2018届湖南省雅礼中学高三第一次月考理科数学 PDF版
湖南省长沙市雅礼中学2017-2018学年高三上学期第一次月考试题 数学(理) Word版无答案
炎德 英才大联考雅礼中学2017-2018学年高三月考试卷(一)数 学 理科第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、“000(0,),l n 1x x x ∃∈+∞=-”的否定是A .000(0,),ln 1x x x ∃∈+∞≠-B .000(0,),ln =1x x x ∃∉+∞-C .(0,),ln 1x x x ∀∈+∞≠-D .000(0,),ln 1x x x ∀∉+∞=- 2、设集合1{|3},{|0}4x A x x B x x -=>=≤-,则A B = A .φ B .(]3,4 C .()3,4 D .(4,)+∞ 3、1,,,,4a b c 构成等比数列,则a b c ++=A.2-.2+ C.2±.(2±- 4、l 为空间直线,αβ为不同平面,则下列推导正确的是A .,//l l αβαβ⊥⇒⊥B .,//l l αβαβ⊥⊥⇒C .//,////l l αβαβ⇒D .//,l l αβαβ⊥⇒⊥5、已知,,0a b c >,则“ln ,ln ,ln a b c 成等差数列”是“2,2,2abc成等比数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6、ABC ∆中,3,2,AB BC AB BC BC CA ==⋅=⋅,则CA AB ⋅的值为 A .7 B .-7 C .11 D .-117、若变量,x y 满足约束条件02143y x y x y ≤⎧⎪-≥⎨⎪-≤⎩,则35z x y =+的取值范围是A .[3,)+∞B .[]8,3-C .(,9]-∞D .[]8,9- 8、正四棱锥S ABC -的外接球半径为2,底面边长AB=3,则此棱锥的体积为A .4 B .4或4 C .4 D .4或49、函数()sin()cos()(0)f x a wx b wx w =+>的图象如图所示,则,a b 的取值范围分别为A B . C 1- D .3,1--10、某电商新售A 产品,售价每件50元,年销售量为11.8万件,为支持新品发售,第一年免征营业税,第二年需征收销售额%x 的营业税(即每销售100元征税x 元),第二年电商决定将A 产品的售价提高50%1%x x ⋅-元,预计年销售量减少x 万件,要使第二年A 产品上交的营业税不少于10万元,则x 的最大值是 A .2 B .5 C .8 D .1011、已知某几何体的三视图如图所示,则该几何体的体积是A .3B .4C .4.5D .612、已知定义在R 山的函数()y f x =满足()()1f x f x +=,当01x ≤<时,()2f x x =-,若函数()()2(0,1)xg x f x a a a =->≠,恰有2个零点,则a 的取值范围是A .31((,222 B .[2,)+∞ C .1([2,)2+∞ D .31((,)[2,)222+∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
湖南省长沙市雅礼中学2024届高三上学期月考(一)数学试题及答案
大联考雅礼中学2024届高三月考试卷(一)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2|log 4Mx x =<,{}|21N x x =≥,则M N ∩=()A.{}08x x ≤< B. 182xx≤<C.{}216x x ≤< D. 1162xx≤<2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为( )A.3B.2C.-2D.-33.已知1z ,2z 是关于x 的方程2220x x +=−的两个根.若11i z =+,则2z =( )A.B.1C.D.24.函数sin exx xy =的图象大致为()A. B.C. D.5.已知220x kx m +−<的解集为()(),11t t −<−,则k m +的值为( )A 1B.2C.-1D.-2.6. 古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为( )(cos10°≈0.985)A. 45.25mB. 50.76mC. 56.74mD. 58.60m7. 已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++−=,()1f x +为偶函数,()11f =,则()2023f =( )A. 1B. -1C. 2D. -38. 如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为,则模型中九个球的表面积和为( )A 6πB. 9πC.31π4D. 21π二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列命题为真命题的是( ) A. 若2sin 23α=,则21cos 46πα +=B. 函数()2sin 23f x x π=+的图象向右平移6π个单位长度得到函数()2sin 26g x x π=+的图象.C. 函数()2sin cos cos 26f x x x x π=+−单调递增区间为(),36k k k Z ππππ−++∈D. ()22tan 1tan xf x x =−的最小正周期为2π 10. 如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A −组成,12AB BC AC AA ====,则下列说法正确的是( )A. 若AD AC ⊥,则1AD A C ⊥B. 若平面11A C D 与平面ACD 的交线为l ,则AC //lC. 三棱柱111ABC A B C -的外接球的表面积为143πD. 当该几何体有外接球时,点D 到平面11ACC A11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b −=+(其中a ,b 是非零常数,无理数e 2.71828⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;B. 0a b +=是函数()f x 为奇函数的充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存极值点.12. 设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a −⋅−<,则下列选项正确的是( )的在A. {}n a 为递减数列B. 202220231S S +<C. 2022T 是数列{}Tn 中的最大项D. 40451T >第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 已知(2,),(3,1)a b λ=−=,若()a b b +⊥ ,则a = ______ .14. 已知函数51,2()24,2xx f x x x −≤ =−>,则函数()()g x f x =的零点个数为______. 15. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.16. 如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y ′′,则20n n n y y =′=∑______.(参考数据:取221.18.14=.)四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 如图,在直三棱柱111ABC A B C -中,2CACB ==,AB =13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ; (2)求点A 到平面1B CM 的距离.18. 记锐角ABC 的内角,,A B C 的对边分别为,,a b c �已知sin()sin()cos cos A B A C B C−−=.(1)求证:B C =; (2)若sin 1a C =,求2211a b+的最大值. 19. 甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1−分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响. (1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望; (2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率. 20. 已知数列{}n a 中,10a =,()12n n a a n n N∗+=+∈.(1)令11n n n b a a +=−+,求证:数列{}n b 是等比数列; (2)令3nn n a c =,当n c 取得最大值时,求n 的值.21. 已知双曲线2222:1(0,0)x y E a b a b−=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接P A ,PB 交双曲线E 于点C ,D (不同于A ,B ). (1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.22. 设函数()()2cos 102x f x x x =−+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 图象上有一点列()*11,1,2,...,,22i i i A g i n n =∈N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =−,证明:1217 (6)n k k k n −+++>−.的大联考雅礼中学2024届高三月考试卷(一)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合{}2|log 4Mx x =<,{}|21N x x =≥,则M N ∩=( )A. {}08x x ≤< B. 182xx≤<C. {}216x x ≤<D. 1162xx≤<【答案】D 【解析】【分析】直接解出集合,M N ,再求交集即可.详解】{}{}2|log 4|016Mx x x x =<=<<,1|2N x x=≥ ,则1162M N x x ∩=≤<.故选:D.2. 记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为( ) A. 3 B. 2C. -2D. -3【答案】A 【解析】【分析】由题得a 3=7,设等差数列的公差为d ,解方程组11+27516a d a d = += 即得解.【详解】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7, 设等差数列的公差为d ,所以11+27516a d a d = += ,解之得3d =.故选:A.3. 已知1z ,2z 是关于x 的方程2220x x +=−的两个根.若11i z =+,则2z =( )【A.B. 1C.D. 2【答案】C 【解析】【分析】由1z ,2z 是关于x 的方程2220x x +=−的两个根,由韦达定理求出2z ,再由复数的模长公式求解即可.【详解】法一:由1z ,2z 是关于x 的方程2220x x +=−的两个根,得122z z +=, 所以()21221i 1i z z =−=−+=−,所以21i z =−=法二:由1z ,2z 是关于x 的方程2220x x +=−的两个根,得122z z ⋅=, 所以21221i z z ==+,所以2221i 1i z ===++.故选:C . 4. 函数sin exx xy =的图象大致为( ) A. B.C. D.【答案】D 【解析】【分析】分析函数sin exx xy =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项. 【详解】令()sin e x x xf x =,该函数的定义域为R ,()()()sin sin e ex xx x x x f x f x −−−−===,所以,函数sin exx xy =为偶函数,排除AB 选项, 当0πx <<时,sin 0x >,则sin 0exx xy >,排除C 选项. 故选:D.5. 已知220x kx m +−<的解集为()(),11t t −<−,则k m +的值为( ) A. 1 B. 2C. -1D. -2【答案】B 【解析】【分析】由题知=1x −为方程220x kx m +−=的一个根,由韦达定理即可得出答案. 【详解】因为220x kx m +−<的解集为()(),11t t −<−, 所以=1x −为方程220x kx m +−=的一个根, 所以2k m +=. 故选:B .6. 古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为( )(cos10°≈0.985)A. 45.25mB. 50.76mC. 56.74mD. 58.60m【答案】B 【解析】【分析】数形结合,根据三角函数解三角形求解即可;【详解】设球的半径为R ,,tan10R ABAC=,100tan10RBC =−=− , 25250.760.985RR ==, 故选:B.7. 已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++−=,()1f x +为偶函数,()11f =,则()2023f =( )A. 1B. -1C. 2D. -3【答案】B 【解析】【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==−=−. 【详解】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x −,又由()()40f x f x ++−=,得()()4f x f x +=−−,所以()()()846f x f x f x +=−−−=−+,所以()()2f x f x +=−,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==−=−.故选:B .8. 如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为( )A. 6πB. 9πC.31π4D. 21π【答案】B 【解析】【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】如图,取BC 的中点E ,连接DE ,AE,则CE BE ==,AE DE ==,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF=4AF =,点O 为最大球球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE , 设最大球的半径为R ,则OF OM R ==, 因为Rt AOM △∽Rt AEF ,所以AO OMAE EF==1R =, 即1OM OF ==,则413AO =−=,故1sin 3OM EAF AO ∠== 设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G , 连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =−=−, 又JK a b =+,所以33b a a b −=+,解得2b a =,又33OK R b AO AK b =+=−=−,故432b R =−=,解得12b =, 所以14a =, 模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +×+×=++=.故选:B【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的的半径二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列命题为真命题的是( ) A. 若2sin 23α=,则21cos 46πα +=B. 函数()2sin 23f x x π=+的图象向右平移6π个单位长度得到函数()2sin 26g x x π=+的图象 C. 函数()2sin cos cos 26f x x x x π=+−的单调递增区间为(),36k k k Z ππππ−++∈D. ()22tan 1tan xf x x =−的最小正周期为2π 【答案】ACD 【解析】【分析】利用二倍角公式和诱导公式可求得2cos 4πα+,知A 正确; 根据三角函数平移变换可求得()2sin 2g x x =,知B 错误;利用三角恒等变换公式化简得到()f x 解析式,利用整体对应的方式可求得单调递增区间,知C 正确; 利用二倍角公式化简得到()f x ,由正切型函数的周期性可求得结果知D 正确.【详解】对于A ,21cos 21sin 212cos 4226παπαα++−+===,A 正确; 对于B ,()f x 向右平移6π个单位长度得:2sin 26f x x π−=,即()2sin 2g x x =,B 错误;对于C ,()13sin 22sin 2sin 222226f x x x x x x x π=+=++, 则由222262k x k πππππ−+≤+≤+,Z k ∈得:36k x k ππππ−+≤≤+,Z k ∈,()f x \的单调递增区间为(),36k k k Z ππππ−++∈,C 正确; 对于D ,()22tan tan 21tan xf x x x ==−,tan 2y x ∴=的最小正周期为2π,D 正确.故选:ACD.10. 如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A −组成,12AB BC AC AA ====,则下列说法正确的是( )A. 若AD AC ⊥,则1AD A C ⊥B. 若平面11A C D 与平面ACD 的交线为l ,则AC //lC. 三棱柱111ABC A B C -的外接球的表面积为143πD. 当该几何体有外接球时,点D 到平面11ACC A【答案】BD 【解析】【分析】根据空间线面关系,结合题中空间几何体,逐项分析判断即可得解. 【详解】对于选项A ,若AD AC ⊥,又因为1AA ⊥平面ABC , 但是D 不一定在平面ABC 上,所以A 不正确;对于选项B ,因为11//A C AC ,所以//AC 平面11A C D , 平面11AC D ∩平面ACD l =,所以//AC l ,所以B 正确; 对于选项C ,取ABC ∆的中心O ,111A B C ∆的中心1O ,1OO中点为该三棱柱外接球的球心,所以外接球的半径R , 所以外接球的表面积为22843R ππ=,所以C 不正确; 对于选项D ,该几何体的外接球即为三棱柱111ABC A B C -的外接球,1OO 的中点为该外接球的球心,该球心到平面11ACC A的点D 到平面11ACC A 的最大距离为R ,所以D 正确. 故选:BD11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b −=+(其中a ,b 是非零常数,无理数e 2.71828⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;B. 0a b +=是函数()f x 为奇函数的充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存在极值点. 【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x −−=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x −−,故()()0e e x xa b b a −−+−=, 即()()2e =xa b a b −−,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误; 对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b −+−+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b −+−+++,因为e 0x >,e 0x −>,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb −−′,因为0ab <,若0,0a b ><,则()e e0=xxa xb f −−>′恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f −−<′恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==ex xxxa ba b f x −−−′, 令()=0f x ′得1=ln 2bx a,又0ab >, 若0,0a b >>,当1,ln 2b x a∈−∞,()0f x ′<,函数()f x 为单调递减. 当1ln ,2b x a∈+∞,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值. 若0,0a b <<, 当1ln2b x a∈−∞,,()0f x ¢>,函数()f x 为单调递增. 当1ln ,2b x a∈+∞,()0f x ′<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值. 所以函数存在极值点,故D 正确. 故答案为:BCD.12. 设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a −⋅−<,则下列选项正确的是( )A. {}n a 为递减数列B. 202220231S S +<C. 2022T 是数列{}Tn 中的最大项D. 40451T >【答案】AC 【解析】【分析】根据题意先判断出数列{}n a 的前2022项大于1,而从第2023项开始都小于1.再对四个选项一一验证:对于A :利用公比的定义直接判断;对于B :由20231a <及前n 项和的定义即可判断;对于C :前n 项积为n T 的定义即可判断;对于D :先求出4045T 40452023a =,由20231a <即可判断.【详解】由()()20222023110a a −⋅−<可得:20221a −和20231a −异号,即202220231010a a −> −< 或202220231010a a −<−> . 而11a >,202220231a a >⋅,可得2022a 和2023a 同号,且一个大于1,一个小于1.因为11a >,所有20221a >,20231a <,即数列{}n a 的前2022项大于1,而从第2023项开始都小于1. 对于A :公比202320221a q a =<,因为11a >,所以11n n a a q −=为减函数,所以{}n a 为递减数列.故A 正确; 对于B :因为20231a <,所以2023202320221a S S =−<,所以202220231S S +>.故B 错误;对于C :等比数列{}n a 的前n 项积为n T ,且数列{}n a 的前2022项大于1,而从第2023项开始都小于1,所以2022T 是数列{}Tn 中的最大项.故C 正确; 对于D :40451234045T a a a a = ()()()240441111a a q a q a q = 404512340441a q +++= 4045202240451a q ×= ()404520221a q =40452023a =因为20231a <,所以404520231a <,即40451T <.故D 错误.故选:AC第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 已知(2,),(3,1)a b λ=−=,若()a b b +⊥ ,则a = ______ .【答案】【解析】【分析】根据题意求得(1,1)a b λ+=+ ,结合向量的数量积的运算公式求得λ的值,得到a的坐标,利用向量模的公式,即可求解.【详解】因为(2,),(3,1)a b λ=−=,可得(1,1)a bλ+=+ , 又因为()a b b +⊥,可得()(1,1)(3,1)310b ba λλ=+⋅=++=⋅+ ,解得4λ=−, 所以(2,4)a =−−,所以a =故答案为:14. 已知函数51,2()24,2xx f x x x −≤ =−>,则函数()()g x f x =零点个数为______. 【答案】3 【解析】【分析】令()0g x =得()f x =,根据分段函数性质可在同一直角坐标系中作出()f x,y =的大致图象,由图象可知,函数()y f x =与y =的图象有3个交点,即可得出答案.【详解】令()0g x =得()f x =可知函数()g x 的零点个数即为函数()f x与y =的交点个数,在同一直角坐标系中作出()f x,y =的大致图象如下:由图象可知,函数()y f x =与y =的图象有3个交点,即函数()g x 有3个零点, 故答案为:3.15. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.【解析】【分析】利用正方体的结构特征,判断平面α所在的位置,然后求得截面面积的最大值即可.的【详解】根据相互平行的直线与平面所成的角是相等的,可知在正方体1111ABCD A B C D −中,平面11AB D 与直线1AA ,11A B ,11A D 所成的角是相等的,所以平面11AB D 与平面α平行,由正方体的对称性:要求截面面积最大,则截面的位置为过棱的中点的正六边形(过正方体的中心),边,所以其面积为26S .16. 如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y ′′,则20n n n y y =′=∑______.(参考数据:取221.18.14=.)【答案】914 【解析】【分析】根据题意可得1, 1.1n n n y n y ′=+=,进而利用错位相减法运算求解.【详解】由题意可知:1, 1.1n n n y n y ′=+=,则()20201192000011.111.121.1201.1211.1n n n n n y y n =′=+=×+×++×+×∑∑L , 可得2012202101.111.121.1201.1211.1nn n yy =′×=×+×++×+×∑L ,两式相减可得:2120120212101 1.10.1 1.1 1.1 1.1211.1211.11 1.1n n n y y =−′−×=+++−×=−×−∑L 2121221 1.10.1211.11 1.118.1491.40.10.10.1−+××++====−−−−, 所以20914nn n yy =′=∑.故答案为:914.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 如图,在直三棱柱111ABC A B C -中,2CACB ==,AB =13AA =,M 为AB 中点.(1)证明:1//AC 平面1B CM ; (2)求点A 到平面1B CM 的距离. 【答案】(1)证明见解析 (2【解析】【分析】(1)利用线面平行的判定定理证明; (2)利用等体积法求解.的【小问1详解】连接1BC 交1B C 于点N ,连接MN , 则有N 为1BC 的中点,M 为AB 的中点, 所以1//AC MN ,且1AC ⊄平面1B CM ,MN ⊂平面1B CM , 所以1//AC 平面1B CM . 【小问2详解】连接1AB ,因为2CACB ==,所以CM AB ⊥,又因为1AA ⊥平面ABC ,CM ⊂平面ABC ,所以1AA CM ⊥,1AB AA A ∩=,所以CM ⊥平面11ABB A , 又因为1MB ⊂平面11ABB A ,所以1CM MB ⊥,又222CA CB AB +=,所以ABC 是等腰直角三角形,112CM AB MB ====,所以1112CMB S CM MB =⋅=△1111222ACM ACB S S CA CB ==×⋅=△△, 设点A 到平面1B CM 的距离为d , 因为11A B CM B ACM V V −−=,所以111133B CM ACM S d S AA ××=×× ,所以11ACM B CMS AA dS ×= .18. 记锐角ABC 的内角,,A B C 的对边分别为,,a b c �已知sin()sin()cos cos A B A C B C−−=.(1)求证:B C =; (2)若sin 1a C =,求2211a b+的最大值. 【答案】(1)见解析; (2)2516. 【解析】【分析】(1)运用两角和与差正弦进行化简即可;(2)根据(1)中结论运用正弦定理得sin 2sin sin 12ba C R Ab A R === ,然后等量代换出2211a b +,再运用降次公式化简,结合内角取值范围即可求解. 【小问1详解】 证明:由题知sin()sin()cos cos A B A C B C−−=,所以sin()cos sin()cos A B C A C B −=−, 所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B −=−, 所以cos sin cos cos sin cos A B C A C B = 因为A 为锐角,即cos 0A ≠ , 所以sin cos sin cos B C C B =, 所以tan tan =B C , 所以B C =. 【小问2详解】 由(1)知:B C =, 所以sin sin B C =, 因为sin 1a C =, 所以1sin C a=, 因为由正弦定理得:2sin ,sin 2b aR A B R=, 所以sin 2sin sin 12b a C R A b A R=== ,所以1sin A b =, 因为2A B C C ππ=−−=− ,所以1sin sin 2A C b==, 所以222211sin sin 2a bC C++ 221cos 2(1cos 2)213cos 2cos 222CC C C −+−=−−+因为ABC 是锐角三角形,且B C =, 所以42C ππ<<,所以22C ππ<<,所以1cos 20C −<<, 当1cos 24C =−时,2211a b +取最大值为2516, 所以2211a b +最大值为:2516. 19. 甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1−分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响. (1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望; (2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率. 【答案】(1)分布列见解析;期望为112(2)79192【解析】【分析】(1)先分别求甲、乙进球的概率,进而求甲得分的分布列和期望;(2)根据题意得出甲得分高于乙得分的所有可能情况,结合(1)中的数据分析运算. 【小问1详解】记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立, 由题意得:()1111233P A =×−= ,()1111224P B =×−= , 甲的得分X 的可能取值为1,0,1−,()()()()11111346P X P AB P A P B =−===−×= ,()()()()()()()11117011343412P X P AB P AB P A P B P A P B ==+=+=×+−×−=()()()()11111344P X P AB P A P B ====×−= ,所以X 的分布列为:()1711101612412E X =−×+×+×=.【小问2详解】经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1−分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464P ==, 甲3轮中有2轮各得1分,1轮得0分的概率为2223177C 41264P =×=, 甲3轮中有2轮各得1分,1轮得1−分的概率为2233111C 4632P =×= , 甲3轮中有1轮得1分,2轮各得0分的概率为21431749C 412192P =××=, 所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192P =+++=.20. 已知数列{}n a 中,10a =,()12n n a a n n N∗+=+∈.(1)令11n n n b a a +=−+,求证:数列{}n b 是等比数列; (2)令3nn n a c =,当n c 取得最大值时,求n 的值. 【答案】(1)证明见解析;(2)3n =. 【解析】 【分析】(1)求得21a =,12b =,利用递推公式计算得出12n n b b +=,由此可证得结论成立;(2)由(1)可知112nn n a a +−+=,利用累加法可求出数列{}n a 的通项公式,可得出213n n nn c −−=,利用定义法判断数列{}n c 的单调性,进而可得出结论.【详解】(1)在数列{}n a 中,10a =,12n n a a n +=+,则21211a a =+=, 11n n n b a a +=−+ ,则12112b a a −+,则()()()111112211212n n n n n n n n b a a a n a n a a b ++−−=−+=+−+−+=−+=,所以,数列{}n b 为等比数列,且首项为2,所以,1222n n n b −=×=;(2)由(1)可知,2n n b =即121nn n a a +−=−,可得2123211212121n n n a a a a a a −−−=− −=−−=− , 累加得()()()()1211212222112112n n n n a a n n n −−−−=+++−−=−−=−−− ,21n n a n ∴=−−.213n n n n c −−∴=,()111112112233n n n n n n n c +++++−+−−−==, 11112221212333n n nn n n n n n n n c c ++++−−−−+−∴−=−=, 令()212nf n n =+−,则()11232n f n n ++=+−,所以,()()122nf n f n +−=−.()()()()1234f f f f ∴=>>> ,()()1210f f ==> ,()310f =−<,所以,当3n ≥时,()0f n <.所以,123c c c <<,345c c c >>> . 所以,数列{}n c 中,3c 最大,故3n =.【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +−=或11n n a a q −=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n −= = −≥ 进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S −与1n a −的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n −−=,即第n 项与第n 1−项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a −=,即第n 项与第n 1−项的商是个有规律的数列,就可以利用这种方法;(6)构造法:�一次函数法:在数列{}n a 中,1n n a ka b −=+(k 、b 均为常数,且1k ≠,0k ≠). 一般化方法:设()1n n a m k a m −+=+,得到()1b k m =−,1b m k =−,可得出数列1n b a k+ −是以k的等比数列,可求出n a ;�取倒数法:这种方法适用于()112,n n n ka a n n N ma p∗−−=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b −=+的式子; �1nn n a ba c +=+(b 、c 为常数且不为零,n N ∗∈)型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用�中的方法求解即可. 21. 已知双曲线2222:1(0,0)x y E a b a b−=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接P A ,PB 交双曲线E 于点C ,D (不同于A ,B ). (1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由. 【答案】(1)221169x y −= (2)直线CD 过定点,定点坐标为(8,0). 【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值. 【小问1详解】法一.由222225,64271,a b ab += −=解得2216,9a b ==,�双曲线E 的标准方程为221169x y −=. 法二.左右焦点为()()125,0,5,0F F −,125,28c a MF MF ∴==−=,22294,a b c a ∴===−,�双曲线E 的标准方程为221169x y −=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+, 联立221169x my t x y =+−= 消去x 得()()2222916189144=0,9160m y mty t m −++−−≠, 12218916mt y y m −∴+=−,21229144916t y y m −=−,12y y −±,AC 的方程为11(4)4y yx x ++,令2x =,得1164p y y x =+, BD 的方程为22(4)4y yx x −−,令2x =,得2224p y y x −=−,1221112212623124044y y x y y x y y x x −∴=⇔−++=+− ()()21112231240my t y y my t y y ⇔+−+++=()()1212431240my y t y t y ⇔+−++= ()()()()12121242480my y t y y t y y ⇔+−++−−=()22249144(24)180916916m t t mt m m −−⇔−±=−−3(8)(0m t t ⇔−±−=(8)30t m ⇔−= ,解得8t =3m =±,即8t =或4t =(舍去)或4t =−(舍去), �CD 的方程为8x my =+,�直线CD 过定点,定点坐标为(8,0). 方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+, 联立22,1,169x my t x y =+ −= ,消去x 得()2229161891440m y mty t −++−=, 2121222189144,916916mt t y y y y m m −−∴+==−−, AC 的方程为(4)6nyx =+,BD 的方程为(4)2ny x −−, ,C D 分别在AC 和BD 上,()()11224,462n ny x y x ∴=+=−−, 两式相除消去n 得()211211223462444x y y y x x x y −−−=⇔+=+−, 又22111169x y −=,()()211194416x x y ∴+−=.将()2112344x y x y −−+=代入上式,得()()1212274416x x y y −−−=⇔()()1212274416my t my t y y −+−+−=()()221212271627(4)27(4)0m y y t m y y t ⇔++−++−=⇔()22222914418271627(4)27(4)0916916t mtm t m t m m −−++−+−=−−.整理得212320t t +=−,解得8t =或4t =(舍去). �CD 的方程为8x my =+,�直线CD 过定点,定点坐标为(8,0). 【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.22. 设函数()()2cos 102x f x x x =−+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 的图象上有一点列()*11,1,2,...,,22i ii A g i n n =∈N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =−,证明:1217 (6)n k k k n −+++>−. 【答案】(1)()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值. (2)见解析 【解析】【分析】(1)求出原函数的二阶导数后可判断二阶导数非负,故可判断导数非负,据此可求原函数的最值.(2)根据(1)可得3sin (0)6x x x x ≥−≥,结合二倍角的正弦可证:2271162i i k +>−×,结合等比数列的求和公式可证题设中的不等式. 【小问1详解】()sin f x x x ′=−+,设()sin s x x x =−+,则()cos 10s x x ′=−+≥(不恒为零),故()s x 在()0,∞+上为增函数,故()()00s x s >=,所以()0f x ¢>,故()f x 在[)0,∞+上为增函数, 故()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值. 【小问2详解】先证明一个不等式:3sin (0)6x x x x ≥−≥,证明:设()3sin ,06x u x x x x =−+≥,则()2cos 1()02x u x x f x ′=−+=≥(不恒为零),故()u x 在[)0,∞+上为增函数, 故()()00u x u ≥=即3sin (0)6x x x x ≥−≥恒成立. 当*N i ∈时,11111111222sin sin 112222i i i i i i i ig g k ++++ − ==− − 11111111111122sin cos sin 2sin 2cos 122222i i i i i i i +++++++=−=×−由(1)可得()2cos 102x x x ≥−>,故12311cos 1022i i ++≥−>, 故111112311112sin2cos 12sin 2112222i i i i i i ++++++ ×−≥×−−1112213322111112sin121222622i i i i i i i +++++++ ×−≥−− × 2222224422117111711111622626262i i i i i +++++ =−−=−×+×>−× × , 故1214627111...16222n nk k k n −+++>−−+++41111771112411166123414n n n n −− =−−×=−−×−× −771797172184726n n n n =−−+×>−>−. 【点睛】思路点睛:导数背景下数列不等式的证明,需根据题设中函数的特征构成对应的函数不等式,从而得到相应的数列不等式,再结合不等式的性质结合数列的求和公式、求和方法等去证明目标不等式.。
雅礼中学高三月考试卷(一)数学及答案
雅礼中学高三月考试卷(一)数学一、单项选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合A =-2,0 ,B =x x 2-2x =0 ,则以下结论正确的是()A.A =BB.A ∩B =0C.A ∪B =AD.A ⊆B2.已知等比数列a n 满足a 1=1,a 3⋅a 5=4a 4-1 ,则a 7的值为()A.2B.4C.92D.63.已知复数z =a +1 -ai a ∈R ,则a =-1是z =1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知向量a =cos θ,sin θ ,b =2,-1 ,若a ⊥b ,则cos 2θ+12sin2θ的值为()A.13B.35C.45D.235.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AA 1,CC 1的中点,过BE 的平面α与直线A 1F 平行,则平面α截该正方体所得截面的面积为()A.5B.25C.4D.56.某工厂有A ,B 两个生产车间,所生产的同一批产品合格率分别是99%和98%,已知某批产品的60%和40%分别是A ,B 两个车间生产,质量跟踪小组从中随机抽取一件,发现不合格,则该产品是由A 车间生产的概率为()A.34B.47C.12D.377.已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点,且∠F 1PF 2=π3,若F 1关于∠F 1PF 2平分线的对称点在椭圆C 上,则该椭圆的离心率为()A.22B.33C.12D.138.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是()A.2B.3C.3D.33二、多项选择题:本大题共4个小题,每小题5分,共20分。
2018届湖南省长沙市雅礼中学高三5月一模理科数学试题
2018年雅礼中学高三理科数学第一次模拟考试时量120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知复数i z -=1(i 为虚数单位),z 是z 的共轭复数,则z1的值为( B )A. 1B. 22 C.21D.22. 命题“存在2≥x ,使42≥x ”的否定是(A )A. 对任意2≥x ,都有42<xB. 对2<x ,都有42≥xC. 存在2≥x ,使42<xD. 存在2<x ,使42≥x 3. 设随机变量()()()2~,1=2=0.3N P P ξμσξξ<->,且,则()21=P <+ξμ( D )A .0.4B .0.5C .0.6D .0.74.已知x ,y满足22y xx y z x y x a ≥⎧⎪+≤=+⎨⎪≥⎩,且的最大值是最小值的4倍,则a 的值是( B ) A .34B .14C .211D .4 5. 双曲线22221(0,0)x y a b a b -=>>的一个顶点到一条渐近线的距离为2a,则双曲线的离心率为( D )A.B.C.223D. 3326. 五个人坐成一排,甲要和乙坐在一起,乙不和丙坐在一起, 则不同排法数为( C )A .12B .24C .36D .487. 如图所示的程序框图运行结束后,输出的集合中包含的元素个 数为( A )A. 3B. 4C. 5D. 6 8. 已知数列{}n a为等比数列,且201320150a a +=⎰,则()20142012201420162a a a a ++的值为( C )A .πB .2πC .2πD .24π 9. 某三棱锥的正视图如图所示,则这个三棱锥的俯视图不可..能.是( C )正视图A B C D 10.已知函数⎪⎩⎪⎨⎧>-≤-+=0),1(0,11)(x x f x x x x f ,则函数a e x f x g x +-=)()(的零点个数不可能是(D )A .0B .1C .2D .3二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题:在11,12,13三题中任选两题作答,如果全做,则按前两题记分.11.如图,圆A 与圆B 交于C 、D 两点,圆心B 在圆A 上,DE 为圆B 的直径。
2018-2019学年湖南省长沙市雅礼中学高三(上)月考数学试卷(文科)(三)
2018-2019学年湖南省长沙市雅礼中学高三(上)月考数学试卷(文科)(三)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个,选项中只有一个选项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.1B.﹣1C.i D.﹣i2.(5分)若集合,,则A∩B=()A.[﹣∞,1]B.[﹣1,1]C.∅D.13.(5分)已知向量=(1,2),向量=(x,﹣2),且⊥(﹣),则实数x等于()A.9B.4C.0D.﹣44.(5分)已知数列{a n}为等差数列,若a1+a5+a9=π,则cos(a2+a8)的值为()A.B.C.D.5.(5分)若圆x2+y2﹣6x﹣2y+6=0上有且仅有三个点到直线ax﹣y+1=0(a是实数)的距离为1,则a等于()A.±1B.C.D.6.(5分)在△ABC中,角A,B,C所对的边长分别是a,b,c,若角B=,a,b,c成等差数列,且ac=6,则b的值是()A.B.C.D.7.(5分)如图,函数y=f(x)的图象在点P(5,f(5))处的切线方程是y=﹣x+8,则f (5)+f′(5)=()A.B.1C.2D.08.(5分)若将函数的图象向左平移m(m>0)个单位后,所得图象关于y轴对称,则实数m的最小值为()A.B.C.D.9.(5分)不等式组,所表示的平面区域的面积等于()A.B.C.D.10.(5分)阅读下面的程序框图,则输出的S=()A.14B.20C.30D.5511.(5分)函数,则集合{x|f(f(x))=0}元素的个数有()A.、2个B.3个C.4个D.5个12.(5分)已知定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈(﹣1,0)时,f(x)=2x+,则f(2018)+f(log220)=()A.1B.C.﹣1D.﹣二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)已知一个几何体的三视图如图所示(单位:cm),其中正视图是直角梯形,侧视图和俯视图都是矩形,则这个几何体的体积是cm3.14.(5分)已知,则x+y的最小值为.15.(5分)已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为.16.(5分)若关于x的不等式(2x﹣1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)设数列{a n}的前n项和为S n,且a1=1,S n=a n+1﹣1(n∈N*).(1)证明数列{a n}是等比数列,并求{a n}的通项公式;(2)若a n=a n+(﹣1)n log2a n,求数列{b n}的前2项的和T2n.18.(12分)如图,P A垂直于矩形ABCD所在的平面,AD=P A=2,CD=2,E,F分别是AB、PD的中点.(1)求证:AF⊥平面PCD.(2)求三棱锥P﹣EFC的体积.19.(12分)为了了解某学校高二年级学生的物理成绩,从中抽取n名学生的物理成绩(百分制)作为样本,按成绩分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示.成绩落在[70,80)中的人数为20.男生女生合计优秀不优秀合计(Ⅰ)求a和n的值;(Ⅱ)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数和中位数m;(Ⅲ)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.参考公式和数据:K2=.P(K2≥k)0.500.050.0250.005k0.455 3.841 5.0247.87920.(12分)已知抛物线的顶点在原点,焦点在x轴的正半轴上,过抛物线的焦点且斜率为1的直线与抛物线交于A、B两点,若|AB|=16(1)求抛物线的方程;(2)若AB的中垂线交抛物线于C、D两点,求过A、B、C、D四点的圆的方程.21.(12分)已知函数f(x)=alnx+.(1)若x=是f(x)的极值点,求a的值,并求f(x)的单调区间;(2)在(1)的条件下,当0<m<n时,求证:f(m+n)﹣f(2n)<+.[坐标系与参数方程]22.(10分)已知圆的极坐标方程为ρ2﹣4ρcos(θ﹣)+6=0.(1)将圆的极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P(x,y)在该圆上,求x+y的最大值与最小值的和.[不等式选讲]23.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.。
湖南省长沙市雅礼中学2022-2023学年高三上学期第一次月考数学试卷含答案
注意事项:1.答题前,先将自己的姓名、考号填写在试卷和答题卡上,并将考号条形码粘贴在答 题卡上的指定位置。
2.请在答题卡上各题号对应的答题区域内答题,写在试卷、草稿纸和答题卡上的非答 题区域均无效。
3.选择题用 2B 铅笔把所选答案的标号涂黑,非选择题用黑色签字笔作答。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合=+<∈=P x x x N Q |log (1)1,,1,3,56}{}{,M =P ∪Q ,则集合M 中的元素共有( ) A .4个B .6个C .8个D .无数个2.设函数f x mx mx =−−2()1,命题“x ∃∈1,3][,f x m ≤−+()2是假命题”,则实数m 的取值范围是( )A .,37−∞⎛⎝⎤⎦⎥ B .−∞,3]( C .37,+∞⎛⎝ ⎫⎭⎪ D .3,+∞)(3.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章有弧田面积计算问题, 计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积的计算公式为:弧田面积=21(弦×矢+矢×矢).弧田是由圆弧(简称为弧田弧)和以圆弧的端点为端点的线段(简称为弧田弦)围成的平面图形,公式中“弦”指的是弧田弦的长,“矢”等于弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弦长AB 等于6m ,其弧所在圆为圆O ,若用上述弧田面积计算公式算得该弧田的面积为2m 72,则∠=AOB cos ( )A .251 B .−257C .51D .257 4.已知⎝⎭ ⎪+=⎛⎫απ32sin 1,则⎝⎭ ⎪+⎛⎫απ6sin 2的值为( )A .21B .−21CD5.如图,在棱长为2的正方体−ABCD A B C D 1111中,E ,F 分别是棱AA 1,CC 1的中点,过BE 的平面α与直线A F 1平行,则平面α截该正方体所得截面的面积为( ) AB.C .4D .56.已知函数f (x )=x 3+ax 2-x 的图象在点A (1,f (1))处的切线方程为y =4x -3,则函数y =f (x)湖南省雅礼中学高三年级第一次月考 数学试卷的极大值为( ) A .1B .527−C .−2527D .-17. 20222022202232022322022212022020202222C C C C C +−+−的值为A .0B .1C .-1D .202228.已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R ,均有(2)()f x f x +=且(1)0f =,当[0,1)x ∈时,()21x f x =−,则方程()1||0f x g x −=的实根个数为( ) A .6B .8C .10D .12二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知由样本数据点集合{}(,)123,i i x y i n =,,,,求得的回归直线方程为 1.50.5y x =+,且3x =,现发现两个数据点12,2(2)..和4.8,(7)8.误差较大,去除后重新求得的回归直线l 的斜率为1.2,则( )A .变量x 与y 具有正相关关系B .去除后y 的估计值增加速度变快C .去除后与去除前均值x ,y 不变D .去除后的回归方程为 1.2 1.4y x =+10.如图所示,是一个3×3九宫格,现从这9个数字中随机挑出3个不同的数字,记事件A 1:恰好挑出的是1、2、3;记事件A 2:恰好挑出的是1、4、7;记事件A 3:挑出的数字里含有数字1.下列说法正确的是( )12 B .事件A 1,A 2是独立事件 C .P (A 1|A 3)=P (A 2|A 3)D .P (A 3)=P (A 1)+P (A 2)11.在正四面体ABCD 中,若AB = ) A .该四面体外接球的表面积为3πB .直线与平面BCDC .如果点M 在CD 上,则AM BM +D .过线段一个三等分点且与 12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()2f x x =(R x ∈),()1g x x=(0x <),()2eln h x x =(e 为自然对数的底数),则( )A .()()()m x f x g x =−在x ⎛⎫∈ ⎪⎝⎭内单调递增B .()f x 和()g x 间存在“隔离直线”,且k 的取值范围是[]4,1−C .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为1−三、填空题:本题共4小题,每小题5分,共20分.13.已知随机变量X 服从正态分布()28,X N σ~,(10)P x m ≥=,(68)P x n ≤≤=,则182m n+的最小值为____________.14.某中学元旦晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在节目乙的前面,节目丙不能排在最后一位,则该晚会节目演出顺序的编排方案共有_________. 15.=−−20cos 6420cos 120sin 3222_________. 16.已知函数()eln 2x f x x =,()22x g x x m=−,若函数()()()h x g f x m =+有3个不同的零点x 1,x 2,x 3(x 1<x 2<x 3),则()()()1232f x f x f x ++的取值范围是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知.2,4,53)4sin(,4,0,553cos sin ⎪⎭⎫⎝⎛∈=−⎪⎭⎫ ⎝⎛∈=+ππβπβπααα (1)求α2sin 和α2tan 的值; (2)求()βα2cos +的值.18.已知2mx⎛⎝的展开式中,第4项的系数与倒数第4项的系数之比为.(1)求m 的值;(2)求展开式中所有项的系数和与二项式系数和; (3)将展开式中所有项重新排列,求有理项不相邻的概率.19.已知函数2()(,)f x x bx c b c R =++∈,且()0f x ≤的解集为[1,2]−. (1)求函数()f x 的解析式;(2)解关于x 的不等式mf(x)>2(x −m −1);(3)设g(x)=2f(x)+3x−1,若对于任意的x 1,x 2∈[−2,1]都有()()12g x g x M −≤,求M 的最小值.20.某学校共有2000名学生,其中女生1200人,为了解该校学生在学校的月消费情况,采取分层抽样随机抽取了200名学生进行调查,月消费金额分布在550~1050元之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示,将月消费金额不低于850元的学生称为“高消费群”.(1)求a 的值,并估计该校学生月消费金额的平均数;(同一组中的数据用该组区间的中点值作代表)(2)若样本中属于“高消费群”的男生有10人,完成下列2×2列联表,并判断是否有99.9%以上的把握认为该校学生属于“高消费群”与“性别”有关.(()()()()()2n ad bc K a b c d a c b d −=++++,其中n =a +b +c +d )21.在多面体ABCDE 中,平面ACDE ⊥平面ABC ,四边形ACDE 为直角梯形,CD ∥AE ,AC ⊥AE ,AB ⊥BC ,CD =1,AE =AC =2,F 为DE 的中点,且点E 满足4EB EG =.(1)证明:GF ∥平面ABC ;(2)当多面体ABCDE 的体积最大时,求二面角A -BE -D 的余弦值.22.已知函数()e cos x f x x x =+.(1)判断函数()f x 在[0,)+∞上的单调性,并说明理由;(2)对任意的0x ≥,e sin cos 2x x x x ax ++≥+,求实数a 的取值范围.湖南省雅礼中学高三年级第一次月考数学试卷参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B 2.B 3.D 4.B 5.B 6.A 7.B 8.D二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.ACD 10.AC 11.ACD 12.AD三、填空题:本题共4小题,每小题5分,共20分.13.25 14.300种 15.-32 16.()11002⎛⎫−⋃ ⎪⎝⎭,,四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.18.(1)展开式的通项为()152222122rrm m rrr r r mm T C x x C x −−−+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭, ∴展开式中第4项的系数为332m C ⋅,倒数第4项的系数为332m m m C −−⋅,33332122m m m m C C −−⋅∴=⋅,即611,722m m −=∴=. (2)令1x =可得展开式中所有项的系数和为732187=,展开式中所有项的二项式系数和为72128=.(3)展开式共有8项,由(1)可得当522rm −为整数,即0,2,4,6r =时为有理项,共4项, ∴由插空法可得有理项不相邻的概率为484485 114A A A =. 19.(1)因为()0f x ≤的解集为[1,2]−,所以20x bx c ++=的根为1−,2, 所以1b −=,2c =−,即1b =−,2c =−;所以2()2f x x x =−−;(2)mf(x)>2(x −m −1),化简有()222(1)m x x x m −−>−−,整理得(2)(1)0mx x −−>,所以当0m =时,不等式的解集为(,1)−∞,当02m <<时,不等式的解集为2(,1),⎛⎫−∞+∞ ⎪⎝⎭m ,当2m =时,不等式的解集为(,1)(1,)−∞+∞, 当2m >时,不等式的解集为()2(,)1,−∞+∞m,(3)因为[2,1]x ∈−时2()3123f x x x x +−=+−,根据二次函数的图像性质,有2()3123[4,0]f x x x x +−=+−∈−, 则有2()3123()22f x x xx g x +−+−==,所以,1(),116⎡⎤∈⎢⎥⎣⎦g x ,因为对于任意的x 1,x 2∈[−2,1]都有()()12g x g x M −≤, 即求()()12max g x g x M −≤,转化为()()−≤max min g x g x M , 而()(1)1==max g x g , 1()(1)16min g x g =−=, 所以,此时可得1516M ≥, 所以M 的最小值为1516. 20.(1)由频率分布直方图中所有小矩形的面积之和为1得到方程,解得a ,再根据频率分布直方图中平均数计算公式计算可得;(2)按照分层抽样求出样本中男生、女生的人数,再由频率分布直方图求出“高消费群”的人数,即可完善列联表,计算出卡方,即可判断; (1)解:由频率分布直方图可得()1000.00150.00350.00150.0011a ⨯++++=,解得0.0025a =, 所以样本的平均数为()6000.00157000.00358000.00259000.001510000.001100770⨯+⨯+⨯+⨯+⨯⨯=(元)(2)解:依题意知,样本中男生20001200200802000−⨯=人,女生12002001202000⨯=人,属于“高消费群”的有()0.00150.00110020050+⨯⨯=人,列出下列22⨯列联表:所以22001080407011.1110.828 5015080120K⨯−⨯=≈>⨯⨯⨯,所以有99.9%以上的把握认为该校学生属于“高消费群”与“性别”有关.21.(1)取AB,EB中点M,N,连接CM,MN,ND.在梯形ACDE中,DC∥EA且DC=12EA,且M,N分别为BA,BE中点,∴MN//EA,MN=12EA,∴MN//CD,MN=CD,即四边形CDNM是平行四边形,∴CM//DN,又14EG EB=,N为EB中点,∴G为EN中点,又F为ED中点,∴GF//DN,即GF//CM,又CM⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)在平面ABC内,过B作BH⊥AC交AC于H.∴平面ACDE⊥平面ABC,平面ACDE平面ABC=AC,BH⊂平面ABC,BH⊥AC,∴BH⊥平面ACDE,则BH为四棱锥B-ACDE的高,又底面ACDE 面积确定,要使多面体ABCDE 体积最大,即BH 最大,此时AB =BC过点H 作HP ∥AE ,易知HB ,HC ,HP 两两垂直,以{HB ,HC ,HP }为正交基底建立如图所示的平面直角坐标系H -xyz ,∴A (0,−1,0),B (1,0,0),E (0,−1,2),D (0,1,1),则AB =(1,1,0),BE =(−1,−1,2),DE =(0,−2,1).设n 1⃗⃗⃗⃗ =(x 1,y 1,x 1)为平面ABE 的一个法向量,则1100n AB n BE ⎧⋅=⎪⎨⋅=⎪⎩,即11111020x y x y z +=⎧⎨−−+=⎩,取n 1⃗⃗⃗⃗ =(1,−1,0),设n 2⃗⃗⃗⃗ =(x 2,y 2,z 2)为平面DBE 的一个法向量,则220n DE n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222222020y z x y z −+=⎧⎨−−+=⎩,取n 2⃗⃗⃗⃗ =(3,1,2), ∴1212127cos ,7n n n n n n ⋅<>==⋅,由图知:二面角A −BE −D 为钝二面角,∴二面角A −BE −D 的余弦值为. 22.(1)解:函数()f x 在[0,)+∞上是单调增函数,理由如下: 因为()e cos x f x x x =+,所以()e cos (sin )x f x x x x =+−'+. 记()e 1x g x x =−−,则()e 1x g x '=−,令()0g x '=,得0x =. 当0x >时,()0,()'>g x g x 为单调增函数; 当0x <时,()0,()g x g x '<为单调减涵数,所以min ()(0)0g x g ==,所以()e 10x g x x =−−≥,即e 1x x ≥+. 又sin 1,cos 1x x ≤≥−,所以()1cos (sin )(1sin )(1cos )0f x x x x x x x x ≥+++−=−++≥', 所以函数()f x 在[0,)+∞上是单调增函数. (2)解:记()e sin cos 2(0)x p x x x ax x =++−−≥,是()e cos x p x x x a =+−'. 由(1)知,()e cos x p x x x a =+−'为[0,)+∞上的单调增函数.1°当10a −≥时,(0)10p a =−≥',所以()(0)0p x p ''≥≥,所以()p x 为[0,)+∞上的单调增函数,所以()(0)0p x p ≥=,即e sin cos 2x x x x ax ++≥+.所以1a ≤符合题意. 2°当10a −<时,(0)10p a =−<',又()e cos e 2a a p a a a a a =−≥'+−. 记()e 2(1)x q x x x =−>,则()e 2e 20x q x =−>−>',所以()q x 为(1,)+∞上的单调增函数,所以()(1)e 20q x q >=−>, 所以e 20(1)x x x −>>,所以()e 20a p a a ≥−>'.又()p x 在[0,)+∞上的图象不间断,且()p x 为[0,)+∞上的单调增函数, 根据零点存在性定理知,存在唯一的零点0(0,)x ∈+∞,使得()00p x =. 所以当00x x ≤≤时,()0p x '≤,()p x 单调递减,所以()0(0)0p x p <=, 这与任意的0x ≥,e sin cos 2x x x x ax ++≥+矛盾, 所以1a >不符合题意 综上可得1a ≤.。
2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(一)(含答案)
2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(一)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x |log 2x >1},B ={x |0<x <4},则A ∩B =( )A. {x |2<x <4}B. {x |2⩽x <4}C. {x |0<x⩽2}D. {x |x⩽2}2.已知复数z 满足(1―i )z =2i ,且z +ai (a ∈R )为实数,则a =( )A. 1B. 2C. ―1D. ―23.设向量a =(1,0),b =(12,12),则下列结论中正确的是( )A. |a |=|b | B. a ⋅b = 22 C. a ―b 与b 垂直 D. a //b4.已知a 是函数f (x )=2x ―log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A. f (x 0)=0B. f (x 0)>0C. f (x 0)<0D. f (x 0)的符号不确定5.若sinx +cosx =13,x ∈(0,π),则sinx ―cosx 的值为( )A. ± 173 B. ― 173 C. 13 D. 1736.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A. 8B. 24C. 48D. 1207.函数y =f (x )的图象如图①所示,则如图②所示的函数图象所对应的函数解析式可能为( )A. y =f (1―12x )B. y =―f (1―12x )C. y =f (4―2x )D. y =―f (4―2x )8.刍曹是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某屋顶可视为五面体ABCDEF ,四边形ABFE 和CDEF 是全等的等腰梯形,△ADE 和△BCF 是全等的等腰三角形.若AB =25m ,BC =AD =10m ,且等腰梯形所在的面、等腰三角形所在的面与底面夹角的正切值均为145.为这个模型的轮廓安装灯带(不计损耗),则所需灯带的长度为( )A. 102mB. 112mC. 117mD. 125m二、多选题:本题共3小题,共18分。
湖南省长沙市雅礼中学2024届高三上学期第一次月考试题+语文+Word版含答案
英才大联考雅礼中学2024届高三月考试卷(一)语文得分: 本试卷共四道大题,23道小题,满分150分。
时量150分钟。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5 小题,19分)阅读下面的文字,完成1~5题。
①谢赫提出的“气韵生动,骨法用笔,应物象形,经营位置,传移模写,随类赋彩”成为指导中国绘画技法理论的经典。
其中对“随类赋彩”,理论家、画家有不同理解,但把“类”字解释为“物象的固有色”者,使“随类赋彩”成了幼稚的、简单的色彩赋色方法;把“类”字解释为“类型”“类似”者,让“随类赋彩”成为当今中国绘画色彩理论的经典训条。
也有学者在解释“随类赋彩”时模棱两可,含糊推诿过去。
因此弄清其真正含义,既是对上千年中国绘画色彩理论的正本清源,也对当下中国绘画色彩理论的发展与实践具有指导意义。
②我们对“随类赋彩”的理解要完整、客观。
谢赫“六法”是一个有机整体,“气韵生动”是品画的最高美学原则,谢赫把它视为“六法”之本,其他“五法”是达到“气龄生动”的必要条件。
③“气韵生动”指的是一幅画面给人的整体感觉,要感人、生动。
“骨法用笔”即中国画笔法、线条的运用。
它是表达画家思想、个性、意念的手段,不是客观事物的复制和翻版。
“应物象形”以“骨法用笔”的线条为依托,筑就中国画的气色容貌。
“经营位置”是指构图需要画家有强烈的主观意识来取舍、布局、调置。
“传移模写”就是师法自然,自自然取得灵感。
在“六法”指导思想下的“随类赋彩”作为一个完整而带有指导地位的法则被提出来之后,它的内涵就不仅仅是写实意义和描摹自然物象的外在色彩,更是主张画家主观意念与客观相结合,从属于“气韵生动”的一种表现方法。
这样,中国绘画减弱了对自然色彩的依附,渐渐出现了从重彩到淡彩、浅绛直至水墨画的重墨轻色。
④另外,古代中国画的颜料受当时生产技术和条件的局限及交通运输的不便,颜料的获取只能因陋就简。
画家只能用简单的、接近的、类似于物象色彩的颜料去表现他们眼中所看到的物象色彩,有时找不到或调不出眼中所见到的色彩,只好凭主观情感去用色。
2020届湖南省长沙市雅礼中学高三上学期第二次月考数学(理)试题(解析版)
2020届湖南省长沙市雅礼中学高三上学期第二次月考数学(理)试题一、单选题1.集合{}{}{}202,1,1A a B a A B ==⋂=,,,若,则a 的值为( ) A .0 B .1 C .-1D .±1【答案】C【解析】{}{}221,02,1,A B A a a⋂==⇒=,又{}1,B a = ,1a ∴=- ,故选C.2.已知向量()()2,1,,2a b λ==r r ,若a b ⊥r r,则实数λ= ( )A .4-B .1-C .1D .4【答案】B【解析】由题得=0a b ⋅r r,解方程即得解.【详解】因为a b ⊥r r,所以=220,1a b λλ⋅+=∴=-r r .故选B 【点睛】本题主要考查向量垂直的坐标表示,意在考查学生对该知识的理解掌握水平和分析推理能力.3.已知ABCD 是复平面内的平行四边形,A ,B ,C 三点对应的复数分别是2i -+,1i -,22i +,则点D 对应的复数为( )A .4i -B .32i --C .5D .14i -+【答案】D【解析】分析:利用平行四边形的性质得到AB DC =u u u r u u u r,再把点的坐标代入计算即得点D 的坐标,再写出点D 对应的复数.详解:由题得A(-2,1),B(1,-1),C(2,2),设D(x,y),则(3,2),(2,2),AB DC x y =-=--u u u v u u u v因为AB DC =u u u r u u u r,所以2322x y -=⎧⎨-=-⎩,解之得x=-1,y=4.所以点D 的坐标为(-1,4), 所以点D 对应的复数为-1+4i, 故选D.点睛:本题方法比较多,但是根据AB DC =u u u r u u u r求点D 的坐标,是比较简单高效的一种方法,大家解题时,注意简洁高效. 4.已知集合2{|0}1x A x x -=<+,{|}B x x a =<,若“1a =”是“B A ⊆”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不是充分条件也不是必要条件【答案】A【解析】化简两个集合,分别讨论充分性和必要性,可选出答案. 【详解】由题意,集合()()2{|0}{|120}{|12}1x A x x x x x x x -=<=+-<=-<<+, 先来判断充分性,若1a =,则{|11}B x x =-<<,满足B A ⊆,即“1a =”是“B A ⊆”的充分条件; 再来判断必要性,若B A ⊆,①集合B =∅,0a ≤,此时符合B A ⊆;②集合B ≠∅,此时21a a a a -<⎧⎪≤⎨⎪-≥-⎩,解得01a <≤.故B A ⊆时,1a ≤,即“1a =”不是“B A ⊆”的必要条件. 所以“1a =”是“B A ⊆”的充分不必要条件. 故选:A. 【点睛】本题考查不等式的解法,考查集合的包含关系,考查充分性与必要性,考查学生的计算能力与逻辑推理能力,属于基础题.5.若关于x 的不等式2420x x a --->在区间()1,4内有解,则实数a 的取值范围是 A .2a <- B .2a >-C .6a >-D .6a <-【答案】A【解析】由题意可得224a x x +<-在区间(1,4)内成立,由224(2)4y x x x =-=--,求得顶点处的函数值和端点处的函数值,即可得到所求范围. 【详解】解:关于x 的不等式2420x x a --->在区间(1,4)内有解, 即为224a x x +<-在区间(1,4)内成立, 由224(2)4y x x x =-=--,可得2x =处函数y 取得最小值4-;1x =时,3y =-;4x =时,0y =; 则函数24y x x =-的值域为[)4,0-,可得20a +<, 解得2a <-. 故选:A . 【点睛】本题考查不等式成立的条件,注意运用转化思想和二次函数的值域求法,考查运算能力,属于中档题.6.将函数()sin 6f x x π⎛⎫=+⎪⎝⎭的图象上各点的纵坐标不变,横坐标扩大到原来的2倍,所得函数()g x 图象的一个对称中心可以是( ) A .,012π⎛⎫-⎪⎝⎭B .5,012π⎛⎫⎪⎝⎭C .,03π⎛⎫-⎪⎝⎭D .2,03π⎛⎫⎪⎝⎭【答案】C【解析】试题分析:()1sin 26g x x π⎛⎫=+ ⎪⎝⎭,,2,263x k x k k Z ππππ+=∴=-∈,令0,3k x π==-,∴()g x 图象的一个对称中心是,03π⎛⎫-⎪⎝⎭. 【考点】三角函数图象的平移、三角函数的对称中心.7.在正方体1111ABCD A B C D -中,E 为棱1BB 的中点,则异面直线DE 与AB 所成角的正切..值为( )A .2B C D【答案】C【解析】依据异面直线所成角的定义,结合//AB DC ,就得到异面直线DE 与AB 所成角,解三角形,即可求出异面直线DE 与AB 所成角的正切值. 【详解】如图,因为//AB DC ,所以EDC ∠(或其补角)即为异面直线DE 与AB 所成角, 连接EC ,设正方体棱长为2,利用勾股定理可以求得:2CD =,5CE =,3DE =,因此三角形DEC 是直角三角形,∴5tan EDC ∠=. 故选:C【点睛】本题考查了异面直线所成的角,属于基础题.8.已知以双曲线的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为,则双曲线的离心率为( ) A . B .C .D .【答案】B【解析】试题分析:由于,由题意知,,,因此,双曲线的离心率为,故选B.【考点】双曲线的离心率9.已知直线1:(3)10l mx m y +-+=,直线2:(1)10l m x my ++-=,若12l l ⊥则m =( )A .0m =或1m =B .1m =C .32m =-D .0m =或32m =- 【答案】A【解析】根据直线垂直的充要条件,列出等式,求解,即可得出结果. 【详解】因为直线1:(3)10l mx m y +-+=与直线2:(1)10l m x my ++-=垂直, 所以(1)(3)0m m m m ++-=,即(1)0m m -=,解得0m =或1m =. 故选A 【点睛】本题主要考查根据直线垂直求参数的问题,熟记直线垂直的充要条件即可,属于常考题型.10.已知函数2()log (46)x xf x a b =-+,满足2(1)1,(2)log 6f f ==,,a b 为正实数,则()f x 的最小值为( ) A .6- B .3-C .0D .1【答案】D【解析】试题分析:22462{466a b a b -+=-+=,解得2{4b a ==, ∴222()log (44?26)log [(22)2]x x x f x =-+=-+,当1x =时,min ()1f x =,故选D .【考点】对数函数的性质11.直线l 是抛物线22x y =在点()2,2-处的切线,点P 是圆22420x y x y +--=上的动点,则点P 到直线l 的距离的最小值等于( )A 2BCD .65【答案】C【解析】先由题意求出直线l 的方程,再求出圆22420x y x y +--=的圆心到直线的距离,减去半径,即为所求结果. 【详解】因为22x y =,所以y x '=,因此抛物线22x y =在点()2,2-处的切线斜率为22x y x =-==-',所以直线l 的方程为22(2)y x -=-+,即22y x =--,又圆22420x y x y +--=可化为22(2)(1)5x y -+-=,所以圆心为(2,1),半径r =则圆心到直线的距离为d ==又因点P 是圆22420x y x y +--=上的动点,所以点P 到直线l的距离的最小值等于d r -=. 故选C 【点睛】本题主要考查圆上的点到直线距离的最值问题,熟记直线与圆位置关系即可,属于常考题型.12.若对任意的1,x e e ⎡⎤∈⎢⎥⎣⎦,不等式22ln 30x x x mx +-+≥恒成立,则实数m 的最大值为( ) A .132e e+- B .32e e++C .2e 1-D .4【答案】D【解析】通过分离变量将恒成立的不等式变为32ln m x x x≤++,由此可知当1,x e e ⎡⎤∈⎢⎥⎣⎦时,min 32ln m x x x ⎛⎫≤++ ⎪⎝⎭,通过导数求解出右侧函数在区间内的最小值,从而得到结果. 【详解】22ln 30x x x mx +-+≥ 22ln 3mx x x x ⇒≤++ 32ln m x x x⇒≤++22ln 30x x x mx +-+≥在1,x e e ⎡⎤∈⎢⎥⎣⎦上恒成立等价于min 32ln m x x x ⎛⎫≤++ ⎪⎝⎭,1,x e e ⎡⎤∈⎢⎥⎣⎦令()32ln g x x x x =++,则()22223231x x g x x x x+-'=+-= 令()0g x '=,解得13x =-,21x =则1,1x e ⎡⎫∈⎪⎢⎣⎭时,()0g x '<,()g x 单调递减;(]1,x e ∈时,()0g x '>,()g x 单调递增则1,x e e ⎡⎤∈⎢⎥⎣⎦时,()()min 12ln1134g x g ==++= 4m ∴≤ 即m 的最大值为4 本题正确选项:D 【点睛】本题考查利用恒成立问题的求解,解题关键是能够通过分离变量的方式将问题转化为所求变量与某一函数的最值比较的问题,通过求解函数最值得到所求参数的取值范围,属于恒成立问题中的常规题型.二、填空题13.已知抛物线24y x =-的准线经过椭圆2221(0)4x y b b+=>的焦点,则b =________. 【答案】3【解析】先根据抛物线的方程求得准线方程,根据椭圆的方程求得焦点,代入抛物线的准线方程求得b . 【详解】解:依题意可得抛物线24y x =-的准线为1x =,又因为椭圆焦点为()240b ±-,所以有241b -=.即b 2=3故b 3=. 故答案为3. 【点睛】本题主要考查了椭圆和抛物线的简单性质,椭圆的标准方程.考查了学生对圆锥曲线基础知识的掌握. 14.若实数x ,y 满足,则的取值范围是______.【答案】【解析】化简题设条件,得到的取值范围,再化简为x 的二次函数,借助二次函数的图象与性质,即可求解函数的最值,得到答案. 【详解】由题意,实数x ,y 满足,即,可得.则,则函数的对称轴为,开口向下,所以在上,时函数取得最大值6,时,函数取得最小值.所以的取值范围是.故答案为:.【点睛】本题主要考查了二次函数的图象与性质的应用问题,其中解答中根据题设条件得到变量的取值范围,再结合二次函数的图象与性质求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.15.设x,y满足约束条件20230x yx yx y--≤⎧⎪-+≥⎨⎪+≤⎩,则46yx++的取值范围是__________.【答案】[]3,1-【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,由数形结合进行求解即可.【详解】作出不等式组对应的平面区域如图所示:则46yx++的几何意义是区域内的点到定点P(﹣6,﹣4)的斜率,由230x yx y-+=⎧⎨+=⎩得x=﹣1,y=1,即A(﹣1,1),则AP的斜率k=1416+-+=1,由20230x yx y--=⎧⎨-+=⎩得x=﹣5,y=﹣7,即B(﹣5,﹣7),则BP的斜率k=7456-+-+=﹣3,则46yx++的取值范围是[﹣3,1]故答案为:[﹣3,1].【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键,属于中档题.16.在数列{}n a 中,1253a a +=,()()11280n n n a na n N *+--+=∈,若()12n n n n b a a a n N *++=⋅⋅∈,则{}n b 的前n 项和取得最大值时n 的值为__________.【答案】10【解析】解法一:利用数列的递推公式,化简得122n n n a a a ++=+,得到数列{}n a 为等差数列,求得数列的通项公式313n a n =-,得到12100a a a >>>>L ,1112130a a a >>>>L ,得出所以1280b b b >>>>L ,90b <,100b >,1112130b b b >>>>L ,进而得到结论;解法二:化简得()128 11n n a a n n n n +-=---,令1n n a c n +=,求得11281n c c n ⎛⎫-=- ⎪⎝⎭,进而求得313n a n =-,再由0n b ≥,解得8n ≤或10n =,即可得到结论.【详解】解法一:因为()11280n n n a na +--+=① 所以()211280n n na n a ++-++=②,①-②,得122n n n na na na ++=+即122n n n a a a ++=+,所以数列{}n a 为等差数列. 在①中,取1n =,得1280a -+=即128a =,又1253a a +=,则225a =, 所以313n a n =-.因此12100a a a >>>>L ,1112130a a a >>>>L 所以1280b b b >>>>L ,99101180b a a a =⋅⋅=-<,10101112100b a a a =⋅⋅=>,1112130b b b >>>>L所以12389T T T T T <<L , 9101112T T T T >>L 又1089108T T b b T =++>,所以10n =时,n T 取得最大值. 解法二:由()11280n n n a na +--+=,得()12811n n a a n n n n +-=---, 令1n n a c n +=,则11111282811n n c c n n n n -⎛⎫⎛⎫-=--=- ⎪ ⎪--⎝⎭⎝⎭,则11281n c c n ⎛⎫-=- ⎪⎝⎭,即1211281281n c c a n n ⎛⎫⎛⎫=+-=+- ⎪ ⎪⎝⎭⎝⎭,代入得()()1222812828n n a nc na n n a +==+-=+-,取1n =,得1280a -+=,解得128a =,又1253a a +=,则225a =,故1283n a n +=- 所以313n a n =-,于是()()()12313283253n n n n b a a a n n n ++=⋅⋅=---. 由0n b ≥,得()()()3132832530n n n ---≥,解得8n ≤或10n =, 又因为98b =-,1010b =, 所以10n =时,n T 取得最大值. 【点睛】本题主要考查了数列的综合应用,以及数列的最值问题的求解,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,合理利用数列的性质是关键,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等,属于中档试题.三、解答题17.在锐角ABC V 中角A ,B ,C 的对边分别是a ,b ,c ,且sin 0a B =. (1)求角A 的大小;(2)若4a =,求ABC V 面积的最大值.【答案】(1)60A =︒(2)【解析】(1)由正弦定理可得sin sin 0A B B -=,结合sin 0B ≠,可求出sin A 与A ;(2)由余弦定理可得2222cos a b c bc A =+-,结合基本不等式可得162bc bc bc ≥-=,即可求出16bc ≤,从而可求出1sin 2ABC S bc A =V 的最大值.【详解】解:(1)因为sin 0a B =,所以sin sin 0A B B =,又sin 0B ≠,所以3sin 2A=, 又ABC V 是锐角三角形,则60A =o .(2)因为2222cos a b c bc A =+-,60A =o ,4a =, 所以222211622b c bc b c bc =+-⨯=+-, 所以162bc bc bc ≥-=,即16bc ≤(当且仅当4b c ==时取等号), 故11sin 16sin 432260ABC S bc A =≤⨯⨯=V o . 【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了利用基本不等式求最值,考查了学生的计算能力,属于中档题.18.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量()1,2,,8i y i =⋅⋅⋅数据作了初步处理,得到下面的散点图及一些统计量的值.xyw()821ii x x =-∑()821ii w w =-∑ ()()81iii x x y y =-⋅-∑ ()()81iii w w y y =-⋅-∑46.6 5636.8289.8 1.6 1469 108.8表中i i w x =8118i i w w ==∑.(1)根据散点图判断,y a bx =+与y c x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为0.2z y x =-.根据(2)的结果回答下列问题:(i )年宣传费49x =时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为µ()()()121niii nii u u v v u u β==--=-∑∑,µµv u αβ=-. 【答案】(1)y c =+适宜(2)100.6y =+3)(i )年销售量y 的预报值576.6,年利润的预报值66.32(ii )46.24x =【解析】(1)根据所给的两个函数解析式的特点,结合图象直接选择即可; (2)令w =y 关于w 的线性回归方程,利用表中所给的数据求解即可.(3)(i )由(2)知,把49x =代入,100.6y =+即可;(ii )根据(2)的结果知,求出年利润z 的预报值的函数关系式,利用配方法求出当年利润的预报值最大时,年宣传费的值. 【详解】(1)由散点图可以判断,这些点明显不在同一条直线上,也不是在一条直线的附近,所以y c =+适宜作为年销售量y 关于年宣传费x 的回归方程类型. (2)令w =y 关于w 的线性回归方程,由于()()()81821108.8681.6iii i i w w y y d w w==--===-∑∑,56368 6.8100.6cy dw =-=-⨯=$, 所以y 关于w 的线性回归方程为100.668y w =+, 因此y 关于x的回归方程为100.6y =+(3)(i )由(2)知,当49x =时,年销售量y的预报值100.6576.6y =+=,年利润的预报值0.2576.64966.32z=⨯-=$. (ii )根据(2)的结果知,年利润z 的预报值()0.2100.66813.620.12x x x x z=+-=-++$, 所以当13.66.82x ==,即46.24x =时,z 取得最大值. 【点睛】本题考查了根据图象选择函数的解析式,考查了求线性回归方程,考查了线性回归方程的应用,考查了数学运算能力.19. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值. 【答案】(I )见解析;(II )见解析;(III 3【解析】(I )连接BD ,结合平行四边形的性质,以及三角形中位线的性质,得到GH PD P ,利用线面平行的判定定理证得结果;(II )取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥,结合面面垂直的性质以及线面垂直的性质得到DN PA ⊥,利用线面垂直的判定定理证得结果;(III )利用线面角的平面角的定义得到DAN ∠为直线AD 与平面PAC 所成的角,放在直角三角形中求得结果. 【详解】(I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GH PD P ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =, 所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =I , 所以PA ⊥平面PCD .(III )解:连接AN ,由(II )中DN ⊥平面PAC , 可知DAN ∠为直线AD 与平面PAC 所成的角.因为PCD ∆为等边三角形,2CD =且N 为PC 的中点, 所以3DN =DN AN ⊥, 在Rt AND ∆中,3sin 3DN DAN AD ∠==, 所以,直线AD 与平面PAC 3【点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力和推理能力.20.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(Ⅰ)2212x y +=;(Ⅱ)见解析.【解析】(Ⅰ)由题意确定a ,b 的值即可确定椭圆方程;(Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM ,ON 的表达式,结合韦达定理确定t 的值即可证明直线恒过定点. 【详解】(Ⅰ)因为椭圆的右焦点为(1,0),所以1225; 因为椭圆经过点(0,1)A ,所以1b =,所以2222a b c =+=,故椭圆的方程为2212x y +=.(Ⅱ)设1122(,),(,)P x y Q x y联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得222(12)4220k x ktx t +++-=,21212224220,,1212kt t x x x x k k -∆>+=-=++,121222()212t y y k x x t k +=++=+,222212121222()12t k y y k x x kt x x t k-=+++=+. 直线111:1y AP y x x --=,令0y =得111x x y -=-,即111x OM y -=-; 同理可得221x ON y -=-. 因为2OM ON =,所以1212121212211()1x x x x y y y y y y --==---++;221121t t t -=-+,解之得0t =,所以直线方程为y kx =,所以直线l 恒过定点(0,0). 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 21.已知函数(I )若在处的切线的斜率为,求的值;(Ⅱ),不等式恒成立,求整数的最大值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由题意得,解之即得a 的值;(Ⅱ)不等式或化为,设,再利用导数研究函数h(x)的图像和性质得解.【详解】 解:(Ⅰ),由题意得,则.(Ⅱ)不等式或化为.设,.设,当时,,则在单调递增. 又,,则在存在唯一零点满足.则当时,单调递减,当时,单调递增,则.又因为,则,因为,则,则整数的最大值为. 【点睛】本题主要考查导数的几何意义,考查利用导数研究不等式的恒成立问题,考查函数的最值、单调性、零点问题的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.22.在平面直角坐标系xOy 中,曲线C 的参数方程为3cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的坐标方程为sin 13πρθ⎛⎫-= ⎪⎝⎭,若直线l 与曲线C 相切. (1)求曲线C 的极坐标方程;(2)在曲线C 上取两点M 、N 于原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.【答案】(1)4sin 3πρθ⎛⎫=+⎪⎝⎭; (2)2. 【解析】(1)求出直线l 的直角坐标方程为y =+2,曲线C,1),半径为r 的圆,直线l 与曲线C 相切,求出r =2,曲线C 的普通方程为(x 2+(y ﹣1)2=4,由此能求出曲线C 的极坐标方程. (2)设M (ρ1,θ),N (ρ2,6πθ+),(ρ1>0,ρ2>0),由126MONS OM ON sin π==V u u u u r u u u r 2sin (23πθ+)△MON 面积的最大值.【详解】(1)由题意可知将直线l的直角坐标方程为2y =+,曲线C是圆心为),半径为r 的圆,直线l 与曲线C相切,可得:2r ==;可知曲线C的方程为(()2214x y +-=,∴曲线C的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin 3πρθ⎛⎫=+⎪⎝⎭. (2)由(1)不妨设()1,M ρθ,2,6N πρθ⎛⎫+⎪⎝⎭,()120,0ρρ>>21211sin ?4sin ?sin 2sin cos 26432MONS OM ON πππρρθθθθθ∆⎛⎫⎛⎫===++=+ ⎪ ⎪⎝⎭⎝⎭u u u u v u u u vsin22sin 23πθθθ⎛⎫=+=++ ⎪⎝⎭当12πθ=时,2MON S ∆≤MON ∴∆面积的最大值为2+.【点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的最大值的求法,考查参数方程、极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.23.设函数()2f x x x a =--+. (1)当1a =时,求不等式()2f x <-的解集;(2)当()()(),22x y R f y f x f y a ∈-+≤≤+时,,求的取值范围. 【答案】(1)32x x ⎧⎫>⎨⎬⎩⎭;(2)[]3,1-- 【解析】(1) 求出函数f (x )的分段函数的形式,通过讨论x 的范围求出各个区间上的x 的范围,取并集即可;(2)()()()22f y f x f y -+≤≤+等价于()()()()max min 22f x f y f x f x ⎡⎤⎡⎤-≤⇔-≤⎣⎦⎣⎦,求出()f x 的最值即可.【详解】(1)当a =1时,()3,1,12,123,2x f x x x x ≤-⎧⎪=--<≤⎨⎪->⎩,可得()2f x <-的解集为32x x ⎧⎫>⎨⎬⎩⎭(2)当,x y R ∈时,()()()()()()()max min 2222f y f x f y f x f y f x f x ⎡⎤⎡⎤-+≤≤+⇔-≤⇔-≤⎣⎦⎣⎦,因为()()222x x a x x a a --+≤--+=+, 所以()222a a +--+≤. 所以21a +≤,所以31a -≤≤-. 所以a 的取值范围是[-3,-1] 【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用.。
2017-2018学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科) Word版含解析
2017-2018学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科)一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.45.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.86.设x,y满足约束条件,则目标函数z=的最小值为()A.2 B.1 C.D.﹣27.设f(x)定义如下面数表,{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),则x2014的值为()x 1 234 5f(x)4 135 2A.4 B.1 C.3 D.28.如图,长沙河西先导区某广场要划定一矩形区域ABCD,并在该区域内开辟出三块形状大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,则该矩形区域ABCD占地面积的最小值为()平方米.A.900 B.920 C.948 D.9689.已知函数,若存在x1<x2,使得f(x1)=f(x2),则x1•f (x2)的取值范围为()A.B.C.D.10.设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为()A.12 B.1 6 C.18 D.20二.填空题:本大题共1小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11、12、13题中任选两题作答,如果全做,则按前两题给分)【几何证明选讲】11.如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,已知⊙O的半径为3,PA=2,则OE=.【极坐标系与参数方程选讲】12.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为,它们的交点在平面直角坐标系中的坐标为.【不等式选讲】1011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B=.(二)必做题(14~16题)14.设(其中e为自然对数的底数),则的值为.15.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是.16.已知数列{a n}的前n项和S n=(﹣1)n•n,若对任意正整数n,(a n+1﹣p)(a n﹣p)<0恒成立,则实数P的取值范围是.三.解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.17.设函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的最大值和最小值.18.设数列{a n}的前n项和为S n,已知对任意正整数n,都有S n+2=2a n成立.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:T n<3.19.如图所示,在平面四边形ABCD中,,与的夹角为,与的夹角为.(1)求△CDE的面积S;(2)求.20.已知函数f(x)=lnx﹣ax+﹣1(a∈R)(1)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,讨论f(x)的单调性.21.若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),判断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)22.已知函数f(x)=(1)当x>0时,证明:f(x)>;(2)当x>﹣1且x≠0时,不等式f(x)<恒成立,求实数k的值.2017-2018学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}考点:交集及其运算.专题:集合.分析:根据集合的基本运算进行求解即可.解答:解:∵A={﹣2,﹣1,0,1,2,3},集合,∴A∩B={﹣1,0,1},故选:B点评:本题主要考查集合的基本运算,比较基础.2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:判断出“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则能推出A∩B≠∅”一定成立,利用充要条件的有关定义得到结论.解答:解:若“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则有A∩B=A≠∅,所以A∩B≠∅”一定成立,所以A∩B≠∅是A⊆B的必要不充分条件,故选B.点评:本题考查判断一个条件是另一个的什么条件,应该先化简各个条件,若条件是数集的形式,常转化为判断集合间的包含关系.3.(中诱导公式、基本公式)已知,且,则tan (2π﹣α)的值为()A.B.C.D.考点:同角三角函数基本关系的运用.专题:计算题.分析:先根据诱导公式化简已知条件,得到sinα的值,然后由α的范围,利用同角三角函数间的基本关系求出cosα的值,把所求的式子利用诱导公式化简后,再根据同角三角函数间的基本关系把切化弦后,将sinα和cosα的值代入即可求出值.解答:解:由,又,得,则.故选B点评:此题考查学生灵活运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.学生在求cosα的值时应注意α的范围.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.4考点:简单空间图形的三视图.专题:计算题;空间位置关系与距离.分析:三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中做出底边上的高的长度,得到结果.解答:解:由题意知三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是,∴侧视图的面积是2故选:A.点评:本题考查简单的空间图形三视图,考查三视图的面积的计算,考查通过原图观察三视图的大小,比较基础.5.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.8考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据向量的数量积的应用进行转化即可.解答:解:,与的夹角为,∴•=||||cos=1×=1,则===2,故选:A点评:本题主要考查向量长度的计算,根据向量数量积的应用是解决本题的关键.6.设x,y满足约束条件,则目标函数z=的最小值为()A.2 B.1 C.D.﹣2考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.解答:解:作出不等式组对应的平面区域如图:z=的几何意义为平面区域内的点到定点D(﹣1,﹣1)的斜率,由图象知BD的斜率最小,其中B(1,0),则z==,故选:C点评:本题主要考查线性规划以及斜率的应用,利用z的几何意义,利用数形结合是解决本题的关键.7.设f(x)定义如下面数表,{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),则x2014的值为()x 1 234 5f(x)4 135 2A.4 B.1 C.3 D.2考点:函数的值.专题:函数的性质及应用.分析:数列{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),利用表格可得:可得x1=f (x0)=f(5)=2,x2=f(x1)=f(2)=1,x3=f(x2)=f(1)=4,x4=f(x3)=f(4)=5,x5=f (x4)=f(5)=2,…,于是得到x n+4=x n,进而得出答案.解答:解:∵数列{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),利用表格可得:∴x1=f(x0)=f(5)=2,x2=f(x1)=f(2)=1,x3=f(x2)=f(1)=4,x4=f(x3)=f(4)=5,x5=f(x4)=f(5)=2,…,∴x n+4=x n,∴x2014=x503×4+2=x2=1.故选:B点评:本题考查了数列的周期性,根据已知分析出函数的周期为4,是解答的关键,属于中档题.8.如图,长沙河西先导区某广场要划定一矩形区域ABCD,并在该区域内开辟出三块形状大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,则该矩形区域ABCD占地面积的最小值为()平方米.A.900 B.920 C.948 D.968考点:基本不等式在最值问题中的应用.专题:应用题;函数的性质及应用;不等式的解法及应用.分析:设绿化区域小矩形的一边长为x,另一边长为y,推出3xy=800,从而得到矩形ABCD 的面积S=(3x+4)(y+2),然后利用基本不等式,由此能够求出结果.解答:解:设绿化区域小矩形的一边长为x,另一边长为y,则3xy=800,∴y=.即矩形区域ABCD的面积S=(3x+4)(y+2)=(3x+4)(+2)=800+6x++8≥808+2=968.当且仅当6x=,即x=时取“=”,∴矩形区域ABCD的面积的最小值为968平方米.故选D.点评:本题考查函数问题在生产生活中的实际应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用基本不等式求最值.9.已知函数,若存在x1<x2,使得f(x1)=f(x2),则x1•f (x2)的取值范围为()A.B.C.D.考点:函数的零点;函数的值域;不等关系与不等式.专题:函数的性质及应用.分析:根据函数的解析式画出函数的图象,根据题意数形结合求得x1•f(x2)的取值范围.解答:解:①当0≤x<时,≤f(x)=x+<1.故当x=时,f(x)=.②当≤x≤1时,≤f(x)=3x2≤3,故当x=时,f(x)=1.若存在x1<x2,使得f(x1)=f(x2)=k,则≤x1 <≤x2 <1,如图所示:显然当k=f(x1)=f(x2)=时,x1•f(x2)取得最小值,此时,x1=,x2=,x1•f(x2)的最小值为=.显然,当k=f(x1)=f(x2)趋于1时,x1•f(x2)趋于最大,此时,x1趋于,x2趋于,x1•f(x2)趋于=.故x1•f(x2)的取值范围为,故选C.点评:本题考查函数的单调性,考查学生分析解决问题的能力,体现了数形结合的数学思想,属于中档题.10.设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为()A.12 B.1 6 C.18 D.20考点:导数的运算;抽象函数及其应用;根的存在性及根的个数判断.专题:函数的性质及应用.分析:依据函数的周期性,画出函数y=f(x)的图象,再在同一坐标系下画出y=lg|x|的图象(注意此函数为偶函数),数形结合即可数出两图象交点的个数解答:解:∵f(x+2)=f(x),∴函数y=f(x)的周期是2,又∵当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0,∴当0<x<1时,x(x﹣1)<0,则f′(x)>0,函数在[0,1]上是增函数又由当x∈[0,1]时,0≤f(x)≤1,则f(0)=0,f(1)=1.而y=lg|x|是偶函数,当x>0时,其图象为y=lgx的图象,即函数为增函数,由于x=10时,y=lg10=1,∴其图象与f(x)的图象在[0,2]上有一个交点,在每个周期上各有两个交点,∴在y轴右侧共有9个交点.∵y=lg|x|是偶函数,其图象关于y轴对称,∴在y轴左侧也有9个交点∴两函数图象共有18个交点.故选:C.点评:本体考查了函数的周期性,奇偶性及函数图象的画法,重点考查数形结合的思想方法,属基础题.二.填空题:本大题共1小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11、12、13题中任选两题作答,如果全做,则按前两题给分)【几何证明选讲】11.如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,已知⊙O的半径为3,PA=2,则OE=.考点:与圆有关的比例线段.专题:选作题;立体几何.分析:利用切割线定理,求出PC,再利用等面积可得结论.解答:解:∵PC切圆O于点C,圆O的半径为3,PA=2,∴PC2=PA•PB=16,∴PC=4,又OC=3,∴OP=5,∴由等面积可得=,∴OE==.故答案为:.点评:本题考查切割线定理,考查学生的计算能力,正确运用切割线定理是关键.【极坐标系与参数方程选讲】12.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为,它们的交点在平面直角坐标系中的坐标为.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:曲线C的参数方程为(θ为参数),利用cos2θ+sin2θ=1即可化为直角坐标方程.利用x=ρcosθ即可把直线l的极坐标方程,化为直角坐标方程,联立解出即可.解答:解:曲线C的参数方程为(θ为参数),化为=1.直线l的极坐标方程为,化为x=,把x=代入椭圆方程解得y=0.∴它们的交点在平面直角坐标系中的坐标为.故答案为:.点评:本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与椭圆的交点,考查了计算能力,属于基础题.【不等式选讲】1011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B={x|﹣2≤x≤5}.考点:交集及其运算.专题:集合.分析:求出集合A,求出集合B,然后利用集合的运算法则求出A∩B.解答:解:集合A={x∈R||x+3|+|x﹣4|≤9},所以A={x|﹣4≤x≤5};集合,,当且仅当t=时取等号,所以B={x|x≥﹣2},所以A∩B={x|﹣4≤x≤5}∩{x|x≥﹣2}={x|﹣2≤x≤5},故答案为:{x|﹣2≤x≤5}.点评:本题是基础题,考查集合的基本运算,注意求出绝对值不等式的解集,基本不等式求出函数的值域,是本题解题是关键,考查计算能力.(二)必做题(14~16题)14.设(其中e为自然对数的底数),则的值为.考点:定积分.专题:计算题.分析:根据定积分的运算法则进行计算,将区间(0,e2)拆为(0,1)、(1,e2)两个区间,然后进行计算;解答:解:∵,∴则=+=+=+=+2=,故答案为.点评:此题主要考查定积分的计算,这是高考新增的内容,同学们要多加练习.15.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是[0,1]和[7,12].考点:函数的单调性及单调区间.专题:创新题型.分析:点A的初始角为60°,当点A转过的角度在[0°,30°]或[210°,360°]时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增,再把角度区间转化为对应的时间区间.解答:解:t=0时,点A的坐标是,∴点A的初始角为60°,当点A转过的角度在[0°,30°]或[210°,360°]时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增,∵12秒旋转一周,∴每秒转过的角度是360°÷12=30°,210°÷30=7,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是[0,1]和[7,12],故答案为:[0,1]和[7,12].点评:本题考查函数的单调性及单调区间,体现了转化的数学思想.16.已知数列{a n}的前n项和S n=(﹣1)n•n,若对任意正整数n,(a n+1﹣p)(a n﹣p)<0恒成立,则实数P的取值范围是(﹣1,3).考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:当n=1时,a1=S1=﹣1;当n≥2时,a n=S n﹣S n﹣1.即可得出a n.由于对任意正整数n,(a n+1﹣p)(a n﹣p)<0恒成立,分类讨论:n是奇数时,求得p的取值范围;当n是正偶数时,求得p的取值范围,再求其交集即可.解答:解:当n=1时,a1=S1=﹣1;当n≥2时,a n=S n﹣S n﹣1=(﹣1)n n﹣(﹣1)n﹣1(n﹣1)=(﹣1)n(2n﹣1).∵对任意正整数n,(a n+1﹣p)(a n﹣p)<0恒成立,∴[(﹣1)n+1(2n+1)﹣p][(﹣1)n(2n﹣1)﹣p]<0,①当n是奇数时,化为[p﹣(2n+1)][p+(2n﹣1)]<0,解得1﹣2n<p<2n+1,∵对任意正奇数n都成立,取n=1时,可得﹣1<p<3.②当n是正偶数时,化为[p﹣(2n﹣1)][p+(1+2n)]<0,解得﹣1﹣2n<p<2n﹣1,∵对任意正偶数n都成立,取n=2时,可得﹣5<p<3.联立,解得﹣1<p<3.∴实数P的取值范围是(﹣1,3).故答案为:(﹣1,3).点评:本题考查了“当n=1时,a1=S1;当n≥2时,a n=S n﹣S n﹣1”求数列的通项公式a n的方法、交集的运算法则、分类讨论思想方法,属于难题.三.解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.17.设函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的最大值和最小值.考点:三角函数的周期性及其求法;三角函数的最值.专题:计算题.分析:(Ⅰ)利用诱导公式化简,再用二倍角公式化简,得到,化为求出周期.(Ⅱ)当时,求出的范围,然后求函数f(x)的最大值和最小值.解答:解:===.(6分)(Ⅰ),故f(x)的最小正周期为π.(7分)(Ⅱ)因为0≤x≤,所以.(9分)所以当,即时,f(x)有最大值0,(11分)当,即x=0时,f(x)有最小值.(13分)点评:本题考查三角函数的周期性及其求法,三角函数的最值,考查计算能力,是基础题.18.设数列{a n}的前n项和为S n,已知对任意正整数n,都有S n+2=2a n成立.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:T n<3.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)通过S1+2=2a1可知a1=2.通过S n+2=2a n与S n+1+2=2a n+1作差、整理可知数列{a n}是公比为2的等比数列,进而计算可得结论;(2)通过写出T n、T n的表达式,利用错位相减法计算即得结论.解答:(1)解:当n=1时,S1+2=2a1,所以a1=2.因为S n+2=2a n,则S n+1+2=2a n+1.两式相减,得S n+1﹣S n=2(a n+1﹣a n),即a n+1=2(a n+1﹣a n),即a n+1=2a n.所以数列{a n}是首项为2、公比为2的等比数列,故.(2)证明:∵,∴.①.②①﹣②,得=.∴.∵,∴T n<3.点评:本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.19.如图所示,在平面四边形ABCD中,,与的夹角为,与的夹角为.(1)求△CDE的面积S;(2)求.考点:余弦定理;平面向量数量积的运算;正弦定理.专题:解三角形;平面向量及应用.分析:(1)由题意可得DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.设∠CED=α.运用余弦定理和正弦定理,再由面积公式,即可得到所求S;(2)求得cosα,以及cos∠AEB=cos(﹣α),再由解直角三角形,即可得到所求.解答:解:由题意可知:DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.设∠CED=α.(1)在△CDE中,由余弦定理,得EC2=CD2+DE2﹣2CD•DE•cos∠EDC,于是由题设知,7=CD2+1+CD,即CD2+CD﹣6=0,解得CD=2(CD=﹣3舍去).在△CDE中,由正弦定理,得,于是,sinα===,即sin∠CED=.于是,;(2)由题设知,0<α<,于是由(1)知,cosα===.而∠AEB=﹣α,所以cos∠AEB=cos(﹣α)=cos cosα+sin sinα=﹣cosα+sinα=﹣×+×=.在Rt△EAB中,cos∠AEB==,故=BE===4.点评:本题主要考查余弦定理和正弦定理、面积公式的运用,同时考查向量垂直的条件,同角公式和两角差的余弦公式,属于中档题.20.已知函数f(x)=lnx﹣ax+﹣1(a∈R)(1)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,讨论f(x)的单调性.考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用;导数的综合应用.分析:(1)求出当a=﹣1时的函数的导数,切线的斜率,切点坐标,再由点斜式方程,即可得到切线方程;(2)求出f(x)的导数,令g(x)=ax2﹣x+1﹣a,x>0,对a讨论,当a=0时,当a≠0时,①a=,②若0<a<,③当a<0时,函数的单调性,写出单调区间即可.解答:解:(1)当a=﹣1时,f(x)=lnx+x+﹣1(x>0),f′(x)=+1﹣,f(2)=ln2+2,f′(2)=1,则切线方程为:y=x+ln2;(2)因为f(x)=lnx﹣ax+﹣1,所以f′(x)=﹣a=﹣(x>0),令g(x)=ax2﹣x+1﹣a,x>0,(i)当a=0时,g(x)=﹣x+1(x>0),所以当0<x<1时g(x)>0,f′(x)<0,此时函数f(x)单调递减,x∈(1,∞)时,g(x)<0,f′(x)>0此时函数f,(x)单调递增.(ii)当a≠0时,由f(x)=0,解得:x1=1,x2=1﹣,①a=,函数f(x)在x>0上单调递减,②若0<a<,在(0,1),(﹣1,+∞)单调递减,在(1,﹣1)上单调递增.③当a<0时,由于﹣1<0,x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;x∈(1,∞)时,g(x)<0,f′(x)>0,此时函数f(x)单调递增.综上所述:当a≤0 时,函数f(x)在(0,1)上单调递减;函数f(x)在(1,+∞)上单调递增当a=时,函数f(x)在(0,+∞)上单调递减当0<a<时,函数f(x)在(0,1),(﹣1,+∞)单调递减,在(1,﹣1)上单调递增.点评:本题考查导数的运用:求切线方程和单调区间,考查分类讨论的思想方法,考查运算能力,属于中档题.21.若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),判断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)考点:数列的求和;数列递推式.专题:点列、递归数列与数学归纳法.分析:(1)通过对比“和谐”数列的三个条件,因此验证是否满足即可;(2)通过构造数列{c n}(c n=a n﹣a n+1),通过②可知c n≥c n+1,通过放缩可知a1+a2+…+a n≥,利用③化简即得结论.解答:(1)结论:数列{a n}为“和谐”数列.理由如下:对于数列{a n}数列{a n},显然符合①.∵,∴符合②∵,∴符合③综上所述,数列{a n}为“和谐”数列.(2)证明:构造数列{c n},令c n=a n﹣a n+1,由②可知a n﹣a n+1≥a n+1﹣a n+2,∴c n≥c n+1,a1+a2+…+a n=a1+(﹣a2+2a2)+(﹣2a3+3a3)+…+[﹣(n﹣1)a n+na n]≥a1+(﹣a2+2a2)+(﹣2a3+3a3)+…+[﹣(n﹣1)a n+na n]﹣na n+1=(a1﹣a2)+2(a2﹣a3)+…+n(a n﹣a n+1)=c1+2c2+…+nc n≥(1+2+…+n)c n=,由③知,∴,即:,∴.点评:本题考查在新概念“和谐”数列下数列的作差与求和,考查运算求解能力,注意解题方法的积累,属于中档题.22.已知函数f(x)=(1)当x>0时,证明:f(x)>;(2)当x>﹣1且x≠0时,不等式f(x)<恒成立,求实数k的值.考点:利用导数研究函数的单调性;函数恒成立问题.专题:导数的综合应用.分析:(1)令h(x)=ln(1+x)﹣,得到h′(x)=,从而求出h(x)在(0,+∞)上是增函数,故h(x)>h(0)=0,结论证出;(2)不等式f(x)<可化为:<0,令g(x)=(1+x)ln(1+x)﹣x﹣kx2,则g′(x)=ln(1+x)﹣2kx,从而g″(x)=﹣2k,对x分情况进行讨论:①x>0时,②﹣1<x<0时,从而证出结论.解答:解:(1)令h(x)=ln(1+x)﹣,∴h′(x)=,x>0时,h′(x)>0,∴h(x)在(0,+∞)上是增函数,故h(x)>h(0)=0,即:ln(1+x)>.从而,x>0时,f(x)>得证.(2)不等式f(x)<可化为:<0,令g(x)=(1+x)ln(1+x)﹣x﹣kx2,则g′(x)=ln(1+x)﹣2kxg″(x)=﹣2k,①x>0时,有0<<1,令2k≥1,则g″(x)<0,故g′(x)在(0,+∞)上是减函数,即g′(x)<g′(0)=0,∴g(x)在(0,+∞)上是减函数,从而,g(x)<g(0)=0,∴k≥时,对于x>0,有<0,②﹣1<x<0时,有>1,令2k≤1,则g″(x)>0,故g′(x)在(﹣1,0)上是增函数,即:g′(x)<g′(0)=0∴g(x)在(﹣1,0)上是减函数.从而,g(x)>g(0)=0.∴当k≤时,对于﹣1<x<0,有<0.综合①②,当k=时,在x>﹣1且x≠0时,有f(x)<.点评:本题考察了函数的单调性,导数的应用,不等式的证明,本题是一道中档题.。
2018年最新 湖南省长沙雅礼中学2018届高三4月调研考试数学(文科)试卷附答案 精品
长沙市雅礼中学2018届高三月考试卷数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.参考公式: 正棱锥、圆锥的侧面积公式 如果事件A 、B 互斥,那么 cl S 21=锥侧 P (A+B )=P (A )+P (B )如果事件A 、B 相互独立,那么 其中,c 表示底面周长、l 表示斜高或 P (A ·B )=P (A )·P (B ) 母线长如果事件A 在1次实验中发生的概率是 球的体积公式 P ,那么n 次独立重复实验中恰好发生k 334R V π=球 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的. 1M={x |x 2-x <0,x ∈R },N={x ||x |<2,x ∈R },则A NM C M ∪N=M D M ∪N=R2.已知向量a =(-1,3),向量b =(3,-1),则a 与b 的夹角等于A.6πB.2πD.67π 3.已知函数f (x )=3x -1,则它的反函数y =f -1(x )的图象是(D)4.若21-=a ,则-+-22161161a C a C (16)1616151516a C a C +-的值为A.82- B. 82 C.()1622- D.()1622+5“p 或q 为真命题”是“p 且q 为真命题”的( )A 充分不必要条件;B 必要不充分条件;C 充要条件;D 既不充分又不必要条件 6.曲线y =2x 4上的点到直线y =-x -1的距离的最小值为A.2B.22 C.327.函数f (x )=⎪⎩⎪⎨⎧>≤-)1|(|||)1|(|12x x x x ,如果方程f (x )=a 有且只有一个实根,那么a 满足A.a <0B.0≤a <1C.a =1D.a >18.对于抛物线C :y 2=4x ,我们称满足y 18<4x 0的点M (x 0,y 0)在抛物线的内部.若点M (x 0,y 0)在抛物线内部,则直线l :y 0y =2(x + x 0)与曲线C A.恰有一个公共点 B.恰有2个公共点C.可能有一个公共点,也可能有两个公共点D.没有公共点9..如果一个三位正整数的中间一个数字比另两个数字小,如318,414,879等,则称这个三位数为凹数,那么所有凹数的个数是A.240B.285C.729D.920 1o .经济学中的“蛛网理论”(如图),假定某种商品的“需求—价格”函数的图象为直线l 1,“供给—价格”函数的图象为直线l 2,它们的斜率分别为k 1、k 2,l 1与l 2的交点P 为“供给—需求”均衡点,在供求两种力量的相互作用下,该商品的价格和产销量,沿平行于坐标轴的“蛛网”路径,箭头所指方向发展变化,最终能否达于均衡点P ,与直线l 1、 l 2的斜率满足的条件有关,从下列三个图中可知最终能达于均衡点P 的条件为B k 1+k 2=0C k 1+k 2<0D k 1+k 2可取任意实数 二.填空题:本大题共5小题,每小题5分,共25分,把答案填在题中横线上.11.已知x,y 满足约束条件001x y x y ≥⎧⎪≥⎨⎪+≥⎩,则z=x+2y 的最小值为________________.112.若函数()||f x a x b =-在[0,)+∞上为减函数,则实数a b 的取值范围是 ______0,0a b <≤13.从圆的10. 现从这10个点任取3个点,要构14.已知等差数列}{n a ,若数列}{n b 满足na a ab nn +++=21,则数列}{n b 也是等差数列,类比这一性质,相应地已知等比数列}{n c 中,0>n c ,若n d = ,则数列}{n d15、如图所示,二面角βα--CD 的大小为θ,点A 在平面α内,ACD ∆的面积为s ,且m CD =,过A 点的直线交平面β于B ,CD AB ⊥,且AB 与平面β所成的角为30°,则当=θ________时,BCD ∆的面积取得最大值为_________。
湖南省、江西省十四校2018届高三第一次联考理科数学试卷(含答案)
2018届高三·十四校联考 第二次考试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|2}A x x =≥,{|12}B x =<≤,则A B =I ( )A .(4,)-+∞B .[4,)-+∞C .[2,1]--D .[4,2]--2.复数3iz i =+(i 为虚数单位)的共轭复数为( ) A .131010i + B .131010i - C .931010i + D .931010i -3.下列有关命题的说法中错误的是( )A .设,a b R ∈,则“a b >”是“a a b b >”的充要条件B .若p q ∨为真命题,则p ,q 中至少有一个为真命题C .命题:“若()y f x =是幂函数,则()y f x =的图象不经过第四象限”的否命题是假命题D .命题“*n N ∀∈,*()f n N ∈且()f n n ≤”的否定形式是“*0n N ∃∈,*0()f n N ∉且00()f n n >”4.已知不等式201x ax +<+的解集为(2,1)--,则二项式621ax x ⎛⎫- ⎪⎝⎭展开式的常数项是( )A .15-B .15C .5-D .55.若函数())f x x πω=-5sin 2x πω⎛⎫++⎪⎝⎭,且()2f α=,()0f β=,αβ-的最小值是2π,则()f x 的单调递增区间是( ) A .22,233k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ B .52,266k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ C .5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ D .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈6.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积(单位:2cm )是( )A .40125+B .40245+C .36125+D .36245+7.甲、乙、丙、丁、戊五位同学相约去学校图书室借A 、B 、C 、D 四类课外书(每类课外书均有若干本),已知每人均只借阅一本,每类课外书均有人借阅,且甲只借阅A 类课外书,则不同的借阅方案种类为( )A .48B .54C .60D .728.如图所示,圆柱形玻璃杯中的水液面呈椭圆形状,则该椭圆的离心率为( )A .12B .33C .22D .329.一个算法的程序框图如下,则其输出结果是( )A 21B 21C 2.0 10.已知点(4,0)A ,(0,4)B ,点(,)P x y 的坐标x ,y 满足0034120x y x y ≥⎧⎪≥⎨⎪+-≤⎩,则AP BP ⋅u u u r u u u r 的最小值为( )A .19625-B .0C .254D .8- 11.过圆P :221(1)4x y ++=的圆心P 的直线与抛物线C :22y x =相交于A ,B 两点,且2PB PA =u u u r u u u r,则点A 到圆P 上任意一点的距离的最大值为( )A .1312+ B .136 C .73 D .7212.设函数()f x 是定义在(,0)-∞上的可导函数,其导函数为'()f x ,且有22()'()f x xf x x +>,则不等式2(2018)(2018)x f x ++4(2)0f -->的解集为( ) A .(2020,0)- B .(,2020)-∞- C .(2016,0)- D .(,2016)-∞-第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题后后的横线上.13.已知向量a r ,b r 满足5a =r ,6a b -=r r ,4a b +=r r,则向量b r 在向量a r 上的投影为 .14.已知n S 是数列{}n a 的前n 项和,且3log (1)1n S n +=+,则数列{}n a 的通项公式为 . 15.三棱锥P ABC -的底面ABC 是等腰三角形,120C ∠=o ,侧面PAB 是等边三角形且与底面ABC 垂直,2AC =,则该三棱锥的外接球表面积为 .16.已知()f x 是以2e 为周期的R 上的奇函数,当(0,)x e ∈,()ln f x x =,若在区间[,3]e e -,关于x 的方程()f x kx =恰好有4个不同的解,则k 的取值范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知锐角ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且3a =,sin sin sin B A b cC a b--=+. (1)求角A 的大小; (2)求b c +的取值范围.18.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,已知2PA AC ==,60PAD DAC ∠=∠=o ,CE AD ⊥于E .(1)求证:AD PC ⊥;(2)若平面PAD ⊥平面ABCD ,且3AD =,求二面角C PD A --的余弦值.19.随着电子产品的不断更新完善,更多的电子产品逐步走入大家的世界,给大家带来了丰富多彩的生活,但也带来了一些负面的影响,某公司随即抽取1000人对某电子产品是否对日常生活有益进行了问卷调查,并对参与调查的1000人中的年龄层次以及意见进行了分类,得到的数据如下表所示:30岁以下 30岁或30岁以上总计认为某电子产品对生活有益400 300 700认为某电子产品对生活无益100 200 300(1)根据表中的数据,能否在犯错误的概率不超过0.1%的前提下,认为电子产品的态度与年龄有关系?(2)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员进行抽奖活动,奖金额以及发放的概率如下:现在甲、乙两人参与了抽奖活动,记两人获得的奖金总金额为Y ,求Y 的分布列和数学期望.参与公式:22()()()()()n ad bc K a b c d a c b d -=++++临界值表:20.已知椭圆C :22221(0)x y a b a b+=>>.(1)若椭圆的离心率为12,且过右焦点垂直于长轴的弦长为3,求椭圆C 的标准方程; (2)点(,0)P m 为椭圆长轴上的一个动点,过点P 作斜率为ba的直线l 交椭圆C 于A ,B 两点,试判断22PA PB +是为定值,若为定值,则求出该定值;若不为定值,说明原因. 21.已知函数()ln f x x x ax =-. (1)求函数()f x 的单调区间;(2)设函数()()xg x x k e k =-+,k Z ∈, 2.71828e =⋅⋅⋅为自然对数的底数.当1a =时,若1(0,)x ∃∈+∞,2(0,)x ∀∈+∞,不等式21()5()0g x f x ->成立,求k 的最大值.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线M 的参数方程为sin cos sin 2x y θθθ=+⎧⎨=⎩(θ为参数),若以该直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线N 的极坐标方程为:sin 42πρθ⎛⎫+= ⎪⎝⎭(其中t 为常数).(1)若曲线N 与曲线M 有两个不同的公共点,求t 的取值范围; (2)当2t =-时,求曲线M 上的点与曲线N 上点的最小距离. 23.选修4-5:不等式选讲已知函数()221f x x x =+--,x R ∈. (1)求()1f x ≤的解集;(2)若()f x x a =+有两个不同的解,求a 的取值范围.2018届高三·十四校联考 第二次考试数学(理科)参考答案一、选择题1-5: DBDBA 6-10: CCDBA 11、12:AB二、填空题13. 1- 14. 8,123,2n nn a n =⎧=⎨⨯≥⎩ 15. 20π 16. 111,,3e e e ⎛⎤⎡⎫-∞- ⎪⎥⎢⎝⎦⎣⎭U 三、解答题17.【解析】(1)由sin sin sin B A b cC a b--=+及正弦定理得()()()b a b a b c c -+=-, 所以222a b c bc =+-1cos 2A ⇒=,3A π=.(2)a =3A π=,所以sin sin sin a b cA B C ==2sin 3π==,2(sin sin )b c B C +=+22sin sin 3B B π⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦3B π⎛⎫=- ⎪⎝⎭,ABC ∆为锐角三角形,B 的范围为,62ππ⎛⎫⎪⎝⎭,则,366B πππ⎛⎫-∈- ⎪⎝⎭,∴cos 3B π⎛⎫- ⎪⎝⎭的取值范围是⎤⎥⎝⎦,∴(b c +∈. 18.【解析】(1)连接PE ,∵PA AC =,PAD CAD ∠=∠,AE 是公共边, ∴PAE CAE ∆≅∆, ∴PEA CEA ∠=∠,∵CE AD ⊥,∴PE AD ⊥,又PE ⊂平面PCE ,CE ⊂平面PCE ,PE CE E =I ,∴AD ⊥平面PCE , 又PC ⊂平面PCE , ∴AD PC ⊥.(2)法一:过E 作EF PD ⊥于F ,连接CF ,∵平面PAD ⊥平面ABCD ,CE ⊂平面ABCD ,平面PAD I 平面ABCD AD =,CE AD ⊥, ∴CE ⊥平面PAD ,又PD ⊂平面APD , ∴CE PD ⊥,又PD EF ⊥, ∴PD ⊥平面CEF ,∴CFE ∠为二面角C PD A --的平面角,∵2PA AC ==,60PAD CAD ∠=∠=o ,PE AD ⊥,CE AD ⊥, ∴1AE =,3PE CE ==,又3AD =,所以2DE =,∴7PD =,2217EF =,7tan 2EFC ∠=, ∴二面角C PD A --的余弦值为21111.法二:由AD ⊥平面PEC ,平面PAD ⊥平面ABCD ,所以EP ,EA ,EC 两两垂直,以E 为原点,EA ,EC ,EP 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.因为2PA AC ==,60PAD CAD ∠=∠=o,3AD =, 所以1AE =,3PE CE ==2DE =,则(0,0,0)E ,(2,0,0)D -,(0,3,0)C ,(0,0,3)P,(2,0,3)DP =u u u r ,(2,3,0)DC =u u u r.设平面PCD 的法向量为(,,)n x y z =r,则00n DP n DC ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r ,即230230x z x y ⎧+=⎪⎨+=⎪⎩,令3x =-,则(3,2,2)n =-r , 又平面PAD 的一个法向量为(0,3,0)EC =u u u r,设二面角C PD A --所成的平面角为θ,则cos EC nEC nθ⋅=u u u r r u u u r r 2321111311==⨯, 显然二面角C PD A --是锐角,故二面角C PD A --的余弦值为21111.19.【解析】(1)依题意,在本次的实验中,2K 的观测值21000(400200300100)700300500500k ⨯⨯-⨯=⨯⨯⨯47.61910.828=>,故可以在犯错误的概率不超过0.1%的前提下,认为对电子产品的态度与年龄有关系. (2)Y 的可能取值为0,10,20,30,40,(0)P Y =111224=⨯=,(10)P Y =1222255=⨯⨯=,(20)P Y =22111325521050=⨯+⨯⨯=, (30)P Y =212251025=⨯⨯=,(40)P Y =111=⨯=, ()12E Y =.20.【解析】(1)12e =,即12c a =,2a c =, 不妨令椭圆方程为2222143x y c c+=,当x c =时,32y =,得出1c =, 所以椭圆的方程为22143x y +=. (2)令直线方程为()by x m a=-与椭圆交于11(,)A x y ,22(,)B x y 两点, 联立方程2222()1b y x m a x y a b ⎧=-⎪⎪⎨⎪+=⎪⎩得222222222b x b mx b m a b -+=, 即222220x mx m a -+-=,∴12x x m +=,22122m a x x -=,∴22PA PB +22221122()()x m y x m y =-++-+2212()1b x m a ⎛⎫=-+ ⎪⎝⎭2222()1b x m a ⎛⎫+-+ ⎪⎝⎭2221221[()()]b x m x m a ⎛⎫=+-+- ⎪⎝⎭2222122()a b x x a +=+ 22212122[()2]a b x x x x a+=+-22a b =+为定值.21.【解析】(1)对函数求导得'()ln 1(0)f x x a x =+->,令'()0f x =,得1a x e -=,当10a x e -<<时,'()0f x <,此时函数()f x 单调递减;当1a x e ->时,'()0f x >,此时函数()f x 单调递增,所以函数()f x 的单调递减区间是1(0,)a e -,单调递增区间是1(,)a e -+∞.(2)当1a =时,由(1)可知1()()(1)1a f x f e f -===-,1(0,)x ∃∈+∞,2(0,)x ∀∈+∞,不等式125()()0f x g x -+>成立等价于当(0,)x ∈+∞时,5()0x x k e k +-+>恒成立,即5(1)x xxe k e +>-对(0,)x ∈+∞恒成立,因为(0,)x ∈+∞时10x e ->, 所以51xx xe k e +<-对(0,)x ∈+∞恒成立, 即51x x k x e +<+-对(0,)x ∈+∞恒成立, 设5()1x x h x x e +=+-, 则2(6)'()(1)x x x e e x h x e --=-, 令()6x F x e x =--,则'()1x F x e =-,当(0,)x ∈+∞时,'()0F x >,所以函数()6x F x e x =--在(0,)+∞上单调递增,而2(2)80F e =-<,3(3)90F e =->,所以(2)(3)0F F <,所以存在唯一的0(2,3)x ∈,使得0()0F x =,即006x e x =+,当0(0,)x x ∈时,()0F x <,'()0h x <,所以函数()h x 单调递减; 当0(,)x x ∈+∞时,()0F x >,'()0h x >,所以函数()h x 单调递增, 所以当0x x =时,函数()h x 有极小值0()h x ,同时也为最小值, 因为00005()1x x h x x e +=+-01(3,4)x =+∈, 又0()k h x <,且k Z ∈,所以k 的最大整数值是3.22.【解析】(1)由已知M :21y x =-,x ⎡∈⎣;N :x y t +=.联立方程有两个解,可得5,14t ⎛⎤∈- ⎥⎝⎦. (2)当2t =-时,直线N :2x y +=-,设M 上的点为200(,1)x x -,0x ≤d=2013x ⎛⎫++ ⎪=≥,当012x =-时取等号,满足0x ≤距离为8. 23.【解析】(1)3,1()31,113,1x x f x x x x x +≥⎧⎪=+-<<⎨⎪--≤-⎩,若()1f x ≤,可得{|40}x x -≤≤.(2)结合图象易得13a -<<.。
2018届湖南省雅礼中学高三第一次月考文科数学 PDF
" $ . 8! 求证 " 86$ 7 *!
求三棱锥 ")$ . 7 *的体积!
文科数学试题 雅礼版 共 "页 0 页 !第!
! " ! 本小题满分! ! 5 #分" 在, 新零售模式的背景下 $ 某大型零售公司推广线下分店$ 计划在 4 市 为了确定在该区开设分店的个数 $ 该公司对该市已开 的" 区开设分店 $ 设分店的其他区的数据作了初步处理后得到下表 ! 记 # 表示在各区开 设分店的个数$ - 表示这# 个分店的年收入之和! 个" #! # * * 0 0 % 0 : % & &
3 3
8 9" " ! # 3 #- 7 ! # # 7 : :) :) :) ' ! : 9 9 9 9) 8 ! 参考公式 # $ " ' # +' &' + 3 # # 8# 8 " # 3 # # # 7 7! :) :)
' ! : 3 ' ! : ' ! :
文科数学试题! 雅礼版" 共 "页" % 页! !第!
姓!名!
! "
* ) & / ! " 复数% 在复平面内对应的点在第三象限是&$ # ' $的 / ! 充分不必要条件 ! " 必要不充分条件 +" , ! " 充要条件 ! 既不充分也不必要条件 ." ! " 已知命题 '# 若 #( 且 #)$ $ 则 #( ! $# + 命题( # 函数 )! * #" '## ) # ! # 有一个零点 $ 则下列命题为真命题的是 # ! " ! " ! " ! , ." +" , , '* ( '+ ( ( '*! ( ! " 已知定义域为 的奇函数 ! " $ 当 ! $ " 时 $ ! " ! " #( )1 $ # *# % $ -0 )# )# ( ) " $ " $ " $ 则 恒成立$ 若&' * + ' , ') # * ! ) # )! )! )! ! +" &. , + . ! " , , + & . . ! " , &. + . ! " + , . &. . ! " , 欧几里得算法是有记载的最古老的算法 $ 可追溯 % 至公元前* 年前 $ 右边的程序框图的算法思路就 $ $ 是来源于, 欧几里得算法 $ 执行该程序框图 ! 图中 , 表示& 除以+ 的余数 " $ 若输入的 &$ &23 . + +分 别为& $ $ 则输出的 &' 4 %! # % ! ! " +" $ , # % ! " ! % $ ." 4 %
湖南省长沙市雅礼中学2018理数第一次月考
'
$0 # ) ,)
$ 目标函数'& " $ ( $0 ! (0# , 的最大值为 ) $ $* $ $ ,*
则( 的值为 !!!! " 设双曲线的一个焦点为 5$ 虚轴的一个端点为 %$ 如果直线 5 ! % % 与该 #! 双曲线的一条渐近线垂直$ 那么此双曲线的离心率为!!!!!!! ! " 在一个半径为! 的半球材料中截取三个高度均为 6 的圆柱 $ 其轴截面 ! 3 如 图 所 示!设 制 作 这 三 个 圆 柱 的 原 材 料 利 用 率 为 7 & 圆柱体体积之和 $ 则 7 的最大值为!!!!!!! 原半球材料的体积
生产能手非生产能手合计周岁以下组合计研究的基础上假设工人的年龄与是否生产能手无关用样本的年龄比例估计总体的年龄比例用样本中生产能手的频率估计总体中生产能手的频率则从该集团所有工人中随机抽取名工人设其中年龄在89的内切圆与圆面积相等若存在求0存在两个极值点题中任选一题作答如果多做则按所做的第一题记分做答时请写清题号坐标系与参数方程已知直线的方程为0的参数方程为
已知 偶 函 数 * 在 上 是 增 函 数 则 不 等 式 * % $ $ 0 2 # $(! # $
*
' ( # ! ! # ! " , $ ( $ $$ ( 或 $ $$ ( ' + + + + ! # ! " $ $$ ( $ ' # + # ! ! # ! ." $ ( $ $$ ( 或 $ $$ ( ' + # # +
姓!名!
班!级!
* +个 %个
, )个 无穷多个 .
2018届炎德英才大联考雅礼高考模拟卷理数答案
3 ! 3 # " 4 4 & 式右边表示连续曲线4 上 4 2( 3 0 3 1 3 > 8 3 3 = 12 + + * 3 3 #! 拟卷
数学 理科 参考答案
一 选择题 题!号 答!案 " , # & ' . ( / ) / * % / + " $ " " " # , / . -
# ' 系数为 选 ,# . #0 # ' $ # )
" ( 槡
展开式中含( 项
)
解析 由正弦定理 " $ /! 7 3 8! 7 3 8"0槡 & 7 3 8" 9 : 7!& ; < 8!0槡 & !0 & 7 3 8"1 7 3 8+0 7 3 8"1 7 3 8 # & & 槡 : 7"0槡 0 7 3 8"1 9 & 7 3 8 !" "1 # & # )
!"
& # ! " 解析% 设)! ( 为增函数( " ) #$ " + (" 0 : ( 1 # (! :( 4 (" 0 & : ( 1 # $ 4 (" 5! !$ ) )!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知 偶 函 数 * 在 上 是 增 函 数 则 不 等 式 * $ $(! % $ 0 2 # $ #
*
! # ! $$ *"$ $ + +
' ( # ! ! # ! " , $ ( $ $$ ( 或 $ $$ ( ' + + + + ! # ! " $ $$ ( $ ' # + # ! ! # ! ." $ ( $ $$ ( 或 $ $$ ( ' + # # +
$ + ! )& )0 # + & ! % *" $ + ! " )& )0 ! + & ! % " 将函数,& 5 1 6# $0 " #!
! " $ + , )& )0 # + ! % ' ! $ + ." )& )0 ! + ! % ' 的图像向右平移 个单位$ 再纵坐标不变 $ 横 3 3 ! " 5 1 6$ , ,&
理科数学试题! 雅礼版" 共 "页" ) 页! !第!
" ! 本小题满分! ! " #分" #! $ 如图所示的几何体中$ # %,1 8$ # 1&+ $ ; -% $ 点 9 在平面# # %& # 1 8& # 1 %& ! ! % 1 8 内的 射影是点1$ 9 5,# 1$ # 1& # 9 5! ! " 求证# 平面 % 1 9( 平面 # 1 9 5, ! $ 求1 ! " 若二面角 8(# $ ; # 5(1 的平面角为3 9 的长!
理科数学试题! 雅礼版" 共 "页" + 页! !第!
第卷
本卷包括必考题和选考题两部分 ! 第! " " 题为必考题 $ 每个试题 ! + # ! ! 考生都必须作答! 第! " " 题为选考题 $ 考生根据要求作答! # # # + ! 二& 填空题# 本大题共)小题 $ 每小题%分 $ 共# $分 ! ! " 已知 & " $ 则向量 与向量 的夹角弧度值 $ &槡 且(! ! + ! #$ ( 为!!!! ! " 已知线性区域 ! )
命题人 常君!审题人 黄爱民
得分 !!!!!!! 选择题 和第 卷 非选择题 两部分 共 " 页 时量 !!本试卷分第 卷 ! # $分钟满分! % $分
学!号!
密!!封!!线!!内!!不!!要!!答!!题
第卷
选择题 本题共! 每小题%分 在每小题给出的四个选项中 只有 #小题 一项是符合题目要求的 ! 集合 #& 关 已知全集"& 和 %& $$ $$' $% ( $$ ) ! ) $ # $ 系的韦恩图如图所示 则阴影部分所示集合中的元素共有
$ 求 = 的取值范围 ! $ ) $( >! #"
理科数学试题! 雅礼版" 共 "页" 4 页! !第!
" & ! " 题中任选一题作答 $ 如果多做$ 则按所做的第一 # # # + !!请考生在第! 题记分$ 做答时请写清题号 % " ! 本小题满分! 选修) / # 坐标系与参数方程 # # $分" ) #! 已知直线/的方程为,& $ 圆1 的参数方程为 $0 ) ! 为 # 0 # 5 1 6 ,& 参数" $ 以原点为极点 $ $ 轴正半轴为极轴建立极坐标系!
" " 解析 " # # " # $ " 0 1 # & $ ! " # " 0 1 & # + /! " " # " " $ $ # # # 2 2 解析 直观图如图所示 为正方体挖去了一个四棱锥$ " $ /!
" 解析 % #' #' " " /! & 3 & 3 ( #' # $ 槡 # " )! "可知 " # ) " 解析 由 " 4 # 454)! 则+ 令 *3"4#4 4) " # , 3 4 4 4 3" $ % ! *3 ) ) ) # # # # # " ) ) + " $ ! $ ,3* ! " $ " $ 6 $ *! "3 ,3 # * * 二 填空题 (4 " 槡 '$ ( " & !" !" ' # &槡 " ' # # # 则/ 自下而上三个圆柱底面半径分别为" ! " ! " ! " ) . . . # & ! 解析 "3 槡 #3 槡 &3 槡 " ' " # # # & # # 易知 0 在 1 . 3& 3 ! ' # 3 & " ! " ' 3 . .4 .4 .3 & .! " ' . ." $ . . . " # & 0 0 & # " " " " " ' &槡 " ' # 槡 上为减函数 上为增函数 在 $ . 3 3 $ 7 8 93 8 93 0 0 27 " ' # " ' " ' & " ' 槡 槡 槡 " ' 槡 & 三 解答题
三& 解答题# 本大题共4 其中第# 解答应写出文字 $分 $ #题 # +题为选考题! 说明$ 证明过程或演算步骤 ! ! " ! 本小题满分! ! 4 #分" $ $ $ 已知 5 % 1 的内角#$ %$ 1 的对边分别为($ . + : 8 5#& $ ( 1 6#(槡 +# $ & 4 & % ! , ! " 求. ! 满足 # 求 +# ! " 设 8 为1 # % 延长线上一点$ 8(# 1$ % 8 的面积!
! " 请根据已知条件完成 #<# 列联表 $ 并判断是否有 ' ! $ = 的把握认为 生产能手与工人所在的年龄组有关. + 生产能手 # %周岁以上组 # %周岁以下组 合计 附# :#&
# " )! ( ;( . ! " ! ! " ! (0 . 0 ;" (0 . 0 ;"
非生产能手
合计
" &! :#* 0
! ." +
) + # ! " ! ! 的展开式中$ 的系数是 3 ! ( $" $" ! (槡 ! ! " *" ( 3 , ( +
! " $
! ! ! ! " 如图给出的是计算! 则图中执 4 0 0 0 * 0 的值的一个程序框图 $ + % # ' 行框中的 处和判断框中的 处应填的语句是
( + ( ) 1 . ( + 0 ) 1
#
学!校!
的公比为正数 且( 已知等比数列 则( ) ( ( # ( ( ! # ) + '& % #& !& ! * # # 槡 ! 的解集是 +
理科数学试题 雅礼版 共 "页 !第! 页
# 槡 , # . #
'
$0 # ) ,)
" $ 目标函数'& $ ( $0 ! (0# , 的最大值为 ) $ $* $ $ ,*
则( 的值为!!! ! 虚轴的一个端点为 %$ 如果直线 5 " 设双曲线的一个焦点为 5$ ! % % 与该 #! 双曲线的一条渐近线垂直 $ 那么此双曲线的离心率为!!!!!!! 其轴截面 ! " 在一个半径为! 的半球材料中截取三个高度均为 6 的圆柱$ ! 3 如 图 所 示!设 制 作 这 三 个 圆 柱 的 原 材 料 利 用 率 为 7 & 圆柱体体积之和 $ 则 7 的最大值为!!!!!!! 原半球材料的体积
'
$& # : 8 5
! " 求直线/与圆1 的交点的极坐标 , ! ! " 若 & 为圆1 上的动点 $ 求 & 到直线/ 的距离; 的最大值! # " ! 本小题满分! 选修) / # 不等式选讲 # + $分" % #! 设函数*! $" + ( $0 ! $ $%! & $( , ! " 解不等式*! ! ! $" $( ! " 设函数>! $ 且 >! $ 0 上恒成 在 $% ) # $" ( ( ) $" $" ( # # & $0 ) *! 立$ 求实数( 的取值范围 !
" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "