大一高等数学课件 (2)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y
(t) (t)
曲边梯形的面积 A t2 (t)(t)dt. t1
(其中t1和t2 对应曲线起点与终点的参数值)
在[t1,t2 ](或[t2 ,t1 ])上x (t )具有连续导数, y (t)连续.
例4
求椭圆 x 2 a2
y2 b2
1的面积.
解
椭圆的参数方程
x y
a cos t bsin t
x x dx
x
间[ x, x dx],
取以dx 为底的窄边梯形绕x 轴旋转而成的薄
片的体积为体积元素, dV [ f ( x)]2 dx
(1)U 是与一个变量x 的变化区间a, b 有关
的量;
(2)U 对于区间a, b具有可加性,就是说, 如果把区间a, b分成许多部分区间,则U 相
应地分成许多部分量,而U 等于所有部分量之
和;
(3)部分量Ui 的近似值可表示为 f (i )xi ;
就可以考虑用定积分来表达这个量U
元素法的一般步骤:
x y2 y x2
面积元素 dA ( x x2 )dx
1
A 0 (
x
x2 )dx
2 3
3
x2
x3 3
1 0
1. 3
例 2 计算由曲线 y x3 6x 和 y x2 所围成
的图形的面积.
解 两曲线的交点
y x3 6x
y
x2
y x2
y x3 6x
(0,0), (2,4), (3,9).
选 x 为积分变量 x [2, 3]
(1) x [2, 0], dA1 ( x3 6x x2 )dx (2) x [0,3], dA2 ( x2 x3 6x)dx
于是所求面积 A A1 A2
A
0 ( 2
x3
6x
x2 )dx
3(x2 0
x3
6 x )dx
253. 12
说明:注意各积分区间上被积函数的形式.
例 6 求心形线r a(1 cos )所围平面图形的
面积(a 0).
解 dA 1 a2(1 cos )2 d
d
2
利用对称性知
A 2 1 a2 (1 cos )2 d 20
a2
(1 2cos cos2 )d
0
a
2
3 2
2 sin
1 sin 2
4
0
3 2
a2 .
3. 旋转体的体积
问题: 积分变量只能选 x吗?
例 3 计算由曲线y2 2x 和直线 y x 4所围
成的图形的面积.
解 两曲线的交点
y2 2x y x4
(2,2), (8,4).
y x4
y2 2x
选 y 为积分变量 y [2, 4]
dA y 4 y2 dy
2
4
A dA 18. 2
如果曲边梯形的曲边为参数方程
a
提示 若用A 表示任一小区间 [ x, x x]上的窄曲边梯形的面积,y
则 A A,并取A f ( x)dx,
面 积 元 素
dA
y f (x)
于是 A f ( x)dx
b
o a x x dxb x
A lim f ( x)dx a f ( x)dx.
当所求量U 符合下列条件:
面积元素 dA 1[ ( )]2 d o x
2
曲边扇形的面积 A 1[ ( )]2 d . 2
例 5 求双纽线 2 a2 cos 2 所围平面图形
的面积.
解 由对称性知总面积=4倍第
一象限部分面积
y x
A 4A1
A 4 4 0
1 a2 cos 2d
2
a2.
A1
2 a2 cos 2
旋转体就是由一个平面图形饶这平面内 一条直线旋转一周而成的立体.这直线叫做 旋转轴.
圆柱
圆锥
圆台
一般地,如果旋转体是由连续曲线 y f ( x) 、
直线x a 、x b 及x 轴所围成的曲边梯形绕
பைடு நூலகம்
x 轴旋转一周而成的立体,体积为多少?
取积分变量为x ,
y
y f (x)
x [a,b]
在[a,b]上任取小区 o
由对称性知总面积等于4倍第一象限部分面积.
a
0
A
40
ydx
4
b sin td(a cos t)
2
4ab 2 sin2 tdt ab. 0
2. 极坐标系下平面图形的面积
设由曲线r ( )及射线 、 围成一曲边扇 形,求其面积.这里, ( )
d
r ( )
d
在[ , ]上连续,且 ( ) 0 .
1)根据问题的具体情况,选取一个变量例如x 为 积分变量,并确定它的变化区间[a, b] ;
2)设想把区间[a, b]分成n 个小区间,取其中任 一小区间并记为[ x, x dx],求出相应于这小区 间的部分量U 的近似值.如果U 能近似地表示 为[a, b]上的一个连续函数在x 处的值 f ( x) 与dx 的乘积,就把 f ( x)dx 称为量U 的元素且记作 dU ,即dU f ( x)dx ;
第三节 定积分的应用
• 一、定积分的微元法 • 二、定积分的应用
一、定积分的微元法
回顾 曲边梯形求面积的问题
曲边梯形由连续曲线 y
y f ( x)( f ( x) 0) 、
x 轴与两条直线x a 、
x b所围成。
oa
A
b
a
f
(
x)dx
y f (x)
bx
面积表示为定积分的步骤如下
(1)把区间[a, b]分成n 个长度为xi 的小区间,
相应的曲边梯形被分为n 个小窄曲边梯形,i第
n
小窄曲边梯形的面积为Ai ,则A Ai .
i 1
(2)计算Ai 的近似值
Ai f (i )xi i xi
n
(3) 求和,得A的近似值 A f (i )xi . i 1
(4) 求极限,得A的精确值
n
A
lim
0
i 1
f
(i )xi
b
f ( x)dx
3)以所求量U 的元素 f ( x)dx 为被积表达式,在
区间[a, b]上作定积分,得U
b
a
f
( x)dx ,
即为所求量U 的积分表达式.
这个方法通常叫做元素法.
应用方向:
平面图形的面积;体积;平面曲线的弧长; 功;水压力;引力和平均值等.
二、定积分的应用
1. 直角坐标系下平面图形的面积
y y f (x)
y
y f2(x)
o a x x xb x 曲边梯形的面积
b
A a f ( x)dx
y f1( x)
o a xx b x 曲边梯形的面积
b
A a[ f2( x) f1( x)]dx
例 1 计算由两条抛物线y2 x 和y x2 所围成的
图形的面积.
解 两曲线的交点
(0,0) (1,1) 选 x 为积分变量 x [0,1]