应变式称重传感器的设计与计算.
基于电阻应变式传感器电子秤设计
实验7 压力传感器特性与电子秤的设计一、实验目的1了解金属箔式应变片的应变效应和性能;2掌握电子秤的设计、制作和调试技巧。
二、实验要求1测量应变式传感器的压力特性,计算其灵敏度;2根据应变式传感器的压力特性设计一个量程为199.9克的电子秤三、实验仪器YJ-CGQ-I典型传感特性综合实验仪、应变传感器实验模板、实验装置、数字万用表、砝码、3.5mm连接线、1.5mm连接线、压力传感器1.应变传感器实验模板如图2所示3.实验装置如图3所示图3四、实验提示1.压力传感器金属导体的电阻随其所受机械形变(伸长或缩短)的大小而发生变化,其原因是导体的电阻与材料的电阻率以及它的几何尺寸(长度和截面)有关。
由于导体在承受机械形变过程中,其电阻率、长度和截面积都要发生变化,从而导致其电阻发生变化,因此电阻应变片能将机械构件上应力的变化转换为电阻的变化。
电阻应变片一般由敏感栅、基底、粘合剂、引线、盖片等组成。
应变片的规格一般以使用面积和电阻值来表示,如“3×10mm2,350Ω”。
敏感栅由直径约0.01mm--0.05mm高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分。
敏感栅用粘合剂将其固定在基片上。
基底应保证将构件上的应变准确地传送到敏感栅上去,故基底必须做得很薄(一般为0.03mm--0.06mm),使它能与试件及敏感栅牢固地粘结在一起;另外,它还应有良好的绝缘性、抗潮性和耐热性。
基底材料有纸、胶膜和玻璃纤维布等。
引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1mm--0.2mm低阻镀锡铜丝制成,并与敏感栅两端输出端相焊接,盖片起保护作用。
在测试时,将应变片用粘合剂牢固地粘贴在被测试件的表面上,随着试件受力变形,应变片的敏感栅也获得同样的形变,从而使电阻随之发生变化。
通过测量电阻值的变化可反映出外力作用的大小。
压力传感器是将四片电阻分别粘贴在弹性平行梁的上下两表面适当的位置,梁的一端固定,另一端自由用于加载荷外力F如图4所示。
基于电阻应变式传感器的电子秤设计
摘要电阻应变式传感器是根据应变原理,通过应变片和弹性元件将机械构件的应变或应力转换为电阻的微小变化再进行电量测量的装置。
电阻应变式传感器是传感器中应用最多的一种,广泛应用于电子秤以及各种新型结构的测量装置。
应变式传感器具有以下优点:(1)测量范围宽、精度高,如测量力可达10-1~106N、0.05% F.S,测量压力可达10~1011Pa、0.1% F.S,测量应变可达με~kμε级;(2)动态响应好,一般电阻应变片响应时间为10-7s,半导体式应变片响应时间达10-11s;(3)结构简单,使用方便,体积小,重量轻;品种多,价格低,耐恶劣环境,易于集成化和智能化。
电阻应变片传感器通过调节放大器的放大倍数,并采用A/D转换器,通过A/D转换电路把接收到的模拟信号转换成数字信号,传送到显示电路,最后由显示电路显示数据。
这种电子秤具有精确度高,操作简单,性能稳定,价格低廉,成本低,制作简单等优点。
关键字:电子秤、电子应变片、A/D转换器,显示电路LED。
目录摘要 (I)目录 (II)前言 (1)第1 章绪论 (2)1.1 课题意义 (2)1.2课题方案 (2)第2章测量电路 (3)2.1 应变式传感器的工作原理 (3)2.2 电阻应变片的特性 (4)2.2.1 电阻应变片 (4)2.2.2 横向效应 (5)2.2.3 应变片的温度误差及补偿 (6)2.3电阻应变式传感器的测量电路 (8)2.3.1 直流电桥 (8)2.3.2 交流电桥 (11)第3章应变传感器的应用 (13)3.1 柱(筒)式力传感器 (13)3.2 膜片式压力传感器 (13)第4章差动放大电路 (15)4.1仪表仪器放大器的选择 (15)4.2 差动放大电路图: (16)4.3 A/D转换 (16)4.4 A/D转换器的选择 (17)4.5 电压表部分电路图应用 (17)第5章用电阻片构成的电子秤 (19)总结 (21)参考文献 (22)前言本文简述的是由电阻应变片式传感器组成的电子秤。
课程设计-电阻应变式称重传感器设计
课程设计-电阻应变式称重传感器设计
电阻应变式称重传感器设计
摘要:在分析重力传感器信号特性的基础上,模块化地设计了称重传感器信号的调理电路并对其进行了仿真实验。
结果表明:电路能实时、准确地处理信号,且工作稳定,可靠,重复性好,抗干扰能力强,可实现精密测量的目的。
关键词:称重;Lab view;电阻应变式传感器;放大电路。
一、引言
随着现代数据采集系统的不断发展,对高精度信号调理技术的要求也越来越高。
由于传感器输出的信号往往存在温漂、信号比较小及非线性等问题,
因此它的信号通常不能被控制元件直接接收,这样一来,信号调理电路就成为数据采集系统中不可缺少的一部分,并且其电路设计的优化程度直接关系
到数据采集系统的精度和稳定性。
在称重传感器信号检测中,检测精度受到诸多因素的影响,其中电桥激励电压源的精度和稳定度是影响信号精确度的重要因素之一。
电桥输出与激励电压成正比,因此,激励电压出现任何漂移都将导致电桥输出出现相应的漂移。
并且现场工作环境恶劣,可能存在粉尘、振动、噪声以及电磁干扰等,称重传感器输出的几百微伏至几十毫伏信号极易受到干扰。
所以研究抗干扰能力强、实时性好的信号变送和传输技术对保证检测精度具有重要意义。
二工作原理
1、原理框图
2、称重传感器(MS-1)
MS—1型钢制“S”称重传感器,承受拉、压外力均可,输出对称性好,结构紧凑、安装方便、规格齐全。
可用于制造机电结合称、吊钩秤、料斗秤及各种专用称、工艺称等。
外形尺寸
量程:50kg;
尺寸:A=51mm;B=13mm;C=64mm;螺纹(公制mm):M8×1.25;
技术指标:
标定数据:。
称重传感器测试结果处理与误差计算
传感器型号:YQ1-20t Emax:20000 kg vmax:6 kg 表D.1 载荷试验数据(3次)
试验载荷 第1 次 示值 (kg) ( 0 1000 2500 5000 10000 15000 20000 ) 0 2‘30 9985 3’00 24991 3‘30 49987 4’00 99994 4‘30 150000 5’00 200007 5‘30 时间 ( 第2 次 示值 ) 0 11’30 9987 12‘00 24990 12’30 49985 13’00 99993 13‘30 150002 14’00 200009 14‘30 时间 (
三、误差计算 1.称重传感器误差EL
(1)称重传感器实际检定分度值v 称重传感器实际检定分度值v按下式计算:
Dmax Dmin 19000 1000 v= 6kg nmax 3000
式中: Dmax-称重传感器测量范围的最大载荷(kg) Dmin-称重传感器测量范围的最小载荷(kg) nmax-称重传感器测量范围能被分成的最大分 度数。
编号:001 nmax:3000 PLC:0.7 温度:高温40℃
第3 次 示值 ) 0 20’30 9987 21‘00 24989 21’30 49986 22‘00 99995 22’30 150000 23‘00 200010 23’30 时间 ( ) 0 9986 24990 49986 99994 150001 200009 ( ) 0 2 2 2 2 2 3 平均示值 重复性误 差
(2)75%载荷值及分度值计算 Dmin+(Dmax-Dmin)=1000+(190001000)75%=14500kg nmax75%=3000×75%=2250 (3)75%载荷值(2250分度)对应的示值计算 由初始20℃试验平均示值 15000kg----150021 10000kg----99987 计算出 5000kg----50034 500kg----5003.4 则14500kg示值为 K0.75=150021-5003.4=145017.6
应变式传感器电子称的设计
摘要随着现代化生产的发展,电子秤在许多商业活动中已成为不可缺少的计量工具。
从生活中看到的商店购物所遇见的低重位的小型电子秤,到工厂、铁路、码头、机场的货场里发现的大吨位门式电子秤、叉车升降电子秤、汽车摆式电子秤、皮带传动式电子秤。
另外,甚至保健性体重电子秤也逐渐进入家庭。
各种各样的电子秤,只是为了适应不同应用的需求而设计的,但它们的基本构成和工作原理是相同的。
电子秤作为一个典型的自动检测系统,也可以归纳为由三大环节所组成。
关键词:计量工具;电子秤;自动检测系统。
AbstractWith the development of modern production, electronic scale measurement toolshas become indispensable in many commercial activities. See from the life of thestore shopping meet the low weight of small electronic scales, found to factory,railway, port, airport freight yard in large tonnage gantry electronic scales,electronic scales, forklift lifting car tilting electronic scale, belt type electronic balance. In addition, even healthy weight electronic scale is gradually entering the family. Electronic scale of all kinds, just in order to adapt to different application requirements and design, but the basic structure and working principle of them is the same. Electronic scale as a typical automatic detection system, can be summed up as three aspects.Key words: Measuring tool;electronic balance;ACS.目录1.绪论 (1)2. 设计内容及总体方案 (2)3.单元模块的具体设计 (3)4.差动放大模块 (4)5.A/D转换模块 (5)6.数码显示模块 (9)7.总结语 (11)附录 (12)1.绪论称重技术自古以来就被人们所重视,作为一种计量手段,广泛应用于工农业、科研、交通、内外贸易等各个领域,与人民的生活紧密相连。
应变式传感器称重系统的设计
菏泽学院Heze University本科生课程设计(论文)题目应变式传感器称重系统的设计姓名任青瑞学号2013174271 院系蒋震机电工程学院专业自动化指导教师侯建华职称副教授应变式传感器称重系统的设计传感器与检测技术课程设计任务书及成绩评定专业自动化设计题目应变式传感器称重系统的设计学生姓名任青瑞学号 2013174271 指导教师侯建华职称副教授菏泽学院本科传感器与检测技术课程设计目录摘要 (1)关键字 (1)Abstract (1)Key words (1)引言 (2)1 应变式传感器称重系统设计方案 (2)1.1 设计要求 (2)1.2 设计思路 (2)2 硬件设计 (2)2.1 单片机模块 (2)2.2电源模块 (4)2.3 传感器电路模块 (4)2.4 A/D 变换电路模块 (4)2.5 数码管显示模块 (5)3 软件设计 (6)3.1 程序设计语言的选用 (6)3.2 软件程序的设计 (6)4 调试校准 (7)4.1 实物连线 (7)4.2 系统调零 (8)4.3 量程调节 (8)个人总结 (8)参考文献 (8)附录 (9)应变式传感器称重系统的设计应变式传感器称重系统的设计自动化专业学生任青瑞指导教师侯建华摘要:本文设计一种以AT89C51单片机为核心,包括ADC0809类型转换器的压阻应变片式压力传感器的重力测量系统。
简要介绍了压阻应变片式压力传感器电路的工作原理以及A/D变换电路的工作原理,完成了整个实验对于压力的采样和显示。
与其它类型传感器相比,压阻应变片式压力传感器有以下特点:测量范围广,精度高,输出特性的线性好,工作性能稳定、可靠,能在恶劣的化境条件下工作。
由于压阻应变片式压力传感器具有以上优点,所以它在重力测试技术中取得十分广泛的应用。
关键字:压阻应变片式传感器;AT89C51单片机;ADC0809;数码管The Design of Strain Gauge Sensor Weighing SystemAutomation professional student Ren QingruiTutor Hou JianhuaAbstract: This paper introduces a kind of differential pressure measuring system with A T89C51 single chip microcomputer as the core, including the diffusion silicon pressure resistance type pressure sensor of ADC0809 type converter. This paper briefly introduces the working principle of the diffusion silicon pressure sensor circuit and the working principle of the A/D conversion circuit, and completes the sampling and display of the pressure in the whole experiment. Compared with other kinds of sensors, the diffused silicon pressure resistance type resistance strain type sensor has the following characteristics: wide measuring range, high precision, good output characteristics of linear, stable performance, reliable, can work under the bad environment conditions. Because of the above advantages, the diffusion silicon pressure resistance type pressure sensor has a very wide range of applications.Keywords: Pressure resistance strain gauge sensor; A T89C51; ADC0809; digital tube菏泽学院本科传感器与检测技术课程设计引言物料计量是工业生产和贸易流通中的重要环节。
应变式称重传感器设计
理工大学现代科技学院《传感器原理与应用》课程设计设计名称应变式称重传感器设计专业班级测控11-2学号2011101471姓名玉堃同组人王鑫王海平设计日期2015年1月理工大学现代科技学院课程设计任务书注:1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大图纸不必装订)2.可根据实际容需要续表,但应保持原格式不变。
应变式称重传感器设计摘要粘贴式电阻应变计广泛应用于当今高精度测力与称重传感器的制造中。
本篇文章为帮助称重传感器设计者计算出称重传感器尺寸大小,从而为获得唯一需要的输出作了充分的准备。
设计者既可以运用有限元分析法经计算机程序(如果可能)来确定称重传感器所需要的尺寸,或运用本文所提供的公式来计算此尺寸。
通过某些假设得出的这些计算公式,另外还有电阻应变计的特性、应力形式、材料特征以及机械加工的偏差都会导致计算结果的一定误差。
在批量制造称重传感器前,应制造几个样机进行组装、测试和标定。
在某些工业中,如航天工业也许只需要一次性的称重传感器,为决定其非线性、重复性和滞后等误差,在使用前对其进行标定是十分重要的。
当计算机被应用于数据处理时,非线性、零点漂移及灵敏度变化,是很容易修正的。
如果称重传感器在使用时要经历强烈的温度变化和外部附加载荷的影响,我们应进行试验并测量出这些影响量所造成的误差。
如果某部分结构(如接头、销子、压杆)用来测量或是被用作称重传感器时,标定和测试就尤为重要了。
称重传感器设计包括许多方面,这里对其制造生产不予讨论,例如,需要对电阻应变计安装技术知识的全面了解,一些电阻应变计制造商提供技术资料的同时,还应提供电阻应变计安装的分类等。
关键词:传感器,电阻应变式,称重目录第一章方案设计 (3)第二章传感器设计 (3)2.1传感器的选择 (3)2.1.1电阻应变式传感器 (4)2.2 设计分析 (4)2.2.1应变片的测量电路 (4)2.2.2前级放大器部分 (6)2.2.3 A/D转换模块 (7)2.2.4控制模块 (8)2.2.5显示模块 (8)2.2.6键盘输入 (8)2.2.7 电源模块 (9)2.2.8 本部分总结 (9)2.3电路原理图 (10)2.3.1弹性元件的选择 (10)2.3.2 信号转换放大部分 (11)2.3.3 A/D转换部分(ICL7315) (12)2.3.4 单片机控制部分 (13)第三章软件设计 (13)3.1主程序流程图 (14)第四章课设小结 (15)参考文献 (16)第一章方案设计首先是通过压力传感器采集到被测物体的重量并将其转换成电压信号。
电阻应变式称重传感器的设计
电阻应变式称重传感器的设计《自动检测技术及仪表》课程设计题目:电阻应变式称重传感器的设计学院:专业:年级:姓名:学号:目录摘要 (2)一、称重传感器 (2)1、简介 (2)2、种类 (3)二、电阻应变式称重传感器及其设计 (3)1、电阻应变式称重传感器简介及工作原理 (3)2、传感器的设计概述 (5)3、设计传感器的工作原理 (6)4、传感器弹性元件结构 (7)5、传感器测量电路 (8)6、传感器的特性 (9)7、称重传感器常用技术参数 (11)8、传感器设计相关参数选择 (13)9、应用技术及应用领域 (16)三、总结 (17)四、参考资料 (17)1摘要称重传感器是电子衡器的核心部件,随着称重传感器技术不断发展和应用领域不断扩大,传感器越来越为人们所关注。
本文通过对传感器工作原理、分类及应用等的分析,介绍了一种基于双孔梁称重的电阻应变式传感器。
它可称量被试木材在某一时刻的重量,以计算该试材在该时刻的含水率。
该方法的准确度和稳定性不受木材材性影响,且与木材含水率不均性无关。
一、称重传感器1、简介称重传感器是知识密集、技术密集和技巧密集型的高技术产品。
研制和生产所涉及的内容多、离散大,技术密集程度高,边缘学科色彩浓,是多种学科相互交叉、相互渗透的结晶。
称重传感器是一种将质量信号转变为可测量的电信号输出的装置。
用传感器先要考虑传感器所处的实际工作环境,这点对正确选用称重传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。
在称重传感器主要技术指标的基本概念和评价方法上,新旧国标有质的差异。
随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重2量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器。
应变式称重传感器的设计与计算
应变式称重传感器的设计与计算通过某些假设得出的这些计算公式,另外还有电阻应变计的特性、应力形式、材料特征以及机械加工的偏差都会导致计算结果的一定误差。
在批量制造称重传感器前,应制造几个样机进行组装、测试和标定。
在某些产业中,如航天产业也许只需要一次性的称重传感器,为决定其非线性、重复性和滞后等误差,在使用前对其进行标定是十分重要的。
当计算机被应用于数据处理时,非线性、零点漂移及灵敏度变化,是很轻易修正的。
假如称重传感器在使用时要经历强烈的温度变化和外部附加载荷的影响,我们应进行试验并丈量出这些影响量所造成的误差。
假如某部分结构(如接头、销子、压杆)用来丈量或是被用作称重传感器时,标定和测试就尤为重要了。
在过往十年中,计算机技术的发展改变了称重传感器的设计、制造与记录方式,例如在电阻应变计被安装后,所有的称重传感器都有一个原始的不平衡(当没有载荷作用时,也有输出信号存在)。
通常零点调整电阻被应用于贸易称重传感器,以便消除这种不平衡。
运用计算机程序,零点不平衡数据很轻易被除掉。
除了零点调整电阻外,在精密的贸易称重传感器中安装了很多电阻,便于补偿诸如零点和灵敏度温度影响。
假如在记录数据的同时,称重传感器的温度也进行了丈量,并且当这个称重传感器被标定时,温度造成的误差已被测定,那么就应该运用计算机程序修正终极数据。
贸易称重传感器制造商不为计算机提供用于修正原始不平衡或温度影响的数据,由于他们不想局限市场。
贸易称重传感器不安装零点平衡及温度补偿电阻会节省大量资金,尤其是需求量很大时效果更明显。
称重传感器的输出计算图1 称重传感器电路简图图1是一个不含温度补偿电阻的称重传感器电路简图。
四个电阻应变计呈现在惠斯通电桥的桥臂上。
请留意,应变方向相同的两个电阻应变计安装在电桥的相对桥臂上,以保证电桥灵敏度最大。
例如,电阻应变计1和3受拉伸应力,2和4受压缩应力,那么这种安装的结果是当称重传感器承载后,增加了电桥从B点到C点的终极电压输出。
传感器设计
一.电阻应变式称重传感器1. 主要技术指标:(1)、 基本参数a 精确度等级:0.1%FSb 测量范围:10000~100000kgc 灵敏度:d 额定励磁电压:12Ve 输入和输出阻抗:传感器的输入输出阻抗在350~500M Ω之间f 正常工作条件:温 度:-20~+70℃ 相对湿度:5%~100% e 允许过载:应能承受1.5倍的额定载荷 f 绝缘电阻:≥2000M Ω2、传感器结构设计传感器设计成剪切梁式,其结构如图::(图1-1)3、弹性材料的选择衡量弹性元件材料基本性能的主要指标是弹性储能(也叫应变能)。
弹性储能是材料在开始塑性变形以前单位体积所吸收的最大弹性变形功。
它表示弹性材料吸收变形功而不发生永久变形的能力。
阴影面积就是弹性变形功W ,即材料变形后储存于材料内的应变能U 。
其大小为:EU W e e e 22121σεσ=== (式1-1)式中:e σ―弹性极限 e ε―弹性极限对应的应变σ图(1-2)比值σe 2/E 愈高愈好。
欲提高σe 2/E ,则可提高弹性极限e σ或者降低弹性模量E 。
e σ高则弹性变形范围大,E 低则在同样载荷下可获得较大的变形。
同时,对弹性元件材料性能的要求应考虑适用场合。
本设计采用合金结构钢,其中 бs =1300MPa.4、弹性元件的计算及其校核剪切梁式传感器弹性体的截面为工字梁,梁内的切应力可根据材料力学公式计算:bJ QSy =τ (式1-2)工字梁断面1,2,3点的静矩为:8822232221bh Bh BH S Bh BH S S +-=-== (式1-3)惯性矩为 12333bh Bh BH J y +-= (式1-4)将静矩和惯性矩代入公式得个点的切应力:33322233333222,23332222112323230bh Bh BH bh Bh BH b Q b J QS bh Bh BH hH b QB b J QS bh Bh BH h H Q B J QS BJ QS y y y y +-+-==+--==+--====ττττ (式1-5)式中:切力Q 即为传感器的额定载荷F ,求出3'221,,ττττ及就可做出切应力布图,从图中可以看出3max ττ=,即στ3ττ2τ1图(1-3) 图(1-4)333222max 23bhBh BH bh Bh BH b Q +-+-=τ (式1-6) 由材料力学知识可知,对于金属材料,[τ]=[σ]/(1+μ)。
电阻应变式称重传感器的设计论文
电阻应变式称重传感器的设计论文摘要电阻应变式称重传感器是一种常用于工业领域的重量测量装置。
本论文旨在设计一个基于电阻应变原理的称重传感器,并介绍其工作原理、设计步骤、相关特性以及应用场景。
通过本文的阅读,读者将能够了解电阻应变式称重传感器的基本概念和设计流程,以及在实际应用中的一些注意事项。
1. 引言电阻应变式称重传感器是一种常见的重量测量装置。
其基本原理是通过电阻应变效应来测量被测体的重量。
电阻应变式称重传感器广泛应用于工业生产中的称重、检测、搬运等领域。
本论文将介绍电阻应变式称重传感器的设计流程,包括传感器的结构设计、电路设计和模拟计算。
2. 电阻应变原理电阻应变效应是一种电阻随应变变化的现象。
当应变发生变化时,电阻的阻值也会相应地发生变化。
基于这一原理,可以利用电阻应变效应设计出称重传感器,并通过测量电阻的变化来得到被测体的重量。
电阻应变式称重传感器通常由弹性体和电阻应变片组成,当被测体施加压力时,弹性体会发生变形,从而导致电阻应变片的阻值发生变化。
3. 设计步骤3.1 选择合适的电阻应变片在设计电阻应变式称重传感器之前,首先需要选择合适的电阻应变片。
电阻应变片的选择要考虑到被测体的重量范围、工作环境等因素。
一般来说,应选择具有良好性能和稳定特性的商用电阻应变片。
3.2 结构设计电阻应变式称重传感器的结构设计也是非常重要的一步。
结构设计应该考虑到传感器的安装、力传递和防护等方面。
通常情况下,传感器的结构应该具有足够的刚性和稳定性,以确保传感器在测量过程中的准确性和可靠性。
3.3 电路设计电路设计是电阻应变式称重传感器设计中的重要一环。
电路设计的目标是将电阻应变片的阻值变化转换为与被测体重量成比例的电信号输出。
一般来说,电路设计应包括放大电路、滤波电路和数据处理电路等部分。
3.4 模拟计算在进行电阻应变式称重传感器的设计过程中,模拟计算也是非常重要的一环。
通过模拟计算可以评估传感器的性能以及各种参数的影响。
应变式称重传感器的设计与计算
应变式称重传感器的设计与计算[美国]理查德·富兰克林此篇文章的形成是基于对称重传感器设计者能有所帮助。
它深入分析推导出一些公式,这些公式能够计算出位于称重传感器上的某些尺寸大小,并提供所需要的输出。
此篇文章还介绍了各种误差来源及设计建议。
粘贴式电阻应变计广泛应用于当今高精度测力与称重传感器的制造中。
本篇文章为帮助称重传感器设计者计算出称重传感器尺寸大小,从而为获得唯一需要的输出作了充分的准备。
设计者既可以运用有限元分析法经计算机程序(如果可能)来确定称重传感器所需要的尺寸,或运用本文所提供的公式来计算此尺寸。
应力公式选自一部非常好的书——应力与应变公式(见参考文献[1])。
除了公式汇编,本文还讨论了误差的可能来源及设计建议,有关误差来源的信息主要是基于作者的经验。
文中所描述的相关称重传感器没有作专利调查,在考虑把所讨论的设计用于产品的生产或推向市场前,有必要作一下调查。
通过某些假设得出的这些计算公式,另外还有电阻应变计的特性、应力形式、材料特征以及机械加工的偏差都会导致计算结果的一定误差。
在批量制造称重传感器前,应制造几个样机进行组装、测试和标定。
在某些工业中,如航天工业也许只需要一次性的称重传感器,为决定其非线性、重复性和滞后等误差,在使用前对其进行标定是十分重要的。
当计算机被应用于数据处理时,非线性、零点漂移及灵敏度变化,是很容易修正的。
如果称重传感器在使用时要经历强烈的温度变化和外部附加载荷的影响,我们应进行试验并测量出这些影响量所造成的误差。
如果某部分结构(如接头、销子、压杆)用来测量或是被用作称重传感器时,标定和测试就尤为重要了。
称重传感器设计包括许多方面,这里对其制造生产不予讨论,例如,需要对电阻应变计安装技术知识的全面了解,一些电阻应变计制造商提供技术资料的同时,还应提供电阻应变计安装的分类等。
有关称重传感器设计的附加内容见参考文献[2](a)和[2](b)。
这份小册子及计算机程序比较完整,可以从制造商那里获得。
应变式传感器的计算
et—电桥上应变计的全部有效应变产生的总的应变输出。
4 × E0
变化公式(1),得到总应变: et =
Ei Gf
(2)
通过这两个公式,便可以计算称重传感器的输出灵敏度E0/Ei,如果给出了电桥各桥臂的应变值,
就可以计算出总的应变值et。如果给出了所需要的电桥输出值,要想确定电桥的总应变值et,我们必 须知道每个桥臂的应变值:
e1 —应变计 1 应变的绝对值。
es—应变梁表面应变。 et—电桥的总有效应变。 Ei—电桥的激励电压。 E0—电桥的输出电压。 Em—弹性模量。 f—翼缘厚度。 Gf—应变计灵敏系数。 h—应变梁厚度。 J—横截面的惯性矩。 l—从应变梁中心到应变计中心线的距离。 L—应变梁上两个应变计中心线之间的距离。 μ—泊松比。 M—应变计中心的弯矩。 N—电桥应变放大系数。 p—分载荷。
符号定义 a—结构系数。 A—横截面面积。 A'—中性轴上横截面面积。 A1—中性轴上翼缘面积。 A2—中性轴上腹板面积。 b—应变梁翼缘或矩形截面的宽度。 c—从中性轴到应变梁或翼缘上表面的距离。 d—从中性轴到翼缘下表面的距离。 e—拉伸或压缩应变。 e1、e2、e3、e4—应变计 1、2、3、4 的应变值。
(3)
和
et=N(±e1) 用公式(1)代替et,结果是:
E0 = G f Ne1
Ei
4
(4) (5)
公式(2)变化为:
4 × E0
e1 =
Ei Gf N
(6)
有三种应力被应用于称重传感器的设计中,即拉伸与压缩应力,弯曲应力和剪切应力。 利用拉伸与压缩应力的称重传感器 利用拉伸应力与压缩应力的多为商业称重传感器,它是利用单一载荷产生的应力,代替被称物 体产生的应力。由于有较小的纵剖面设计,能为所给的受力状态提供较大的输出。 在航空工业中,通常用圆柱形弹性体作称重传感器(处于拉伸应力或压缩应力的圆柱)是比较 方便的。最好是将圆柱的两端固定或设计成双球面,若是作不到这一点,就把应变计粘贴在附加弯 矩最小区域,那里的横截面存在有规律的变化,并产生最小的弯曲应力。
电阻应变式称重传感器.
基本原理
电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:
∆R/R =Kε
式中∆R/R为电阻丝电阻相对变化,K 为应变灵敏系数,ε=∆L/L 为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,通过它转换被测部位受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥电路的输出电压反映了相应的受力状态。
全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,应变片初始阻值:R1=R2=R3=R4,其变化值
△R1=△R2=△R3=△R4时,其桥路输出电压U=EK。
图1-1 是压力传感器的测量电路,主要作用是将传感器的输出电压放大。
R8 是电桥的调零电阻,R22是整个放大电路的调零电阻,R9、R21 用来调整运放增益。
图1-1
图所示为本任务中使用的电阻应变式称重传感器对象结构图。
该对象主要由以下三部分构成:称重托盘、传感器-桥臂和底座。
电阻应变式称重传感器通常会有四根线引出来,分别是红、蓝、黄(白)、黑。
应变式传感器电子称的设计
应变式传感器电子称的设计
应变式传感器电子秤的设计主要包含以下几个方面:
1. 应变传感器的选择:应变传感器是电子秤的核心部件,因此需要选择具有高灵敏度、高准确度、稳定性好、可靠性高的应变传感器。
2. 检测器的选择:检测器是用来监测应变传感器的输出信号的,需要选择高精度、高分辨率的检测器。
3. 信号放大器的设计:由于应变传感器的输出信号很小,需要通过信号放大器对信号进行放大,设计合适的放大器可以保证秤的准确性和稳定性。
4. 比例系数计算:比例系数是将传感器输出值转换成真实重量的关键参数,需要根据应变传感器的特性和外部装载情况进行计算。
5. 操作界面设计:应根据使用者的操作习惯,设计简洁易懂、清晰明了的操作界面。
6. 电路设计:电路设计要求电子秤具有高精度、稳定性好、反应速度快等特性,需要对电路进行优化和调整。
7. 程序设计:电子秤的程序需要实现比例系数计算、数据采集、信号处理、显示输出等功能。
总之,应变式传感器电子秤的设计需要考虑多个方面,其中应变传感器的选择和比例系数计算对秤的准确性影响最大,需要重点考虑和优化。
同时,还需要对电路和程序进行深入优化,确保秤的稳定性和操作性。
应变式称重传感器设计(柯力黄青松)
应变式称重传感器设计一、在应变式称重传感器发展使中,有哪些技术创新在结构设计、制造工艺、性能评定上引起过重大变革?如何理解称重传感器的竞争主要是制造技术、制造工艺的竞争、是纳入高新技术开发产品和自主知识产权产品的竞争。
(10分)答:1、1952年英国学者P•Jackson(杰克逊)首先研制出金属箔式电阻应变计。
该应变计以环氧树脂为基底,采用全新的制造工艺,使其各项性能指标均有较大提高,是电阻应变计制造技术的突破性进展。
应用于负荷传感器较大地提高了准确度和稳定度,促进了负荷传感器技术的发展。
2、1954年S•SmYth(史密斯)发现硅和锗半导体效应,其灵敏度系数比金属箔电阻应变计大50陪。
1957年贝尔电话公司在此基础上研制出半导体电阻应变计,并被用于变换量程结构的负荷传感器和柱式负荷传感器的线性补偿,丰富了负荷传感器的品种,提高了制造工艺水平。
3、1973年美国学者Hollistem(霍格斯特姆)为了克服测量拉伸、压缩、弯曲应力的正应力负荷传感器的固有缺点,提出了不利用弹性元件的正应力,而利用与弯矩无关的切应力理论,设计出悬臂梁结构圆截工字形截面切应力负荷传感器,打破了传统的正应力负荷传感器的一统天下。
并以其输出对加载点变化不敏感,同时进行拉、压向加载时灵敏度对称性好,抗侧向和偏心负荷能力强,结构简单紧凑,尺寸小,重量轻等特点形成了一个新的发展潮流。
4、1974年美国学者Stein(斯坦因)提出用数学模型计算分析负荷传感器弹性元件,推动了设计技术的发展。
德国学者Edom(埃多姆)利用有限单元法计算分析弹性元件的应力场,位移场求得最佳化设计,为利用现代科学技术手段计算与设计负荷传感器开辟了新途径。
5、1978年我国航天科研部门首先研制成功并实际应用了拉压两用的S形切应力负荷传感器,取得了较为理想的结果。
6、1975年前后,为满足商业领域零售商品称重计量用电子计价秤的需要,美日等国研制出测量弯曲应力的平行梁结构负荷传感器。
基于应变式传感器的电子称设计
基于应变式传感器的电子称设计一、概述压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。
其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。
当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。
本次课程设计的目的,是使学生掌握传感器的组成和基本原理、基本概念和分析方法、并具备构造、调试和工程设计传感器的能力。
了解protel99软件的使用方法,并利用该软件绘制原理图和刻画电路板。
了解使用面包板进行电路测试的方法。
二、功能需求分析(1) 量程0~1Kg,应变式传感器的结构设计;(2)电路设计,包括应变式传感器的桥式电路、电子称显示模块;(3)电子称的各种精度指标进行测试(非线性误差、重复性、滞后、灵敏度、抗侧向能力大小、温变对灵敏度的影响等指标).三、系统设计其电路构成主要有测量电路,差动放大电路,A/D转换,显示电路。
其中测量电路中最主要的元器件就是电阻应变式传感器。
电阻应变式传感器是传感器中应用最多的一种,广泛应用于电子秤以及各种新型结构的测量装置。
而差动放大电路的作用就是把传感器输出的微弱的模拟信号进行一定倍数的放大,以满足A/D转换器对输入信号电平的要求。
A/D转换的作用是把模拟信号转变成数字信号,进行模数转换,然后把数字信号输送到显示电路中去,最后由显示电路显示出测量结果.原理流程图如下:1全桥测量电路信号放大电路AD信号转换电路数显电路1、测量电路电阻应变式传感器简称电阻应变计.当将电阻应变计用特殊胶剂粘在被测构件的表面上时,则敏感元件将随构件一起变形,其电阻值也随之变化,而电阻的变化与构件的变形保持一定的线性关系,进而通过相应的二次仪表系统即可测得构件的变形。
通过应变计在构件上的不同粘贴方式及电路的不同联接,即可测得重力、变形、扭矩等机械参数本次课程设计采用的是全桥测量电路,电阻应变式传感器就是将被测物理量的变化转换成电阻值的变化,再经相应的测量电路而最后显示或记录被测量值的变化。
应变式传感器的计算
应变式传感器的计算应变式传感器是一类常见的物理量测量传感器,它可以将物体受力或受力变形转化为电信号进行测量。
它广泛应用于诸如机械力测量、压力测量、重量测量等领域。
在本文中,我们将介绍应变式传感器的原理、计算方法以及一些常见应用。
应变式传感器的原理基于应变效应,即物体在受到外力时会发生形变。
当物体受到外力作用时,各点内部会产生应变,应变的大小与物体受力的大小成正比。
应变式传感器的关键部件是金属应变片,其具有很高的应变敏感性。
当外力作用在金属应变片上时,金属应变片会发生应变,并通过电桥电路转化为电信号,从而实现力的测量。
首先是应变计算。
应变可以通过应变计算公式进行计算,公式如下:ε=ΔL/L0其中,ε表示应变,ΔL表示物体在受力或受力变形后的长度变化量,L0表示物体在未受力或未受力变形时的初始长度。
应变计算的结果通常以百分比(%)的形式表示。
应变值越高,说明物体受到的力越大。
其次是力量测量。
力量可以通过应变计算得到的应变和传感器的灵敏度进行计算,公式如下:F=ε*S其中,F表示受力,ε表示应变,S表示传感器的灵敏度。
传感器的灵敏度是指传感器输出信号与输入物理量之间的线性关系。
灵敏度一般以电压输出的变化量与物理量变化量之间的比值表示,单位为mV/V。
具体的灵敏度取决于传感器的设计和制造工艺,在使用传感器时需要根据具体的传感器型号和规格来确定。
除了基本的应变计算和力量测量,应变式传感器还可用于测量压力、重量等物理量。
在压力测量中,应变式传感器可以将受到的压力转换为应变,然后通过计算公式得到压力的值。
在重量测量中,应变式传感器可以测量物体所受到的重力,从而得到物体的重量。
总结起来,应变式传感器的计算方法包括应变计算和力量测量。
通过计算应变和力量,可以实现对物理量的准确测量和控制。
应变式传感器广泛应用于诸如机械力测量、压力测量、重量测量等领域,在工程实践中具有重要的意义。
应变式称重传感器设计综述
应变式称重传感器设计摘要粘贴式电阻应变计广泛应用于当今高精度测力与称重传感器的制造中。
本篇文章为帮助称重传感器设计者计算出称重传感器尺寸大小,从而为获得唯一需要的输出作了充分的准备。
设计者既可以运用有限元分析法经计算机程序(如果可能)来确定称重传感器所需要的尺寸,或运用本文所提供的公式来计算此尺寸。
通过某些假设得出的这些计算公式,另外还有电阻应变计的特性、应力形式、材料特征以及机械加工的偏差都会导致计算结果的一定误差。
在批量制造称重传感器前,应制造几个样机进行组装、测试和标定。
在某些工业中,如航天工业也许只需要一次性的称重传感器,为决定其非线性、重复性和滞后等误差,在使用前对其进行标定是十分重要的。
当计算机被应用于数据处理时,非线性、零点漂移及灵敏度变化,是很容易修正的。
如果称重传感器在使用时要经历强烈的温度变化和外部附加载荷的影响,我们应进行试验并测量出这些影响量所造成的误差。
如果某部分结构(如接头、销子、压杆)用来测量或是被用作称重传感器时,标定和测试就尤为重要了。
称重传感器设计包括许多方面,这里对其制造生产不予讨论,例如,需要对电阻应变计安装技术知识的全面了解,一些电阻应变计制造商提供技术资料的同时,还应提供电阻应变计安装的分类等。
在过去十年中,计算机技术的发展改变了称重传感器的设计、制造与记录方式,例如在电阻应变计被安装后,所有的称重传感器都有一个原始的不平衡(当没有载荷作用时,也有输出信号存在)。
通常零点调整电阻被应用于商业称重传感器,以便消除这种不平衡。
运用计算机程序,零点不平衡数据很容易被除掉。
除了零点调整电阻外,在精密的商业称重传感器中安装了许多电阻,便于补偿诸如零点和灵敏度温度影响。
如果在记录数据的同时,称重传感器的温度也进行了测量,并且当这个称重传感器被标定时,温度造成的误差已被测定,那么就应该运用计算机程序修正最终数据。
商业称重传感器制造商不为计算机提供用于修正原始不平衡或温度影响的数据,因为他们不想局限市场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应变式称重传感器的设计与计算[美国]理查德·富兰克林此篇文章的形成是基于对称重传感器设计者能有所帮助。
它深入分析推导出一些公式,这些公式能够计算出位于称重传感器上的某些尺寸大小,并提供所需要的输出。
此篇文章还介绍了各种误差来源及设计建议。
粘贴式电阻应变计广泛应用于当今高精度测力与称重传感器的制造中。
本篇文章为帮助称重传感器设计者计算出称重传感器尺寸大小,从而为获得唯一需要的输出作了充分的准备。
设计者既可以运用有限元分析法经计算机程序(如果可能)来确定称重传感器所需要的尺寸,或运用本文所提供的公式来计算此尺寸。
应力公式选自一部非常好的书——应力与应变公式(见参考文献[1])。
除了公式汇编,本文还讨论了误差的可能来源及设计建议,有关误差来源的信息主要是基于作者的经验。
文中所描述的相关称重传感器没有作专利调查,在考虑把所讨论的设计用于产品的生产或推向市场前,有必要作一下调查。
通过某些假设得出的这些计算公式,另外还有电阻应变计的特性、应力形式、材料特征以及机械加工的偏差都会导致计算结果的一定误差。
在批量制造称重传感器前,应制造几个样机进行组装、测试和标定。
在某些工业中,如航天工业也许只需要一次性的称重传感器,为决定其非线性、重复性和滞后等误差,在使用前对其进行标定是十分重要的。
当计算机被应用于数据处理时,非线性、零点漂移及灵敏度变化,是很容易修正的。
如果称重传感器在使用时要经历强烈的温度变化和外部附加载荷的影响,我们应进行试验并测量出这些影响量所造成的误差。
如果某部分结构(如接头、销子、压杆)用来测量或是被用作称重传感器时,标定和测试就尤为重要了。
称重传感器设计包括许多方面,这里对其制造生产不予讨论,例如,需要对电阻应变计安装技术知识的全面了解,一些电阻应变计制造商提供技术资料的同时,还应提供电阻应变计安装的分类等。
有关称重传感器设计的附加内容见参考文献[2](a)和[2](b)。
这份小册子及计算机程序比较完整,可以从制造商那里获得。
在过去十年中,计算机技术的发展改变了称重传感器的设计、制造与记录方式,例如在电阻应变计被安装后,所有的称重传感器都有一个原始的不平衡(当没有载荷作用时,也有输出信号存在)。
通常零点调整电阻被应用于商业称重传感器,以便消除这种不平衡。
运用计算机程序,零点不平衡数据很容易被除掉。
除了零点调整电阻外,在精密的商业称重传感器中安装了许多电阻,便于补偿诸如零点和灵敏度温度影响。
如果在记录数据的同时,称重传感器的温度也进行了测量,并且当这个称重传感器被标定时,温度造成的误差已被测定,那么就应该运用计算机程序修正最终数据。
商业称重传感器制造商不为计算机提供用于修正原始不平衡或温度影响的数据,因为他们不想局限市场。
商业称重传感器不安装零点平衡及温度补偿电阻会节省大量资金,尤其是需求量很大时效果更明显。
符号定义a—结构系数。
A—横截面面积。
A'—中性轴上横截面面积。
A1—中性轴上翼缘面积。
A2—中性轴上腹板面积。
b—应变梁翼缘或矩形截面的宽度。
c—从中性轴到应变梁或翼缘上表面的距离。
d—从中性轴到翼缘下表面的距离。
e—拉伸或压缩应变。
e1、e2、e3、e4—应变计1、2、3、4的应变值。
e—应变计1应变的绝对值。
1e s—应变梁表面应变。
e t—电桥的总有效应变。
E i—电桥的激励电压。
E0—电桥的输出电压。
E m—弹性模量。
f—翼缘厚度。
G f—应变计灵敏系数。
h—应变梁厚度。
J—横截面的惯性矩。
l—从应变梁中心到应变计中心线的距离。
L—应变梁上两个应变计中心线之间的距离。
μ—泊松比。
M—应变计中心的弯矩。
N—电桥应变放大系数。
p—分载荷。
P—主载荷。
r—圆柱式弹性体半径。
S—拉伸或压缩应力。
S a—平均应力。
S b—弯曲应力。
S s—剪切应力。
t—中性轴处腹板的厚度。
T—轴的扭矩。
V—剪力。
Z'—从中性轴到A'质心的距离。
Z1—从中性轴到翼缘质心的距离。
Z2——从中性轴到腹板质心的距离。
称重传感器的输出计算图1 称重传感器电路简图图1是一个不含温度补偿电阻的称重传感器电路简图。
四个电阻应变计呈现在惠斯通电桥的桥臂上。
请注意,应变方向相同的两个电阻应变计安装在电桥的相对桥臂上,以保证电桥灵敏度最大。
例如,电阻应变计1和3受拉伸应力,2和4受压缩应力,那么这种安装的结果是当称重传感器承载后,增加了电桥从B点到C 点的最终电压输出。
相反,当称重传感器由于温度影响而改变它的电阻时,由于增加或减少相同的量,电桥的最终输出不会变化。
这种电桥的构造由于温度产生单一的最小输出值,而使称重传感器产生最大输出值。
如图1所示,电桥输出E0与输入E i之比为:40tfieGEE=(1)式中:G f—应变计系数,由应变计制造商提供的非尺寸大小因素。
e t—电桥上应变计的全部有效应变产生的总的应变输出。
变化公式(1),得到总应变:f it G E Ee4⨯=(2)通过这两个公式,便可以计算称重传感器的输出灵敏度E 0/E i ,如果给出了电桥各桥臂的应变值,就可以计算出总的应变值e t 。
如果给出了所需要的电桥输出值,要想确定电桥的总应变值e t ,我们必须知道每个桥臂的应变值:e t =e 1-e 2+e 3-e 4式中:e 1—应变计1的单轴应变值(通常是称重传感器上最大最主要的应变)。
e 2、e 3和e 4—应变计2、3和4上的单轴应变值。
上述公式e t 中的加号和减号是由其在电桥上的位置而决定的。
如果应变计1和3处于拉伸应力,使得电阻增加(或者相对于C 、B 处得到一个正的输出),应变计2和4处于压缩应力,使得电阻减小(或者是得到一个负的输出),则公式为:e t = e 1-(-e 2)+e 3-(-e 4)最后,由于电桥的位置,应变计电阻的变化e t 的公式如下:4321e e e e e t +++=在全部称重传感器设计中,应变计1、2、3和4上的应变值存在着一个固定的关系N (电桥应变放大系数),则上式可以写为:141312111e e e e e e e e e e N t +++==(3)和 e t =N (±e 1)(4)用公式(1)代替e t ,结果是: 410Ne G E E f i = (5) 公式(2)变化为:N G E E e f i 014⨯= (6) 有三种应力被应用于称重传感器的设计中,即拉伸与压缩应力,弯曲应力和剪切应力。
利用拉伸与压缩应力的称重传感器利用拉伸应力与压缩应力的多为商业称重传感器,它是利用单一载荷产生的应力,代替被称物体产生的应力。
由于有较小的纵剖面设计,能为所给的受力状态提供较大的输出。
在航空工业中,通常用圆柱形弹性体作称重传感器(处于拉伸应力或压缩应力的圆柱)是比较方便的。
最好是将圆柱的两端固定或设计成双球面,若是作不到这一点,就把应变计粘贴在附加弯矩最小区域,那里的横截面存在有规律的变化,并产生最小的弯曲应力。
注意:1、应变计1、4和2、3为单轴结构或90°应变花,在圆筒表面相隔180°粘贴。
2、在载荷P 方向,应变计1、3受拉伸,应变计2、4受压缩。
图2 电阻应变计位置图图2是圆柱式称重传感器的一个例子,有关计算圆柱应力S 的传统公式如下:AP S =(7) 式中:P —轴向载荷。
A —圆柱横截面面积(图2的A-A 部分)。
S —拉伸或压缩应力。
既然这是一个单轴向载荷的圆柱,就可应用虎克定律,其应力、应变可用如下公式计算:m E S e =1 (8)S=e 1E m(9)式中:E m —弹性模量。
e 1—1号应变计的轴向应变值。
圆柱式称重传感器电桥的输出应由公式(5)计算。
既然圆柱的尺寸大小是固定的,正如下面例子所给出的:假设一个额定载荷为P=2500Ib (磅)的钢制弹性体,弹性模量E m =10.6×106psi (磅/英寸2),圆筒的外径为2.0英寸,内径为1.75英寸。
通过计算其横截面面积为A=0.736英寸2。
为通过公式(3)和(4)确定N ,e 1=e 3,e 2=e 4=μe 1,式中μ为泊松比。
代入公式(3)和(4),其结果为:N=1+μ+1+μ=2(1+μ)由于钢的μ值为0.32,所以N=2.64。
利用公式(7)计算应力,即3396736.02500===A P S 磅/英寸2。
通过公式(8)确定应变计1的应变值,即 61106.103396⨯==m E S e =320×10-6 通常写为e 1=320microinches/inch (微英寸/英寸)。
如果应变计灵敏系数(由制造商提供)为2.0,代入公式(5)中,计算结果如下:422.041032064.20.260=⨯⨯⨯=-i E E mv/v 这说明如果给电桥施加E i =10V 激励电压,一个2500磅的载荷施加在称重传感器上时,输出的变化应为E 0=4.22mv 。
一个典型的商用称重传感器的额定输出为从2.00到3.00mv/v 或从20到30mv (施加10v 激励电压时),所以0.422mv/v 是一个较低的输出。
若要增大这个例子中圆筒式称重传感器的输出,我们可以作很多工作。
(A )为求所需要的横截面面积A ,假定计算灵敏度为2.0mv/v ,就必须选择能形成这一面积的外径。
可在圆柱弹性体表面粘贴应变计并使其受载进行验证,直到得出满足要求的直径为止。
如果这种方法不行,可以试验下一个方法。
(B )电桥输出电压E 0与输入电压E i 成正比,输入电压受材料,电桥电阻,应变计尺寸等限制(见参考文献[3])。
假定施加在电桥上的最大推荐电压为10V ,要想应用更高的电压,可通过加大电桥电阻的方法,即采用更大电阻的应变计。
图2展示的4个应变计,其中两个应变计在0°位置上(或粘贴一个90°的应变花),另两个应变计在180°位置上(或粘贴第2个应变花)。
应用8个应变计的电桥,在圆柱表面沿0°,90°,180°和270°粘贴90°的应变花,电桥各臂电阻会增大一倍。
这时输入电压可增大,但是由于推荐应用于电桥的电压与电阻的平方根成比例,所以这只能增加输出值的1.41倍。
另外,如果应变计的栅长和栅宽分别由1/8英寸增大到1/4英寸时,应变计的面积便增加了4倍,而输出增加一倍。
现在总输出增加了(1.41×2)或2.82倍,电桥电压会增加到28.2V,输出由11.9mv取代了4.22mv。
柱式称重传感器的误差来源一个泊松电桥(两个应变计测量主应变,另两个应变计测量由于泊松比影响而产生的应变)是固有的非线性电桥。
对于一个灵敏度为2.0mv/v的称重传感器,这种固有的非线性大约为0.10%。