点的坐标规律题资料
4平面直角坐标系-点的坐标的确定基础题和培优题
平面直角坐标系【点的坐标的确定】【基础练习】1.已知点P的坐标为(﹣2,a2+1),则点P一定在()A.第一或第三象限B.第二或第四象限C.第二象限D.第三象限2.点P(m+3,m+1)在直角坐标系x轴上,则点P坐标为()A.(0,﹣2)B.(0,2)C.(﹣2,0)D.(2,0)3.点B(﹣3,4)关于y轴的对称点为A,则点A的坐标是()A.(3,4)B.(﹣4,﹣3)C.(4,﹣3)D.(﹣3,﹣4)4.已知A(2,﹣5),AB平行于y轴,则点B的坐标可能是()A.(﹣2,5)B.(2,6)C.(5,﹣5)D.(﹣5,5)5.点M(﹣4,3)关于y轴对称的坐标为()A.(4,3)B.(﹣4,﹣3)C.(4,﹣3)D.(﹣4,3)6.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)7.点M(3,﹣4)关于x轴的对称点M′的坐标是()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)8.已知y轴上的点P到原点的距离为5,则点P的坐标为()A.(5,0) B.(0,5)或(0,﹣5) C.(0,5) D.(5,0)或(﹣5,0)9.若|m|=2,|n|=3,则点A(m,n)()A.四个象限均有可能B.在第一象限或第三象限或第四象限C.在第一象限或第二象限D.在第二象限或第三象限或第四象限10. 点M (1,2)关于x 轴对称点的坐标为( )A 、(-1,2)B 、(-1,-2)C 、(1,-2)D 、(2,-1)11. 在直角坐标系中,如果a 为正数,那么点(0,a )在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上12. 在y 轴上且到点A (0,4)的线段长度为5的点B 的坐标是( )A .(0,9)B .(0,-1)C .(9,0)或(-1,0)D .(0,9)或(0,-1)13. 点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( )A .(5,-3)或(-5,-3)B .(-3,5)或(-3,-5)C .(-3,5)D .(-3,-5)14. 若4,5==b a ,且点M (a ,b )在第二象限,则点M 的坐标是( )A .(5,4)B .(-5,4)C .(-5,-4)D .(5,-4)15. 如果点P (x ,y )满足xy=0,那么点P 必定在( )A .原点上B .x 轴上C .y 轴上D .坐标轴上16. 在平面直角坐标系中,点P (2,﹣3)关于原点对称点P′的坐标是 .17. 在平面直角坐标系上,若点M (a+5,a ﹣3)在y 轴上,则点M 的坐标为 .18. 已知A (x+5,2x+2)在x 轴上,那么点A 的坐标是 .19. 一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是 .20. 有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来或者翻译成中文为 .21. 已知AB 在y 轴上,A 点的坐标为(0,﹣3),并且AB=7,则B 的坐标为 .22. 点A (3,﹣2)关于y 轴对称的点的坐标是 ;点A 关于原点对称的点的坐标是 .点A 关于x 轴对称的点的坐标为 .23. 若点A 在第二象限,且到x 轴的距离为3,到y 轴的距离为2,则点A 的坐标为_______.24. 点P (3,5)关于y 轴对称的点的坐标是 .25. 点M (-3,-8)到x 轴的距离为_____,到y 轴的距离为______.26. 已知点A (1,1),B (2,2),C (3,3),D (4,4),这些点的横坐标x 和纵坐标y 的关系是______.27. 如果点P (a ,2)在第二象限,那么点Q (-3,a )在_______.28. 点A 在x 轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为 ;点B 在y 轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为 ;点C 在y 轴左侧,在x 轴下方,距离每个坐标轴都是5个单位长度,则此点的坐标为 .29. 通过平移把点A (2,-1)移到点A'(2,2),按同样的平移方式,点B (-3,1)移动到点B',则点B’的坐标是 .30. 已知点M 在轴上,则点M 的坐标为_____.【培优练习】31. 已知△ABC 在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC 关于y 轴对称,那么点A 的对应点A′的坐标为( )A . (﹣4,2)B . (﹣4,﹣2)C . (4,﹣2)D . (4,2)32. 已知点P (x ,y )在第二象限|x+1|=2,|y ﹣2|=3,则点P 的坐标为( )A . (﹣3,5)B . (1,﹣1)C . (﹣3,﹣1)D . (1,5)33. 如图的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点( ) A .(-1,1) B .(-1,2) C .(-2,1) D .(-2,2)()a a -+4,3y 图3相帅炮34. 已知点P 坐标为(2-a ,3a+6),且P 点到两坐标轴的距离相等,则点P 的坐标是( )A .(3,3)B .(3,-3)C .(6,-6)D .(3,3)或(6,-6)35. 点A (-2,-3)与点B (-3,-2)在直角坐标系中( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .不关于坐标轴和原点对称36. 已知点A ,如果点A 关于轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是( )A .B .C .D .37. 一只小虫子在一个小方格的线路上爬行,它起始的位置是A (2,2),先爬到B (2,4),再爬到C (5,4),最后爬到D (5,5),则小虫一共爬行了( )个单位.A .7B . 6C . 5D . 438. 已知直角坐标系中的点A ,点B 的坐标分别为A (2,4),B (4,0),且P 为AB 的中点,若将线段AB 向右平移3个单位后,与点P 对应的点为Q ,则点Q 的坐标为( )A .(3,2)B .(6,2)C .(6,4)D .(3,5)39. 已知点M 1(-1,0)、M 2(0,-1)、M 3(-2,-1)、M 4(5,0)、 M 5(0,5)、M 6(-3,2),其中在x 轴上的点的个数是( )A .1 个B .2 个C .3个D .4个40. 如果点P (,)与点P 1(,)关于轴对称,则,的值分别为( )A .B .C .D .41. 小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A .东南方向B .东北方向C .西南方向D .西北方向42. 点A (1,0),B (0,2),点P 在x 轴上,且三角形PAB 的面积为5,则P 点坐标为( )A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定43. 一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为( )A .(2,2)B .(3,2)C .(3,3)D .(2,3)()2,2-x ()2,2()2,2-()1,1--()2,2--m -35-n y m n 3,5=-=n m 3,5==n m 3,5-=-=n m 5,3=-=n m44.在直角坐标中有两点M(a,b),N(a,-b),则这两点()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.上述结论都不正确45.由坐标平面内的三点A(1,1),B(3,-1),C(1,-3)构成的△ABC是()A.钝角三角形 B.直角三角形; C.锐角三角形 D.等腰直角三角形46.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M ′N ′(点M、N分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为.47.已知点A(-2,2),B(-1,1),C(0,0),D(1,-1),E(2,-2),这些点的横坐标x和纵坐标y的关系是_______.48.ABC中,A(-4,-2),B(-1,-3),C(-2,-1),将△ABC先向右平移4个单位长度,再向上平移3个单位长度,则对应点A′,B′,C′的坐标分别为_____,_____,_______.49.已知AB∥x轴,A的坐标为(3,2),并且AB=4,则B的坐标为________.50.已知点A(-2,6),B(-1,5),C(0,4),D(1,3),E(2,2),这些点的横坐标x 和纵坐标y的关系是_________.【课后练习】1.到x轴的距离等于2的点组成的图形是()A.过点(0,2)且与x轴平行的直线B.过点(2,0)且与y轴平行的直线C.过点(0,-2)且与x轴平行的直线D.分别过(0,2)和(0,-2)且与x轴平行的两条直线2.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为()A.(-2,-5) B.(-2,5) C.(2,-5) D.(2,5)3.已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)4.线段CD是由线段AB平移得到的。点A(–1,4)的对应点为C(4,7),则点B(–4,– 1)的对应点D的坐标为()A.(2,9) B.(5,3)C.(1,2) D.(– 9,– 4)5.在平面直角坐标系中,点A(-1,0)与点B(0,2)的距离是.6.由坐标平面内的三点A(-2,-1),B(-1,-4),C(5,-2)构成的三角形是_____三角形.7.如图的围棋盘,放在某个平面直角坐标系内,白棋②的坐标是(-7,-4),白棋④的坐标是(-6,-8),那么黑棋①的坐标是.。
专题1 点的坐标:规律题(解析版)七年级数学下册
第04讲专题1点的坐标:规律题1.小静同学观察台球比赛,从中受到启发,抽象成数学问题如下:如图,已知长方形OABC,小球P从(0,3)出发,沿如图所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0),当小球P第2024次碰到长方形的边时,若不考虑阻力,点P2024的坐标是()A.(1,4)B.(7,4)C.(0,3)D.(3,0)【解答】解:因为点P1的坐标为(3,0),根据点P的运动方式,结合反射角等于入射角可知,点P2的坐标为(7,4),点P3的坐标为(8,3),点P4的坐标为(5,0),点P5的坐标为(1,4),点P6的坐标为(0,3),点P7的坐标为(3,0),…,由此可见,点P每反弹6次,点的坐标循环出现,由因为2024÷6=337余2,所以点P2024的坐标为(7,4).故选:B.2.如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1),点A4(6,3)…,按照这样的规律下去,点A2024的坐标为()A.(3035,1011)B.(3036,1011)C.(3035,1013)D.(3036,1013)【解答】解:由题知,点A1的坐标为(2,0);点A2的坐标为(3,2);点A3的坐标为(5,1);点A4的坐标为(6,3);点A5的坐标为(8,2);点A6的坐标为(9,4);点A7的坐标为(11,3);点A8的坐标为(12,5);…,由此可见,点A n的坐标为(),点A n﹣1的坐标为()(n为正偶数);当n=2024时,,,所以点A2024的坐标为(3036,1013).故选:D.3.如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,⋯都是斜边在x轴上的等腰直角三角形,点A1(﹣2,0),A2(﹣1,﹣1),A3(0,0),⋯;则根据图示规律,点A1020的坐标为()A.(﹣1,﹣510)B.(2,510)C.(﹣2,510)D.(1,﹣510)【解答】解:由题知,点A1的坐标为(﹣2,0);点A2的坐标为(﹣1,﹣1);点A3的坐标为(0,0);点A4的坐标为(﹣2,2);点A5的坐标为(﹣4,0);点A6的坐标为(﹣1,﹣3);点A7的坐标为(2,0);点A8的坐标为(﹣2,4);…,由此可知,点A4n的坐标为(﹣2,2n)(n为正整数),又因为1020÷4=255,所以2×255=510,所以点A1020的坐标为(﹣2,510).故选:C.4.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,其对应的点坐标依次为(0,0),(1,0),(1,1),(0,1),(0,2),(1,2),(2,2),(2,1),…,根据这个规律,第2023个点的横坐标为()A.44B.45C.46D.47【解答】解:第一个正方形上有4个点,添上第二个正方形后,一共有3×3=9个点,添上第三个正方形后,一共有4×4=16个点,∵添上第44个正方形后,一共有45×45=2025个点,∴第2025个点的坐标是(44,0),∴第2023个点的横坐标为44,故选:A.5.如图,动点M按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次运动到点(4,0),第3次运动到点(6,4),…,按这样的规律运动,则第2024次运动到点()A.(2024,2)B.(4048,0)C.(2024,4)D.(4048,4)【解答】解:∵第1次从原点运动到点(2,2),第2次运动到点(4,0),第3次运动到点(6,4),第4次从原点运动到点(8,0),第5次运动到点(10,2)……,∴动点M的横坐标为2n,纵坐标按照2,0,4,0四个为一组进行循环,∵2024÷4=504,∴第2023次运动到点(2×2024,0),即:(4048,0);故选:B.6.如图,将边长为1的正方形OAPB沿x轴正方向边连续翻转2023次,点P依次落在点P1,P2,P3,…,P2023的位置,则P2023的横坐标x2023为()A.2021B.2022C.2023D.不能确定【解答】解:从P到P4要翻转4次,横坐标刚好加4,∵2023÷4=505……3,∴505×4﹣1=2019,还要再翻三次,即完成从P到P3的过程,横坐标加3,则P2023的横坐标x2023=2022.故选:B.7.如图,在平面直角坐标系中,动点P从A1(1,0)出发,沿着A1(1,0)→A2(2,0)→A3(2,1)→A4(1,1)→A5(1,2)→A6(3,2)→A7(3,4)→A8(1,4)→A9(1,6)→A10(4,6)→⋯的路线运动,按此规律,则点P运动到A47时坐标为()A.(13,156)B.(1,156)C.(1,144)D.(13,144)【解答】解:由题知,∵A4(1,1),A8(1,4),A12(1,9),…,∴(n为正整数).当n=12时,A48(1,144).再结合点A47和点A48的位置可知,点A47在点A48的右边12个单位长度,∴1+12=13,故点A47的坐标为(13,144).故选:D.8.如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…,按这样的运动规律,动点P第2023次运动到点()A.(2023,0)B.(2022,﹣2)C.(2023,1)D.(2022,0)【解答】解:由题意可知,第1次运动到点(0,1)、第2次运动到点(1,0)、第3次运动到点(2,﹣2)、第4次运动到点(3,0)、第5次运动到点(4,1),∴可得到,第n次运动到点的横坐标为n﹣1,纵坐标为4次一循环,循环规律为1→0→﹣2→0→1,∵2023÷4=505......3,∴动点P第2023次运动到点的坐标为(2022,﹣2),故选:B.9.如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2023的横坐标为()A.﹣1010B.1010C.1012D.﹣1012【解答】解:∵图中的各三角形都是等腰直角三角形,斜边长分别为2,4,6,…∴A1(2,0),A2(1,﹣1),A3(0,0),A4(2,2),A5(4,0),A6(1,﹣3),A7(﹣2,0),A8(2,4),A9(6,0),A10(1,﹣5),A11(﹣4,0),A12(2,6),...总结得出规律:A4n+1(2n+2,0),A4n+2(1,﹣2n﹣1),A4n+3(﹣2n,0),A4n+4(2,2n+2),∵2023=4×505+3,∴点A2023在x轴负半轴上,横坐标为﹣2×505=﹣1010.故选:A.10.如图,在平面直角坐标系中A(﹣1,1),B(﹣1,﹣2),C(3,﹣2),D(3,1),一只瓢虫从点A 出发以2个单位长度/秒的速度沿A→B→C→D→A循环爬行,问第2025秒瓢虫在点()A.(﹣1,0)B.(﹣1,﹣1)C.(﹣1,﹣2)D.(0,﹣2)【解答】解:∵AB+BC+CD+DA=3+4+3+4=14,14÷2=7,∴瓢虫7秒爬行一圈,∵2025÷7=289……2,2×2=4,4﹣3=1,∴第2025秒瓢虫在点(0,﹣2),故选:D.11.如图,动点P在平面直角坐标系中按图中所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,1),第三次运动到点P3(3,0),第四次运动到点P4(4,﹣2),第五次运动到点P5(5,0),第六次运动到点P6(6,2),按这样的运动规律,点P2023的纵坐标是()A.﹣2B.0C.1D.2【解答】解:观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,1),第三次运动到点P3(3,0),第四次运动到点P4(4,﹣2),第五次运动到点P5(5,0),第六次运动到点P6(6,2),运动后的点的坐标特点可以发现规律,横坐标与次数相等,纵坐标每6次运动组成一个循环:P1(1,1),P2(2,1),P3(3,0),P4(4,﹣2),P5(5,0),P6(6,2),P7(7,0),P8(8,1)…,∵2023=7×289,∴动点P2023的坐标是(2023,0),∴动点P2023的纵坐标是0,故选:B.12.如图,在平面直角坐标系中,已知点A(1,1)、B(﹣1,1)、C(﹣1,﹣2)、D(1,﹣2),动点P 从点A出发,以每秒2个单位的速度按逆时针方向沿四边形ABCD的边做环绕运动;另一动点Q从点C 出发,以每秒3个单位的速度按顺时针方向沿四边形CBAD的边做环绕运动,则第2023次相遇点的坐标是()A.(﹣1,﹣1)B.(﹣1,1)C.(﹣2,2)D.(1,1)【解答】解:∵点A(1,1)、B(﹣1,1)、C(﹣1,﹣2)、D(1,﹣2),∴AB=CD=1﹣(﹣1)=2,AD=BC=1﹣(﹣2)=3,∴矩形的周长为2×(2+3)=10,由题意,经过1秒时,P、Q在点B(﹣1,1)处相遇,接下来P、Q两点走的路程和是10的倍数时,两点相遇,相邻两次相遇间隔时间为10÷(2+3)=2秒,∴第二次相遇点是CD的中点(0,﹣2),第三次相遇点是点A(1,1),第四次相遇点是点(﹣1,﹣1),第五次相遇点是点(1,﹣1),第六次相遇点是点B(﹣1,1),……,由此发现,每五次相遇点重合一次,∵2023÷5=404⋯⋯3,∴第2023次相遇点的坐标与第三次相遇点的坐标重合,即A(1,1),故选:D.13.如图,在直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2,…第n次移动到点A n,则点A2023的坐标是()A.(1011,0)B.(1012,1)C.(1012,0)D.(1011,1)【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),……,∵2023÷4=505……3,∴点A2023的坐标为(505×2+1,0),∴A2023(1011,0),故选:A.14.如图,将边长为1的正方形依次放在坐标系中,其中第一个正方形的两边OA1,OA3分别在y轴和x轴上,第二个正方形的一边A3A4与第一个正方形的边A2A3共线,一边A3A6在x轴上…以此类推,则点A2022的坐标为()A.(672,﹣1)B.(673,﹣1)C.(674,1)D.(674,0)【解答】解:∵(2022﹣1)÷3=673…2,∴点A2022的坐标为(674,0).故选:D.15.如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,按如此规律走下去,当机器人走到A6点时,则A6的坐标为()A.(9,15)B.(6,15)C.(9,9)D.(9,12)【解答】解:由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:A n﹣1A n=3n,当机器人走到A6点时,A5A6=18米,点A6的坐标是(9,12).故选:D.16.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2023次,点P依次落在点P1,P2,P3,…,P2023的位置,则点P2023的横坐标为()A.2022B.2023C.2024D.2022.5【解答】解:观察图形结合翻转的方法可以得出P1、P2的横坐标是1,P3的横坐标是2.5,P4、P5的横坐标是4,P6的横坐标是5.5…依此类推下去,∴P3n+1的横坐标为3n+1,P3n+2的横坐标为:3n+1,P3n+3的横坐标为3n+(n为自然数),∵2023=674×3+1,∴点P2023的横坐标为2023.故选:B.二.填空题(共4小题)17.如图,点A(1,0)第一次跳动至点A1(﹣1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第2024次跳动至点A2024的坐标是(1013,1012).【解答】解:由题知,因为点A的坐标为(1,0),根据点A的运动方式可知,点A1的坐标为(﹣1,1);点A2的坐标为(2,1);点A3的坐标为(﹣2,2);点A4的坐标为(3,2);点A5的坐标为(﹣3,3);点A6的坐标为(4,3);…,由此可见,点A n的坐标为()(n为正偶数),当n=2024时,,=1012,即点A2024的坐标为(1013,1012).故答案为:(1013,1012).18.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2024的坐标是(675,1).【解答】解:由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n+1(2n,1),2024÷6=337……2,(2×337+1,1),∴P6×337+2即P2024(675,1),故答案为:(675,1).19.如图,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→…的顺序用线段依次连接起来.根据这个规律,第50个点的坐标为(8,0).【解答】解:第1圈有1个点:(1,0),第2圈有3个点:(1,0),(2,1),(1,1),前2圈共有1+3=4个点,第3圈有5个点:(2,1),(2,2),(3,2),(3,1),(3,0),前3圈共有1+3+5=9=32个点,第4圈有7个点:(4,0),(4,1),(4,2),(4,3),(3,3),(2,3),(1,3),前4圈共有1+3+5+7=16=42个点,……,前圈共有n2个点,∵50=72+1,∴第50个点再第8圈,是第一个点,其坐标为(8,0),故答案为:(8,0).20.在平面直角坐标系中,若干个等腰直角三角形按如图所示的规律摆放.点P从原点O出发,沿着“O →A1→A2→A3→A4…”的路线运动(每秒一条直角边),已知A1坐标为(1,1),A2(2,0),A3(3,1)A4(4,0)…,设第n秒运动到点P n(n为正整数),则点P2023的坐标是(2023,1).【解答】解:由题意知,A1(1,1),A2(2,0),A3(3,1),A4(4,0),A5(5,﹣1),A6(6,0),A7(7,1),…,由上可知,每个点的横坐标等于序号,纵坐标每6个点依次为:1,0,1,0,﹣1,0这样循环,∵点P从原点O出发,第n秒运动到点P2023,即点A2023,∴P2023(2023,1),故答案为:(2023,1).。
七年级平面直角坐标系动点规律问题(经典难题)
平面直角坐标系动点问题(一)找规律1.如图1,一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )图1A .(4,0)B .(5,0)C .(0,5)D .(5,5)图22、如图2,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( ) A 、(13,13) B 、(﹣13,﹣13) C 、(14,14) D 、(﹣14,﹣14)3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列,根据这个规律,第2019个点的横坐标为 .4.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。
图3(1)填写下列各点的坐标:1A (____,____),3A (____,____),12A (____,____); (2)写出点n A 4的坐标(n 是正整数); (3)指出蚂蚁从点100A 到101A 的移动方向.5.观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是 .6、观察下列有规律的点的坐标:依此规律,A 11的坐标为 ,A 12的坐标为 .7、以0为原点,正东,正北方向为x 轴,y 轴正方向建立平面直角坐标系,一个机器人从原点O 点出发,向正东方向走3米到达A 1点,再向正北方向走6米到达A 2,再向正西方向走9米到达A 3,再向正南方向走12米到达A 4,再向正东方向走15米到达A 5,按此规律走下去,当机器人走到A 6时,A 6的坐标是 .8、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2019次,点P 依次落在点201921,,,P P P 的位置,则点2019P 的横坐标为 .9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2019次跳动至点P 2019的坐标是 .图4 图5 10、如图5,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2019的坐标为 .1PAOyxP1. 如图,一个粒子在第一象限内及x 、y 轴上运动,在第一分钟内它从原点运动到()1,0,而后它接着按图所示在x 轴、y 轴平行的方向上来回运动,且每分钟移动1个长度单位,那么,在1989分钟后这个粒子所处的位置是( ).A .()35,44B .()36,45C .()37,45D .()44,352. 如果将点P 绕定点M 旋转180︒后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心,此时,点M 是线段PQ 的中点,如图,在直角坐标系中,ABO △的顶点A 、B 、O 的坐标分别为()1,0、()0,1、()0,0,点1P ,2P ,3P ,…中相邻两点都关于ABO △的一个顶点对称,点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与点4P 关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,O ,A ,B ,O ,…且这些对称中心依次循环,已知1P 的坐标是()1,1.试写出点2P 、7P 、100P 的坐标.3. 如图,在平面直角坐标系中,四边形各顶点的坐标分别为:()0,0A ,()7,0B ,()9,5C ,()2,7D .(1)求此四边形的面积.(2)在坐标轴上,你能否找到一点P ,使50PBC S =△?若能,求出P 点坐标;若不能,请说明理由.4. 如图①,已知OABC 是一个长方形,其中顶点A 、B 的坐标分别为()0,a 和()9,a ,点E在AB 上,且13AE AB =,点F 在OC 上,且13OF OC =.点G 在OA 上,且使GEC △的面积为20,GFB △的面积为16,试求a 的值.图②5. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,()1,2,()2,2……根据这个规律,第2019个点的横坐标为_______.6. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点()0,4A ,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m ,当3m =时,点B 的横坐标的所有可能值是_______;当点B 的横坐标为4n (n 为正整数)时,m =________(用含n 的代数式表示).7. 如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点()0,0,3的对应点是()1,1,16的对应点是()1,2-,那么2019的对应点的坐标是_______.8.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点()2,0A 同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动,求两个物体开始运动后的第2019次相遇地点的坐标.9. 在平面直角坐标系中,如图①,将线段AB 平移至线段CD ,连接AC 、BD . (1)直接写出图中相等的线段、平行的线段; (2)已知()3,0A -、()2,2B --,点C 在y 轴的正半轴上.点D 在第一象限内,且5ACD S =△,求点C 、D 的坐标;(3)如图②,在平面直角坐标系中,已知一定点,()1,0M ,两个动点(),21E a a +、(),23F b b -+,请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM .若存在,求以点O 、M 、E 、F 为顶点的四边形的面积,若不存在,请说明理由.图②10 . 如图,AOCD 是放置在平面直角坐标系内的梯形,其中O 是坐标原点.点A 、C 、D 的坐标分别为()0,8,()5,0,()3,8,若点P 在梯形内,且PAD POC S S =△△,PAO PCD S S =△△,求P 点的坐标.11. 操作与研究(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点'P B .点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段''A B ,其中点A ,B 的对应点分别为'A ,'B .如图①,若点A 表示的数是3-,则点'A 表示的数是______;若点'B 表示的数是2,则点表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点'E 与点E 重合,则点E 表示的数是_________.(2)如图②,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位()0,0m n >>,得到正方形''''A B C D 及其内部的点,其中点A ,B 的对应点分别为'A ,'B .已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点'F 与点F 重合,求点F 的坐标.图①A B'-1-2-3-412340图②(二)几何综合问题1、已知点A 的坐标是(3,0)、AB=5,(1)当点B 在X 轴上时、求点B 的坐标、(2)当AB//y 轴时、求点B 的坐标2、如图,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?4.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形D C 3-1BA O x y PDCBAOx y (2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.5.已知:在平面直角坐标系中,四边形ABCD 是长方形, ∠A =∠B =∠C =∠D =90°,AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0). (1)写出点B 的坐标.(2)动点P 从点A 出发以每秒3个单位长度的速度向终点B 匀速运动, 动点Q 从点C 出发以每秒4个单位长度的速度沿射线CD 方向匀速运动,若P ,Q 两点同时出发,设运动时间为t 秒,当t 为何值时,PQ ∥BC ?(3)在Q 的运动过程中,当Q 运动到什么位置时,使△ADQ 的面积为9? 求出此时Q 点的坐标.6.如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立?若存在,请直接写出符合条件的点M的坐标.7.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b 满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.8.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.。
平面直角坐标系中规律探索题训练(求点的坐标)
平面直角坐标系中规律探索题训练例1.在平面直角坐标系中,﹣蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A4(,),A8(,);(2)写出点A4n的坐标(n是正整数)A4n(,);(3)求出A2022的坐标.练习一、选择题1.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在2022分钟后,这个粒子所处位置为()A.(3,44)B.(2,44)C.(44,3)D.(44,2)2.如图,在平面直角坐标系中A(﹣1,1),B(﹣1,﹣2),C(3,﹣2),D(3,1),一只瓢虫从点A出发以2个单位长度/秒的速度沿A→B→C→D→A循环爬行,问第2021秒瓢虫在()处.A.(3,1)B.(﹣1,﹣2) C.(1,﹣2)D.(3,﹣2)3.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)第3题第1题第2题4.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P 2022的坐标是( ) A .(2022,1) B .(2022,2) C .(2022,﹣2) D .(2022,0)5.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1)然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第2020秒时跳蚤所在位置的坐标是( ) A .(5,44) B .(4,44) C .(4,45) D .(5,45)6.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P 的坐标是( )A .(2014,0)B .(2015,﹣1)C .(2015,1)D .(2016,0)7.如图,矩形ABCD 的两边BC 、CD 分别在x 轴、y 轴上,点C 与原点重合,点A (﹣1,2),将矩形ABCD 沿x 轴向右翻滚,经过一次翻滚点A 对应点记为A 1,经过第二次翻滚点A 对应点记为A 2…依此类推,经过5次翻滚后点A 对应点A 5的坐标为( ) A .(5,2) B .(6,0) C .(8,0) D .(8,1)8.如图,点A (0,1),点A 1(2,0),点A 2(3,2),点A 3(5,1)…,按照这样的规律下去,点A 100的坐标为( ) A .(101,100) B .(150,51) C .(150,50) D .(100,55)第6题 第5题 第7题9.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2021个点的坐标为( ) A .(45,9) B .(45,4) C .(45,21) D .(45,0)10.如图,已知点A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),…,则点A 2020的坐标为( ) A .(505,505)B .(506,﹣505) C .(﹣505,﹣505)D .(﹣505,505)11.如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为( ) A .(﹣1008,0) B .(﹣1006,0) C .(2,﹣504) D .(1,505)12.如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P 第2017次跳动至P 2017的坐标是( ) A .(504,1007)B .(505,1009) C .(1008,1007)D .(1009,1009)第10题 第9题第11题二、填空题13.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0),……,按这样的规律,则点A2022的坐标为.14.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P的坐标是.15.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2020的坐标为.16.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P所在位置的坐标是.17.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下、向右的方向不断地移动,每移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)…,那么点A25的坐标为.19.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…,则P2020的坐标是.20.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)…,根据这个规律探索可得第2021个点的坐标是.21.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.22.如图,在平面直角坐标内有点A0(1,0),点A0第一次跳动到点A1(﹣1,1),第二次点A1跳动到A2(2,1),第三次点A2跳动到A3(﹣2,2),第四次点A3跳动到A4(3,2),……依此规律动下去,则点A2018的坐标是.23.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2020的纵坐标为.24.如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2017次运动后,动点P的坐标为.。
平面直角坐标系找规律100题
以下是关于在平面直角坐标系中寻找规律的100道题目:1. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并继续这个规律。
2. 连接点(-1, 0), (0, 1), (1, 0), (0, -1), (-1, 0) 形成一个图形。
这个图形是什么?3. 找到缺失的坐标:(2, 5), (4, 10), (6, ?)。
4. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并继续这个规律。
5. 连接点(1, 1), (2, 2), (3, 3), (4, 4), ... 形成一条直线。
这条直线的斜率是多少?6. 找到缺失的坐标:(3, 6), (5, ?), (7, 14)。
7. 绘制点(-1, 0), (-2, 0), (-3, 0), (-4, 0), ... 并继续这个规律。
8. 连接点(0, 1), (1, 0), (0, -1), (-1, 0), (0, 1) 形成一个图形。
这个图形是什么?9. 找到缺失的坐标:(2, 4), (4, ?), (6, 12)。
10. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并找出这个规律的方程。
11. 连接点(1, 2), (2, 4), (3, 6), (4, 8), ... 形成一条直线。
这条直线的斜率是多少?12. 找到缺失的坐标:(2, 5), (4, ?), (6, 11)。
13. 绘制点(-1, -1), (0, 0), (1, 1), (2, 2), ... 并继续这个规律。
14. 连接点(-1, 1), (-2, 2), (-3, 3), (-4, 4), ... 形成一条直线。
这条直线的斜率是多少?15. 找到缺失的坐标:(3, 6), (5, ?), (7, 13)。
16. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并找出这个规律的方程。
七年级数学下册 专题训练:平面直角坐标系中点的规律探究(精选30题)(解析版)
七年级下册数学《第七章平面直角坐标系》专题:平面直角坐标系中点的规律探究一、选择题(共10题)1.(2022秋•定远县期中)如图,在平面直角坐标系中,点A(﹣1,0),点A第1次向上跳动1个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A第2022次跳动至点A2022的坐标是()A.(505,1009)B.(﹣506,1010)C.(﹣506,1011)D.(506,1011)【分析】设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2022=505×4+2即可得出点A2022的坐标.【解答】解:设第n次跳动至点A n,观察,发现:A(﹣1,0),A1(﹣1,1),A2(1,1),A3(1,2),A4(﹣2,2),A5(﹣2,3),A6(2,3),A7(2,4),A8(﹣3,4),A9(﹣3,5),…,∴A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(506,1011).故选:D.【点评】本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律是解题的关键.2.(2022秋•古田县期中)在平面直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去.设P n(x n,y n),n=1,2,3…,则x1+x2+…+x2017的值为()A.2016B.2017C.﹣2016D.2015【分析】根据给定的平移规律,可得x1=1,x2=﹣1,x3=﹣1,x4=3,进一步可得x1+x2+x3+x4=1+(﹣1)+(﹣1)+3=2,同理可得x5+x6+x7+x8=3+(﹣3)+(﹣3)+5=2,再根据2017÷4=504...1,进一步计算即可.【解答】解:根据题意,可得x1=1,x2=﹣1,x3=﹣1,x4=3,∴x1+x2+x3+x4=1+(﹣1)+(﹣1)+3=2,同理可得x5+x6+x7+x8=3+(﹣3)+(﹣3)+5=2,∵2017÷4=504...1,∴x2017=2×504+1=1009,∴x1+x2+…+x2017=504×2+1009=2017,故选:B.【点评】本题考查了坐标与平移,找出点坐标之间的规律是解题的关键.3.(2022秋•李沧区期末)如图,在平面直角坐标系中,A1(1,﹣2),A2(2,0),A3(3,2),A4(4,0),…根据这个规律,点A2023的坐标是()A.(2022,0)B.(2023,0)C.(2023,2)D.(2023,﹣2)【分析】由图形得出点的横坐标依次是1、2、3、4、…、n,纵坐标依次是﹣2、0、2、0、﹣2、0、2、…,四个一循环,继而求得答案.【解答】解:观察图形可知,点的横坐标依次是1、2、3、4、…、n,纵坐标依次是﹣2、0、2、0、﹣2、0、2、…,四个一循环,2023÷4=505……3,所以点A2023坐标是(2023,2).故选:C.【点评】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解题的关键是根据图形得出规律.4.(2021春•浉河区期末)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2021次跳动至点A2021的坐标是()A.(﹣1009,1009)B.(﹣1010,1010)C.(﹣1011,1011)D.(﹣1012,1012)【分析】根据点的坐标、坐标的平移寻找规律即可求解.【解答】解:因为A1(﹣1,1),A2(2,1),A3(﹣2,2),A4(3,2),A5(﹣3,3),A6(4,3),A7(﹣4,4),A8(5,4),…A2n﹣1(﹣n,n),A2n(n+1,n)(n为正整数),所以2n﹣1=2021,n=1011,所以A2020(﹣1011,1011),故选:C.【点评】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.5.(2021秋•九江期末)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙都从点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,0)D.(﹣1,﹣1)【分析】根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.【解答】解:由已知,矩形周长为12,∵甲、乙速度分别为1单位/秒,2单位/秒,则两个物体每次相遇时间间隔为121+2=4秒,则两个物体相遇点依次为(﹣1,1)、(﹣1,﹣1)、(2,0),∵2022=3×673…3,∴第2022次两个物体相遇位置为(2,0),故选:A.【点评】本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律.6.(2022春•启东市期中)如图,在平面直角坐标系xOy中,点A坐标是(1,1).若记点A坐标为(a1,a2),则一个点从点A出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8)…,每个点的横纵坐标都是整数,按此规律一直运动下去,则a2020+a2021+a2022的值为()A.2021B.2022C.1011D.1012【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2021=1011,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果.【解答】解:由直角坐标系可知A(1,1),B(2,﹣1),C(3,2),D(4,﹣2),……,即a1=1,a2=1,a3=2,a4=﹣1,a5=3,a6=2,a7=4,a8=﹣2,……,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2021=1011,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,∴a2021=﹣505,2023÷4=505……3,∴a2022=506,故a2020+a2021+a2022=1012,故选:D.【点评】本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键.7.(2022•浉河区校级开学)如图,在平面直角坐标系中,A1(2,0),B1(0,1),A1B1的中点为C1;A2(0,3),B2(﹣2,0),A2B2的中点为C2;A3(﹣4,0),B3(0,﹣3),A3B3的中点为C3;A4(0,﹣5),B4(4,0),A4B4的中点为C4;…;按此做法进行下去,则点C2022的坐标为()A.(﹣1012,−20232)B.(﹣1011,20232)C.(﹣1011,−20232)D.(﹣1012,−20212)【分析】根据题意得点∁n的位置按4次一周期的规律循环出现,可求得点C2022在第二象限,从而可求得该题结果.【解答】解:由题意可得,点∁n的位置按4次一周期的规律循环出现,∵2022÷4=505……2,∴点C2022在第二象限,∵位于第二象限内的点C2的坐标为(﹣1,32),点C6的坐标为(﹣3,72),点C10的坐标为(﹣5,112),……∴点∁n的坐标为(−2,r12),∴当n=2022时,−2=−20222=−1011,r12=2022+12=20232,∴点C2022的坐标为(﹣1011,20232),故选:B.【点评】此题考查了点的坐标方面规律性问题的解决能力,关键是能根据题意确定出该点的出现规律.8.(2022春•冷水滩区校级期中)如图,已知A1(1,2)A2(2,2)A3(3,0)A4(4,﹣2)A5(5,﹣2)A6(6,0)……,按这样的规律,则点A2021的坐标为()A.(2021,2)B.(2020,2)C.(2021,﹣2)D.2020,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【解答】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故选:C.【点评】本题考查了平面直角坐标系中的点的规律问题,发现题中的规律并正确计算出点A2021所处的循环组是解题的关键.9.(2022春•宣化区期末)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2021,﹣1)C.(2022,1)D.(2022,0)【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:12×2×1=,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒2个单位长度,∴点P1秒走12个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2022÷4=505余2,∴P的坐标是(2022,0),故选:D.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…根据这个规律探索可得,第100个点的坐标()A.(14,0)B.(14,﹣1)C.(14,1)D.(14,2)【分析】观察图形可知,横坐标相等的点的个数与横坐标相同,根据求和公式求出第100个点的横坐标以及在这一横坐标中的所有点中的序数,再根据横坐标是奇数时从上向下排列,横坐标是偶数时从下向上排列,然后解答即可.【解答】解:由图可知,横坐标是1的点共有1个,横坐标是2的点共有2个,横坐标是3的点共有3个,横坐标是4的点共有4个,…,横坐标是n的点共有n个,1+2+3+…+n=or1)2,当n=13时,13×(13+1)2=91,当n=14时,14×(14+1)2=105,所以,第100个点的横坐标是14,∵100﹣91=9,∴第100个点是横坐标为14的点中的第9个点,∵第142=7个点的纵坐标是0,∴第9个点的纵坐标是2,∴第100个点的坐标是(14,2).故选:D.【点评】本题是对点的变化规律的考查,观察得到横坐标相等的点的个数与横坐标相同是解题的关键,还要注意横坐标为奇数和偶数时的排列顺序不同.二、填空题(共10题)11.(2022春•东洲区期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是.A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)【分析】观察图形可知:每4次运动为一个循环,并且每一个循环向左运动4个单位,用2022÷4可判断出第2022次运动时,点P在第几个循环第几次运动中,进一步即可计算出坐标.【解答】解:动点P的运动规律可以看作每运动四次为一个循环,每个循环向左运动4个单位,∵2022÷4=505……2,∴第2022次运动时,点P在第506次循环的第2次运动上,∴横坐标为﹣(505×4+2)=﹣2022,纵坐标为0,∴此时P(﹣2022,0).故答案为:(﹣2022,0).【点评】本题考查规律型:点坐标,解答时注意探究点的运动规律,又要注意动点的坐标的象限符号.12.(2022秋•肃州区校级期末)如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…则点A2022的坐标是.【分析】根据题意可以发现规律:A4n(﹣n,n),A4n+1(n+1,n),A4n+2(n+1,﹣n ﹣1),A4n+3(﹣n﹣1,﹣n﹣1),根据规律求解即可.【解答】解:根据题意可以发现规律:A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),A6(2,﹣2),A7(﹣2,﹣2),A8(﹣2,2),…,∴A4n(﹣n,n),A4n+1(n+1,n),A4n+2(n+1,﹣n﹣1),A4n+3(﹣n﹣1,﹣n﹣1),∵2022=4×505+2,∴点A2022的坐标为(506,﹣506),故答案为:(506,﹣506).【点评】本题主要考查规律性:点的坐标,读懂题意,找出点的坐标规律是解答此题的关键.13.(2021秋•同安区期末)如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A2021的坐标为.【分析】观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),由2021是奇数,且2021=2n﹣1,则可求A2n﹣1(3032,1010).【解答】解:观察图形可得,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),∵2021是奇数,且2021=2n﹣1,∴n=1011,(3032,1010),∴A2n﹣1故答案为(3032,1010).【点评】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.14.(2022•嘉峪关一模)如图,平面直角坐标系xOy内,动点P按图中箭头所示方向依次运动,第1次从点(0,1)运动到点(1,0),第二次运动到点(2,﹣2),第3次运动到点(3,0),……按这样的运动规律,动点P第2022次运动到的点的坐标是.【分析】根据图形分析点P的运动规律:第n次运动到的点的横坐标为n,纵坐标每四次为一个循环,即可得到答案.【解答】解:∵第1次运动到点(1,0),第二次运动到点(2,﹣2),第3次运动到点(3,0),…,∴第n次运动到的点的横坐标为n,纵坐标每四次一个循环,从第一次运动到的纵坐标开始,分别为0、﹣2、0、1、…,∵2022÷4=505⋯2,∴动点P第2022次运动到的点的坐标是(2022,﹣2),故答案为:(2022,﹣2).【点评】此题考查了图形坐标的规律,正确理解图形运动坐标变化规律,得到点P的坐标是解题的关键.15.(2022秋•涡阳县校级月考)如图,一动点在第一象限内及x轴,y轴上运动,第一分钟,它从原点运动到(1,0),第二分钟,从(1,0)运动到(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,每分钟运动1个单位长度.第30分钟,动点所在的位置的坐标是.【分析】根据移动次数与点的坐标的所呈现的规律进行计算即可.【解答】解:根据移动的方向,距离所呈现的规律可得,当移动到点(1,0)时,对应的移动次数为1次,当移动到点(2,0)时,对应的移动次数为4+2×2=8次,当移动到点(3,0)时,对应的移动次数为8+1=9次,当移动到点(4,0)时,对应的移动次数为9+3×2+1+4×2=24次,当移动到点(5,0)时,对应的移动次数为24+1=25次,所以移动30次,所对应的点的坐标为(5,5),故答案为:(5,5).【点评】本题考查点的坐标,发现移动次数与点的坐标所呈现的规律是正确解答的关键.16.(2022•绥化三模)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,点P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2),…,根据这个规律,点P2022的坐标为.【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限,被4除余3的点在第一象限的角平分线上,点P2022的在第三象限,且横纵坐标的绝对值=2022÷4的商,纵坐标是2022÷4的商+1,再根据第三项象限内点的符号得出答案即可.【解答】解:∵2022÷4=505…2,∴点P2022在第二象限,∵P6(﹣1,2),P10(﹣2,3),P14(﹣3,4),…,6÷4=1…2,10÷4=2…2,14÷2=3..2,…,∴P2022(﹣505,506).故答案为:(﹣505,506).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.17.(2022秋•杏花岭区校级期中)在平面直角坐标系xOy中,对于点P(x,y),我们把点P1(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,⋯,A n,若点A1的坐标为(3,1),则点A2022的坐标为.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2022除以4,根据商和余数的情况确定点A2022的坐标即可.【解答】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2022÷4=505余2,∴点A2022的坐标与A2的坐标相同,为(0,4);故答案为:(0,4).【点评】此题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.18.(2022春•长安区校级期中)如图1,弹性小球从点P(0,3)出发,沿图中所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到长方形的边时,记为点P1,第2次碰到长方形的边时,记为点P2,…,第n次碰到长方形的边时,记为点P n,则点P3的坐标是;点P2022的坐标是.【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2022除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,根据图形知点P3的坐标是(8,3),根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(0,3),∵2022÷6=337,当点P第2021次碰到矩形的边时为第337个循环组的第6次反弹,点P的坐标为(0,3),故答案为:(8,3),(0,3).【点评】本题考查了矩形的性质、点的坐标的规律;作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.19.(2022春•五华区校级期中)如图,在直角坐标系中,长方形OABC的长为2,宽为1,将长方形OABC沿x轴翻转1次,点A落在A1处,翻转2次,点A落在A2处,翻转3次,点A落在A3处(点A3与点A2重合),翻转4次,点A落在A4处,以此类推…,若翻转2022次,点A落在A2022处,则A2022的坐标为.【分析】探究规律,利用规律解决问题即可.【解答】解:由题意A1(3,2),A2(A3)(5,0),A4(6,1),•••,发现4次一个循环,∵2022÷4=505.....2,∴A2022的纵坐标与A2相同,横坐标=505×6+5=3035,∴A2022(3035,0),故答案为:(3035,0).【点评】本题考查坐标与图形的变化﹣对称,规律型问题,解题的关键是学会探究规律的方法,属于中考填空题中的压轴题.20.(2022春•江岸区校级月考)如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点.其顺序按图中“→”方向依次排列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→…根据这个规律,第87个点的坐标为,第2022个点的坐标为.【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点的横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束.例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,......,右下角的点的横坐标为9时,共有92=81个,9是奇数,以横坐标为9,纵坐标为0的点结束,故第87个点的坐标为(10,5),右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),∴第2020个点的坐标为(45,3)故答案为:(10,5),(45,3).【点评】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.三、解答题(共10题)21.(2022秋•无为市月考)在平面直角坐标系中,一个动点A从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次只移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A4,A6,A12,A14.(2)按此规律移动,n为正整数,则点A4n的坐标为,点A4n+2的坐标为.(3)动点A从点A2022到点A2023的移动方向是.(填“向上”、“向右”或“向下”)【分析】(1)根据点的坐标变化即可填写各点的坐标;(2)根据(1)发现规律即可写出点A4n的坐标(n为正整数);(3)根据(2)发现的规律,每四个点一个循环,进而可得蜗牛从点A2020到点A2021的移动方向.【解答】解:(1)根据点的坐标变化可知:各点的坐标为:A4(2,0),A6(3,1),A12(6,0),A14(7,1);故答案为:(2,0),(3,1),(6,0),(7,1);(2)根据(1)发现:点A4n的坐标(n为正整数)为(2n,0);点A4n+2的坐标为(2n+1,1);故答案为:(2n,0),(2n+1,1);(3)因为每四个点一个循环,所以2023÷4=505…3.所以从点A2022到点A2023的移动方向是向下.故答案为:向下.【点评】本题考查了规律型﹣点的坐标,解决本题的关键是根据点的坐标变化发现规律,总结规律,运用规律.22.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…(1)填写下列各点的坐标:P9(、),P12(、),P15(、)(2)写出点P3n的坐标(n是正整数);(3)点P60的坐标是(、);(4)指出动点从点P210到点P211的移动方向.【分析】由题意可以知道,动点运动的速度是每次运动一个单位长度,(0,1)→(1,1)→(1,0)→(1,﹣1)……通过观察找到有规律的特殊点,如P3、P6、P9、P12,发现其中规律是脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,明确这个规律即可解决以上所有问题.【解答】解:(1)由动点运动方向与长度可得P3(1,0),P6(2,0),可以发现脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,即动点运动三次与横轴相交,故答案为P9(3,0),P12(4、0),P15(5、0).(2)由(1)可归纳总结点P3n的坐标为P3n(n,0),(n是正整数);(3)根据(2),∵60=3×20,∴点P60的横坐标是20故点P60的坐标是(20、0)故答案为(20、0).(4)∵210=3×70,符合(2)中的规律∴点P210在x轴上,又由图象规律可以发现当动点在x轴上时,偶数点向上运动,奇数点向下运动,而点P210是在x轴上的偶数点所以动点从点P210到点P211的移动方向应该是向上.【点评】本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定动点移动的数字与方向上的规律,然后再进一步按规律解决要求的点的位置.23.(2021秋•长丰县期末)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2、4、6、8、…,顶点依次用A1、A2、A3、A4、…表示.(1)请直接写出A5、A6、A7、A8的坐标;(2)根据规律,求出A2022的坐标.【分析】(1)看图观察即可直接写出答案;(2)根据正方形的性质找出部分A n点的坐标,根据坐标的变化找出变化规律“A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n 为自然数)”,依此即可得出结论.【解答】解:(1)A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2);(2)观察发现:A1(﹣1,﹣1),A2(﹣1,1),A3(1,1),A4(1,﹣1),A5(﹣2,﹣2),A6(﹣2,2),A7(2,2),A8(2,﹣2),A9(﹣3,﹣3),…,∴A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n为自然数),∵2022=505×4+2,∴A2022(﹣506,506).【点评】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,﹣n﹣1)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标的变化找出变化规律是关键.24.一个质点在第一象限及x轴、y轴移动,在第一秒时,它从原点移动到(0,1),然后按着下列左图中箭头所示方向移动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动1个单位.(1)该质点移动到(1,1)的时间为秒,移动到(2,2)的时间为秒,移动到(3,3)的时间为秒,…,移动到(n,n)的时间为秒.(2)该质点移动到(7,4)的时间为秒.【分析】(1)根据图形可得出质点移动到(1,1),(2,2),(3,3)的时间,根据规律可得出质点移动(n,n)的时间;(2)现有(1)的结论得出(7,7)的时间,再加上3即可得出移动到(7,4)的时间.【解答】解:(1)由图可知移动到(1,1)的时间为2秒,移动到(2,2)的时间为6秒,移动到(3,3)的时间为12秒,根据变化规律可得移动到(n,n)的时间为n(n+1),故答案为:2,6,12,n(n+1);(2)由(1)可得移动到(7,7)的时间为7×8=56,56+3=59,∴移动到(7,4)的时间为59秒,故答案为59.【点评】本题主要考查点的坐标的变化规律,关键是要能找到质点移动到(n,n)的时间的规律.25.(2022•马鞍山一模)如图,某小区绿化区的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中.已知小正方形的边长为1,A1的坐标为(2,2),A2的坐标为(5,2).(1)A3的坐标为,A n的坐标为用含n的代数式表示;(2)若护栏长为2020,则需要小正方形个,大正方形个.【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A1,A 2,A 3,…,A n 各点的纵坐标均为2,横坐标依次大3,由此便可得结果;(2)先求出一个小正方形与一个大正方形所构成的护栏长度,再计算2020米包含多少这样的长度,进而便可求出结果.【解答】解:(1)∵A 1的坐标为(2,2)、A 2的坐标为(5,2),∴A 1,A 2,A 3,…,A n 各点的纵坐标均为2,∵小正方形的边长为1,∴A 1,A 2,A 3,…,A n 各点的横坐标依次大3,∴A 3(5+3,2),A n (2+3+3+⋅⋅⋅+3︸(K1)个3,2),即A 3(8,2),A n (3n ﹣1,2),故答案为(8,2);(3n ﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.【点评】本题是点的坐标的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.26.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变成△OA 2B 2,第三次将△OA 2B 2变成△OA 3B 3,已知A (1,5),A 1(2,5),A 2(4,5),A 3(8,5);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后三角形有何变化,找出规律.按此规律将△OA 3B 3变成△OA 4B 4,则A 4的坐标是,B 4的坐标是.(2)若按第(1)题中找到的规律将△OAB 进行n 次变换,得到△OA n B n ,比较每次变换中三角形顶点的坐标有何变化,找出规律,推测A n 的坐标是,B n 的坐标是.【分析】(1)对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是5,同理B 1,B 2,B n 也一样找规律.(2)根据第一问得出的A 4的坐标和B 4的坐标,再此基础上总结规律即可知A n 的坐标是(2n ,5),B n 的坐标是(2n +1,0).【解答】解:(1)因为A(1,5),A1(2,5),A2(4,5),A3(8,5)…纵坐标不变为5,同时横坐标都和2有关,为2n,那么A4(16,5);因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,同时横坐标都和2有关为2n+1,那么B的坐标为B4(32,0);故答案为:(16,5),(32,0);(2)由上题第一问规律可知A n的纵坐标总为5,横坐标为2n,B n的纵坐标总为0,横坐标为2n+1,∴A n的坐标是(2n,5),B n的坐标是(2n+1,0).故答案为:(2n,5),(2n+1,0).【点评】本题考查了学生观察图形及总结规律的能力,涉及的知识点为:平行于x轴的直线上所有点纵坐标相等,x轴上所有点的纵坐标为0.27.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…∁n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,∁n,D n;(3)请求出四边形A5B5C5D5的面积.【分析】(1)根据点的坐标规律解答即可;(2)根据点的坐标规律解答即可;(3)根据四边形A5B5C5D5的面积=△5B5+△5B5+△5B5+△5B5计算即可.【解答】解:(1)A3(9,0),B3(0,10),C3(﹣11,0),D3(0,﹣12).(2)A n(4n﹣3,0),B n(0,4n﹣2),∁n(﹣4n+1,0),D n(0,﹣4n).(3)∵A5(17,0),B5(0,18),C5(﹣19,0),D5(0,﹣20).∴四边形A5B5C5D5的面积=△5B5+△5B5+△5B5+△5B5=12×17×18+12×18×19+12×19×20+12×20×17=684.故答案为:A3(9,0),B3(0,10),C3(﹣11,0),D3(0,﹣12).A n(4n﹣3,0),B n(0,4n﹣2),∁n(﹣4n+1,0),D n(0,﹣4n).【点评】此题考查点的坐标,关键是根据图形得出点的坐标的规律进行分析.28.(2021春•自贡期末)综合与实践问题背景:(1)已知A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB和CD中点P1、P2,然后写出它们的坐标,则P1,P2.探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.拓展应用:(3)利用上述规律解决下列问题:已知三点E(﹣1,2),F(3,1),G(1,4),第四个点H(x,y)与点E、点F、点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.【分析】(1)根据坐标的确定方法直接描点,:分别读出各点的纵横坐标,即可得到各中点的坐标;(2)根据(1)中的坐标与中点坐标找到规律;(3)利用(2)中的规律进行分类讨论即可答题.【解答】解:(1)如图:A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出它们如下:线段AB和CD中点P1、P2的坐标分别为(2,2)、(﹣1,﹣2)故答案为:(2,2)、(﹣1,﹣2).(2)若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为(1+22,1+22).故答案为:(1+22,1+22).(3)∵E(﹣1,2),F(3,1),G(1,4),∴EF、FG、EG的中点分别为:(1,32)、(2,52)、(0,3)∴①HG过EF中点(1,32)时,r12=1,r42=32解得:x=1,y=﹣1,故H(1,﹣1);②EH过FG中点(2,52)时,−1+2=2,2+2=52解得:x=5,y=3,故H(5,3);③FH过EG的中点(0,3)时,3+2=0,1+2=3解得:x=﹣3,y=5,故H(﹣3,5).∴点H的坐标为:(1,﹣1),(5,3),(﹣3,5).【点评】本题考查了坐标与图形性质.通过此题,要熟记平面直角坐标系中线段中点的横坐标为对应线段的两个端点的横坐标的平均数,中点的纵坐标为对应线段的两个端点的纵坐标的平均数.29.(2022•包河区二模)如图,在平面直角坐标系中,点A1的坐标为(1,0)、点A2的坐标为(2,0)、点A3的坐标为(3,0)、…,过点A1、A2、A3、…分别作x轴垂线,交直线y=x于点B1、B2、B3、…,△OA1B1覆盖的整点(横、纵坐标均为整数的点)的个数记为P1,面积的值记为S1;△OA2B2覆盖的整点的个数记为P2,面积的值记为S2;△OA3B3覆盖的整点的个数记为P3,面积的值记为S3;…(1)由题意可知:P1=3、S1=12;P2=6、S2=2;P3=10、S3=92;则P4=、S4=;(2)P7﹣S7=;。
平面直角坐标系规律专题(学生版)
平面直角坐标系规律专题1.如图,一个粒子在第一象限内及x 轴、y 轴上运动,在第一分钟,它从原点运动到点(1,0);第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是( )A .(44,4)B .(44,3)C .(44,5)D .(44,2)2.如图,在平面直角坐标系中,设一质点M 自0(1,0)P 处向上运动1个单位至1(1,1)P ,然后向左运动2个单位至2P 处,再向下运动3个单位至3P 处,再向右运动4个单位至4P 处,再向上运动5个单位至5P 处,⋯,如此继续运动下去,则2020P 的坐标为( )A .(504,505)−B .(1010,1011)−C .(1011,1010)−D .(505,504)−3.如图,在平面直角坐标系中,边长为1的正方形111OA B C 的两边在坐标轴上,以它的对角线1OB 为边作正方形122OB B C ,再以正方形122OB B C 的对角线2OB 为边作正方形233OB B C ,以此类推⋯、则正方形201920202020OB B C 的顶点2020B 的坐标是( )A .1010(2,0)B .(0,10102)C .1010(0,2)−D .1010(2−,0)4.如图,一机器人从原点出发按图示方向作折线运动,第1次从原点到1(1,0)A ,第2次运动到2(1,1)A ,第3次运动到3(1,1)A −,第4次运动到4(1,1)A −−,第5次运动到5(2,1)A −⋯则第15次运动到的点15A 的坐标是( )A .(4,4)B .(4,4)−C .(4,4)−−D .(5,4)−5.如图,在平面直角坐标系中,O 为坐标原点,点N 在x 轴正半轴上,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,30MON ∠=︒,△112A B A ,△223A B A ,334A B A △,…,为等边三角形,依此类推,若11OA =,则点2020B 的横坐标是( )A .201723⨯B .201823⨯C .201923⨯D .202023⨯6.如图,在平面直角坐标系中,将边长为3,4,5的Rt ABO ∆沿x 轴向右滚动到△11AB C 的位置,再到△112A B C 的位置⋯依次进行下去,发现(3,0)A ,1(12,3)A ,2(15,0)A ⋯那么点10A 的坐标为( )A .(60,3)B .(60,0)C .(63,3)D .(63,0)7.如图,平面直角坐标系中,已知点(1,1)A ,(1,1)B −,(1,2)C −−,(1,2)D −,动点P 从点A 出发,以每秒2个单位的速度按逆时针方向沿四边形ABCD 的边做环绕运动;另一动点Q 从点C 出发,以每秒3个单位的速度按顺时针方向沿四边形CBAD 的边做环绕运动,则第2019次相遇点的坐标是( )A .(1,1)−−B .(1,1)−C .(2,2)−D .(1,2)8.如图,在平面直角坐标系上有点(1,0)A ,点A 第一次跳至点1(1,1)A −,第二次向右跳动3个单位至点2(2,1)A ,第三次跳至点3(2,2)A −,第四次向右跳动5个单位至点4(3,2)A ,…依此规律跳动下去,点A 第100次跳至点100A 的坐标是( )A .(50,50)B .(51,50)C .(50,51)D .(49,50)9.如图,已知点1(1,0)A,2(1,1)A,3(1,1)A−,4(1,1)A−−,5(2,1)A−,…,则点2020A的坐标为()A.(505,505)B.(506,505)−C.(505,505)−−D.(505,505)−10.如图,在平面直角坐标系中,11OA=,将边长为1的正方形一边与x轴重合按图中规律摆放,其中相邻两个正方形的间距都是1,则点2022A的坐标为()A.(1009,1)B.(1010,1)C.(1011,0)D.(1011,1)−11.如图,在48⨯的长方形网格OABC中,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2020次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)12.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,请你观察图中正方形1111A B C D ,2222A B C D ,3333A B C D ,每个正方形四条边上的整点的个数.按此规律推算出正方形20202020A B C D 四条边上的整点的总个数有( )A .152B .156C .160D .16813.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),……,根据这个规律探索可得,第120个点的坐标为( )A .(16,0)B .(15,14)C .(15,0)D .(14,13)14.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点1(0,1)A ,2(1,1)A ,3(1,0)A ,4(2,0)A ,那么2020A 坐标为( )A .(2020,1)B .(2020,0)C .(1010,1)D .(1010,0)15.如图,在平面直角坐标系上有个点(1,0)A −,点A 第1次向上跳动1个单位至点1(1,1)A −,紧接着第2次向右跳动2个单位至点2(1,1)A ,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2019次跳动至点2019A 的坐标是( )A .(505,1009)−B .(505,1010)C .(504,1009)−D .(504,1010)16.如图所示,在平面直角坐标系中,半径均为1个单位的半圆1O ,2O ,3O ,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2018秒时,点P 的坐标是点( )A .(2017,1)B .(2018,0)C .(2017,1)−D .(2019,0)17.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)⋯按这样的运动规律经过第2021次运动后,动点P 的坐标是 .18.在学校,每一位同学都对应着一个学籍号.在数学中也有一些对应.现定义一种对应关系f ,使得数对(,)x y 和数z 是对应的,此时把这种关系记作:(,)f x y z =.对于任意的数m ,()n m n >,对应关系f 由如表给出:(,)x y (,)n n (,)m n (,)n m(,)f x ynm n −m n +如:(1,2)213f =+=,f (2,1)211=−=,f (1,1)1−−=−,则使等式(12,3)2f x x +=成立的x 的值是 .19.按照如图的方式排列,若第一个点为(0,0),则第100个点的坐标为 .20.如图,在平面直角坐标系中,第一次将OAB ∆变换成△11OA B ,第二次将△11OA B 变换成△22OA B ,第三次将△22OA B 变换成△33OA B ,⋯,将OAB ∆进行n 次变换,得到△n n OA B ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是 .。
考点01 平面直角坐标系内点的坐标特征(解析版)
考点一平面直角坐标系内点的坐标特征知识点整合1.有序数对(1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.(2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.2.点的坐标特征点的位置横坐标符号纵坐标符号第一象限﹢+第二象限-+第三象限--第四象限+-x轴上正半轴上+0负半轴上-0y轴上正半轴上0+负半轴上0-原点003.轴对称(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).4.中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).5.图形在坐标系中的旋转图形(点)的旋转与坐标变化:(1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);(2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);(3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);(4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).6.图形在坐标系中的平移图形(点)的平移与坐标变化(1)点P(x,y)向右平移a个单位,其坐标变为P′(x+a,y);(2)点P(x,y)向左平移a个单位,其坐标变为P′(x-a,y);(3)点P(x,y)向上平移b个单位,其坐标变为P′(x,y+b);(4)点P(x,y)向下平移b个单位,其坐标变为P′(x,y-b).考向一有序数对有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.典例引领1.根据下列表述,能确定具体位置的是()A.电影城1号厅6排B.北京市海淀区C.北纬31︒,东经103︒D.南偏西40︒【答案】C【分析】本题考查了平面内的点与有序实数对一一对应,根据平面内的点与有序实数对一一对应分别对每个选项判断.【详解】A、电影城1号厅6排不能确定具体位置.故本选项不合题意;B、北京市海淀区不能确定具体位置.故本选项不合题意;C、北纬31︒,东经103︒能确定具体位置.故本选项符合题意;D、南偏西40︒不能确定具体位置.故本选项不合题意.故选:C2.下列表述,能确定准确位置的是()A.威高广场东面B.环翠楼北偏西10︒C.U度影城2号厅一排D.北纬37︒,东经122︒【答案】D【分析】本题考查了有序数对,利用有序数对可以准确的表示出一个位置.确定位置需要两个数据,对各选项分析判断利用排除法即可求解.【详解】解:A、威高广场东面,不能确定具体位置,故本选项不符合题意;B、环翠楼北偏西10︒,不能确定具体位置,故本选项不符合题意;C 、U 度影城2号厅一排,不能确定具体位置,故本选项不符合题意;D 、北纬37︒,东经122︒,能确定具体位置,故本选项符合题意.故选:D .3.2023年山西省大学生篮球锦标赛于12月中旬开赛,图1是某大学篮球场座位图,图2是该篮球场部分座位的示意图.小刚、小芳、小美的座位如图所示.若小刚的座位用()1,1-表示,小芳的座位用()3,2表示,则小美的座位可以表示为()A .()1,2-B .()2,0C .()2,1-D .()1,0【答案】C【分析】本题考查点的坐标,根据点的位置先确定平面直角坐标系的位置,然后写出点的坐标是解题的关键.【详解】解:根据小刚、小芳的位置确定坐标系位置如图所示,∴小美的座位可以表示为()2,1-,故选C .4.如图,雷达探测器测得六个目标A ,B ,C ,D ,E ,F ,目标E ,F 的位置分别表示为()()3,330,2,30E F ︒︒.按照此方法,目标A ,B ,C ,D 的位置表示不正确的是()A .()5,60A ︒B .()3,120B ︒C .()3,210C ︒D .()5,270D ︒【答案】C【分析】本题考查利用有序实数对表示位置,解题的关键是根据理解题意.根据()3,330E ︒,()2,30F ︒得到第一个数为由里向外的圈数,第二个数为角度,直接逐个判断即可得到答案【详解】解:∵()3,330E ︒,()2,30F ︒,∴()5,60A ︒,()3,120B ︒,()4,210C ︒,()5,270D ︒,故选:C5.如果剧院里“5排2号”记作()5,2,那么()7,9表示()A .“7排9号”B .“9排7号”C .“7排7号”D .“9排9号”【答案】A【分析】本题考查了坐标确定位置,解题关键是清楚有序数对与排号之间的关系,根据题意可前一个数表示排数,后一个数表示号数即可求解.【详解】解:由“5排2号”记作()5,2可知,有序数对与排号对应,所以()7,9表示第7排9号.故选:A .6.一幢东西走向的5层教学楼,每层共8个教室.若把一楼从东侧数起第3个教室记为()1,3,二楼最东侧教室记为()2,1,则五楼最西侧教室记为()A .()5,1B .()5,8C .()8,5D .()1,5【答案】B【解析】略7.某班级第3组第4排的位置可以用数对()3,4表示,则数对()1,2表示的位置是()A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排【答案】C【解析】略变式拓展00,【答案】()【分析】本题考查有序数对位置的确定,进而得出答案,采用数形结合的思想是解此题的关键.【详解】解:根据棋子“马”和“车”00,.故答案为()【答案】23【分析】本题主要考查了数字类的规律探索,的数为()1n n+,据此算出第三、解答题13.如图是某校区域示意图.规定列号写在前面,行号写在后面.(1)用数对的方法表示校门的位置.9,7在图中表示什么地方?(2)数对()2,3;【答案】(1)()(2)教学楼.【分析】(1)根据校门所在的列及所在的行,即可表示出校门的位置;(2)根据数对的表示方法找到对应的位置,即可得到数对表示的地点;本题考查了用有序数对表示点的位置,理解序数对表示的含义是解题的关键.【详解】(1)解:由图可知,校门位于第2列,第3行,2,3;∴校门的位置为数对()9,7表示的位置为第9列,第7行,(2)解:数对()由图可知,表示的地方为教学楼.14.在计算机软件Excel中,若将第A列第1行空格记作A1,如图.(1)试在图中找出空格B53,并填上“B53”字样;(2)图中的蜜蜂所在位置记作什么?(3)一只电子“蜜蜂”的行进路线为A52→A51→B52→C51→D52→C53.试在图中描出它的行进路线.【答案】(1)见解析(2)D52(3)见解析【详解】(1)如图所示(2)图中的蜜蜂所在位置记作D52.(3)行进路线如图所示.考向二点的坐标特征1.象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;(2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.典例引领∴点()3,1Q a a -+所在象限是第二象限,故选:B .变式拓展二、填空题所以23a a +=±,解得3a =-(舍去)或1-.故答案为:1-.三、解答题考向三点的坐标规律探索这类问题通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.典例引领1.如图,将边长为1的正方形ABOC 沿x 轴正方向连续翻转2014次,点A 依次落在点12A A 、、32014A A 、、的位置,则点2014A 的横坐标为()A .1343B .1510C .1610D .2014【答案】D【分析】本题考查了探究规律,利用规律即可解决问题,涉及坐标与图形变化-对称、规律型:点的坐标,先根据题意写出已知点的坐标,再找到规律为次数是2的奇数倍的偶数,位于x 轴上,横坐标为这个翻转次数;次数是2的偶数倍的偶数,位于x 轴的上方,横坐标为这个翻转次数加上1;据此作答即可.A .()3032,1-B .()3034,4C .()3036,4D .()3031,1【答案】B【分析】本题考查坐标的规律问题,先找到点的规律,然后计算解题即可,解题的关键是找到点的坐标规律.【详解】由题可知,每四个点纵坐标重复一次,横坐标向左平移6个单位长度,∴202345053÷= ,则2023A 的横坐标为:505643034⨯+=,纵坐标为4,故选:B .4.对一组数(),x y 的一次操作变换记为()111,P x y ,定义其变换法则如下:()111,(,)P x y x y x y =+-,()()()()22211111111,,,,n n n n n n n P x y x y x y P x y x y x y ----=+-=+- (n 为大于1的整数),如这组数为(1,2),则1(3,1)P =-,2(2,4)P =,3(6,2)P =-…当这组数为(1,1)-时,2024P =()A .()101210122,2-B .()10120,2-C .()10110,2D .()101110112,2-【答案】A【分析】本题考查了新定义点的坐标,根据操作方法依次求出前几次变换的结果,然后根据规律解答,读懂题目信息,理解操作方法并观察出点的纵坐标的指数的变化规律是解题的关键.【详解】解:当这组数为()1,1-时,()()11,10,2P -=,()()21,12,2P -=-,()()()231,10,40,2P -==,()()()2241,14,42,2P -=-=-,()()()351,10,80,2P -==,∴()()1012101220241,12,2P -=-,故选:A .二、填空题【答案】()20212,【分析】本题考查了点坐标规律探索,旨在考查学生的抽象概括能力.标为对应的运动次数减3,纵坐标依次为:4,2,1,1,2-,每5次一个循环,据此即可求解.【详解】解:由题意得:动点0()34P -,在平面直角坐标系中的运动为:1()22P -,,()21,1P -,31(0)P -,,42(1)P ,,54(2)P ,,62(3)P ,,...∴横坐标为对应的运动次数减3,则第2024次运动到点2024P 的横坐标为:202432021-=;∵()202415405+÷=,∴第2024次运动到点2024P 的纵坐标为:2;故答案为:()20212,变式拓展【答案】()20242024,0P 【分析】本题考查了坐标系中点的坐标规律探索,仔细观察点的坐标发现第()22,0P ,第4次坐标为()44,0P ,第6次坐标为()66,0P ,故第2024次的坐标为【详解】第2次坐标为()22,0P ,第4次坐标为()44,0P ,第6次坐标为故第2024次的坐标为()20242024,0P .故答案为:()20242024,0P .7.在平面直角坐标系xOy 中,对于点(),P x y ,我们把(11,P y x --知点1A 的友好点为2A ,点2A 的友好点为3A ,点3A 的友好点为4A ,这样依次得到各点的坐标为()1,2,设()1,A x y ,则x y +的值是.【答案】5-【分析】本题主要考查了规律型:点的坐标,解答本题的关键是准确理解题意,发现变换规【答案】()2023,1-【分析】本题主要考查的是坐标系中的规律探究问题,计算P 的时间,根据规律即可求得第2023秒P 点位置,找出运动规律是解题的关键.【详解】由题意可知,点P 运动一个半圆所用的时间为:π÷三、解答题10.如图,在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4A (_________,_________),8A (_________,_________),12A (_________,_________);(2)写出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点2021A 到点2022A 的移动方向.【答案】(1)2,0;4,0;6,0;(2)()2,0n (3)向右.【分析】(1)本题考查了在平面坐标系中点的坐标特点,根据题意知道按向上、向右、向下、向右的方向每次移动1个单位,即可解题.(2)本题考查了在平面坐标系中坐标的特点和坐标的规律,观察点4A 的位置,由图可知,蚂蚁每走4步为一个周期,得出4n OA 的值,再根据点4n A 在x 轴的正半轴上,即可解题.(3)本题考查了在平面坐标系中坐标的特点和坐标的规律,根据点4n A 的坐标,分析可得点2020A 的坐标,再结合题意知道按方向每次移动1个单位,得到点2021A 和点2021A 的坐标,即可解题.【详解】(1)解:由图可知,点4A ,点8A ,点12A 都在x 轴的正半轴上,小蚂蚁每次移动1个单位,42OA ∴=,84OA =,126OA =,()42,0A ∴,()84,0A ,()126,0A ,故答案为:2,0;4,0;6,0.(2)解:由图可知,蚂蚁每走4步为一个周期,44422n OA n n ∴=÷⨯=,点4n A 在x 轴的正半轴上,()42,0n A n ∴.(3)解: 当2020n =时,4505n ∴=⨯,∴点2020A 的坐标为()1010,0,∴点2021A 的坐标为()1010,1,点2022A 的坐标为()1011,1,∴蚂蚁从点2021A 到点2022A 的移动方向为向右.。
部编数学七年级下册专题11平面直角坐标系中利用点的坐标变化规律探究问题(解析版)含答案
专题11 平面直角坐标系中利用点的坐标变化规律探究问题(解析版)第一部分典例精析类型一点的运动规律探究(1)沿坐标轴运动的点的坐标规律探究1.(2022•丛台区开学)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…,根据这个规律探索可得,第10个点的坐标为 ,第55个点的坐标为 .思路引领:从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第10个点和第55个点的坐标,我们可以通过加法计算算出第10个点和第50个点分别位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.解:在横坐标上,第一列有一个点,第二列有2个点…第n列有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,∵1+2+3+4=10,1+2+3+…+10=55,∴第10个点在第4列自下而上第4行,所以奇数列的坐标为(n,n−12)(n,n−12−1)…(n,1−n2);偶数列的坐标为(n,n2)(n,n2−1)…(n,1−n2),由加法推算可得到第55个点位于第10列自下而上第10行.代入上式得第10个点的坐标为(4,2),第55个点的坐标为(10,5),故答案为:(4,2),(10,5).总结提升:本题是对点的变化规律的考查,观察得到横坐标相等的点的个数与横坐标相同是解题的关键,还要注意横坐标为奇数和偶数时的排列顺序不同.2.(2022•麻城市校级模拟)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2022秒时,点P的坐标是 .思路引领:计算P点运动过程中走一个半圆所用的时间,根据规律即可求得第2022秒P点位置.解:由题意可知,点P运动一个半圆所用的时间为:π÷π2=2(秒),∵2022=1011×2,∴2022秒时,P在第1011个半圆的最末尾处,∴点P的坐标为(2022,0).故答案为:(2022,0).总结提升:本题主要考查的是坐标系中的规律探究问题,找出运动规律的同时也要考虑坐标系位置是解题的关键.3.(2021春•洛龙区期中)在平面直角坐标系中,一只蚂蚁从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2021的坐标是( )A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)思路引领:观察图形可知,A4,A8,…都在x轴上,求出OA4,OA8,…OA4n的长度,然后写出坐标即可;根据以上规律写出点A4n的坐标即可求出点A2020的坐标,则A2021点的坐标即可求出.解:由图可知,A4,A8,…都在x轴上,蚂蚁每次移动1个单位,∴OA4=2,OA8=4,…OA4n=2n,∴点A4n的坐标为(2n,0),∴点A2020的坐标为(1010,0),∴A2021(1010,1),故选:B.总结提升:本题主要考查了点的变化规律,仔细观察图形,确定出点A 4n 都在x 轴上是解题的关键.(2)绕定点呈“回”字形运动的点的坐标变化规律4.如图是一回形图,其回形通道的宽和OB 的长均为1, 回形线与射线OA 交于A 1,A 2,A 3,….若从O点到A 1点的回形线为第1圈(长为7),从A 1点到A 2点的回形线为第2圈,…,依此类推.则第10圈的长为 .思路引领:如图,以点O 为原心,建立平面直角坐标系,则A 1,A 2,A 3,…的坐标分别为(-1,0),(-2,0),(-3,0),…,A 10的坐标为(-10,0),然后大致描出第10圈的形状,很轻松求出第10圈的长.解:观察图形发现:第一圈的长是2(1+2)+1=7;第二圈的长是2(3+4)+1=15;第三圈的长是2(5+6)+1=23;则第n 圈的长是2(2n-1+2n )+1=8n-1.当n=10时,原式=80-1=79.故答案为79.题眼直击:坐标表示图形,规律探究.总结提升:依次计算第一圈长,第二圈长,……,探究这几个数的一般规律性,然后应用规律求出第10圈.5.(2022•金凤区校级二模)如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),…依次扩展下去,则P 2022的坐标为 .思路引领:根据题意可得到规律,P4n(n,n),P4n+1(﹣n﹣1,n),P4n+2(﹣n﹣1,﹣n﹣1),P4n+3(n+1,﹣n﹣1),再根据规律求解即可.解:根据题意可得到规律,P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),P7(2,﹣2),P8(2,2),P12(3,3),P16(4,4),...,P4n(n,n),P4n+1(﹣n﹣1,n),P4n+2(﹣n﹣1,﹣n﹣1),P4n+3(n+1,﹣n﹣1),∵2022=4×505+2,∴P2022(﹣506,﹣506),故答案为:(﹣506,﹣506).总结提升:本题主要考查规律型:点的坐标,读懂题意,找出点的坐标规律是解答此题的关键.类型二图形变换的点的坐标规律探究6.(2018春•兴城市期末)如图,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1换成三角形OA2B2,第三次将三角形OA2B2换成三角形OA3B3,……,若A(﹣3,1),A1(﹣3,2),A2(﹣3,4),A3(﹣3,8),点B(0,2),B1(0,4),B2(0,6),B3(0,8),按这样的规律,将三角形OAB进行2018次变换,得到三角形OA2018B2018,则A2018的坐标是 .思路引领:探究规律后利用规律即可解决问题;解:∵A 1(﹣3,2),A 2 (﹣3,4),A 3(﹣3,8);∴A 点横坐标为﹣3,纵坐标依次为:2,22,23,…得出:A n (﹣3,2n ),∴n =2018时,A 2018(﹣3,22018),故答案为(﹣3,22018)总结提升:此题主要考查了规律型:点的坐标,根据题意得出A ,B 点横纵坐标变化规律是解题关键.7.12.如图,在直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1第二次将OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)求三角形OAB 的面积;(2)写出三角形OA 4B 4的各个顶点的坐标;(3)按此图形变化规律,你能写出三角形OA n B n 的面积与三角形OAB 的面积的大小关系吗?解:(1)S 三角形OAB =12×2×3=3;(2)根据图示知O 的坐标是(0,0);已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),对于A 1,A 2…A n 坐标找规律比较从而发现A n 的横坐标为2n ,而纵坐标都是3;同理B 1,B 2…B n 也一样找规律,规律为B n 的横坐标为2n +1,纵坐标为0.由上规律可知:A 4的坐标是(16,3),B 4的坐标是(32,0);综上所述,O(0,0),A 4(16,3),B 4(32,0);(3)根据规律,后一个三角形的底边是前一个三角形底边的2倍,高相等都是4,所以OB n =2n +1,S 三角形OA n B n =12×2n +1×3=3×2n =2n S 三角形OAB ,即S 三角形A n B n =2n S 三角形OAB 。
《提分练习6 点的坐标变化规律探究问题》
典中点《提分练习6 点的坐标变化规律探究问题》分类训练类型一 坐标系内运动的点的坐标变化规律探究1.如图,在平面直角坐标系中,半径均为1个单位长度的半圆123,,,O O O 组成一条平滑的曲线.点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2023s 时,点P 的坐标是( )A.(2022,0)B.(2023,0)C.(2023,1)D.(2023,-1)2.如图,一个粒子在第一象限内及x 轴、y 轴上运动,第1min 从原点运动到(1,0),第2min 从(1,0)运动到(1,1),然后它接着按图中箭头所示的方向运动(在第一象限内运动时,运动方向与x 轴或y 轴平行),且每分钟运动1个单位长度.(1)当粒子所在位置是(2,2)时,所经过的时间是_______;(2)在第2022min 时,这个粒子所在位置的坐标是_______.3.如图,弹性小球从点P (0,3)出发,沿所示方向运动,每当小球碰到长方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到长方形边时的点为1P ,第2次碰到长方形边时的点为2P ,…,第n 次碰到长方形边时的点为n P ,则点3P 的坐标是_______,点2023P 的坐标是_______.类型二 绕原点呈“回”字形运动的点的坐标变化规律探究4.【2021·仙桃】如图,在平面直角坐标系中,动点P 从原点O 出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得点()11,1P --;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点2P ;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点3P ;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点4P ,…,按此作法进行下去,则点2021P 的坐标为_______.类型三 图形变换的点的坐标变化规律探究5.如图,在平面直角坐标系中,第一次将△OAB 变换成11OA B ,第二次将11OA B 变换成22OA B ,第三次将22OA B 变换成33OA B ,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形的变化规律,按此规律再将33OA B 变换成44OA B ,则点A 4的坐标是_______,点B 4的坐标是_______;OA B,(2)若按(1)中找出的规律,将△OAB进行n(n为正整数)次变换,得到n n 比较每次变换前后三角形顶点坐标的变化规律,推测点A n的坐标是_______,点B n的坐标是_______.参考答案1.答案:D2.答案:(1)6min (2)(44,2)3.答案:(8,3);(3,0)4.答案:(-1011,-1011)解析:易得2P (-1+2,-1+2),即2P (1,1);3P (1-3,1-3),即3P (-2,-2);4P (-2+4,-2+4),即4P (2,2);5P (2-5,2-5),即5P (-3,-3)……由此找到规律:21(,)n P n n ---,其中n 为正整数. 令n =1011,得2021P (-1011,-1011)5.(1)(16,3);(32,0)(2)()2,3n ;()12,0n +。
点的坐标找规律题
点的坐标找规律题
问题描述
本题给出一组点的坐标,要求找出这组点的规律或者特征。
解决思路
要找出一组点的规律或者特征,可以尝试以下几种方法:
1. 绘制点的图形
将所有点的坐标在二维平面上绘制出来,观察是否有一定的几何形状或者分布模式。
通过观察图形,可以初步判断出点的规律。
2. 计算点的距离或者角度
对于一组点,可以计算点与点之间的距离或者角度,然后观察这些值之间是否存在一定的关系或者规律。
例如,可以计算点到原点的距离,点与点之间的距离之比等等。
3. 分析点的坐标数值
观察点的坐标数值,尤其是x轴和y轴之间的关系。
可以计算
点的坐标差值或者比值,看是否存在一定的数学关系,例如等差数列、等比数列等等。
4. 使用数学公式或者方程
根据点的坐标特征,可以尝试运用数学公式或者方程进行计算
和推导。
例如,可以使用线性方程、二次方程等来描述点的规律。
总结
通过上述方法的尝试和分析,可以找出一组点的规律或者特征。
在解决问题的过程中,可以结合不同的方法进行综合分析,以获得
更准确和全面的答案。
初中数学中考复习—坐标系中点的坐标变化规律题(1)(有答案)
初中数学中考复习—坐标系中点的坐标变化规律题(1)(有答案)2020中考复习—坐标系中点的坐标变化规律题(1)姓名:___________班级:___________考号:___________一、选择题1.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…循环爬行,其中A点的坐标为(2,?2),B点的坐标为(?2,?2),C点的坐标为(?2,6),D点的坐标为(2,6),当蚂蚁爬了2019个单位时,蚂蚁所处位置的坐标为()A. (?2,0)B. (4,?2)C. (?2,4)D. (?1,?2)2.如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,……,则B2018的横坐标为()A. 22016B. 22017C. 22018D. 220193.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是()A. (2018,0)B. (2019,0)C. (2019,2)D. (2017,2)4.在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点,观察图中每正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点的个数共有()A. 35个B. 40个C. 45个D. 50个5. 如图,将含有30°角的直角三角板ABC 放入平面直角坐标系,顶点A 、B 分别落在x 、y 轴的正半轴上,∠OAB =60°,点A 的坐标为(1,0).将三角板ABC 沿x 轴向右作无滑动的滚动(先绕点A 按顺时针方向旋转60°,再绕点C 按顺时针方向旋转90°…)当点B 第一次落在x 轴上时,则点B 运动的路径与两坐标轴围成的图形面积是( )A. √3B. √3+1712πC. √32+1712π D. √3+π6. 在平面直角坐标系中,第一个正方形ABCD 的位置如图所示,点A 的坐标为(2,0),点D 的坐标为(0,4).延长CB 交x 轴于点A 1,作第二个正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作第三个正方形A 2B 2C 2C 1,…,按这样的规律进行下去,第2016个正方形的面积为( )A. 20×(32)4030B. 20×(32)4032C. 20×(32)2016D. 20×(32)20157. 如图,已知菱形ABCD 的顶点A(?√3,0),∠DAB =60°,若动点P 从点A 出发,沿A →B →C →D →A →B →?的路径,在菱形的边上以每秒0.5个单位长度的速度移动,则第2017秒时,点P 的坐标为( )A. (3√34,?14) B. (?3√34,?14) C. (?√3,0) D. (√3,0)二、填空题8.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则点A22的坐标为(____________,____________).9.在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5),A5(5,4),A6(6,7)…用你发现的规律,确定A2018的坐标为________10.在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,8),A4(4,15),…用你发现的规律确定点A n的坐标为___________.11.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,?1),P5(2,?1),P6(2,0),…,则点P2018的坐标是_____.12.在平面直角坐标系的x轴上用连续奇数作为长度顺次截取…OP1=1,P1P2=3,P2P3=5…△P n?1P n=2n?1(n为正整数),再分别以每条线段为一边在第一象限内作等边三角形△OP1A1、△P1P2A2,△P2P3A3…△P n?1P n A n,如图,请结合图形完成下面探究.【规律探究】OP1=1,A1(12,√32);OP2=1+3=12+3,A2(52,3√32);OP3=1+3+5=22+5,A3(132,5√32);OP4=1+3+5+7=32+7,A4(________,________);…OP n=1+3+5+?…+2n?1=(n?1)2+2n?1,A n(________,________).13.将正方形ABCD的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A1、A2、A3、…,按此规律,点A2012在射线上.14.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A5的坐标是______.15.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2021的坐标是___________.16.如图,矩形ABCD的两边BC、CD分别在x轴、y轴上,点C 与原点重合,点A(?1,2),将矩形ABCD沿x轴向右翻滚,经过一次翻滚点A对应点记为A1,经过第二次翻滚点A对应点记为A2…依此类推,经过5次翻滚后点A对应点A5的坐标为_____三、解答题17.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A1:(________,________),A3:(________,________),A12:(________,________);(2)写出点A n的坐标(n是正整数且为4的倍数);(3)指出蚂蚁从点A100到A101的移动方向.18.阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1),Q(x2,y2)的对称中心的坐标为(x1+x22,y1+y22).观察应用:(1)如图,在平面直角坐标系中,若点P1(0,?1),P2(2,3)的对称中心是点A,则点A 的坐标为_________;(2)在(1)的基础上另取两点B(?1,2),C(?1,0)有一电子青蛙从点P1处开始依次关于点A,B,C作循环对称跳动,即第一次跳到点P1关于点A的对称点处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A 的对称点P5处,….则P4,P8的坐标分别为_______,_______.19.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1,变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(?3,1),A1(?3,2),A2(?3,4),A3(?3,8);B(0,2),B1(0,4),B2(0,6),B3(0,8).(1)观察每次变换前后三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,点A4的坐标为_______,点B4的坐标为________;(2)若按(1)题找到的规律,将△OAB进行n次变换,得到△OA n B n,则点A n的坐标是________,B n的坐标是________.20.阅读:在平面直角坐标系内,对于点P(x,y),我们把Q(?y+1,x+3)叫做它的伴随点.如点(2,1)的伴随点为(?1+1,2+3),即(0,5).(1)若点M的伴随点坐标为(?5,3),则点M的坐标为______;(2)若点A1(a,b)的伴随点为A2,A2的伴随点为A3,A3的伴随点为A4,…,以此类推,将所有点记为A n.①若点A104的坐标为(3,?1),则点A1的坐标为______;②点A n有没有可能始终在y轴的右侧?若可能,请分别求出a,b的取值范围;若不可能,请说明理由;③设直角坐标系的原点为O,若点A n始终在一个半径为3的圆上,请直接写出OA n的最小值.21.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(?2,6)的“1级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和2点B的坐标;(2)已知点M(m?1,2m)的“?3级关联点”M′位于坐标轴上,求M′的坐标;答案和解析1.D解:∵A点坐标为(2,?2),B点坐标为(?2,?2),C点坐标为(?2,6),∴AB=2?(?2)=4,BC=6?(?2)=8,∴从A→B→C→D→A一圈的长度为2(AB+BC)=24,∵2019=84×24+3,∴当蚂蚁爬了2019个单位时,它所处位置在点A左边3个单位长度处,即(?1,?2).2.D解:B2018的横坐标是(22019,0),3.C解:分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2),4.B解:由内到外规律,第1个正方形边上整点个数为4×1=4(个),第2个正方形边上整点个数为4×2=8(个),第3个正方形边上整点个数为4×3=12(个),第4个正方形边上整点个数为4×4=16(个);故第10个正方形边上的整点个数为40个.5.B解:在Rt△ABC中,∵OA=1,∠ABO=30°,∴AB=2,OB=√3∵∠ABC=30°,∠ACB=90°,∴AC=1,BC=√3,∴点B第一次落在x轴上时,点B运动的路径与两坐标轴围成的图形面积=S△AOB+S△AC′B′+S扇形ABB′+S扇形C′B′B″=√3+60?π?22360+90?π?(√3)2360=√3+1712π,6.A解:∵点A的坐标为(2,0),点D的坐标为(0,4),∴OA=2,OD=4∵∠AOD=90°,∴AB=AD=√22+42=2√5,∠ODA+∠OAD=90°,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,S正方形ABCD=(2√5)2=20,∴∠ABA1=90°,∠OAD+∠BAA1=90°,∴∠ODA=∠BAA1,∴△ABA1∽△DOA,∴BA1OA =ABOD,即BA12=2√54,∴BA1=√5,∴CA1=3√5,∴正方形A1B1C1C的面积=(32×√20)2=20×(32)2…,第n个正方形的面积为20×(32)2n?2,∴第2016个正方形的面积20×(32)4030.7.B解:∵四边形ABCD是菱形,A(?√3,0),∠DAB=60°,∴AC⊥BD,∠DAO=30°,OA=√3,∴在Rt△AOD中,OD=1,AD=2,∵点P的运动速度为0.5米/秒,∴从点A到点B所需时间=20.5=4秒,∴沿A→B→C→D→A所需的时间=4×4=16秒.∵2016÷16=126,∴第2016秒点P运动到点A处,∴第2017秒时,点P在AB边上靠近点A的14处,∵A(?√3,0),B(0,?1),∴P的坐标为(?3√34,?14).8.11 ;1解:观察,发现:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),A9(4,1),∴A4n+1(2n,1),A4n+2(2n+1,1),A4n+3(2n+1,0),A4n+4(2n+2,0)(n为自然数),∵22=4×5+2,∴n=5,∴2n+1=2×5+1=11,∴点A22的坐标是(11,1).9.(2018,2019)解:设A n(x,y),∵当n=1时,A1(1,0),即x=n=1,y=1?1=0,当n=2时,A2(2,3),即x=n=2,y=2+1=3;当n=3时,A3(3,2),即x=n=3,y=3?1=2;当n=4时,A4(4,5),即x=n=4,y=4+1=5;…∴当点的位置在奇数位置横坐标与下标相等,纵坐标减1,当点的位置在偶数位置横坐标与下标相等,纵坐标加1,∴A n(x,y)的坐标是(n,n+1)∴点A2018的坐标为(2018,2019).10.(n,n2?1)解:∵点A1(1,0),A2(2,3),A3(3,8),A4(4,15),…∴横坐标是连续的正整数,纵坐标为:12?1=0,22?1=3,32?1=8,…∴点A n的坐标为:(n,n2?1).11.(673,1)解:由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n+1(2n,1),2016÷6=336,∴P6×336(2×336,0),即P2016(672,0),∴P2017(672,1),∴P2018(673,1),故答案为(673,1).12.(252 ,7√32);(2n2?2n+12,2√3n?√32)解:OP1=1,A1(12,√32);OP2=1+3=12+3,A2(52,3√32OP3=1+3+5=22+5,A3(132,5√32);OP4=1+3+5+7=32+7,则横坐标为1+3+5+72=252,纵坐标为7√32,A4(252 ,7√32);…OP n=1+3+5+?…+2n?1=(n?1)2+2n?1,则横坐标为1+3+···+(2n?3)+2n?12=(n?1)2+2n?12=2n2?2n+12,纵坐标为√3(2n?1)2,A n(2n2?2n+12,2√3n?√3213.AB解:把射线AB,CD,BC,DA上面的点分别列举,再找到规律,由规律即可求出点A2012所在的射线如图所示:根据表格中点的排列规律,可以得到点的坐标是每16个点排列的位置一循环,因为2012=16×125+12,所以点A2012所在的射线和点A12所在的直线一样.因为点A2012所在的射线是射线AB,所以点A2012在射线AB上,14.(15,16)解:∵直线y=x+1和y轴交于A1,∴A1的坐标(0,1),即OA1=1,∵四边形C1OA1B1是正方形,∴OC1=OA1=1,把x=1代入y=x+1得:y=2,∴A2的坐标为(1,2),同理A3的坐标为(3,4),…A n的坐标为(2n?1?1,2n?1),故A?5的坐标为(25?1?1,25?1)即A5(15,16)15.(22020,22020)解:∵OA1=1,∴点A1的坐标为(1,0),∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1),∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2=√2,∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得,B3(22,22),B4(23,23),…B n(2n?1,2n?1),∴点B2021的坐标是(22020,22020).16.(8,1)解:如下图所示:由题意可得上图,经过5次翻滚后点A对应点A5的坐标对应上图中的坐标,故A?5的坐标为:(8,1).17.解:(1)(0,1);(1,0);(6,0);(2)当n=4时,A4(2,0),当n=8时,A8(4,0),当n=12时,A12(6,0),所以A n(n2,0);(3)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0),A101的(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上.解:(1)A1(0,1),A3(1,0),A12(6,0);故答案为(0,1),(1,0),(6,0);18.(1)(1,1);(2)(2,?1);(2,3).解:(1)∵P1(0,?1),P2(2,3),∴根据对称中心的坐标公式可得:x=0+22=1,y=?1+32=1,∴A点坐标为(1,1).(2)利用题中所给的对称中心的坐标公式进行计算,并结合下图可知:P1(0,?1)→P2(2,3)→P3(?4,1)→P4(2,?1)→P5(0,3)→P6(?2,1)→P7(0,?1)→P8(2,3),因此P7点与P1点重合,P8点与P2点重合;∴P4、P8的坐标分别为(2,?1),(2,3).19.(1)A4(?3,16),B4(0,10);(2)A n(?3,2n),B n(0,2n+2).解:(1)∵A1(?3,2),A2(?3,4),A3(?3,8);∴A点横坐标为?3,纵坐标依次为:2,22,23,…∴A4的纵坐标为:24=16,∴A4?(?3,16),∵B1(0,4),B2(0,6),B3(0,8),∴B点横坐标为0,纵坐标依次为:2+2,2×2+2,2×3+2,…∴B4的纵坐标为:2×4+2=10,∴B4?(0,10);故答案为(?3,16),(0,10);(2)由(1)得出:A n(?3,2n),B n(0,2n+2).故答案为(?3,2n?);(0,2n+2).20.(1)(0,6);(2)①(2,6);②代数法:列不等式组{a>0a?2>0,{b+1>0b?3>0,两个不等式组均无解,因此点A n不可能始终在y轴的右侧,几何法:A1与A3的中点为(?1,2),A2与A4的中点也为(?1,2),说明点A n形成一个以(?1,2)为中心的对称图形,而点(?1,2)在第二象限,则必有部分点落在y轴的左侧.③由②得,Q(?1,2)就是该圆圆心,如图连接QO ,延长与圆Q 交于点A ,此时OA 最小,QO =√22+12=√5,OA =QA ?QO =3?√5,因此OA n 最小值为3?√5.解:(1)设点M(m,n),则它的伴随点为(?n +1,m +3),∵点M 的伴随点坐标为(?5,3),∴?n +1=?5,m +3=3,解得,m =0,n =6,∴M(0,6).故答案为(0,6);(2)A n 的变化规律:A 1(a,b)→A 2(?b +1,a +3)→A 3(?a ?2,?b +4)→A 4(b ?3,?a +1)→A 5(a,b)…①法一:A 4与A 104坐标同为(3,?1),即b ?3=3,?a +1=?1,则a =2,b =6;故答案为 (2,6);21. 解:(1)∵点A(?2,6)的“12级关联点”是点A 1,∴A 1(?2×12+6,?2+12×6),即A 1(5,1),设点B(x,y),∵点B 的“2级关联点”是B 1(3,3),∴{2x +y =3x +2y =3,解得{x =1y =1,∴B(1,1);(2)∵点M(m ?1,2m)的“?3级关联点”为M′(?3(m ?1)+2m,m ?1+(?3)×2m),M′位于y 轴上,∴?3(m?1)+2m=0,解得:m=3∴m?1+(?3)×2m=?16,∴M′(0,?16).。
点坐标规律探究(解析版)
专题25 点坐标规律探究1.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点()11,1P ,第二次运动到点()22,0P ,第三次运动到()33,2P -,…,按这样的运动规律,第2022次运动后,动点2022P 的坐标是( )A .()2022,1B .()2022,2C .()2022,2-D .()2022,0 【答案】D【分析】观察图象,结合动点P 第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五运动到P 5(5,2),第六次运动到P 6(6,0),…,结合运动后的点的坐标特点,分别得出点P 运动的纵坐标的规律,再根据循环规律可得答案.【详解】解:观察图象,结合动点P 第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五运动到P 5(5,2),第六次运动到P 6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∵经过第2022次运动后,动点P 的纵坐标是0,故选:D .【点睛】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键. 2.如图,在平面直角坐标系上有点()1,0A ,点A 第一次跳至点1(1,1)A -,第二次向右跳动3个单位至点()22,1A ,第三次跳至点()32,2A -,第四次向右跳动5个单位至点()43,2A ,…依此规律跳动下去,点A 第100次跳至点100A 的坐标是( )A .()51,51-B .()51,50C .()50,49D .()50,49- 【答案】B【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),… 第2n 次跳动至点的坐标是(n +1,n ),故第100次跳动至点的坐标是(51,50).故选:B .【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.3.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .1250 【答案】A【分析】根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积. 【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时,n 的面积()150********=⨯⨯+=. 故选:A . 【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.4.在平面直角坐标系中,若干个等腰直角三角形按如图所示的规律摆放.点P 从原点O 出发,沿着“1234O A A A A →→→→…”的路线运动(每秒一条直角边),已知1A 坐标为()()()231,12,0,,1,3A A ()44,0A ···,设第n 秒运动到点(n P n 为正整数),则点2020P 的坐标是)( )A .()2020,0B .()2019,1C .()1010,0D .()2020,1-【答案】A【分析】通过观察可知,纵坐标每6个进行循环,先求出前面6个点的坐标,从中得出规律,再按规律写出结果便可.【详解】解:由题意知,A 1(1,1),A 2(2,0),A 3(3,1),A 4(4,0),A 5(5,-1),A 6(6,0),A 7(7,1),…由上可知,每个点的横坐标等于序号,纵坐标每6个点依次为:1,0,1,0,-1,0这样循环, ∵A 2020(2020,0),故选:A .【点睛】本题是一个规律题,根据题意求出点的坐标,从中找出规律来,这是解题的关键所在.5.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)【答案】C【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可.【详解】解:由题意得: ()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A . 故选C .【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.6.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -,把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A →→→→⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .()1,0-B .()1,2-C .()1,0D .()0,2- 【答案】C【分析】根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】∵A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∵AB =1﹣(﹣1)=2,BC =1﹣(﹣2)=3,CD =1﹣(﹣1)=2,DA =1﹣(﹣2)=3,∵绕四边形ABCD 一周的细线长度为2+3+2+3=10,2019÷10=201…9,∵细线另一端在绕四边形第201圈的第9个单位长度的位置点的坐标为(1,0).故选C .【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.7.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为( )A.64B.49C.36D.25【答案】B【详解】试题解析:设边长为8的正方形内部的整点的坐标为(x,y),x,y都为整数.则-4<x<4,-4<y<4,故x只可取-3,-2,-1,0,1,2,3共7个,y只可取-3,-2,-1,0,1,2,3共7个,它们共可组成点(x,y)的数目为7×7=49(个).故选B.考点:规律型:点的坐标.8.如图,在一单位为1的方格纸上,∵A1A2A3,∵A3A4A5,∵A5A6A7……,都是斜边在x轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)【答案】D【分析】根据脚码确定出脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,然后确定出第2020个点的坐标即可.【详解】解:观察点的坐标变化发现:当脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,因为2020能被4整除,所以横坐标为2,纵坐标为1010,故选:D .【点睛】本题考查点坐标的变化规律,根据所要求的点坐标确定类似点的变化规律是解题关键. 9.如图,网格中的每个小正方形的边长都是1,1A 、2A 、3A 、…都在格点上,123A A A ∆、345A A A ∆、567A A A ∆、…都是斜边在x 轴上,且斜边长分别为2、4、6、…的等腰直角三角形.若123A A A ∆的三个顶点坐标为()12,0A 、()21,1A -、()30,0A ,则依图中规律,20A 的坐标为( )A .()2,10B .()1,9-C .()10,0D .()10,0-【答案】A【分析】根据相邻的两个三角形有一个公共点列出与三角形的个数与顶点的个数的关系式,然后求出A 20所在的三角形,并求出斜边长,然后根据第奇数个三角形关于直线x=1对称,第偶数个三角形关于直线x=2对称,根据等腰直角三角形的性质即可得出答案.【详解】设到第n个三角形时共有y个顶点,∵第一个三角形有3个顶点,到第二个三角形有5个顶点,到第三个三角形有7个顶点,……∵到第n个三角形的顶点个数y=2n+1,当2n+1=20时,n=9……1,∵A20是第10个三角形的直角顶点,∵第10个三角形为A19A20A21,且A19A21为斜边,∵斜边长分别为2、4、6、……,∵第10个三角形的斜边长为10×2=20,即A19A21=20,由图可知:第奇数个三角形关于直线x=1对称,第偶数个三角形关于直线x=2对称,∵A1A20为∵A19A20A21斜边中线,∵A1A20=10,∵A20的坐标为(2,10)故选A.【点睛】本题是对点的坐标变化规律的考查,根据顶点个数与三角形的关系判断出A20所在的三角形是解题的关键.10.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,O)B.(5,0)C.(0,5)D.(5,5)【答案】B【分析】由题目中所给的质点运动的特点找出规律,即可解答.【详解】跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依次类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).故选B .【点睛】本题主要考查点的坐标问题,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.11.如图,点O (0,0),A (0,1)是正方形1OAA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 作正方形121OA A B ,…,依此规律,则点8A 的坐标是( )A .(-8,0)B .(0,8)C .(0,2)D .(0,16) 【答案】D 【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以2,可求出从A 到A 3变化后的坐标,再求出A 1、A 2、A 3、A 4、A 5,继而得出A 8坐标即可.【详解】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘2, ∵从A 到3A 经过了3次变化,∵45°×3=135°,1×()32=22, ∵点3A 所在的正方形的边长为22,点3A 位置在第四象限,∵点3A 的坐标是(2,-2),可得出:1A 点坐标为(1,1),2A 点坐标为(0,2),3A 点坐标为(2,-2),4A 点坐标为(0,-4),5A 点坐标为(-4,-4),6A (-8,0),A 7(-8,8),8A (0,16),故选D.【点睛】本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键. 12.如图,在平面直角坐标系中,点1A 在x 轴的正半轴上,1B 在第一象限,且△11OA B 是等边三角形.在射线1OB 上取点2B ,3B ,⋯,分别以12B B ,23B B ,⋯为边作等边三角形△122B A B ,△233B A B ,⋯使得1A ,2A ,3A ,⋯在同一直线上,该直线交y 轴于点C .若11OA =,130OAC ∠=︒,则点9B 的横坐标是( )A .2552B .5112C .256D .5132【答案】B【分析】首先证明OA 1∵B 1A 2,∵B 1A 1A 2=90°,求出B 1A 2=2A 1B 1=2,然后同理可得B 2A 3,B 3A 4的长,根据等边三角形边长的规律,即可求出B 9的横坐标.【详解】解:∵∵OA 1B 1是等边三角形,OA 1=1,∵B 1的横坐标为12,OA 1=OB 1=A 1B 1=1,∵OA 1B 1=60°,∵△B 1B 2A 2是等边三角形,∵∵B 2B 1A 2=60°,∵OA 1∵B 1A 2,∵A 2B 1A 1=60°,∵∵OA 1C =30°,∵∵B 1A 2A 1=30°,∵∵B 1A 1A 2=90°,∵B 1A 2=2A 1B 1=2,同理:B 2A 3=2A 2B 2=4,B 3A 4=2A 3B 3=8,…,∵B 1的横坐标为12,B 2的横坐标为12+1=32,B 3的横坐标为12+1+2=72,B 4的横坐标为12+1+2+4=152, ...,∵点B 9的横坐标是12+1+2+4+8+16+32+64+128=5112. 故选:B .【点睛】本题考查了点的坐标规律,等边三角形的性质,解题的关键是根据等边三角形的性质得到等边三角形边长的规律.13.已知平面直角坐标系内有一点()1,1A -,把点A 向上平移5个单位得到点B ,点C 和点B 关于y 轴对称,点D 和点A 关于y 轴对称,有一小虫从点A 出发,沿着A B C D A B C D →→→→→→→⋅⋅⋅⋅⋅⋅的路径爬行,那么当小虫的爬行路程为2021时,它在第________象限. 【答案】一.【分析】根据题意可知点B 的坐标,根据“平面直角坐标系中,关于y 轴对称的两个点的纵坐标不变,横坐标互为相反数”可得点C 和点D 的坐标,由此,可计算出AB 、BC 、CD 、DA 的长,从而得到小虫爬行一周的长度,然后即可得出当小虫的爬行路程为2021时,小虫到达的位置,从而可确定它在第几象限.【详解】解:∵把点A 向上平移5个单位得到点B ,()1,1A -, ∵点B 的坐标为(1,4),∵点C 和点B 关于y 轴对称,点D 和点A 关于y 轴对称, ∵点C 的坐标为(-1,4),点D 的坐标为(-1,-1), ∵AB =()()2211415-+--=⎡⎤⎣⎦, BC =()()2211442--+-=, CD =()()2211145---+--=⎡⎤⎣⎦, DA =()()2211112--+---=⎡⎤⎡⎤⎣⎦⎣⎦, ∵AB +BC +CD +DA =5+2+5+2=14,∵有一小虫从点A 出发,沿着A B C D A B C D →→→→→→→⋅⋅⋅⋅⋅⋅的路径爬行, ∵小虫爬行一周的路程为14,∵2021=14×144+5,∵当小虫的爬行路程为2021时,小虫爬行完144周,然后从点A 出发,爬行5个单位长度刚好到达点B ,而点B 的坐标(1,4)在第一象限,∵当小虫的爬行路程为2021时,它在第一象限. 故答案为一.【点睛】本题考查了点所在的象限,平移,点坐标规律特征,两点间的距离公式等知识点.熟记各个知识点是解题的关键.14.如图,在平面直角坐标系中,将ABO 沿x 轴向右滚动到11AB C △的位置,再到112A B C 的位置…依次进行下去,若已知点()()3,0,0,4A B ,则点49A 的坐标为_________.【答案】(300,3)【分析】根据点A (3,0),B (0,4)得AB =5,再根据旋转的过程寻找规律即可求解. 【详解】解:∵∵AOB =90°, 点A (3,0),B (0,4), 根据勾股定理,得AB =5, 根据旋转可知:∵OA +AB 1+B 1C 2=3+5+4=12, 所以点B 2 (12,4),A 1 (12,3); 继续旋转得,B 4 (2×12,4),A 3 (24,3); B 6 (3×12,4),A 5 (36,3) …发现规律:B 50 (25×12,4),A 49 (300,3). 所以点A 49 的坐标为(300,3). 故答案为:(300,3).【点睛】本题考查了规律型:点的坐标,解决本题的关键是灵活运用旋转的知识.15.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.【答案】()45,5【分析】根据题意,得到点的总个数等于x 轴上右下角的点的横坐标的平方,由于22025=45,所以第2020个点在第45个矩形右下角顶点,向上5个单位处. 【详解】根据图形,以最外边的矩形边长上的点为准, 点的总个数等于x 轴上右下角的点的横坐标的平方, 例如:右下角的点的横坐标为1,共有1个,211= 右下角的点的横坐标为2时,共有2个,242=, 右下角的点的横坐标为3时,共有3个,293=, 右下角的点的横坐标为4时,共有16个,2164=, 右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是()45,0,第2020个点是()45,5, 故答案为:()45,5.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律. 16.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.【答案】()0,1【分析】先根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB =1﹣(﹣1)=2,BC =1﹣(﹣2)=3,CD =1﹣(﹣1)=2,DA =1﹣(﹣2)=3, ∴绕四边形ABCD 一周的细线长度为2+3+2+3=10, 2021÷10=202…1,∴细线另一端在绕四边形第203圈的第1个单位长度的位置, 即细线另一端所在位置的点的坐标是(0,1). 故答案为:(0,1).【点睛】本题考查了点的坐标规律探求,根据点的坐标求出四边形ABCD 一周的长度,从而确定2021个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.17.在直角坐标系中,已知(3,0)A -、(0,4)B ,对ABO 连续作如图翻转变换,依次得到三角形1、2、3……则2018的直角顶点的坐标是___________.【答案】(807115,125)【分析】由(3,0)A -、(0,4)B ,得AB=5,过O′作O′D∵x 轴于点D ,根据面积法,得O′D=125,由勾股定理得,B′D=165,由ABO 连续作如图翻转变换,三次一个循环,进而可得2018的直角顶点的坐标.【详解】∵(3,0)A -、(0,4)B , ∵OA=3,OB=4,AB=22345+=, 过O′作O′D∵x 轴于点D , ∵O′D=341255⨯=,B′D=2212164()55-=, ∵对ABO 连续作如图翻转变换,三次一个循环,2018÷3=672…2, ∵2018的直角顶点的横坐标为:12×672+4+165=807115,纵坐标为:125,∵2018的直角顶点的坐标是:(807115,125).故答案是:(807115,125).【点睛】本题主要考查几何图形与点的坐标,掌握直角三角形的勾股定理和面积法求斜边上的高,是解题的关键..在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点边上的整点的个数,请你猜测由里向外第11个正方形(实线)四条边上的整点一共有_____个.【答案】44【分析】可以发现第n 个正方形的整点数有4n 个点,故第11个有44个整数点. 【详解】由图象可知,第1个正方形四条边上整点数为4, 第2个正方形四条边上整点数为8, 第3个正方形四条边上整点数为12,则第n个正方形四条边上整点数为4n.n=时,第11个正方形四条边上整点数为44.当11故答案为44.【点睛】此题考查点的坐标规律、正方形各边相等的性质,解决本题的关键是观察分析,得到规律,这是中考的常见题型.19.如图,平面直角坐标系xOy内,动点P按图中箭头所示方向依次运动,第1次从点(0,1)运动到-,第3次运动到点(3,0),⋯按这样的运动规律,动点P第2021次点(1,0),第二次运动到点(2,2)运动到的点的坐标是________.【答案】(2021,0)【分析】根据图形分析点P的运动规律:第n次运动到的点的横坐标为n,纵坐标每四次为一个循环,即可得到答案.-,第3次运动到点(3,0),⋯,【详解】解:∵第1次运动到点(1,0),第二次运动到点(2,2)∵第n次运动到的点的横坐标为n,纵坐标每四次为一个循环,每个循环向右移动4个单位÷=,∵202145051∵动点P第2021次运动到的点的坐标是(2021,0),故答案为:(2021,0).【点睛】此题考查了图形坐标的规律,正确理解图形得到点P的运动规律并应用是解题的关键.20.在平面直角坐标系xOy中,对于点P(x,y)我们把P(﹣y+1,x+1)叫做点P的伴随点,已知A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,这样依次得到A1,A2,A3,…An,若点A1的坐标为(3,1),则点A2021的坐标为_________.【答案】(3,1)【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021A的坐标即可.除以4,根据商和余数的情况确定点2021A的坐标为(3,1),【详解】解:12(0,4)A ∴,3(3,1)A -,4(0,2)A -,5(3,1)A ,⋯⋯,依此类推,每4个点为一个循环组依次循环,202145051÷=⋯⋯,∴点2021A 的坐标与1A 的坐标相同,为(3,1).故答案是:(3,1).【点睛】本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义,解题的关键是求出每4个点为一个循环组依次循环.21.如图,点(0,0),(0,1)O A 是正方形1O AA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 为边作正方形121OA A B ,…,依此规律,则点1000A 的坐标是_________.【答案】(0,2500)【分析】根据正方形的性质找出点A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8、A 9、A 10、…的坐标,根据坐标的变化可找出变化规律“A 8n (0,24n )(n 为自然数)”,依此规律即可求出点A 1000的坐标. 【详解】解:∵A 1(1,1),A 2(2,0),A 3(2,-2),A 4(0,-4),A 5(-4,-4),A 6(-8,0),A 7(-8,8),A 8(0,16),A 9(16,16),A 10(32,0),…, ∵A 8n (0,24n )(n 为自然数). ∵1000=125×8,∵点A 1000的坐标为(0,2500). 故答案为:(0,2500).【点睛】本题考查了规律型:点的坐标,根据点的坐标的变化找出变化规律“A 8n (0,24n )(n 为自然数)”是解题的关键.22.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.【答案】()20202,3【分析】根据图形写出点A 系列的坐标与点B 系列的坐标,根据具体数值找到规律即可. 【详解】∵(1,3)A ,1(2,3)A ,2(4,3)A ,3(8,3)A ,4(16,3)A ,(2,0)B ,1(4,0)B ,2(8,0)B ,3(16,0)B , ∵1n A +的横坐标与n B 的横坐标相同,纵坐标为3,点n B 的横坐标为12n +,纵坐标为0,∵n A 的坐标是()2,3n,∵()202020202,3A .【点睛】依次观察各点的横纵坐标,得到规律是解决本题的关键.23.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA =1,以点A 1为直角顶点,0A 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2019的坐标是_____.【答案】(﹣21009,21009)【分析】利用等腰直角三角形的性质可得出部分点A n 的坐标,根据点的坐标的变化可得出变化规律“点A 8n+3的坐标为(﹣24n+1,24n+1)(n 为自然数)”,结合2019=252×8+3即可得出点A 2019的坐标.【详解】解:由等腰直角三角形的性质,可知:A 1(1,1),A 2(0,2),A 3(﹣2,2),A 4(0,﹣4),A 5(﹣4,﹣4),A 6(0,﹣8),A 7(8,﹣8),A 8(16,0),A 9(16,16),A 10(0,32),A 11(﹣32,32),…,∵点A 8n+3的坐标为(﹣24n+1,24n+1)(n 为自然数).∵2019=252×8+3,∵点A 2019的坐标为(﹣24×252+1,24×252+1),即(﹣21009,21009), 故答案为(﹣21009,21009).【点睛】本题考查了等腰直角三角形以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点A 8n+3的坐标为(﹣24n+1,24n+1)(n 为自然数)”是解题的关键.24.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点()1A 0,1,()2A 1,1,()3A 1,0,()4A 2,0,⋯那么点2018A 的坐标为______.【答案】(1009,1)【分析】任选一个除原点外的点找出它的坐标,往后每隔4取一个点找出它的坐标,这样以4为周期得到相应位置的点的坐标规律,找出比2018小且最接近2018的这个位置的点的坐标即可求解. 【详解】解:根据题意得:A 1(0,1),A 5(2,1),A 9(4,1),A 13(6,1),…… 所以A 4n +1(2n ,1).因为2017=4×504+1=2×1008+1,所以A 2017(1008,1), 则A 2018(1009,1). 故答案为A 2018(1009,1).【点睛】本题主要考查了点的坐标规律,探索规律的步骤:①从具体的题目出发,用列表或列举的方式,把各数量或图形的变化特点展现出来;②认真观察图表或图形,通过合理联想,大胆猜想,总结归纳,得出数字或图形间的变化规律,形成结论;(4)由此及彼验证结论的正误.。
初一数学坐标点找规律问题总结
在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动每次移动1个单位其行走路线如下图所示(1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , ); (2)写出点A 4n 的坐标(n 是正整数); (3)指出蚂蚁从点A 100到点A 101的移动方向如图2,已知A l (1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、A 5(2,-1)、….则点A 2007的坐标为________.解析:依题意,得第一象限里的点分别是A 2、A 6、A 10、…,第二象限里的点分别是A 3、A 7、A 11、…,第三象限里的点分别是A 4、A 8、A 12、…,第四象限里的点分别是A 5、A 9、A 13、…,由此可见点A 2007是在第二象限内,而第二象限内点的横坐标是负数,纵坐标是正数,且绝对值相等,并且由观察、推理、归纳得到A 3(-1,1)、A 7(-2,2)、A 11(-3,3)、…,因为2007=501…3,所以点A 2007的坐标应该是(-502,502).提示:求解本题时要于归纳、猜想、验证,从中找到点坐标的规律,从而使问题获解.例10、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm ,整点P 从原点O 出发,速度为1cm/s ,且整点P 作向上或向右运动(如图1所示.根据上表中的规律,回答下列问题:(1)当整点P 从点O 出发4s 时,可以得到的整点的个数为________个.(2)当整点P 从点O 出发8s 时,在直角坐标系中描出可以得到的所有整点,并顺次连结这些整点.(3)当整点P 从点O 出发____s 时,可以得到整点(16,4)的位置.O1 A 1A 2A 3 A 4 A 5A 6A 7 A 8 A 9A 10A 11 A 12 A 12xy图1 图2解析:本题为阅读型规律探索题,解决问题时需要认真阅读题意,即可根据题意写出整点的可能位置和坐标确定整点的个数,也可以通过表格发现出发时间与整点坐标以及整点P 的个数之间的规律,通过规律解决问题. 解:(1)根据表格中的规律可知,当点P 从点O 出发4s 时,可的到整点P 的坐标为(0,4)(1,3),(2,2)(3,1)(4,0),共5个. (2)如图2所示.(3).从表格规律可得当整点P 从原点0出发的时间为n(s)时,可得整点P 的坐标为(x,y),则x +y =n,因为16+4=20,所以当整点P 从点O 出发20s 时,可到达整点(16,4)的位置.如图6,在平面直角坐标系中,有若干个整数点,其顺序按图中“ ”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探究可得,第100个点的坐标为 .图7如图7,我们给中国象棋棋盘建立一个平面直角坐标系(每小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P .写出下一步“马”可能到达的点的坐标 ; 6、(14,8);7、(0,0),(0,2),(1,3),(3,3),(4,2),(4,0)任填一个;如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .x 图6(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 行.从内到外,它们的边长依次为2,4,6,8,…12A 3,A 4,…表示,则顶点A 55的坐标是( ) 一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是( )。
备战中考数学二轮专题归纳提升真题平面直角坐标系规律探究问题(解析版)
专题01 平面直角坐标系规律探究问题【知识点梳理】1、关于x 轴、y 轴或原点对称的点的坐标的特征点P (a ,b )与关于x 轴对称点的坐标为 (a ,-b ) 点P (a ,b )与关于y 轴对称点的坐标为 (-a ,b ) 点P (a ,b )与关于原点对称点的坐标为 (-a ,-b ) 口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号 2、点的平移点P (a ,b )沿x 轴向右(或向左)平移m 个单位后对应点的坐标是(a ±m,b ); 点P (a ,b )沿y 轴向上(或向下)平移n 个单位后对应点的坐标是(a,b ±n ). 口诀:横坐标右加左减,纵坐标上加下减.3、两点间的距离:在x 轴或平行于x 轴的直线上的两点P 1 (x 1,y ),P 2 (x 2,y )间的距离为|x 1−x 2| 在y 轴或平行于y 轴的直线上的两点P 1 (x ,y 1),P 2 (x ,y 2)间的距离为|y 1−y 2| 任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2的中点坐标为(x 1+x 22,y 1+y 22)任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2=√(x 1−x 2)2+(y 1−y 2)2【典例分析】【例1y)经过某种变换后得到点P ′(−y +1,x +2),我们把点P ′(−y +1,x +2)叫做点P(x,y)的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…、nP 、…,若点p 1的坐标为(2,0),则点P 2022的坐标为_____。
【答案】(1,4).解析:解:P 1 坐标为(2,0),则P 2坐标为(1,4),P 3坐标为(-3,3),P 4坐标为(-2,-1),P 5坐标为(2,0),∴P n 的坐标为(2,0),(1,4),(-3,3),(-2,-1)循环, ∵2022=4×505+2, ∴P 2022 坐标与P 2点重合, 故答案为(1,4).【练1】在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(y -1,-x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,2),则A 2023的坐标为________【答案】(-3,0)解析:解:∵A1(3,2),A2(1,-2),A3(-3,0),A4(-1,4),A5(3,2),…,∴点A n的坐标4个一循环.∵2023=505×4+3,∴点A2023的坐标与点A2的坐标相同.∴A2023的坐标为(-3,0),故答案为:(-3,0).【练2】某同学在平面直角坐标系内设计了一个动点运动的编程.若一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,则点A2022的坐标为()A.(22021﹣1,22021+1)B.(22022﹣1,22022+1)C.(22022﹣2,22022+2)D.(22021﹣2021,22021+2021)【答案】B【解析】解:∵一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,∴A n(2n﹣1,2n+1),∴A2022的坐标为:(22022﹣1,22022+1),故选:B.【练3】对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y);且规定P n(x,y)=P1(P n﹣1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2).则P2022(1,﹣1)=.【答案】(21011,21011)【解析】解:由题意可得:P1(1,﹣1)=(0,2),P2(1,﹣1)=(2,﹣2)P3(1,﹣1)=(0,4),P4(1,﹣1)=(4,﹣4)P5(1,﹣1)=(0,8),P6(1,﹣1)=(8,﹣8)…当n为奇数时,P n(1,﹣1)=(0,),当n为偶数时,P n(1,﹣1)=(2n2,2n2),∴P2022(1,﹣1)应该等于(21011,21011).故答案是:(21011,21011).【例2】如图,在平面直角坐标系中,A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…根据这个规律,探究可得点A2022的坐标是()A.(2022,0)B.(2022,2)C.(2021,﹣2)D.(2022,﹣2)【答案】A【解析】解:观察图形可知,点A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…的横坐标依次是1、2、3、4、…、n,纵坐标依次是2、0、﹣2、0、2、0、﹣2、…,四个一循环,2022÷4=505…2,故点A2022坐标是(2022,0).故选:A.【练1】如图,动点P1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2022,0)D.(2022,1)【答案】C【解析】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位,∴2022=4×505+2.当第505循环结束时,点P位置在(2020,0),在此基础之上运动两次到(2022,0).故选C.【练2】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P2022的坐标是()A.(2022,1)B.(2022,2)C.(2022,﹣2)D.(2022,0)【答案】D【解析】解:观察图象,动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∴经过第2022次运动后,动点P的纵坐标是0,故选:D.【练3】如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2022的坐标是_____________.【答案】(1011,1).【解析】观察图象可知,点A的纵坐标每4个点循环一次,∵2022=505×4+2,∴点A2022的纵坐标与点A2的纵坐标相同,∵A2(1,1),A6(3,1),A10(5,1)……,∴点A2022的坐标是(1011,1).【例3】如图,在平面直角坐标系上有个点A(-1,O),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2022次跳动至点A2022的坐标是( )A.(-505, 1011)B.(505, 1010)C.(-506, 1010)D.(506, 1011)【答案】D【解析】解:设第n次跳动至点A n,观察,发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(505+1,505×2+1),即(506,1011).故选:D.【练1】如图所示,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位……依此规律跳动下去,点P第99次跳动至点P99的坐标是_____【答案】(-25,50)【解析】解:由题中规律可得出如下结论:设点Px的横坐标的绝对值是n,则在y轴右侧的点的下标分别是4(n-1)和4n-3,在y轴左侧的点的下标是:4n-2和4n-1;判断P199的坐标,就是看99=4(n-1)和99=4n-3和99=4n-2和99=4n-1这四个式子中哪一个有负整数解,从而判断出点的横坐标.由上可得:点P第99次跳动至点P99的坐标是(-25,50)故答案为:(-25,50).【练2】如图,在平面直角坐标系上有点A0(1,0),点A0第一次跳动至点A1(−1,1),第二次点A1跳动至点A2(2,1),第三次点A跳动至点A3(−2,2),第四次点A3跳动至点A4(3,2),……依2此规律跳动下去,则点A2021与点A2022之间的距离是()A.2023B.2022C.2021D.2020【答案】A【解析】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至A2022点的坐标是(1012,1011),第2021次跳动至点A2021的坐标是(﹣1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012﹣(﹣1011)=2023.故选:A.【练3】在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(﹣1,3),第四次从点A3跳动到点A4(﹣1,4),…,按此规律下去,则点A2021的坐标是()A.(673,2021)B.(674,2021)C.(﹣673,2021)D.(﹣674,2021)【答案】B【解析】解:因为A1(0,1),A2(1,2),A3(﹣1,3),A4(﹣1,4),A5(2,5),A6(﹣2,6),A7(﹣2,7),A8(3,8),…A3n﹣1(n,3n﹣1),A3n(﹣n,3n),A3n+1(﹣n,3n+1)(n为正整数),∵3×674﹣1=2021,∴n=674,所以A2021(674,2021),故选:B.【例4】如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1)(1,1),(1,2),(2,2)……根据这个规律,第2022个点的坐标为________【答案】(45,6)【解析】解:观察图形,可知:第1个点的坐标为(1,0),第4个点的坐标为(1,1),第9个点的坐标为(3,0),第16个点的坐标为(1,3),…,∴第(2n-1)2个点的坐标为(2n-1,0)(n为正整数).∵2025=452,∴第2025个点的坐标为(45,0).又∵2025-3=2022,∴第2022个点在第2025个点的上方3个单位长度处,∴第2022个点的坐标为(45,3).故答案为:(45,3).【练1】如图,一个蒲公英种子从平面直角坐标系的原点O出发,向正东走3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,以此规律走下去,当种子到达点A10时,它在坐标系中坐标为()A.(﹣12,﹣12)B.(15,18)C.(15,﹣12)D.(﹣15,18)【答案】B【解析】解:根据题意可知:O A1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【练2】如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2022秒时,点所在位置的坐标是( )A .(2,44)B .(41,44)C .(44,41)D .(44,2)【答案】【解析】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x 轴时的横坐标为时间的平方,当点离开y 轴时的纵坐标为时间的平方, 此时时间为奇数的点在x 轴上,时间为偶数的点在y 轴上, ∵2022=452﹣3=2025﹣3,∴第2025秒时,动点在(45,0),故第2022秒时,动点在(45,0)向左一个单位,再向上2个单位, 即(44,2)的位置. 故选:D .【练3】如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1)…根据这个规律探索可得,第99个点的坐标为( )A.(14,−1)B.(14,0)C.(14,1)D.(14,2)【答案】C【解析】解:在横坐标上,第一列有一个点,第二列有2个点…第n 个有n 个点, 并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为(n,n−12),(n,n−12−1),…,(n,1−n 2);偶数列的坐标为(n,n2),(n,n2−1),…,(n,1−n2), ∵1+2+3+4+……+13=91∴第99个点位于第14列自上而下第7行.−6),即(14,1).代入上式得(14,142故选C.【例5】如图,在平面直角坐标系中,将边长为3,4,5的直角△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,发现A(3,0),A1(12,3),A2(15,0)…那么点A2022的坐标为.【答案】(12135,0)【解析】解:∵∠AOB=90°,点A(3,0),B(0,4),根据勾股定理得AB=5,根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(27,0);…发现规律:A2n﹣1(12n,3),A2n(12n+3,0),∵2022=2n,∴n=1011,∴点A2022的坐标为(12135,0),故答案为:(12135,0).【练1】如图,动点P从(0,3)出发沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2022次碰到长方形的边时点P的坐标为.【答案】(0,3【解答过程】解:如图所示:经过6次反弹后动点回到出发点(0,3),∵2022÷6=337∴当点P第2022次碰到矩形的边时与P点起点位置重合,∴点P的坐标为(0,3).故答案为:(0,3).【练2】如图,将边长为2的等边三角形沿x轴正方向连续翻折2019次,依次得到点P1,P2,P3,...,P2022,则点P2022的坐标是()A.(2022,2)B.(2022,√3)C.(4043,2)D.(4043, √3)【答案】D【解析】解:由题意可知P1是1P的横坐标是3,P3的横坐标是5,P4的横坐标是7…依此类推下去,P n的横坐标是2n-1,∴P2022的横坐标是2×2022-1=4043纵坐标都是√3,故选:D.连续作旋转变换,依【练3】如图,在直角坐标系中,已知点A(−3,0),B(0,4),对OAB次得到Δ1,Δ2,Δ3,Δ4,…,则∆2022的直角顶点的坐标为______.【答案】(8088,0)【解析】解:∵点A(-3,0)、B(0,4),∴AB=√32+42=5由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2022÷3=674,∴∆2022的直角顶点是第674个循环组的最后一个三角形的直角顶点;∵674×12=8088,∴∆2022的直角顶点的坐标为(8088,0).故答案为(8088,0).【例6】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2021B2022C2022的顶点B2022的坐标是_____.【答案】(0,-22011)【解析】解:∵正方形OA1B1C1的边长为1,∴OB1=√2∴OB2=2∴B2(0,2),同理可知B3(-2,2),B4(-4,0),B5(-4,-4),B6(0,-8),B7(8,-8),B9(16,16),B10(0,32).由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标的符号相同,每次正方形的边长变为原来的√2倍,∵2022÷8=252⋯⋯6,∴B8n+6(0,-24n+3),∴B2022(0,-22011).故答案为:(0,-22011).【练1】如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2022的坐标是_____.【答案】(0,-22011)【解析】解:由等腰直角三角形的性质,可知:A 1(1,1),A 2(0,2),A 3(﹣2,2),A 4(0,﹣4),A 5(﹣4,﹣4),A 6(0,﹣8),A 7(8,﹣8),A 8(16,0),A 9(16,16),A 10(0,32),A 11(﹣32,32),…,∵2022=252×8+6∴点A 8n+6的坐标为(0,24n+3)(n 为自然数).∴点A 2022的坐标为(0,24×252+3),即(0,-22011),故答案为:(0,-22011).【练2】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点2A ,作正方形A 2B 2C 2C 1……按这样的规律进行下去,第2022个正方形的面积为_____.【答案】5×(32)4042.【解析】解:∵点A 的坐标为(1,0),点D 的坐标为(0,2)∴正方形ABCD 的边长为√5,设其面积为S 1=5,依此类推,接下来的面积依次为S 2,S 3,S 4⋯⋯第2022个正方形的面积为S 2022,又∵三角形相似,∴ OA OD =A 1B AB =A 2B 1A 1B 1=⋯=12. ∴ S 2=5×94,S 3=5×(94)2…… ∴S 2022=5×(94)2022−1=5×(94)2021=5×(32)4042.【练3】如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线B n B n+1都在y 轴上,且B n B n+1的长度依次增加1个单位长度,顶点A n都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为;用n的代数式表示A n的纵坐标:.【答案】2;【解析】解:作A1D⊥y轴于点D,则B1D=B1B2÷2=(3﹣1)÷2=1,∴A1的纵坐标=B1D+B1O=1+12,同理可得A2的纵坐标=OB2+(B2B3)÷2=3+(6﹣3)÷2 4.5,∴A n的纵坐标为,故答案为2,.。
七年级数学下册专题训练2平面直角坐标内点的坐标规律作业新版新人教版
(2)点 P(a-4,b+2)是△ABC 内任意一点.将△ABC 平移至△ A1B1C1 的位置,点 A,B,C,P 的对应点分别是 A1,B1,C1, P1.若点 P1 的坐标为(a,b).在坐标系中画出△A1B1C1. (3)若坐标轴上存在一点 M,使△BCM 的面积等于△ABC 的面 积,求点 M 的坐标.
5.(仙居县期末)点 P(a2-9,a-1)在 y 轴的负半轴上,则 a 的 值是___-__3____.
类 型 2 象限内点的坐标规律
6.在平面直角坐标系中,点 P(-2,x2+1)所在的象限是
(B ) A.第一象限
B.第二象限
C.第三象限 D.第四象限
7.在平面直角坐标系中,点 P(m-3,4-2m)不可能在( A ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
专题训练(二)
平面直角坐标内点的坐标规律
类 型 1 坐标轴上点的坐标规律
1.(椒江区校级期中)下列各点在 x 轴上的是( D )
A.(0,-1)
B.(0,2)
C.(1,1)
D.(1,0)
2.点 P(m+1,m+3)在直角坐标系的 y 轴上,则点 P 的(0,2) C.(4,0) D.(0,-2)
点拨:∵第一次从原点运动到(1,1),第二次从(1,1)运动到(2, 0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4, 0),第五次从(4,0)运动到(5,1),…,∴按这样的运动规律, 第几次横坐标即为几,纵坐标为:1,0,2,0,1,0,2,0,…, 4 个一循环,∵2020÷4=505,∴经过第 2020 次运动后,动点 P 的坐标是(2020,0).
点拨:由题意分析可得,动点 P 第 8=2×4 秒运动到(2,0), 动点 P 第 24=4×6 秒运动到(4,0),动点 P 第 48=6×8 秒运动 到(6,0),以此类推,动点 P 第 2n(2n+2)秒运动到(2n,0), ∴动点 P 第 2024=44×46 秒运动到(44,0),2068-2024=44, ∴按照运动路线,点 P 到达(44,0)后,向右一个单位,然后向 上 43 个单位,∴第 2068 秒点 P 所在位置的坐标是(45,43),
七下练测第9招利用点的坐标变化规律解探究问题习题新版新人教版
第9招 利用点的坐标变化规律解 探究问题
点的坐标按照某种规律变化时,关键是根据已知点的变 化情况,利用猜想、归纳、验证等方法,探究点的坐标的变 化规律.
沿坐标轴运动的点的坐标规律探究
1.[2023·北师大附属实验中学期中]如图,在平面直角坐标系
中,点A从A1(-4,0)依次跳动到A2(-4,1),A3(-3,1),
A.(31,
D.(32,0)
【点拨】
由题图易知A1(-2,1),A4(-1,2),A7(0,3),A10(1, 4),…,
∴A3n-2(n-3,n). ∵100=3×34-2,则n=34, ∴A100(31,34). 故选A.
2.如图,一个粒子在第一象限内及x轴、y轴上运动,第1分钟 从原点运动到(1,0),第2分钟从(1,0)运动到(1,1),然后 它接着按图中箭头所示的方向运动(在第一象限内运动时, 运动方向与x轴或y轴平行),且每分钟运动1个单位长度.
(1)当粒子所在位置是(2,2)时,所经过的时间是
6
分
钟;
正方形的 正方形每边正整数 正方形在第四象限的顶点
层数
的个数
表示的数 对应的坐标
1
3
9
(1,-1)
2
5
25
(2,-2)
3
7
49
(3,-3)
…
…
…
…
正方形的 正方形每边正整数 正方形在第四象限的顶点
层数
的个数
表示的数 对应的坐标
n
2n+1
(2n+1)2
(n,-n)
因为2 025=452=(2×22+1)2, 所以数2 025对应的坐标为(22,-22).
坐标系规律探索习题
坐标系规律探索习题一.选择题(共3小题)1.如图,动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,2),⋯,按这样的运动规律,则第2021次运动到点( )A .(2021,1)B .(2021,2)C .(2020,1)D .(2021,0)2.如图,在平面直角坐标系中,(1,1)A ,(1,1)B -,(1,2)C --,(1,2)D -.把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A -----⋯的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(1,1)-B .(1,1)-C .(1,2)--D .(1,2)-3.点1A ,2A ,3A ,⋯,(n A n 为正整数)都在数轴上.点1A 在原点O 的左边,且11AO =;点2A 在点1A 的右边,且212A A =;点3A 在点2A 的左边,且323A A =;点4A 在点3A 的右边,且434A A =;⋯,依照上述规律,点2008A ,2009A 所表示的数分别为( ) A .2008,2009-B .2008-,2009C .1004,1005-D .1004,1004-二.填空题(共17小题)4.如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线1l ,2l ,过点(1,0)作x 轴的垂线交1l 于点1A ,过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,⋯依次进行下去,则点2022A 的坐标为 .5.如图,在平面直角坐标系xOy 中,1(1,0)A ,2(3,0)A ,3(6,0)A ,4(10,0)A ,⋯,以12A A 为对角线作第一个正方形1121AC A B ,以23A A 为对角线作第二个正方形2232A C A B ,以34A A 为对角线作第三个正方形3343A C A B ,⋯,顶点1B ,2B ,3B ,⋯都在第一象限,按照这样的规律依次进行下去,点5B 的坐标为 ;点n B 的坐标为 .6.如图,在平面直角坐标系中,一动点沿箭头所示的方向,每次移动一个单位长度,依次得到点1(0,1)P ,2(1,1)P ,3(1,0)P ,4(1,1)P-,5(2,1)P -⋯则2018P 的坐标是 .7.如图,点(0,0)O ,(0,1)B 是正方形1OBB C 的两个顶点,以它的对角线1OB 为一边作正方形121OB B C ,以正方形121OB B C 的对角线2OB 为一边作正方形232OB B C ,写出点3B 的坐标为 ;再以正方形232OB B C 的对角线3OB 为一边作正方形343OB B C ,⋯依此规律作下去,点2013B 的坐标为 .8.在平面直角坐标系xOy 中,有一只电子青蛙在点(1,0)A 处.第一次,它从点A 先向右跳跃1个单位,再向上跳跃1个单位到达点1A ; 第二次,它从点1A 先向左跳跃2个单位,再向下跳跃2个单位到达点2A ; 第三次,它从点2A 先向右跳跃3个单位,再向上跳跃3个单位到达点3A ; 第四次,它从点3A 先向左跳跃4个单位,再向下跳跃4个单位到达点4A ;⋯依此规律进行,点6A 的坐标为 ;若点n A 的坐标为(2013,2012),则n = . 9.如图,在平面直角坐标系中,有一个正六边形ABCDEF ,其中C 、D 的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个正六边形沿着x 轴向右滚动,则在滚动过程中,这个正六边形的顶点A 、B 、C 、D 、E 、F 中,会经过点(54,2)的是 .10.如图,在平面直角坐标系xOy 中,1A 是以O 为圆心,2为半径的圆与过点(0,1)且平行于x 轴的直线1l 的一个交点;2A 是以原点O 为圆心,3为半径的圆与过点(0,2)-且平行于x 轴的直线2l 的一个交点;3A 是以原点O 为圆心,4为半径的圆与过点(0,3)且平行于x 轴的直线3l 的一个交点;4A 是以原点O 为圆心,5为半径的圆与过点(0,4)-且平行于x 轴的直线4l 的一个交点;⋯,且点1A 、2A 、3A 、4A 、⋯都在y 轴右侧,按照这样的规律进行下去,点6A 的坐标为 ,点n A 的坐标为 (用含n 的式子表示,n 是正整数).11.如图,在平面直角坐标系上有个点(1,0)P ,点P 第1次向上跳动1个单位至点1(1,1)P ,紧接着第2次向左跳动2个单位至点2(1,1)P -,第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,⋯,依此规律跳动下去,点P 第100次跳动至点100P 的坐标是 .12.如图,在平面直角坐标系上有点(1,0)A ,点A 第一次跳动至点1(1,1)A -,第四次向右跳动5个单位至点4(3,2)A ,⋯,依此规律跳动下去,点A 第100次跳动至点100A 的坐标是 .13.在平面直角坐标系中,已知3个点的坐标分别为:1(1,1)A 、2(0,2)A 、3(1,1)A -.一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以1A 为对称中心的对称点1P ,第2次电子蛙由1P 点跳到以2A 为对称中心的对称点2P ,第3次电子蛙由2P 点跳到以3A 为对称中心的对称点3P ,⋯,按此规律,电子蛙分别以:1A 、2A 、3A 为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是2009P .14.观察下列有序数对:(3,1)(5--,1)(72,1)(93--,1)4⋯根据你发现的规律,第100个有序数对是 .15.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)⋯⋯,根据这个规律探索可得,第100个点的坐标为 .16.如图,已知直线l 与x 轴夹角为30︒,过点(2,0)A 作直线l 的垂线,垂足为点1A ,过点1A 作12A A x ⊥轴,垂足为点2A ,过点2A 作23A A l ⊥,垂足为点3A ,⋯,这样依次下去,得到一组线段:1AA ,12A A ,23A A ,⋯,则线段20202021A A 的长为 .17.如图,点(0,0)O 、(0,1)B 是正方形1OBB C 的两个顶点,以对角线1OB 为一边作正方形121OB B C ,再以正方形121OB B C 的对角线2OB 为一边作正方形232OB B C ,⋯,依次下去,则对角线2020OB 的长= .18.以水平数轴的原点O 为圆心,过正半轴Ox 上的每一刻度点画同心圆,将Ox 逆时针依次旋转30︒、60︒、90︒、⋯、330︒得到11条射线,构成如图所示的“圆”坐标系,点A 、B 的坐标分别表示为(5,0)︒、(4,300)︒,则点C 的坐标表示为 .19.如图所示,将边长为1的正方形OAPB 沿x 轴正方向翻转2008次,点P 依次落在点1P ,2P ,3P ,⋯,2008P 的位置,则2008P 的横坐标2008x = .20.如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1P ,2P ,32008P P ⋯的位置,则点2008P 的横坐标为 .三.解答题(共2小题)21.如图:在直角坐标系中,第一次将AOB ∆变换成△11OA B ,第二次将三角形变换成△22OA B ,第三次将△22OA B ,变换成△33OA B ,已知(1,3)A ,1(3,3)A ,2(5,3)A ,3(7,3)A ;(2,0)B ,1(4,0)B ,2(8,0)B ,3(16,0)B .(1)观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△33OA B 变换成△44OA B ,则4A 的坐标是 ,4B 的坐标是 .(2)若按(1)找到的规律将OAB ∆进行了n 次变换,得到△n n OA B ,比较每次变换中三角形顶点有何变化,找出规律,推测n A 的坐标是 ,n B 的坐标是 .22.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标: 1(A , ), 3(A , ), 12(A , );(2)写出点4n A 的坐标(n 是正整数); (3)指出蚂蚁从点100A 到101A 的移动方向.坐标系规律探索习题参考答案与试题解析一.选择题(共3小题) 1.解:由图可知,每运动四次出现的形状都是一样的, 202145051÷=⋯⋯,∴第2021次运动到点(2021,1),故选:A . 2.解:(1,1)A ,(1,1)B -,(1,2)C --,(1,2)D -,1(1)2AB ∴=--=,1(2)3BC =--=,1(1)2CD =--=,1(2)3DA =--=,∴绕四边形ABCD 一周的细线长度为232310+++=,2012102012÷=⋯,∴细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B 的位置,点的坐标为(1,1)-. 故选:B .3.解:根据题意分析可得:点1A ,2A ,3A ,⋯,n A 表示的数为1-,1,2-,2,3-,3,⋯依照上述规律,可得出结论: 点的下标为奇数时,点在原点的左侧;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 当n 为偶数时,11n n A A +=--;所以点2008A 表示的数为:200821004÷=, 2009A 表示的数为:20081100411005A --=--=-.故选:C .二.填空题(共17小题) 4.解:当1x =时,2y =,∴点1A 的坐标为(1,2);当2y x =-=时,2x =-,∴点2A 的坐标为(2,2)-;同理可得3(2,4)A --,4(4,4)A -,5(4,8)A ,6(8,8)A --,7(8,16)A --,8(16,16)A -⋯⋯,∴22141(2,2)n n n A ++,212142(2,2)n n n A +++-, 212243(2,2)n n n A +++--,222244(2,2)(n n n A n +++-为自然数), 202250542=⨯+,∴点2022A 的坐标为50521(2⨯+-,505212)⨯+,即点2022A 的坐标为1011(2-,10112). 故答案为:1011(2-,10112).5.解:分别过点1B ,2B ,3B ,作1B D x ⊥轴,2B E x ⊥轴,3B F x ⊥轴于点D ,E ,F , 1(1,0)A ,12312A A ∴=-=,1A D ,1=,2OD =,11B D A D =,1=,可得出1(2,1)B ,2(3,0)A ,32633A A ∴=-=,232EB =,2232B E EA ==,39622OE =-=, 可得29(2B ,3)2,同理可得出:3(8,2)B ,425(2B ,5)2,⋯, 1B ,2B ,3B ,⋯的横坐标分别为:42,92,162,252⋯,∴点5B 的横坐标为:362, 点n B 的横坐标为:2(1)2n +,1B ,2B ,3B ,⋯的纵坐标分别为:1,32,42,52,⋯,∴点5B 的纵坐标为:632=, 点n B 的纵坐标为:12n +, ∴点5B 的坐标为(18,3);点n B 的坐标为:2(1)1(,)22n n ++.故答案为:(18,3),2(1)1(,)22n n ++.6.解:由图可得,6(2,0)P ,12(4,0)P ,⋯,6(2,0)n P n ,61(2,1)n P n +, 20166336÷=,6336(2336,0)P ⨯∴⨯,即2016(672,0)P ,2017(672,1)P ∴,2018(673,1)P故答案为:(673,1).7.解:根据题意和图形可看出每经过一次变化,都顺时针旋转45︒, 从B 到3B 经过了3次变化,453135︒⨯=︒,31⨯=.∴点3B 所在的正方形的边长为3B 位置在第四象限. ∴点3B 的坐标是(2,2)-;可得出:1B 点坐标为(1,1), 2B 点坐标为(2,0), 3B 点坐标为(2,2)-,4B 点坐标为(0,4)-,5B 点坐标为(4,4)--, 6(8,0)B -,7(8,8)B - 8(0,16)B ,9(16,16)B ,由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的倍, 201382515÷=⋯,2013B ∴的纵横坐标符号与点5B 的相同,纵横坐标都是负值,2013B ∴的坐标为1006(2-,10062)-.故答案为:(2,2)-,1006(2-,10062)-. 8.解:青蛙在点(1,0)A 处,∴第一次在点(2,1),第二次在点(0,1)-, 第三次在点(3,2), 第四次在点(1,2)--, 第五次在点(4,3), 第六次在点(2,3)--,从上可以看出除去一二两次,奇数次横纵坐标每次加一,偶数则每次减一, 6(162,062)A ∴-÷-÷得:(2,3)--,点n A 的坐标为(2013,2012),在第一象限,若以第一次的结果为基础,设置为m , (22,12)An m m +÷+÷, 222013m +÷=, 4022m =,1402214023n m =+=+=;故答案为:(2-,3-,),4023. 9.解:如图所示:当滚动到A D x '⊥轴时,E 、F 、A 的对应点分别是E '、F '、A ',连接A D ',过点F '作F G A D '⊥'于点G ,过点E '作E H A D '⊥'于点H ,六边形ABCDEF 是正六边形, 1602F A D FAB ∴∠''=∠=︒,906030A F G ∴∠''=︒-︒=︒, 1122A G A F ∴'=''=,同理可得12HD =, 2A D ∴'=,(2,0)D(2,2)A ∴',2OD =,正六边形滚动6个单位长度时正好滚动一周,∴从点(2,2)开始到点(54,2)正好滚动52个单位长度,52846=⋯, ∴恰好滚动8周多4个, ∴会过点(54,2)的是点E .故答案为:E .10.解:点1A 是以原点O 为圆心,半径为2的圆与过点(0,1)且平行于x 轴的直线1l 的一个交点,1A ∴的坐标为:,1),即1),2A 是以原点O 为圆心,3为半径的圆与过点(0,2)-且平行于x 轴的直线2l 的一个交点,2A ∴的坐标为2)-同理可得:3A 的坐标为3)点n A 的坐标为1(1))n n +-⋅,则:点6A 的坐标为6)-;故答案为:6)-,1(1))n n +-⋅;11.解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,依此类推可得到:n P 的横坐标为41(n n ÷+是4的倍数).故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标是(26,50). 故答案为:(26,50).12.解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4),⋯第2n 次跳动至点的坐标是(1,)n n +,∴第100次跳动至点的坐标是(51,50).故答案为:(51,50).13.解:根据题意1P 点为原点关于点1A 为对称中心的点,所以1(2,2)P ,类似地2(2,2)P -,3(0,0)P ,即回到了原点,所以可以看出电子蛙每从原点开始,每跳三次就会回到原点,20093÷余数是2,所以第2009次电子蛙落点的坐标为2P 点的坐标(2,2)-.故答案为:(2,2)-.14.解:观察后发现第n 个有序数对可以表示为: 第n 个有序数对的坐标为1((1)(21)n n +-⋅+,1(1))n n-⋅.∴第100个有序数对是1(201,)100-.故答案填1(201,)100-. 15.解:因为1231391+++⋯+=,所以第91个点的坐标为(13,0).因为在第14列点的走向为向上,故第100个点在此行上,横坐标就为14,纵坐标为从第92个点向上数8个点,即为8; 故第100个点的坐标为(14,8). 故填(14,8).16.解:由题可知,直线l 与x 轴的夹角为30︒, 12sin301AA ∴=︒=, 130AOA ∠=︒, 160A AO ∴∠=︒,1230AA A ∴∠=︒, 121cos30A A AA ∴=︒,同理,223121cos30cos 30A A A A AA =︒=︒,234231cos30cos 30A A A A AA =︒=︒,⋯11cos 30n n n A A AA +∴=︒,当2010n =,202020192020A A =,故答案为2020.17.解:根据题意和图形可看出每经过一次变化,都顺时针旋转45︒,∴旋转8次则OB 旋转一周,从B 到2020B 经过了2020次变化, 202082524÷=⋯,∴从B 到2020B 与4B 都在y 轴负半轴上,202010102∴=,∴点2020B 的坐标是1010(0,2)-.2020OB ∴的长10102,故答案为10102.18.解:如图所示:点C 的坐标表示为(3,240)︒. 故答案为:(3,240)︒. 19.解:根据规律1(1,1)P ,23(2,0)P P =,4(3,1)P , 5(5P ,671)(6,0)P P =,8(7,1)P ⋯每4个一循环,可以判断2008P 在502次循环后与4P 一致:纵坐标为1,横坐标比下标小1,坐标应该是(2007,1),故答案为2007.20.解:观察图形结合翻转的方法可以得出1P 、2P 的横坐标是1,3P 的横坐标是2.5,4P 、5P 的横坐标是4,6P 的横坐标是5.5⋯依此类推下去,2005P 、2006P 的横坐标是2005,2007P 的横坐标是2006.5,2008P 、2009P 的横坐标就是2008.故答案为:2008. 三.解答题(共2小题)21.解:(1)已知(1,3)A ,1(3,3)A ,2(5,3)A ,3(7,3)A ;对于1A ,2A ,n A 坐标找规律比较从而发现n A 的横坐标为21n +,而纵坐标都是3; 同理1B ,2B ,n B 也一样找规律,规律为n B 的横坐标为12n +,纵坐标为0. 由上规律可知:(1)4A 的坐标是(9,3),4B 的坐标是(32,0); (2)n A 的坐标是(21,3)n +,n B 的坐标是1(2n +,0) 22.解:(1)1(0,1)A ,3(1,0)A ,12(6,0)A ; (2)当1n =时,4(2,0)A , 当2n =时,8(4,0)A , 当3n =时,12(6,0)A , 所以4(2,0)n A n ;(3)点100A 中的n 正好是4的倍数,所以点100A 和101A 的坐标分别是100(50,0)A ,101A 的(50,1),所以蚂蚁从点100A 到101A 的移动方向是从下向上.。
平面直角坐标系规律题(带答案)
平面直角坐标系规律题1.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2).....根据这个规律,第2016个点的坐标为什么?2.如图,一个质点在第一象限及x轴、y轴上运动,一秒钟后,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒运动一个单位长度,那么第2016秒后质点所在位置的坐标是()3.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是______.第2016次呢?4.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是()。
第2016个点的坐标是()5、如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为________.答案:1.2.解:根据图形,以最外边的正方形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2016个点是(45,9),3.4.(8 ,44)5.6.观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故答案为:(51,50).7.8. 经过观察可得:以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1(n是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).9.由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),所以,点A4n+1(2n,1).故答案为:(2n,1).。
点的坐标规律题
点的坐标规律题1、如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3…已知:A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A5的坐标是,B5的坐标是.2、(2013•兰州)如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.2.(2013•鄂尔多斯)在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5)…用你发现的规律,确定点A2013的坐标为3.(2013•大连)在平面直角坐标系中,点(2,-4)在第象限.4.(2013•朝阳)如图是某同学在课外设计的一款软件,蓝精灵从O点第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5.到达A2n后,要向方向跳个单位落到A2n+1.)如图,在平面直角坐标系中,线段OA1=1,OA1与x轴的夹角为30°,线段A1A2=1,A2A1⊥OA1,垂足为A1;线段A2A3=1,A3A2⊥A1A2,垂足为A2;线段A3A4=1,A4A3⊥A2A3,垂足为A3;…按此规律,点A2012的坐标为.6.(2012•泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为7.(2012•莱芜)将正方形ABCD的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A1、A2、A3、…,按此规律,点A2012在射线上.8.(2012•呼伦贝尔)第二象限内的点P(x,y)满足|x|=5,y2=4,则点P的坐标是.9.(2012•北京)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是;当点B的横坐标为4n(n为正整数)时,m=(用含n的代数式表示).10.(2010•成都)在平面直角坐标系中,点A(2,-3)位于第象限.2.(2013•湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A92的坐标是.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)4.(2013•抚顺)如图,在平面直角坐标系中,点A、B、C的坐标分别是(-1,-1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,-2).点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7…,按此规律进行下去,则点P2013的坐标、是5.(2013•鄂尔多斯)在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5)…用你发现的规律,确定点A2013的坐标为6.(2013•朝阳)如图是某同学在课外设计的一款软件,蓝精灵从O点第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5.到达A2n后,要向方向跳个单位落到A2n+1.7.(2012•威海)如图,在平面直角坐标系中,线段OA1=1,OA1与x轴的夹角为30°,线段A1A2=1,A2A1⊥OA1,垂足为A1;线段A2A3=1,A3A2⊥A1A2,垂足为A2;线段A3A4=1,A4A3⊥A2A3,垂足为A3;…按此规律,点A2012的坐标为.8.(2012•莱芜)将正方形ABCD的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A1、A2、A3、…,按此规律,点A2012在射线上9.(2011•钦州)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是.10.(2013•安徽)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,…(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图117图2212图3317图44………猜想:在图(n)中,特征点的个数为(用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=;图(2013)的对称中心的横坐标为.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2008次,点P 依次落在点P 1,P 2,P 3,P 4,…,P 2008的位置,则P 2008的坐标32.如图,有一系列有规律的点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4(2,0)、A 5(2,2)、A 6(0,2)、A 7(0,3)、A 8(3,3)…,依此规律,点A 20的坐标为33.在平面直角坐标系中,点A 1(0,2),A 2(1,5)A 3(2,10),A 4(3,17),…,用你发现的规律确定点A 2012的坐标为34.在平面直角坐标系xOy中,横、纵坐标都为整数的点称为整点.已知一组正方形的四个顶点恰好落在两坐标轴上,请你观察每个正方形四条边上的整点的个数的变化规律.回答下列问题:(1)经过x轴上点(5,0)的正方形的四条边上的整点个数是;(2)经过x轴上点(n,0)(n为正整数)的正方形的四条边上的整点个数记为m,则m与n之间的函数关系是.35.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律走下去,当机器人走到点A6时,离东西方向所在的直线的距离是m .36.在平面直角坐标系中,点A 1(1,2),A 2(2,5)A 3(3,10),A 4(4,17),…,用你发现的规律确定点A 9的坐标为 .37.在平面直角坐标系xOy 中,点A 从原点出发沿x 轴正向移动1个单位长度到A 1,逆时针旋转90°后前进2个单位长度到达A 2,逆时针旋转90°后前进3个单位长度到达A 3,…,逆时针旋转90°后前进2013个单位长度到达点A 2013,则A 2013的坐标为 .38.如图,在平面直角坐标系xOy 中,A 1(1,0),A 2(3,0),A 3(6,0),A 4(10,0),…,以A 1A 2为对角线作第一个正方形A 1C 1A 2B 1,以A 2A 3为对角线作第二个正方形A 2C 2A 3B 2,以A 3A 4为对角线作第三个正方形A 3C 3A 4B 3,…,顶点B 1,B 2,B 3,…都在第一象限,按照这样的规律依次进行下去,点B 5的坐标为;点B n 的坐标为.39.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为40.在平面直角坐标系中,点A 1(1,1),A 2(3,4),A 3(5,9),A 4(7,16),…,用你发现的规律确定A 10的坐标为 .如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2013次,点P 依次落在点P 1,P 2,P 3,…,P 2013的位置,记P i (x i ,y i ),i=1,2,3,…,2013,则P 2013的横坐标x 2013=;如果x n =x n +1,则x n +2=v1.0 可编辑可修改11 42.如图,已知坐标A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2013的坐标为.43.如图,已知A1(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、…则点A2011的坐标是.44.将正方形ABCD的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点A1、A2、A3、…,按此规律,点A20在射线上;点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点的坐标规律题1、如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3…已知:A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A5的坐标是,B5的坐标是.2、(2013•兰州)如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.2.(2013•鄂尔多斯)在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5)…用你发现的规律,确定点A2013的坐标为3.(2013•大连)在平面直角坐标系中,点(2,-4)在第象限.4.(2013•朝阳)如图是某同学在课外设计的一款软件,蓝精灵从O点第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5.到达A2n 后,要向方向跳个单位落到A2n+1.)如图,在平面直角坐标系中,线段OA1=1,OA1与x轴的夹角为30°,线段A1A2=1,A2A1⊥OA1,垂足为A1;线段A2A3=1,A3A2⊥A1A2,垂足为A2;线段A3A4=1,A4A3⊥A2A3,垂足为A3;…按此规律,点A2012的坐标为.6.(2012•泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为7.(2012•莱芜)将正方形ABCD的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A1、A2、A3、…,按此规律,点A2012在射线上.8.(2012•呼伦贝尔)第二象限内的点P(x,y)满足|x|=5,y2=4,则点P的坐标是.9.(2012•北京)在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m .当m=3时,点B 的横坐标的所有可能值是;当点B 的横坐标为4n (n 为正整数)时,m=(用含n 的代数式表示).10.(2010•成都)在平面直角坐标系中,点A (2,-3)位于第 象限.2.(2013•湛江)如图,所有正三角形的一边平行于x 轴,一顶点在y 轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1、A 2、A 3、A 4…表示,其中A 1A 2与x 轴、底边A 1A 2与A 4A 5、A 4A 5与A 7A 8、…均相距一个单位,则顶点A 3的坐标是,A 92的坐标是.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n +1(n 为自然数)的坐标为(用n表示)4.(2013•抚顺)如图,在平面直角坐标系中,点A、B、C的坐标分别是(-1,-1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,-2).点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7…,按此规律进行下去,则点P2013的坐标、是5.(2013•鄂尔多斯)在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5)…用你发现的规律,确定点A2013的坐标为6.(2013•朝阳)如图是某同学在课外设计的一款软件,蓝精灵从O点第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5.到达A2n后,要向方向跳个单位落到A 2n +1.7.(2012•威海)如图,在平面直角坐标系中,线段OA 1=1,OA 1与x 轴的夹角为30°,线段A 1A 2=1,A 2A 1⊥OA 1,垂足为A 1;线段A 2A 3=1,A 3A 2⊥A 1A 2,垂足为A 2;线段A 3A 4=1,A 4A 3⊥A 2A 3,垂足为A 3;…按此规律,点A 2012的坐标为.8.(2012•莱芜)将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点A 1、A 2、A 3、…,按此规律,点A 2012在射线上9.(2011•钦州)如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P 的坐标是.10.(2013•安徽)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,…基本图特征点(1)观察以上图形并完成下表:图形的名称 的个数 的个数图1 1 7 图2 2 12 图3 3 17图4 4…… …猜想:在图(n )中,特征点的个数为(用n 表示);(2)如图,将图(n )放在直角坐标系中,设其中第一个基本图的对称中心O 1的坐标为(x 1,2),则x 1=;图(2013)的对称中心的横坐标为.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2008次,点P 依次落在点P 1,P 2,P 3,P 4,…,P 2008的位置,则P 2008的坐标32.如图,有一系列有规律的点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4(2,0)、A 5(2,2)、A 6(0,2)、A 7(0,3)、A 8(3,3)…,依此规律,点A 20的坐标为33.在平面直角坐标系中,点A 1(0,2),A 2(1,5)A 3(2,10),A 4(3,17),…,用你发现的规律确定点A 2012的坐标为34.在平面直角坐标系xOy 中,横、纵坐标都为整数的点称为整点.已知一组正方形的四个顶点恰好落在两坐标轴上,请你观察每个正方形四条边上的整点的个数的变化规律. 回答下列问题:(1)经过x 轴上点(5,0)的正方形的四条边上的整点个数是;(2)经过x 轴上点(n ,0)(n 为正整数)的正方形的四条边上的整点个数记为m ,则m 与n 之间的函数关系是.35.如图,一个机器人从点O 出发,向正东方向走3m 到达点A 1,再向正北方向走6m 到点A 2,再向正西方向走9m 到达点A 3,再向正南方向走12m 到达点A 4,再向正东方向走15m 到达点A 5.按如此规律走下去,当机器人走到点A 6时,离东西方向所在的直线的距离是 m .36.在平面直角坐标系中,点A 1(1,2),A 2(2,5)A 3(3,10),A 4(4,17),…,用你发现的规律确定点A 9的坐标为 .37.在平面直角坐标系xOy 中,点A 从原点出发沿x 轴正向移动1个单位长度到A 1,逆时针旋转90°后前进2个单位长度到达A 2,逆时针旋转90°后前进3个单位长度到达A 3,…,逆时针旋转90°后前进2013个单位长度到达点A 2013,则A 2013的坐标为 .38.如图,在平面直角坐标系xOy 中,A 1(1,0),A 2(3,0),A 3(6,0),A 4(10,0),…,以A 1A 2为对角线作第一个正方形A 1C 1A 2B 1,以A 2A 3为对角线作第二个正方形A 2C 2A 3B 2,以A 3A 4为对角线作第三个正方形A 3C 3A 4B 3,…,顶点B 1,B 2,B 3,…都在第一象限,按照这样的规律依次进行下去,点B 5的坐标为;点B n 的坐标为 .39.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为40.在平面直角坐标系中,点A 1(1,1),A 2(3,4),A 3(5,9),A 4(7,16),…,用你发现的规律确定A 10的坐标为 .如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2013次,点P 依次落在点P 1,P 2,P 3,…,P 2013的位置,记P i (x i ,y i ),i=1,2,3,…,2013,则P 2013的横坐标x 2013=;如果x n =x n +1,则x n +2=42.如图,已知坐标A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2013的坐标为.43.如图,已知A 1(1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、A 5(2,-1)、…则点A 2011的坐标是.44.将正方形ABCD 的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A 1、A 2、A 3、…,按此规律,点A 20在射线上;点。