饱和对电机参数的影响 (67)§4-8 斜槽漏抗计算 (69)第五章损耗与效率 (71)§5-1 概述 (71)§5-2 基本铁耗 (72)§5-3 空载时铁心中的附加损耗 (74)§5-4 电气损耗 (79)§5-5 负载时的附加损耗 (80)§5-6 机械损耗 (87)§5-7 效率 (89)第六章电机的冷却 (90)§6-1 电机的冷却方式 (90)§6-3 风扇 (91)§6-4 径向通风系统中转子上其他风压元件参数的近似计算法 (93)第七章发热计算 (93)§7-1 电机允许的温升限度 (93)§7-2 传热的基本定律 (95)§7-3 电机稳定温升的计算 (99)第八章结构设计和机械计算104§8-1 电机的基本结构型式(自学) (104)§8-2 结构设计的基本内容、原则和方法. 105 第十章感应电机的电磁设计 (106)§10-1 概述 (106)§10-2 主要尺寸与气隙的确定 (108)§10-3 定子绕组与铁心的设计 (111)§10-4 转子绕组与铁心的设计 (115)§10-5 工作性能的计算 (118)§10-6 起动性能的计算 (120)第十一章电子计算机在电机设计计算中的应用 (125)§11-1 概述 (125)§11-2 曲线和图表的数学处理方法之一——插值法 (126)§11-3 曲线和图表的数学处理方法之二——公式法 (128)§11-4 机辅设计中常用的数值计算方法. 129 §11-5 设计分析程序 (129)§11-6 设计综合程序 (130)第一篇旋转电机设计第一章电机设计概述§1-1 电机制造工业的近况与发展趋势一、单机容量迅速增长1.为什么单机容量要增加?从制造角度看,功率大,材料越省,效率高,电机材料选用率提高;从运行角度看,功率大,机组数目少,运行人员少,维修费用减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4部分 同步电机设计
4.1 小型三相同步发电机设计 4.2 永磁同步发电机设计 4.3 异步起动永磁同步电动机设计
4.1 小型三相同步发电机设计
4.1.1 小型三相同步发电机设计的主要问题 小型三相同步发电机电磁设计是在已确定的视在功率或有功功 率、电压、相数、频率、功率因数、转速等额定值的情况下, 按产品技术要求确定电磁负荷、有效部分尺寸、绕组数据及性 能参数等。
4.1 小型三相同步发电机设计
绕组常设计为单双层绕组(双层短距绕组,每槽中同相位的上、
下线圈边组成一个新的单层线圈边,与同相属的另一个类似槽
中的新的单层线圈边组成一个线圈,详细见西交大电机设计
p233)。单相谐波绕组放在单层线圈的槽内,其节距为电枢绕
组整距的
1 3

5、磁极结构和形状的选择 小型三相同步发电机的转子磁极结构分为凸极和隐极两种结构。
4.3 异步起动永磁同步电动机设计
2)内置式转子磁极结构 在内置式转子磁极结构中,永磁体位 于笼型绕组导体和铁心轴孔之间的铁心中。内置式转子结构按一 对极下永磁体的磁路关系,可以分为并联式、串联式和混合式三 种。 ①并联式磁路结构 并联式磁路结构 又称切向式磁路 结构,在该结构 中,相邻两磁极 的永磁体并联提 供每极磁通,如 图。
1、电磁负荷的取值范围:设计时如果想要少用铜,在选择电 磁负荷时,要尽可能用较高的气隙磁密和电枢电密,而线负荷 A要尽可能取得低;若设计时要少用铁,则应适当提高线负荷 A 。由于F级绝缘材料的发展和运用,电磁负荷的取值也相应 地提高。目前小型同步发电机的电磁负荷的取值范围如下表:
4.1 小型三相同步发电机设计
一般 max min 1.2 : 1.3 ;对于30kW以下的发电机,为了制造 方便,采用均匀气隙。 隐极结构,采用均匀气隙。 20世纪70年代末期发展了兼顾凸极和隐极结构优点的整体凸极 叠片转子磁极结构称整体式凸极结构。这种结构的磁极和磁轭 为一体,由0.5mm或0.65mm薄钢片整片冲出,冲片叠压并经 氩弧焊焊成一体,叠装在轴上,在铁心上喷涂绝缘漆或者包绝 缘。励磁绕组由绕线机直接绕到极身上,边绕边涂线圈胶,然 后整体浸漆烘干。
4路结构又称径向式磁路结构,该 结构由两个磁极的永磁体串联,如图。
4.3 异步起动永磁同步电动机设计
③ 混合式磁路结构 该结构集合了并联式磁路结构和串联式 磁路结构,如图。
4.3 异步起动永磁同步电动机设计
3.异步起动永磁同步电动机的电磁设计 1)定子冲片尺寸和气隙长度的确定 定子冲片尺寸和感应电机的相同。定子每极每相槽数一般取整 数,q1 2 : 6 。气隙长度比同容量的感应电机的气隙长度大
凸极发电机的阻尼绕组是装在极靴的表面。阻尼绕组由伸出 极靴铁心槽的阻尼条与两端的端环焊接组成。
小型隐极发电机由于转子磁极铁心采用整块合金钢锻成,合 金钢具有阻尼效果,故小型隐极发电机不再装置阻尼绕组。中 大型隐极发电机装置阻尼绕组,阻尼条装置在转子铁心安置励 磁绕组的开设槽的槽楔下,端环装在中心环里。
感应电机的转子槽形相似。
4.永磁体设计 在异步起动永磁同步电动机设计中,永磁体通常为长方体,主
要尺寸为每极永磁体的总宽度 bM ,永磁体充磁方向长度 hM 和永
磁体轴向长度 LM 。◆一般内置径向式转子磁路结构永磁体尺寸:
hM
Ks Kabmo 1 bmo o
;bM
2 o B11lef bmo Br K LM
(同容量的电机,F级的绝缘电机的体积比B级的绝缘电机的体 积小,气隙磁密一样,但体积小的定子齿等铁心的磁密要高些)
4.1 小型三相同步发电机设计
2、气隙长度 的确定
小型发电机的气隙长度可由公式确定,即:

Kc
K0 A
B N
103
cm
Kc ---饱和短路比,对自励恒压发电机 Kc 0.25 : 0.7 ; K0 ---经验系数,K0 0.22 : 0.24, A ---线负荷 ,

◆切向式永磁体尺寸:hM

2Ks Kabmo
1 bmo o
;bM
o B11lef bmo Br K LM

从工艺考虑,隐极式转子从过去的采用大小槽结构(便于气隙 磁场正弦分布),到现在采用等槽结构,一般每极的有效槽数 大都采用 6 : 8 槽。 小型三相同步发电机定子槽形一般采用 梨形或梯形半闭口槽形, 如图。
4、电枢绕组的设计 小型低压发电机一般采 用半闭口槽和散下的双 层叠绕组。在采用单相 三次谐波绕组提供励磁 功率的发电机,电枢
4.3 异步起动永磁同步电动机设计
4.3.1异步起动永磁同步电动机设计的主要问题 永磁同步电动机由永磁(体)提供磁场,没有了电励磁同步电 动机中的电刷及励磁电源。
1、异步起动永磁同步电动机的结构 异步起动永磁同步电动机由定子和转子组成。 1)定子结构 永磁同步电动机的定子结构和感应电机的相同。 2)转子结构 转子分为实心永磁转子和笼型永磁转子两种。 ◆实心永磁转子结构铁心由整块钢加工而成,上面铣出槽以放置 永磁体。起动时,旋转磁场在转子铁心中感应涡流产生起动转矩。 ◆笼型永磁转子是最常见的结构,转子铁心由0.5mm厚的硅钢 片叠压而成,上面冲有均匀的槽,通常是半闭口槽。
1)表面式转子磁极结构
4.3 异步起动永磁同步电动机设计
结构如图,图a,永 磁体用高强度非导 磁圈固定在笼型转 子的外部。磁极 (永磁体)之间如 采用树脂、铝等非 导磁材料填充,属 于隐极电机;磁极 (永磁体)之间如 采用导磁材料填充,属于凸极电机,交轴磁阻小于直轴磁阻。 这种结构的电机笼型绕组导体在转子内部,产生的起动转矩(异 步转矩)较小。
采用何种结构,是各个生产厂家的的工艺决定的。凸极结构,
气隙不均匀,一般取气隙最大气隙长度 与最max小气隙长度
mi(n 磁极轴线处的气隙 , min )之比为:max min 1.5 ;
极弧系数 a 0.70 : 0.75 。对于采用三次谐波励磁的发电机,
4.1 小型三相同步发电机设计
4.3 异步起动永磁同步电动机设计
永磁同步电动机由于永磁体的放置原因,转子很难斜槽,通常 采用定子斜槽。转子笼型绕组有铜条焊接式和铸铝式两种,和 感应电机的笼型转子绕组一样。 ◆永磁体的固定方式有两种:①采用在永磁体上涂树脂,再将 永磁体插入转子铁心,树脂凝固后将永磁体和转子固定在一起; ②将永磁体插入转子铁心,然后在铁心两端加非磁性端环固定 在转子铁心上。 2.异步起动永磁同步电动机的转子磁极结构 根据永磁体放置在铁心的位置,将转子磁极分为表面式和内置 式两种转子磁极结构。
4.1 小型三相同步发电机设计
8、磁路计算
磁路计算的主要目的是计算电机的空载特性、短路比及满载励 磁电流。 确定磁路各部分的磁密是否合理。凸极同步电机的磁 路计算包括:气隙磁势,定子齿磁势,定子轭磁势,极身磁势, 转子轭磁势及第二气隙磁势(磁极和磁轭之间的气隙)六部分。 对整体凸极和隐极电机没有第二气隙磁势。
9、参数计算 计算定、转子的直流电阻和各种电抗。 10、损耗与效率 中小型同步发电机的损耗:1)铁耗 定子齿和轭的铁耗;2)定 子铜耗;3)励磁损耗;4)机械损耗;5)附加损耗。
效率计算和感应电机的一样。
4.2 永磁同步发电机设计
永磁同步发电机设计的主要问题:永磁材料的选择、永磁体尺 寸、转子结构尺寸、定子绕组和定子冲片的确定、磁路计算、 电压调整率和短路计算。
0.1: 0.2mm 。
2)定子绕组的设计 定子三相绕组常采用Y形联接。定子绕组的类型和感应电机的 一样,有单层绕组和双层绕组。为了提高起动转矩,定子每相 匝数比感应电机的要少些,起动电流当然也大些。电流密度比 同容量感应电机的要小些。
4.3 异步起动永磁同步电动机设计
3)转子铁心的设计 转子槽数为极数的整数倍,且采用多槽远槽配合。转子槽形和
B N ---额定工况的气隙磁密, ---极距。
目前小型同步发电机的气隙一般取 0.5 : 2.5mm 。
3、定转子槽数及槽形
小型三相同步发电机定子每极每相槽数一般选用整数槽,
q 3、4、5 。为了消除齿谐波电势对电压的影响,定子或转子采
用斜槽,一般是斜一个齿距。
4.1 小型三相同步发电机设计
6、励磁绕组设计 励磁绕组设计包括确定励磁绕组匝数、导线尺寸以及励磁系统 对额定励磁电压和额定励磁电流的要求。
4.1 小型三相同步发电机设计
小型凸极同步电机的励磁绕组一般采用漆包圆线或漆包扁导线。
7、阻尼绕组的设计 现代中大型发电机一般设有阻尼绕组。发电机装置阻尼绕组,
不仅使发电机运行稳定,也可以减少发电机在短路或跳闸时的 电枢过电压及励磁绕组的过电压。
相关文档
最新文档