第七讲 图像形态学处理分析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、若物体之间有细小的连通,选择适当的结构元,
可以将物体分开。 4、不同的结构元及其不同的原点,产生不同的结果
3、膨胀的运算
a、基于膨胀定义本身的运算
+ +
保留的点
图像 A
结构元 B 原点位于结构元素中的膨胀操作
增加的点
删除的点 ? 保留的点
+
图像 A
结构元 B 原点不在结构元素中的膨胀操作
+
增加的点
三、集合论的基本概念
1、集合的定义: 具有某种性质的、确定的、有区别的事物的全集,
用大写字母表示。不包含任何元素的集合称为空集,规
定任何空集都只是同一个集合,记作 Φ 。 在数字图像处理中,集合是图像中描述的对象或其他
感兴趣特征的像素坐标。
2、子集: 3、并集:
a A , aB A B
bB
膨胀的算法:
1、用结构元素,扫描图像的每一个像素; 2、用结构元素与其覆盖的二值图像做“与”运算 3、如果都为0,结果图像的该像素为0,否则为1
膨胀的作用:
1、用3x3的结构元时,物体的边界沿周边增加一个像素 2、把目标周围的背景点合并到目标中,目标之间存 在细小的缝隙,膨胀可能将不同目标连通在一起
它们基本的形状特性,并除去不相干的结构。 数学形态学的基本运算:膨胀、腐蚀、开启和闭合,击中
击不中变换。
二、基本概念 形态学:从图像出发,研究物体目标的结构和拓扑关系 结构元素:任意大小,包含任意0、1组合的一个区域。
结构元素中的任意一点都可以成为结构元的原点。
形态学图像处理:结构元素与图像进行逻辑运算产生新 的图像的处理方法。 结构元与图像的运算:类似卷积,但用逻辑运算代替乘 加运算,结果为处理后图像的像素值。 形态学处理效果:取决于结构元素的大小、形状与逻辑 运算的方法。
C {c | c A or c B}
C A B
4、交集:
C {c | c A and c B}
C A B
5、补集: 6、集合的差:
A {x | x A }
c
A B {x | x A , x B } A Bc
7、位移:
( A) x { y | y a x , a A }
b、基于向量运算的膨胀操作 设图像左上角的坐标为(0,0),则:A ={(1,1), (2,1), (2,2), (2,3), (3,2), (3,3), (4,3)},B={(0,0),
(1,0), (0,1)}
A B {(1 , 1), (2 , 1), (2 , 2), (2 , 3), (3 , 2), (3 , 3), (4 , 3), (2 , 1), (3 , 1), (3 , 2), (3 , 3), (4 , 2), (4 , 3), (5 , 3), (1 , 2), (2 , 2), (2 , 3), (2 , 4), (3 , 3), (3 , 4), (4 , 4), }
第 七 讲 图像形态学处理
西安电子科技大学机电工程学院
王
义
敏
一、数学形态学图像处理 形态学:生物学的分支,研究动植物的形态和结构 数学形态学:分析几何形状和结构的数学方法,建立在 集合代数的基础上,用集合论方法定量描述集合结构的学 科。1985年以后成为分析图像几何特征的工具。
数学形态学是一门交叉学科,有严格的数学理论(集合
解释:A 被 B 膨胀是所有位移 x 的集合, B 的映射与A至少
有一个元素是重叠的。换言之,用 B 膨胀 A 得到的集合是B 的映射的位移与 A 至少有一个非零元素相交时 B 的原点 x 位置的集合。从而上式变为:
ˆ ) A] A} A B {x | [(B x
膨胀的另外定义为:
A B {x | x a b, a A, b B} A B ( A) b
代数和数论等),理论基础艰深,但基本观念比较简单。 理论基础和所用语言为:集合论。 图像中的集合:代表二值图像或者灰度(彩色)图像的
形状。如:黑白图像中的黑像素集合是图像的完全描述,
感兴趣目标区域的像素集合。
数学形态学图像处理的基本思想:使用具有一定形态 的结构元素,去度量和提取图像中的对应形状,如边界、 骨架、凸壳等,以达到对图像进行分析和识别的目的。 数学形态学图像处理意义:可以简化图像数据,保持
8、映像(集合的反射):
ˆ {x | x a , a A } A
集合的图解表示:
A
B Z
c
A B
x1
A B
x2
x1
( A)
x2
A B
( A) x ( x ( x1 , x2 ))
ˆ A
ቤተ መጻሕፍቲ ባይዱ
四、膨胀与腐蚀
1、膨胀(使图像扩大)
ˆ ) A] } A B {x | [(B x
A 相对位移B
删除的点 ? 保留的点
原点位于结构元素中的膨胀操作
+
图像 A
结构元 B
A 相对位移B
原点不在结构元素中的膨胀操作
增加的点
删除的点
+
?
? ?
增加的点
图像 A
结构元 B
此时膨胀的结果与A没有任何关系,即:
( A B) A
3、填补分割后物体中的空洞
2、腐蚀(使图像缩小)
A B {x | ( B) x A}
解释:A 被 B 腐蚀是所有位移 x 的集合, 其中 B 平移 x 后 仍包含于 A 中。换言之,用 B 腐蚀 A 得到的集合是B 完全 包含在 A 中时 B 的原点位置的集合。 腐蚀的另外定义为:
A
B {x | x b A, b B}
A B ( A) b
bB
向量的观点
位移的观点
腐蚀的算法:
1、用结构元素,扫描图像的每一个像素;
2、用结构元素与其覆盖的二值图像做与运算 3、如果结果都为1,结果图像的该像素为1,否则为0
腐蚀的作用:
1、用3x3的结构元时,物体的边界沿周边减少一个像素 2、消除掉图像中小于结构元大小的目标物体
{(1 , 1), (1 , 2), (2 , 1), (2 , 2), (2 , 3), (2 , 4), (3 , 1), (3 , 2), (3 , 3), (3 , 4), (4 , 2), (4 , 3), (5 , 2) }
c、基于位移运算的膨胀操作
+
保留的点
增加的点
图像 A
结构元 B