三角形中的几何计算

合集下载

解三角形:三角形中的几何计算

解三角形:三角形中的几何计算

正切定理: tn=sin/cos
余切定理: cot=cos/sin
三角形的边长计算
单击此处添加标题
正弦定理:/sin=b/sinB=c/sinC
单击此处添加标题
余弦定理:^2=b^2+c^2-2bc*cos
单击此处添加标题
海伦公式:p=(+b+c)/2面积S=sqrt[p*(p-)*(p-b)*(p-c)]
确定三角形角度:已知角度、 未知角度
确定三角形面积:已知面积、 未知面积
感谢您的观看
汇报人:
测量面积:利用三角形面积公 式可以测量任意面积
建筑中的应用
建筑设计:利用解三角形原理进行建筑结构设计 测量与放样:利用解三角形原理进行建筑测量和放样 建筑施工:利用解三角形原理进行建筑施工和安装 建筑维护:利用解三角形原理进行建筑维护和修复
航海中的应用
确定船只位置: 通过测量角度 和距离利用解 三角形公式计
三角形的周长计算
公式:周长=边长 1+边长2+边长3
应用:计算三角形 的周长用于判断三 角形的形状和性质
注意事项:边长不 能为负数否则无法 构成三角形
计算示例:已知三 角形的三条边长分 别为3、4、5则周 长=3+4+5=12
三角形的角度计算
正弦定理: /sin=b/sinB=c/si nC
余弦定理:^2=b^2+c^22bc*cos
解三角形时需要确定三角形的 边长和角度
解三角形的步骤包括:确定三 角形的边长、角度和面积
解三角形的注意事项包括:避 免重复计算、避免错误计算、 避免遗漏计算
解三角形的解的唯一性判定: 如果三角形的边长和角度已知 那么解三角形的解是唯一的

三角形中的几何计算

三角形中的几何计算

三角形中的几何计算【知识与技能】1.通常对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些有关三角形的边和角以及三角形的面积等问题.3.深刻理解三角形的知识在实际中的应用,增强应用数学建模意识,培养分析问题和解决实际问题的能力.【重点】应用正、余弦定理解三角形.【难点】灵活应用正、余弦定理及三角恒等变换解决三角形中的几何计算. 【三角形常用面积公式】(对应教材P25页B 组第2小题) (1)S =21; (2)S =21ab sin C =21 =21; (3)S =21·r · (r 为三角形内切圆半径);(4)2a b c S p ++⎫==⎪⎭其中(海伦公式);(5)22sin sin sin sin sin sin b A C c A BS B C=== ; (6)4abcS R=(其中R 为三角形外接圆半径)。

类型1 三角形中的面积计算问题【例1】△ABC 中,已知C =120°,AB =23,AC =2,求△ABC 的面积.解:由正弦定理AB sin C =AC sin B ,∴sin B =AC sin C AB =2sin 120°23=12.因为AB >AC ,所以C >B ,∴B =30°,∴A =30°.所以△ABC 的面积S =12AB ·AC ·sin A =12·23·2·sin 30°= 3.小结:由于三角形的面积公式有三种形式,实际使用时要结合题目的条件灵活运用;如果已知两边及其夹角可以直接求面积,否则先用正、余弦定理求出需要的边或角,再套用公式计算.【练习】(2013·蒙阴高二检测)在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的长为________. 解:由S △ABC =32,得12AB ·AC sin A =32,即12×2AC ×32=32,∴AC =1.由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A =22+12-2×2×1×12=3.∴BC = 3.类型2 三角形中的长度、角度计算问题【例2】如图所示,在四边形ABCD 中,AD ⊥CD,AD =10,AB =14,∠BDA =60°, ∠BCD =135°,求BC 的长.解:在△ABD 中,由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD ·cos ∠ADB ,设BD =x ,则有142=102+x 2-2×10x cos60°,∴x 2-10x -96=0,∴x 1=16,x 2=-6(舍去),∴BD =16。

应用举例:三角形中的几何计算 课件

应用举例:三角形中的几何计算 课件

1.已知三角形ABC的三边长a,b,c,便能计算该三角 形的面积吗?(至少有两种不同思路)
提示:可以,方法一
设p=
1 2
(a+b+c),则三角形的
面积S= pp-ap-bp-c.
方法二 设△ABC外接圆的半径为R,则三角形面积
S=12ቤተ መጻሕፍቲ ባይዱbsinC=12ab2cR=a4bRc;
方法三 可以用余弦定理计算cosC,再得出sinC,利
3.运用三角形面积公式时应注意哪些问题? 提示:(1)利用三角形面积公式解题时,常常要结合三 角函数的有关公式. (2)解与三角形面积有关的问题,常需要利用正弦定 理、余弦定理,解题时要注意发现各元素之间的关系,灵 活运用公式. (3)对于求多边形的面积问题可通过分割转化为几个三 角形面积的和.
类型一 三角形中的面积计算 [例 1] 已知 a,b,c 分别为△ABC 三个内角 A,B,C 的对边,acos C+ 3asin C-b-c=0. (1)求 A; (2)若 a=2,△ABC 的面积为 3,求 b,c.
[解] (1)由acos C+ 3asin C-b-c=0及正弦定理得 sin Acos C+ 3sin Asin C-sin B-sin C=0.
因为B=π-A-C, 所以 3sin Asin C-cos Asin C-sin C=0. 由于sin C≠0,所以sinA-6π=12. 又0<A<π,故A=π3.
2.三角形中的计算、证明问题除正弦定理、余弦定理 外,常见的公式还有:
(1)P=a+b+c(P为三角形的周长); (2)A+B+C=π; (3)S=12aha(ha表示a边上的高); (4)S=12absinC=12acsinB=12bcsinA;
(5)S=a4bRc(可用正弦定理推得); (6)S=2R2sinA·sinB·sinC(R是三角形外接圆半径); (7)S=12r(a+b+c)(r为三角形内切圆半径); (8)S= pp-ap-bp-c [p=12(a+b+c)].

5_2.2三角形中的几何计算

5_2.2三角形中的几何计算

2. △ABC的周长是20,面积是 10 3 ,
A=600,则BC的长度是(
A.5 B.6 C.7
)
D.8
3.在△ABC中,a,b,c分别为角A,B,C所 a b 的取值范围是 对的边,则 . c
4.在△ABC中,AB=2,BC=3,AC= 则△ABC外接圆的半径R=
7 ,
.
5.在△ABC中,求证:
2 2 2
2 R sin A 2 R sin B sin A sin B
2.三角形的面积公式 ① S 1 底 高
1 1 1 ② S ab sin C bc sin A ac sin B 2 2 2
2
③ S
pr
1 [其中p= (a b c ), r为内切圆半径] 2
2.在△ABC中,已知面积 S
则角C=______ 6
2
4 3
3.锐角△ABC中,B=2A,则b/a的取值范 围是( A ) A.(-2,2)
C.( 2 ,2)
B.(0,2)
D.( 2, 3 )
4.若三角形中有一角为600,夹这个角的 两边的边长分别是8和5,则它的内切圆 7 3 . 及外接圆半径分别等于 3和
3
三角形的综合问题 1.在△ABC中,角A,B,C的对边a,b,c,
a b sin( A B ) 证明: 2 c sin C
2 2
注:和差化积
2.已知圆内接四边形ABCD的边长分 别为AB=2,BC=6,CD=DA=4,求四边 形ABCD的面积.
答案: 3 8
3.(09湖北)在锐角△ABC中,a,b,c分别为 角A,B,C所对的边,且 3a 2c sin A
abc ④ S 4R

§2 三角形中的几何计算

§2  三角形中的几何计算

分析: 分析:四边形 OPDC 可以分成 ∆OPC 与 ∆PCD . S ∆OPC 可用
1 表示; OP ⋅ OC sin θ 表示; 而求 ∆PCD 的面积关键在于求出边长 2
PC, 中利用余弦定理即可求出; PC,在 ∆OPC 中利用余弦定理即可求出;至于面积最值 的获得,则可通过三角函数知识解决. 的获得,则可通过三角函数知识解决.
∴ sin(C + 30 ) = 1,∴ C + 30 = 90
,
∴ C = 60 ,故 A = 60
∴△ABC 为正三角形. ∴△ABC 为正三角形.
1.能够正确运用正弦定理、余弦定理等知识、 1.能够正确运用正弦定理、余弦定理等知识、方法解决 能够正确运用正弦定理 一些与测量以及几何计算有关的实际问题. 一些与测量以及几何计算有关的实际问题. 通过对全章知识的总结提高, 2. 通过对全章知识的总结提高,应系统深入地掌握本章 知识及典型问题的解决方法. 知识及典型问题的解决方法.
由正弦定理, 解: 由正弦定理, 2 sin B = sin A + sin C , 得
∵ B = 60 ,∴ A + C = 120 ,
代入上式, ∴ A = 120 − C 代入上式,得
2sin 60 = sin(120 − C ) + sin C
展开,整理得: 展开,整理得:
3 1 sin C + cos C = 1 2 2
余弦定理, 在 ∆ABC 中,由余弦定理,得
BC 2 = AB 2 + AC 2 − 2 AB ⋅ AC cos A ,
即 x 2 = (4 2) 2 + (17 − 2 x ) 2 − 2 × 4 2 × (17 − 2 x ) cos 45 .

三角形中的几何计算

三角形中的几何计算

19
栏目导航
20
【例 3】 在△ABC中,角 A,B,C 的对边分别为 a,b,c,已 知 A=4π,bsin????4π+C????-csin????π4+B????=a.
(1)求证:B-C=π2; (2)若 a= 2,求△ABC 的面积.
思路探究:(1)先由正弦定理化边为角 ,再化简已知三角形即证. (2)结合第(1)问可直接求出 B,C,再利用面积公式求值;也可以 作辅助线导出 b,c 的大小关系 ,再由余弦定理求值 ,最后用面积公 式求解.
栏目导航
8
③ [①中三角形的面积 S=12(a+b+c)r. ②由 S=12bcsin A 可得 sin A= 23, ∴A=60°或 120°. ④在△ABC 中由 sin 2A=sin 2B 得 A=B 或 A+B=π2.]
栏目导航
9
2.在△ABC 中,a=6,B=30°,C=120°,则△ABC 的面积 为________ .
栏目导航
17
解三角形中的综合问题 例 2、如图,在△ABC 中,∠B=π3,AB=8,点 D 在 BC 边上, CD=2,cos∠ADC=17. (1)求 sin∠BAD; (2)求 BD,AC 的长.
栏目导航
[解] (1)在△ADC 中,
因为 cos∠ADC=17,
所以
sin∠ADC=4
7
3 .
栏目导航
7
1.下列说法中正确的是 ________( 填序号). ①已知三角形的三边长为 a,b,c,内切圆的半径为 r,则三角 形的面积 S=(a+b+c)r; ②在△ABC 中,若 c=b=2,S△ABC= 3,则 A=60°; ③在△ABC 中,若 a=6,b=4,C=30°,则 S△ABC的面积是 6; ④在△ABC 中,若 sin 2A=sin 2B,则 A=B.

§2 三角形中的几何计算

§2  三角形中的几何计算

(10 分) (12 分)
栏目,c 间的关系,再利用余弦定理,是本题关键.
栏目 导引
第二章 解三角形
判断(正确的打“√”,错误的打“×”) (1)三角形的面积公式适用于所有的三角形.( √ ) (2)已知三角形两边及其夹角不能求出其面积.( × ) (3)已知三角形的两内角及一边不能求出它的面积.( × )
栏目 导引
第二章 解三角形
在△ABC 中,若 a=7,b=3,c=8,则△ABC 的面积等于
栏目 导引
第二章 解三角形
(2)由 S△ABC=12acsin B= 3,得 ac=4. 又 b2=a2+c2+ac=(a+c)2-ac=16. 所以 a+c=2 5,所以△ABC 的周长为 4+2 5.
栏目 导引
第二章 解三角形
解三角形综合问题的策略 (1)三角形中的综合应用问题常常把正弦定理、余弦定理、三角 形面积公式、三角恒等变形等知识联系在一起,要注意选择合 适的方法、知识进行求解. (2)解三角形常与向量、三角函数及三角恒等变形等知识综合考 查,解答此类题目,首先要正确应用所学知识“翻译”题目条 件,然后要根据题目条件和要求选择正弦或余弦定理求解.
2.在△ABC 中,A,B,C 是三角形的三内角, a,b,c 是三内角对应的三边,已知 b2+c2-a2=bc.若 a= 13, 且△ABC 的面积为 3 3,求 b+c 的值. 解:cos A=b2+2cb2c-a2=2bbcc=12, 又 A 为三角形内角, 所以 A=π3.
栏目 导引
第二章 解三角形

1-2

5
52=

55,sin
A=sin(B+∠ACB)
=sin Bcos ∠ACB+cos Bsin ∠ACB

三角形中角度计算七大几何模型(解析版)-初中数学

三角形中角度计算七大几何模型(解析版)-初中数学

三角形中角度计算七大几何模型【模型18字模型】 1【模型2飞镖模型】 5【模型3A字模型】 11【模型4老鹰抓小鸡模型】 14【模型5双内角平分线模型】 19【模型6双外角平分线模型】 24【模型7内外角平分线模型】 30【模型18字模型】【结论】如图,AC与BD相交于点O,则∠A+∠B=∠C+∠D.【证明】在△ABO中,∠A+∠B+∠AOB=180°.在△CDO中,∠C+∠D+∠COD=180°.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.【练习】1.如图,∠C=∠D=90°,∠A=20°,则∠COA=,∠B=.【分析】依据三角形内角和定理,以及对顶角相等,即可得到∠AOC和∠B的度数.【解答】解:∵∠C=90°,∠A=20°,∴∠AOC=∠BOD=70°,又∵∠D=90°,∴∠B=90°-70°=20°,故答案为:70°,20°.2.如图,五角星的顶点分别是A,B,C,D,E,那么∠A+∠B+∠C+∠D+∠E=.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A+∠D=∠1,∠B+∠E=∠2,再根据三角形的内角和等于180°求解即可.【解答】解:如图,∠A+∠D=∠1,∠B+∠E=∠2,∵∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案为:180°.3.如图,是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为.【分析】首先求出∠F+∠B=∠D+∠EGD,然后证明出∠C+∠A+∠F+∠B-∠D=180°,最后结合题干∠D=28°求出∠A+∠B+∠C+∠F的度数.【解答】解:∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B-∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°.故答案为:208°.4.如图所示,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.【分析】根据三角形内角和定理得到∠B与∠C的和,然后在五星中求得∠1与另外四个角的和,加在一起即可.【解答】解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∵∠1+∠2+∠3=180°,∠1=60°,∴∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∵∠B+∠C=120°,∴∠A+∠B+∠C+∠D+∠E+∠F=240°.故答案为:240°.5.如图,∠A+∠B+∠C+∠D+∠E+∠F等于()A.240°B.300°C.360°D.540°【分析】连接BD,根据三角形内角和定理与对顶角的性质得出∠E+∠F=∠GDB+∠GBD,再根据四边形内角和等于360°,即可得出答案.【解答】解:连接BD,∵∠E+∠F=∠GDB+∠GBD,又∵∠A+∠C+∠CDB+∠DBA=360°,∴∠A+∠B+∠C+∠D+∠GDB+∠GBD=360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°.故选:C .6.如图,△ABC ≌△ADE ,且∠CAD =10°,∠B =∠D =25°,∠EAB =120°,求∠DFB 和∠DGB 的度数.【分析】由△ABC ≌△ADE ,可得∠DAE =∠BAC =12(∠EAB -∠CAD ),根据三角形外角性质可得∠DFB =∠FAB +∠B ,因为∠FAB =∠FAC +∠CAB ,即可求得∠DFB 的度数;根据三角形内角和定理可得∠DGB =∠DFB -∠D ,即可得∠DGB 的度数.【解答】解:∵△ABC ≌△ADE ,∴∠DAE =∠BAC =12(∠EAB -∠CAD )=12(120°-10°)=55°.∴∠DFB =∠FAB +∠B =∠FAC +∠CAB +∠B =10°+55°+25°=90°∠DGB =∠DFB -∠D =90°-25°=65°.综上所述:∠DFB =90°,∠DGB =65°.7.我们把有一组对顶角的两个三角形组成的图形叫做“8”字图形,如图1,AD ,BC 相交于点O ,连接AB ,CD 得到“8”字图形ABDC .(1)如图1,试说明∠A +∠B =∠C +∠D 的理由;(2)如图2,∠ABC 和∠ADC 的平分线相交于点E ,利用(1)中的结论探索∠E 与∠A 、∠C 间的关系;(3)如图3,点E 为CD 延长线上一点,BQ 、DP 分别是∠ABC 、∠ADE 的四等分线,且∠CBQ =14∠ABC ,∠EDP =14∠ADE ,QB 的延长线与DP 交于点P ,请探索∠P 与∠A 、∠C 的关系.【分析】(1)根据三角形的内角和定理,结合对顶角的性质可求解;(2)根据角平分线的定义可得∠ABE =∠CBE ,∠CDE =∠ADE ,结合(1)的结论可得2∠E =∠A +∠C ;(3)运用(1)和(2)的结论即可求得答案.【解答】解:(1)如图1,∵∠AOB +∠A +∠B =∠COD +∠C +∠D =180°,∠AOB =∠COD ,∴∠A +∠B =∠C +∠D .(2)如图2,∵∠ABC 和∠ADC 的平分线相交于点E ,∴∠ABE =∠CBE ,∠CDE =∠ADE ,由(1)可得:∠A +∠ABE =∠E +∠ADE ,∠C +∠CDE =∠E +∠CBE ,∴∠A +∠ABE +∠C +∠CDE =∠E +∠ADE +∠E +∠CBE ,∴2∠E =∠A +∠C .(3)由(1)得:∠A +∠ABC =∠C +∠CDA ,∴14∠A +14∠ABC =14∠C +14∠CDA ,又∠CBQ =14∠ABC ,∠EDP =14∠ADE ,∠CDA =180°-∠ADE ,∴14∠A +∠CBQ =14∠C +45°-∠EDP ,设AD 与PQ 的交点为点O ,则∠CBQ +∠BOD =∠C +∠ADC ,两式相减可得:∠BOD -14∠A =34∠C +∠ADC +∠EDP -45°,∴∠BOD -14∠A =34∠C +180°-∠ADP -45°,∴45°-14∠A =34∠C +180°-∠ADP -∠BOD ,∵∠P =180°-∠BOD -∠ADP ,∴45°-14∠A =34∠C +∠P ,即∠A +3∠C +4∠P =180°.【模型2飞镖模型】【结论】如图所示,已知四边形ABDC ,则∠BDC =∠A +∠B +∠C .【证明】如图,延长BD 交AC 于点E .∠BEC是△ABE的外角,∵∠BEC=∠A+∠B.又∵∠BDC是△CDE的外角,∴∠BDC=∠BEC+∠C=∠A+∠B+∠C.【练习】8.如图,∠BDC=98°,∠C=38°,∠B=23°,则∠A的度数是()A.37°B.61°C.60°D.39°【分析】首先连接AD,并延长到E,根据三角形外角的性质,易得∠BDC=∠1+∠2=∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠BAC,继而求得答案.【解答】解:连接AD,并延长到E,∵∠1=∠B+∠BAD,∠2=∠C+∠CAD,∴∠BDC=∠1+∠2=∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠BAC,∵∠BDC=98°,∠C=38°,∠B=23°,∴∠BAC=∠BDC-∠B-∠C=37°.故选:A.9.如图,已知在△ABC中,∠A=40°,将一块直角三角板放在△ABC上,使三角板的两条直角边分别经过B,C,直角顶点D落在△ABC的内部,则∠ABD+∠ACD=( )度.A.90B.60C.50D.40【分析】根据三角形内角和定理可得∠ABC+∠ACB=180°-∠A=140°,∠DBC+∠DCB=180°-∠DBC= 90°,进而可求出∠ABD+∠ACD的度数.【解答】解:在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°-40°=140°,在△DBC中,∵∠BDC=90°,∴∠ABD+∠ACD=140°-90°=50°;故选:C.10.如图所示,∠A+∠B+∠C+∠D+∠E的结果为()A.90°B.180°C.360°D.无法确定【分析】根据三角形内角与外角的关系可得∠A+∠B=∠2,∠D+∠E=∠1,再根据三角形内角和定理可得∠1+∠2+∠C=180°,进而可得答案.【解答】解:延长BE交AC于F,∵∠A+∠B=∠2,∠D+∠E=∠1,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故选:B.11.在社会实践手工课上,小茗同学设计了如图这样一个零件,如果∠A=52°,∠B=25°,∠C=30°,∠D=35°,∠E=72°,那么∠F=°.【分析】连接AD,连接AE并延长到点M,连接AF并延长到点N,利用三角形的外角性质,可得出∠BEM=∠BAE+∠B,∠DEM=∠DAE+∠ADE,∠DFN=∠DAF+∠ADF,∠CFN=∠CAF+∠C,将其相加后可得出∠BED+∠CFD=∠A+∠B+∠EDF+∠C,再代入各角的度数,即可求出结论.【解答】解:连接AD,连接AE并延长到点M,连接AF并延长到点N,如图所示.∵∠BEM是△ABE的外角,∴∠BEM=∠BAE+∠B.同理可得出:∠DEM=∠DAE+∠ADE,∠DFN=∠DAF+∠ADF,∠CFN=∠CAF+∠C,∴∠BEM+∠DEM+∠DFN+∠CFN=∠BAE+∠B+∠DAE+∠ADE+∠DAF+∠ADF+∠CAF+∠C,即∠BED+∠CFD=∠A+∠B+∠EDF+∠C,∴∠CFD=70°.故答案为:70.12.如图,若∠EOC=115°,则∠A+∠B+∠C+∠D+∠E+∠F=°.【分析】由三角形的外角的性质,可以推出∠EOC=∠E+∠C+∠D,∠BOF=∠A+∠B+∠F,于是可以解决问题.【解答】解:∵∠EOC=∠E+∠EMO,∠EMO=∠C+∠D,∴∠EOC=∠E+∠C+∠D,同理:∠BOF=∠A+∠B+∠F,∵∠BOF=∠EOC,∴∠A+∠B+∠C+∠D+∠E+∠F=2∠EOC=2×115°=230°.故答案为:230.13.如图,已知BE、CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC的度数是.【分析】先根据直角三角形两锐角互余求出∠ABE,再根据三角形外角性质即可求出∠BHC的度数.【解答】解:∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°-50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.故答案为:130°.14.【探究】如图①,求证:∠BOC=∠A+∠B+∠C.【应用】(1)如图②,我们设计了一张帆布折椅,它的侧面如图所示,∠A=28°,∠D=12°,∠ABC=64°,∠BCD=46°,求椅面和椅背的夹角∠AED的度数;(2)如图③,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.【分析】∠BOC=∠BOM+∠COM,其中∠BOM与∠COM分别是△ABO与△AOC的外角.∠ABC+∠BCD+∠CAO=180°.【解答】证明:【探究】连接OA,并延长,如图①所示:∵∠BOM是△ABO的外角,∴∠BAO+∠B=∠BOM.①∵∠COM是△AOC的外角,∴∠CAO+∠C=∠COM.②①+②得,∠BAO+∠B+∠CAO+∠C=∠BOM+∠COM,即∠BOC=∠A+∠B+∠C.【应用】(1)∵∠ABC=64°,∠BCD=46°,∴∠CAO=180°-∠ABC-∠BCD=180°-64°-46°=70°,∴∠BAO=∠CAO=70°.(2)连接AD,如图③所示:由【探究】可知∠F+∠FAD+∠EDA=∠DEF③,∠BAD+∠ADC+∠C=∠ABC④,③+④,得∠F+∠FAD+∠EDA+∠BAD+∠ADC+∠C=∠DEF+∠ABC=130°+100°=230°,∴原图中∠A+∠C+∠D+∠F=230°.15.已知:点D是△ABC所在平面内一点,连接AD、CD.(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明.【分析】(1)如图1,延长AD交BC于E.利用三角形的外角的性质即可解决问题;(2)∠A-∠C=2∠P,利用三角形的外角的性质可以推出:∠A+∠1=∠P+∠3,由∠1=∠2,∠3=∠4,推出∠A+∠2=∠P+∠4,由(1)知∠4=∠2+∠P+∠C,可得∠A+∠2=∠P+∠2+∠P+∠C即可解决问题;【解答】解:(1)如图1,延长AD交BC于E.在△ABE中,∠AEC=∠A+∠B=28°+72°=100°,在△DEC中,∠ADC=∠AEC+∠C=100°+11°=111°.(2)∠A-∠C=2∠P,理由如下:如图2,∠5=∠A+∠1,∠5=∠P+∠3,∴∠A+∠1=∠P+∠3,∵PB平分∠ABC,PD平分∠ADC,∴∠1=∠2,∠3=∠4,∴∠A+∠2=∠P+∠4,由(1)知∠4=∠2+∠P+∠C,∴∠A+∠2=∠P+∠2+∠P+∠C,∴∠A-∠C=2∠P.【模型3A字模型】【结论】如图所示,∠DAE的两边上各有一点B,C,连接BC,则∠DBC+∠ECB=180°+∠A.【证明】∴∠DBC和∠ECB是△ABC的外角,∴∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC.又∵∠A+∠ABC+∠ACB=180°,∴∠DBC+∠ECB=∠A+∠ACB+∠ABC+∠A=180°+∠A.【练习】16.如图,△ABC中,∠A=65°,直线DE交AB于点D,交AC于点E,∠BDE+∠CED的值为()A.180°B.215°C.235°D.245°【分析】根据三角形内角和定理求出∠ADE+∠AED,根据平角的概念计算即可.【解答】解:∵∠A=65°,∴∠ADE+∠AED=180°-65°=115°,∴∠BDE+∠CED=360°-115°=245°,故选:D.17.如图,在△ABC中,E,F分别是AB,AC上的点,∠1+∠2=214°,则∠A的度数为()A.17°B.34°C.68°D.无法确定【分析】根据三角形内角和定理可知,要求∠A只要求出∠AEF+∠AFE的度数或者∠B+∠C的度数即可,结合补角的性质和四边形内角和为360°可以解决问题.【解答】解:方法一:∵∠1+∠AEF=180°,∠2+∠AFE=180°∴∠1+∠AEF+∠2+∠AFE=360°∵∠1+∠2=214°∴∠AEF+∠AFE=360°-214°=146°∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形内角和定理)∴∠A=180°-146°=34°方法二:∵在四边形BCEF中:∠B+∠C+∠1+∠2=360°(四边形内角和为360°)∠1+∠2=214°∴∠B+∠C=360°-214°=146°∵在△ABC中:∠A+∠B+∠C=180°(三角形内角和定理)∴∠A=180°-146°=34°.故选:B.18.如图,在△ABC中,∠C=70°,沿图中虚线截去∠C,则∠1+∠2=()A.140°B.180°C.250°D.360°【分析】根据三角形内角和定理求出∠3+∠4,继而可求出∠1+∠2的值.【解答】解:∵∠C=70°,∴∠3+∠4=180°-70°=110°,∴∠1+∠2=(180°-∠3)+(180°-∠4)=360°-(∠3+∠4)=250°.故选:C.19.在△ABC中,∠B=58°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=61°.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得12∠DAC+12∠ACF=12(∠B+∠B+∠1+∠2)=119°;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=12∠DAC,∠ECA=12∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴1 2∠DAC+12∠ACF=12(∠B+∠2)+12(∠B+∠1)=12(∠B+∠B+∠1+∠2),∵∠B=58°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴1 2∠DAC+12∠ACF=119°∴∠AEC=180°-12∠DAC+12∠ACF=61°.故答案为:61°.20.如图,已知∠A=40°,求∠1+∠2+∠3+∠4的度数.【分析】根据三角形的内角和定理分别求得∠1+∠2,∠3+∠4,就可求得最后结果.【解答】解:∵∠A=40°,∴∠1+∠2=∠3+∠4=180°-∠A=140°.∴∠1+∠2+∠3+∠4=280°.【模型4老鹰抓小鸡模型】【结论】如图所示,∠A+∠BFC=∠DBF+∠FCE.【证明】如图,连接AF.∵∠DBF是△ABF的外角,∠FCE是△ACF的外角,∴∠FCE=∠CAF+∠CFA,∴∠DBF+∠FCE=∠BAF+∠BFA+∠CAF+∠CFA=∠BAC+∠BFC,即∠BAC+∠BFC=∠DBF+∠FCE.【练习】21.如图,将△ABC纸片沿DE折叠,点A的对应点为A′,若∠B=60°,∠C=80°,则∠1+∠2等于()A.40°B.60°C.80°D.140°【分析】证明∠1+∠2=2∠A即可解决问题.【解答】解:连接AA′.∵∠B=60°,∠C=80°,∴∠A=40°∵∠2=∠EA′A+∠EAA′,∠1=∠DA′A+∠DAA′,∠BAC=∠EA′D,∴∠1+∠2=∠EA′A+∠EAA′+∠DA′A+∠DAA′=∠EAD+∠EA′D=2∠EAD=80°,故选:C.22.如图,将△ABC沿着DE翻折,使B点与B′点重合,若∠1+∠2=80°,则∠B的度数为()A.20°B.30°C.40°D.50°【分析】根据翻折的性质可得∠BED=∠B'ED,∠BDE=∠B'DE,结合平角的定义可求解∠BED+∠BDE的度数,再利用三角形的内角和定理可求解∠B的度数.【解答】解:由翻折可知:∠BED=∠B'ED,∠BDE=∠B'DE,∴∠1+2∠BED+∠2+2∠BDE=360°,∵∠1+∠2=80°,∴2∠BED+2∠BDE=280°,∴∠BED+∠BDE=140°,∵∠BED+∠BDE+∠B=180°,∴∠B=180°-140°=40°.故选:C.23.如图,三角形纸片ABC中,∠A=65°,∠B=70°,将∠C沿DE对折,使点C落在△ABC外的点C'处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°【分析】根据三角形内角和定理,易得∠C=180°-65°-70°=45°;设C'D与BC交于点O,易得∠2=∠C+∠DOC,∠DOC=∠1+∠C',则∠2的度数可求.【解答】解:根据题意,易得∠C=∠C'=180°-65°-70°=45°;如图,设C'D与BC交于点O,易得∠2=∠C+∠DOC,∠DOC=∠1+∠C',则∠2=∠C+∠1+∠C'=45°+20°+45°=110°.故选:D.24.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是.【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:∠D=∠C=46°,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+92°,则∠1-∠2=92°.故答案为:92°.25.一个三角形纸片ABC沿DE折叠,使点A落在点A′处.(点A′在△ABC的内部)(1)如图1,若∠A=45°,则∠1+∠2=°.(2)利用图1,探索∠1,∠2与∠A之间的数量关系,并说明理由.(3)如图2,把△ABC折叠后,BA′平分∠ABC,CA′平分∠ACB,若∠1+∠2=108°,利用(2)中得出的结论求∠BA′C的度数.【分析】(1)根据翻折变换的性质用∠1、∠2表示出∠ADE和∠AED,再根据三角形的内角和定理列式整理即可得解;根据翻折变换的性质用∠1、∠2表示出∠ADE和∠AED,再根据三角形的内角和定理列式整理即可得解;(2)由∠BDE、∠CED是△ADE的两个外角知∠BDE=∠A+∠AED、∠CED=∠A+∠ADE,据此得∠BDE+∠CED=∠A+∠AED+∠A+∠ADE,继而可得答案;(3)由(1)∠1+∠2=2∠A知∠A=54°,根据BA'平分∠ABC,CA'平分∠ACB知∠A'BC+∠A'CB=12(∠ABC+∠ACB)=90°-12∠A.利用∠BA'C=180°-(∠A'BC+∠A'CB)可得答案.【解答】解:(1)∵点A沿DE折叠落在点A′的位置,∴∠ADE=∠A′DE,∠AED=∠A′ED,∴∠ADE=12(180°-∠1),∠AED=12(180°-∠2),在△ADE中,∠A+∠ADE+∠AED=180°,∴45°+12(180°-∠1)+12(180°-∠2)=180°,整理得∠1+∠2=90°;故答案为:90;(2)∠1+∠2=2∠A,理由:∵∠BDE、∠CED是△ADE的两个外角,∴∠BDE=∠A+∠AED,∠CED=∠A+∠ADE,∴∠BDE+∠CED=∠A+∠AED+∠A+∠ADE,∴∠1+∠ADE+∠2+∠AED=2∠A+∠AED+∠ADE,即∠1+∠2=2∠A;(3)由(1)∠1+∠2=2∠A,得2∠A=108°,∴∠A=54°,∵BA'平分∠ABC,CA'平分∠ACB,∴∠A'BC+∠A'CB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A.∴∠BA'C=180°-(∠A'BC+∠A'CB),=180°-90°-12∠A=90°+12∠A=90°+12×54°=117°.26.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,求∠1+∠2的度数;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(3)若点P运动到边AB的延长线上,如图(3)所示,直接写出∠α、∠1、∠2之间关系为:.(不需说明理由).【分析】(1)如图1中,连接PC.由∠1=∠DCP+∠DPC,∠2=∠PCE+∠CPE,推出∠1+∠2=(∠DCP+∠PCE)+(∠DPC+∠EPC),由∠DCP+∠PCE=90°,∠DPC+∠EPC=α=50°,即可推出∠1+∠2=(2)结论:∠1+∠2=90°+α.证明方法类似(1).(3)由∠1=∠C+∠COD,∠COD=∠2+α,由∠C=90°,即可推出∠1=90°+∠2+α.【解答】解:(1)如图1中,连接PC.∵∠1=∠DCP+∠DPC,∠2=∠PCE+∠CPE,∴∠1+∠2=(∠DCP+∠PCE)+(∠DPC+∠EPC),∵∠DCP+∠PCE=90°,∠DPC+∠EPC=α=50°,∴∠1+∠2=140°.(2)结论:∠1+∠2=90°+α.理由如图2中,连接PC.∵∠1=∠DCP+∠DPC,∠2=∠PCE+∠CPE,∴∠1+∠2=(∠DCP+∠PCE)+(∠DPC+∠EPC),∵∠DCP+∠PCE=90°,∠DPC+∠EPC=α∴∠1+∠2=90°+α.(3)如图3中,∵∠1=∠C+∠COD,∠COD=∠2+α,∵∠C=90°,∴∠1=90°+∠2+α.故答案为∠1=90°+∠2+α.【模型5双内角平分线模型】【结论】如图所示,在△ABC中,BD,CD分别是∠ABC和∠ACB的平分线,则∠BDC=90°+12∠A.【证明】设∠ABD=∠DBC=c,∠ACD=∠BCD=y.由△ABC的内角和为180°,得∠A+2x+2y=180°.①由△BDC的内角和为180°,得∠BDC+x+y=180°.②由②得x+y=180°-∠BDC.③把③代入①,得∠A+2(180°-∠BDC)=180°,即2∠BDC=180°+∠A,即∠BDC=90°+12∠A.【练习】27.如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点O,∠BAC=80°,则∠BOC的度数是()A.130°B.120°C.100°D.90°【分析】先求出∠ABC+∠ACB的度数,根据平分线的定义得出∠OBC=12∠ABC,∠OCB=12∠ACB,求出∠OBC+∠OCB的度数,根据三角形内角和定理求出∠BOC即可.【解答】解:∵∠A=80°,∴∠ABC+∠ACB=180°-∠A=100°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠A)=50°,∴∠BOC=180°-(∠OBC+∠OCB)=180°-50°=130°,故选:A.28.如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∠AOB=125°,则∠CAD的度数为()A.20°B.30°C.45°D.50°【分析】根据∠AOB=125°和三角形内角和,可以得到∠OAB+∠OBA的度数,再根据AE,BF分别是∠BAC和∠ABC的角平分线,即可得到∠BAC+∠ABC的度数,进而得到∠C的度数,再根据AD是BC边上的高,即可得到∠CAD的度数.【解答】解:∵∠AOB=125°,∴∠OAB+∠OBA=55°,∵AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∴∠BAC+∠ABC=2(∠OAB+∠OBA)=2×55°=110°,∴∠C=70°,∵AD是BC边上的高,∴∠ADC=90°,∴∠CAD=20°,即∠CAD的度数是20°.故选:A.29.如图,AD,CE都是△ABC的角平分线,且交于点O,∠DAC=30°,∠ECA=35°,则∠ABO的度数为.【分析】根据角平分线的定义可得出∠BAC=60°、∠ACB=70°,结合三角形内角和可得出∠ABC=50°,由三角形的三条角平分线交于一点,可得出BO平分∠ABC,进而可得出∠ABO的度数,此题得解.【解答】解:∵AD平分∠BAC,CE平分∠ACB,∠DAC=30°,∠ECA=35°,∴∠BAC=2∠DAC=60°,∠ACB=2∠ECA=70°,∴∠ABC=180°-∠BAC-∠ACB=50°.∵△ABC的三条角平分线交于一点,∴BO平分∠ABC,∠ABC=25°.∴∠ABO=12故答案为:25°.30.已知在△ABC中,∠A=100°,点D在△ABC的内部连接BD,CD,且∠ABD=∠CBD,∠ACD=∠BCD.(1)如图1,求∠BDC的度数;(2)如图2,延长BD交AC于点E,延长CD交AB于点F,若∠AED-∠AFD=12°,求∠ACF的度数.【分析】(1)依据三角形内角和定理以及角平分线的定义,即可得到∠BDC的度数;(2)设∠ACF=α,则∠BCD=α,∠CBD=40°-α=∠ABD,依据三角形外角性质,即可得到∠AED=∠ACF+∠CDF,∠AFD=∠ABE+∠BDF,再根据∠AED-∠AFD=12°,即可得到α的值.【解答】解:(1)∵∠A=100°,∴∠ABC+∠ACB=80°,又∵∠ABD=∠CBD,∠ACD=∠BCD,∴∠CBD=12∠ABC,∠BCD=12∠ACB,∴∠CBD+∠BCD=12(∠ABC+∠ACB)=40°,∴∠BDC=180°-40°=140°;(2)设∠ACF=α,则∠BCD=α,∵∠BDC=140°,∴∠CBD=40°-α=∠ABD,∵∠AED是△DCE的外角,∠AFD是△BDF的外角,∴∠AED=∠ACF+∠CDF,∠AFD=∠ABE+∠BDF,∴∠AED-∠AFD=∠ACF+∠CDF-∠ABE-∠BDE=α-(40°-α)=12°,解得α=26°,∴∠ACF=26°.31.已知任意一个三角形的三个内角的和是180°.如图1,在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O(1)若∠A=70°,求∠BOC的度数;(2)若∠A=a,求∠BOC的度数;(3)如图2,若BO、CO分别是∠ABC、∠ACB的三等分线,也就是∠OBC=13∠ABC,∠OCB= 13∠ACB,∠A=a,求∠BOC的度数.三角形内角和定理求出即可;(2)根据三角形的内角和定理求出∠ABC+∠ACB,根据角平分线的定义求出∠OBC+∠OCB,根据三角形内角和定理求出即可;(3)根据三角形的内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,根据三角形内角和定理求出即可.【解答】解:(1)∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=55°,∴∠BOC=180°-(∠OBC+∠OCB)=125°;(2)∵∠A=α,∴∠ABC+∠ACB=180°-∠A=180°-α,∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-α)=90°-12α,∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°-12α=90°+12α;(3)∵∠A=α,∴∠ABC+∠ACB=180°-∠A=180°-α,∵∠OBC=13∠ABC,∠OCB=13∠ACB,∴∠OBC+∠OCB=13(∠ABC+∠ACB)=13(180°-α)=60°-13α,∴∠BOC=180°-(∠OBC+∠OCB)=180°-60°-13α=120°+13α.32.已知△ABC中,∠A=60°,在图(1)中∠ABC、∠ACB的角平分线交于点O1,则计算可得∠BO1C=120°:(1)在图(2)中,设∠ABC、∠ACB的两条三等分角线分别对应交于O1、O2,得到∠BO2C.则∠BO2C=;(2)在图(3)中请你猜想,当∠ABC、∠ACB同时n等分时,(n-1)条等分角线分别对应交于O1、O2⋯O n-1,则∠BO n-1C=(用含n的代数式表示).【分析】(1)根据三角形的内角和等于180°得出(∠ABC+∠ACB),再由∠ABC、∠ACB的两条三等分角线分别对应交于O1、O2得出∠O2BC+∠O2CB的度数,进而可得出结论;(2)根据n等分的定义求出∠O n-1BC+∠O n-1CB的度数,在△O n-1BC中,利用三角形内角和定理列式整理即可得解.【解答】解:(1)在△ABC中,∠A=60°,∴∠ABC+∠ACB=180°-60°=120°,∵O2B和O2C分别是∠B、∠C的三等分线,∴∠O2BC+∠O2CB=23(∠ABC+∠ACB)=23(180°-60°)=120°-23×60°;∴∠BO2C=180°-(∠O2BC+∠O2CB)=180°-120°-23×60°=60°+23×60°=100°.故答案为:100°;(2)∵O n-1B和O n-1C分别是∠B、∠C的n等分线,∴∠O n-1BC+∠O n-1CB=n-1n (∠ABC+∠ACB)=n-1n(180°-60°)=(n-1)×180°n-(n-1)×60°n;∴∠BO n-1C=180°-(∠O n-1BC+∠O n-1CB)=180°-(n-1)×180°n-(n-1)×60°n=(n-1)×60°n+180°n=60°+120°n.故答案为:60°+120°n.【模型6双外角平分线模型】【结论】如图所示,∠ABC的外角平分线BD和CD相交于点D,则∠BDC=90°-12∠A.【证明】设∠EBD=∠CBD=x,∠BCD=∠FCD=y.由△BCD的内角和为180°,得x+y+∠BDC=180°.①易得2x+2y=180°+∠A.①由①得x+y=180°-∠BDC.③把③代人②,得2(180°-∠BDC)=180°+∠A,即2∠BDC=180°-∠A,即∠BDC=90°-12∠A.【练习】33.如图,∠ABD和∠ACE是△ABC的外角,BF和CG分别是∠ABD和∠ACE的角平分线,延长FB和GC交于点H.设∠A=α,∠H=β,则α与β之间的数量关系为.【分析】根据角平分线定义设∠ABF=∠DBF=θ,∠ACG=∠ECG=φ,则∠ABD=2θ,∠CBH=∠DBF=θ,∠ACE=2φ,∠BCH=∠ECG=φ,∠ABC=180°-2θ,∠ACB=180°-2φ,在△ABC中由三角形内角和定理得α+180°-2θ+180°-2φ=180°,即θ+φ=90°+1/2α,在Rt△HBC中由三角形内角和定理得β+θ+φ=180°,据此可得α与β之间的数量关系.【解答】解:∵BF和CG分别是∠ABD和∠ACE的角平分线,∴设∠ABF=∠DBF=θ,∠ACG=∠ECG=φ,则∠ABD=2θ,∠CBH=∠DBF=θ,∠ACE=2φ,∠BCH=∠ECG=φ,∴∠ABC=180°-∠ABD=180°-2θ,∠ACB=180°-∠ACE=180°-2φ,在△ABC中,∠A+∠ABC+∠ACB=180°,∴α+180°-2θ+180°-2φ=180°,整理得:θ+φ=90°+12α,在Rt△HBC中,∠H+∠CBH+∠BCH=180°,∴β+θ+φ=180°,∴β+90°+12α=180°,整理得:α+2β=180°.∴α与β之间的数量关系为α+2β=180°.故答案为:α+2β=180°.34.在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,当∠Q=65°,则∠BPC=°.【分析】由三角形内角和定理得∠QBC+∠QCB=180°-∠Q=115°,∠ABC+∠ACB=180°-∠A,∠BPC= 180°-(∠PBC+∠PBC),根据角平分线定义得∠EBC=2∠QBC,∠FCB=2∠QCB,则∠EBC+∠FCB=2 (∠QBC+∠QCB)=230°,再根据三角形外角性质得∠EBC=∠A+∠ACB,∠FCB=∠A+∠ABC,则∠EBC+∠FCB=2∠A+∠ABC+∠ACB=180°+∠A,由此得180°+∠A=230°,则∠A=50°,然后根据∠ABC的平分线与∠ACB的平分线相交于点P.得∠PBC+∠PBC=12(∠ABC+∠ACB)=65°,据此可得∠BPC的度数.【解答】解:如图所示:∵∠Q=65°,∴∠QBC+∠QCB=180°-∠Q=115°,∠ABC+∠ACB=180°-∠A,∠BPC=180°-(∠PBC+∠PBC),∴∠EBC =2∠QBC ,∠FCB =2∠QCB ,∴∠EBC +∠FCB =2(∠QBC +∠QCB )=2×115°=230°,由三角形外角性质得:∠EBC =∠A +∠ACB ,∠FCB =∠A +∠ABC ,∴∠EBC +∠FCB =2∠A +∠ABC +∠ACB =2∠A +180°-∠A =180°+∠A ,∴180°+∠A =230°,∴∠A =50°,∵∠ABC 的平分线与∠ACB 的平分线相交于点P ,∴∠PBC =12∠ABC ,∠PBC =12∠ACB ,∴∠PBC +∠PBC =12(∠ABC +∠ACB )=12(180°-∠A )=90°-12∠A =65°,∴∠BPC =180°-(∠PBC +∠PBC )=180°-65°=115°.故答案为:115.35.如图,点F ,C 在射线AN 上,点B ,E 在射线AM 上,∠MEF 与∠NFE 的角平分线交于点P ,∠MBC 与∠NCB 的角平分线交于点G .若∠G =67°,那么∠P =°.【分析】根据三角形内角和定理和角平分线的性质分别用角A 表示出∠G 和∠P 即可.【解答】解:∵∠MEF 与∠NFE 的角平分线交于点P ,∴∠G =180°-12∠NCB +12∠MBC =180°-12(180°-∠ACB )+12(180°-∠ABC ) =180°-12[180°+180°-(∠ACB +∠ABC )]=180°-12(180°+∠A )=90°-∠A =67°,∵∠MBC 与∠NCB 的角平分线交于点G ,∴∠P =180°-12∠NFE +12∠MEF =180°-12(180°-∠AFE )+12(180°-∠AEF ) =180°-12[180°+180°-(∠AEF +∠AFE )]=180°-12(180°+∠A )=90°-∠A =67°,故答案为:67°.36.如图,△ABC 中,∠CAB =n °,∠CBA =m °,点D 是△ABC 三个内角平分线交点,延长DB 到点G ,∠FCB 与∠CBG 的平分线将于点E ,若BE ∥AC ,则45n +35m =.义得∠CBE=12∠CBG=90°-14m°,然后根据BE∥AC得∠FCB+∠CBE=180°,进而得4n+3m=360°,由此可得45n+35m值.【解答】解:∵∠CAB=n°,∠CBA=m°,∴∠FCB=∠CAB+∠CBA=n°+m°,∵BD平分∠CBA,∴∠CBD=12∠CBA=12m°,∴∠CBG=180°-∠CBD=180°-12m°,∵BG平分∠CBG,∴∠CBE=12∠CBG=90°-14m°,∵BE∥AC,∴∠FCB+∠CBE=180°,即n°+m°+90°-14m°=180°,整理得:4n+3m=360°,∴4 5n+35m=15(4n+3m)=15×360°=72°.故答案为:72°.37.如图,在△ABC中,∠ABC=∠ACB,BD是△ABC内角∠ABC的平分线,AD是△ABC外角∠EAC的平分线,CD是△ABC外角∠ACF的平分线,以下结论不正确的是()A.AD∥BCB.∠ACB=2∠ADBC.∠ADC=90°-∠ABDD.BD平分∠ADC【分析】A、由AD平分△ABC的外角∠EAC,求出∠EAD=∠DAC,由三角形外角得∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,得出∠EAD=∠ABC,利用同位角相等两直线平行得出结论正确.B、由AD∥BC,得出∠ADB=∠DBC,再由BD平分∠ABC,所以∠ABD=∠DBC,∠ABC=2∠ADB,得出结论∠ACB=2∠ADB,C、在△ADC中,∠ADC+∠CAD+∠ACD=180°,利用角的关系得∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,得出结论∠ADC=90°-∠ABD;D、用排除法可得结论.【解答】解:A、∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故A 正确.B 、由(1)可知AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠ABC =2∠ADB ,∵∠ABC =∠ACB ,∴∠ACB =2∠ADB ,故B 正确.C 、在△ADC 中,∠ADC +∠CAD +∠ACD =180°,∵CD 平分△ABC 的外角∠ACF ,∴∠ACD =∠DCF ,∵AD ∥BC ,∴∠ADC =∠DCF ,∠ADB =∠DBC ,∠CAD =∠ACB∴∠ACD =∠ADC ,∠CAD =∠ACB =∠ABC =2∠ABD ,∴∠ADC +∠CAD +∠ACD =∠ADC +2∠ABD +∠ADC =2∠ADC +2∠ABD =180°,∴∠ADC +∠ABD =90°∴∠ADC =90°-∠ABD ,故C 正确;不妨设,D 选项正确,可以推出AB =AD =AC ,推出∠ACB =∠ACD =∠DCF =60°,显然不可能,故D 错误.故选:D .38.如图,AD ,BD 分别是△ABC 的外角∠BAF ,∠ABG 的角平分线;AE ,BE 分别是∠DAB ,∠ABD 的角平分线;AM ,BN 分别是∠FAD ,∠DBG 的角平分线.当∠C =( )时,AM ∥BN .A.45°B.50°C.60°D.120°【分析】由角平分线的定义可求得∠MAB =34∠FAB ,∠NBA =34∠ABG ,再由三角形的外角性质可得∠FAB =∠C +∠ABC ,∠ABG =∠C +∠BAC ,再由三角形的内角和得∠ABC +∠BAC =180°-∠C ,要使AM ∥BN ,则可使∠MAB +∠NBA =180°,从而可求解.【解答】解:∵AD 是△ABC 的外角∠BAF 的角平分线;AM 是∠FAD 的角平分线,∴∠DAB =∠FAD =12∠FAB ,∠MAD =12∠FAD ,∴∠MAB =34∠FAB ,同理可得:∠NBA =34∠ABG ,∵∠FAB =∠C +∠ABC ,∠ABG =∠C +∠BAC ,∠ABC +∠BAC =180°-∠C ,∴∠FAB +∠ABG =2∠C +∠ABC +∠BAC ,∴∠MAB +∠NBA=34∠FAB +34∠ABG =34(∠FAB +∠ABG )=34(2∠C +∠ABC +∠BAC )=34(2∠C +180°-∠C )=34(180°+∠C ),要使AM ∥BN ,则∠MAB +∠NBA =180°,即34(180°+∠C )=180°,解得:∠C =60°.故选:C .【模型7内外角平分线模型】【结论】如图所示,∠ABC 的内角平分线BD 和外角平分线CD 相交于点D ,则∠D =12∠A .【证明】设∠ABD =∠DBC =x ,∠ACD =∠ECD =y .由外角定理得2y =∠A +2x ,①y =∠D +x .②把②代人①,得2(∠D +x )=xA +2x ,即∠D =12∠A .【练习】39.如图,在△ABC 中,∠ABC =∠ACB ,∠ABC 的角平分线和∠ACB 的外角平分线交于点P ;若∠BPC =25°,则∠ACB 的度数为()A.25°B.50°C.65°D.70°【分析】由角平分线的定义可得∠PBC =12∠ABC ,∠ACP =∠DCP =12∠ACD ,从而可求得∠DCP =90°-12∠ACB ,再利用三角形的外角性质得∠DCP =∠PBC +∠P ,从而可求解.【解答】解:如图,∵∠ABC 的角平分线和∠ACB 的外角平分线交于点P ,∴∠PBC =12∠ABC ,∠ACP =∠DCP =12∠ACD ,∵∠ABC =∠ACB ,∴∠PBC =12∠ACB ,∠DCP =12(180°-∠ACB )=90°-12∠ACB ,∵∠DCP 是△BCP 的外角,∠BPC =25°,∴∠BPC +∠PBC =∠DCP ,25°+12∠ACB =90°-12∠ACB ,解得:∠ACB =65°.故选:C .40.如图,BE 是△ABC 中∠ABC 的平分线,CE 是∠ACB 的外角的平分线,如果∠ABC =40°,∠ACD =100°,则∠A +∠E =()A.40°B.90°C.100°D.140°【分析】由BE 平分∠ABC ,CE 平分∠ACD ,利用角平分线的定义,可求出∠CBE ,∠DCE 的度数,由∠ACD 是△ABC 的外角,∠DCE 是△BCE 的外角,利用三角形的外角性质,可求出∠A ,∠E 的度数,再将其代入∠A +∠E 中,即可求出结论.【解答】解:∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠CBE =12∠ABC =12×40°=20°,∠DCE =12∠ACD =12×100°=50°.∵∠ACD 是△ABC 的外角,∠DCE 是△BCE 的外角,∴∠A =∠ACD -∠ABC =100°-40°=60°,∠E =∠DCE -∠CBE =50°-20°=30°,∴∠A +∠E =60°+30°=90°.故选:B .41.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 相交于点P ,若∠BPC =40°,则∠CAP 的度数为()A.40°B.50°C.55°D.60°【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案【解答】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD -∠BPC =(x -40)°,∴∠BAC =∠ACD -∠ABC =2x °-(x °-40°)-(x °-40°)=80°,∴∠CAF =100°,在Rt △PFA 和Rt △PMA 中,P A =P A PM =PF ,∴Rt △PFA ≌Rt △PMA (HL ),∴∠FAP =∠P AC =50°.故选:B .42.如图,在△ABC 中,∠ACB <∠A ,BD 是角平分线,BE 是边AC 上的高,延长BD 与外角∠ACF 的平分线交于点G .以下四个结论:①∠ABD =∠CBD ;②∠ABE +∠A =90°;③∠G =12∠A ;④∠A -∠ACB =2∠EBD .其中结论正确的个数是()31A.1B.2C.3D.4【分析】由三角形的角平分线的含义可判断①,由三角形的高的含义可判断②,证明∠ABC =2∠GBC ,∠ACF =2∠GCF ,∠ACF =∠ABC +∠A ,∠GCF =∠GBC +∠G ,从而可得出∠G =12∠A ,可判断③,由2∠EBD =2(90°-∠ADB ),∠ADB =∠DBC +∠ACB ,可得2∠EBD =180°-(2∠DBC +2∠ACB )=∠A -∠ACB ,从而可判断④,从而可得答案.【解答】解:∵BD 是△ABC 角平分线,∴∠ABD =∠CBD ,故①正确;∵BE 是边AC 上的高,∴∠ABE +∠A =90°,故②正确;∵BD 是△ABC 角平分线,CG 平分∠ACF ,∴∠ABC =2∠GBC ,∠ACF =2∠GCF ,∵∠ACF =∠ABC +∠A ,∠GCF =∠GBC +∠G ,∴2∠GCF =2∠GBC +∠A ,∴∠G =12∠A ,故③正确;∵2∠DBE =2(90°-∠ADB ),∠ADB =∠DBC +∠ACB ,∴2∠DBE =180°-(2∠DBC +2∠ACB )=180°-(∠ABC +2∠ACB )=180°-(180°-∠A +∠ACB )=∠A -∠ACB ,故④正确;∴正确的有①②③④共4个,故选:D .43.如图,在△ABC 中,∠A =60°,∠ABC 和外角∠ACD 的平分线交于点A 1,∠A 1BC 和∠A 1CD 的平分线交于点A 2,⋯,∠A 2023BC 和∠A 2023CD 的平分线交于点A 2024,则∠A 2024的度数为()A.3022024 °B.3022023 °C.6022024 °D.6022023°【分析】根据角平分线定义设∠ABA 1=∠CBA 1=α,∠ACA 1=∠DCA 1=β,则∠ABC =2α,∠ACD =2β,由三角形外角性质得∠DCA 1=∠CBA 1+∠A 1,∠ACD =∠ABC +∠A ,即β=α+∠A 1,2β=2a +∠A ,由此得∠A 1=12∠A ,同理:∠A 2=12∠A 1=122∠A ,∠A 3=12∠A 2=123∠A ,⋯,以此类推,∠A n =12n ∠A ,据此可得当∠A =60°时,∠A 2024的度数.【解答】解:∠ABC 和外角∠ACD 的平分线交于点A 1,∴设∠ABA 1=∠CBA 1=α,∠ACA 1=∠DCA 1=β,∴∠ABC =2α,∠ACD =2β,由三角形外角性质得:∠DCA 1=∠CBA 1+∠A 1,∠ACD =∠ABC +∠A ,即β=α+∠A 1,2β=2a +∠A ,∴2(α+∠A 1)=2α+∠A ,32∴∠A 1=12∠A ,同理:∠A 2=12∠A 1=122∠A ,∠A 3=12∠A 2=123∠A ,⋯,以此类推,∠A n =12n ∠A ,∴当∠A =60°时,∠A 2024=122024∠A =6022024°.故选:C .44.如图,在△ABC 中,∠A =∠ABC ,BH 是∠ABC 的平分线,BD 和CD 是△ABC 两个外角的平分线,D 、C 、H 三点在一条直线上,下列结论中:①DB ⊥BH ;②∠D =90°-12∠A ;③DH ∥AB ;④∠H =12∠A ;⑤∠CBD =∠D ,其中正确的结论有()A.2个 B.3个 C.4个 D.5个【分析】①根据BH 、BD 是∠ABC 与∠CBE 的平分线,可得∠ABC =2∠CBH ,∠CBE =2∠CBD ,再由邻补角的性质,可得①正确;②根据BD 和CD 是△ABC 两个外角的平分线,可得∠D =180°-12(180°-∠ABC )-12(180°-∠ACB ),可得②正确;③根据∠A =∠ABC ,可得∠BCF =∠A +∠ABC =2∠ABC ,可得∠BCD =∠ABC ,可得③正确;④根据∠D =90°-12∠A ,∠DBH =90°,可得④正确;⑤根据∠ABC +∠CBE =180°,BD 平分∠CBE ,可得∠CBD =90°-12∠ABC ,再由∠A =∠ABC ,可得∠CBD =90°-12∠A ,可得⑤正确,即可求解.【解答】解:①∵BH 、BD 是∠ABC 与∠CBE 的平分线,∴∠ABC =2∠CBH ,∠CBE =2∠CBD ,∵∠ABC +∠CBE =180°,∴∠CBH +∠CBD =90°,即∠DBH =90°,∴DB ⊥BH ,故①正确;②∵BD 和CD 是△ABC 两个外角的平分线,∴∠D =180°-∠DBC -∠DCB=180°-12∠EBC -12∠BCF =180°-12(180°-∠ABC )-12(180°-∠ACB )=12(∠ABC +∠ACB )=12(180°-∠A )=90°-12∠A ,故②正确;③∵∠A=∠ABC,∴∠BCF=∠A+∠ABC=2∠ABC,∵CD是∠BCF的平分线,∴∠BCD=12∠BCF=∠ABC,∴DH∥AB,故③正确;④∵∠D=90°-12∠A,∠DBH=90°,∴∠H=90°-∠D=12∠A,故④正确;⑤∵∠ABC+∠CBE=180°,BD平分∠CBE,∴∠CBD=12∠CBE=12(180°-∠ABC)=90°-12∠ABC,∵∠A=∠ABC,∴∠CBD=90°-12∠A,∵∠D=90°-12∠A,∴∠CBD=∠D,故⑤正确.综上所述,正确的有5个.故选:D.45.在苏科版数学教材七下第43页我们曾经研究过内外角平分线夹角问题.小聪在研究完上面的问题后,对这类问题进行了深入的研究,他的研究过程如下:(1)【问题再现】如图(1),若∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合),BC是∠ABN的平分线,BC的反向延长线交∠BAO的平分线于点D.则∠D=°;(2)【问题推广】①如图(2),若∠MON=α(0°<α<180°),(1)中的其余条件不变,则∠D=°(用含α的代数式表示);②如图(2),∠MON=α(0°<α<180°),点A、B分别在OM、ON上运动(不与点O重合),点E是OB上一动点,BC是∠ABN的平分线,BC的反向延长线与射线AE交于点D,若∠D=12α,则AE是△OAB的角平分线吗?请说明理由;(3)【拓展提升】如图(3),若∠NBC=1m∠ABN,∠DAO=1m∠BAO,试探索∠D和∠O的数量关系(用含m的代数式33。

高中数学:三角形中的几何计算含解析

高中数学:三角形中的几何计算含解析

1
S△ABC=2absin
3 3
C= 2 .
二、三角形中的有关计算
6.如图,在△ABC 中,B=45°,D 是 BC 边上一点,AD=10,AC=14,DC=6,则 AB 的长为( )
A.5
C.5 3
B.5 2
D.5 6
答案:D
2 + 2 - 2
解析:在△ACD 中,cos C=
2··
高中数学
课时训练 4 三角形中的几何计算
一、与三角形面积有关的计算
1.在△ABC 中,c= 3,b=1,B=30°,则△ABC 的面积为
( )
3
A. 2
C.
3
或 3
3或
B. 2
3
4
3
或4
D. 3
答案:B
解析:由余弦定理得:b2=a2+c2-2accos B,
即 1=a2+3-2 3acos 30°,
2 7
B= 7 .

+ )
(
3
故 sin C=sin(A+B)=sin
高中数学
高中数学


=sin Bcos3+cos Bsin3
=
3 21
14 .
1
所以△ABC 的面积为2absin C=
3 3
2 .
10.△ABC 的三个内角 A,B,C 所对应的边分别为 a,b,c,asin Asin B+bcos2A= 2a.
答案:a>b


=


解析:由正弦定理得,
.
∴sin
3
6 1
120°
=

三角形中的几何计算-高中数学知识点讲解

三角形中的几何计算-高中数学知识点讲解

三角形中的几何计算1.三角形中的几何计算【知识点的知识】1、几何中的长度计算:(1)利用正弦定理和三角形内角和定理可以求解:①已知两角和任一边,求其他两边和一角.②已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角).(2)利用余弦定理可以求解:①解三角形;②判断三角形的形状;③实现边角之间的转化.包括:a、已知三边,求三个角;b、已知两边和夹角,求第三边和其他两角.2、与面积有关的问题:(1)三角形常用面积公式①S =12a•h a(h a 表示边a 上的高);②S =12ab sin C =12ac sin B =12bc sin A.③S =12r(a+b+c)(r 为内切圆半径).(2)面积问题的解法:①公式法:三角形、平行四边形、矩形等特殊图形,可用相应面积公式解决.②割补法:若是求一般多边形的面积,可采用作辅助线的办法,通过分割或补形把不是三角形的几何图形分割成不重叠的几个三角形,再由三角形的面积公式求解.3、几何计算最值问题:(1)常见的求函数值域的求法:1/ 2①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解,用y 来表示x,再由x 的取值范围,通过解不等式,得出y 的取值范围;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥单调性法:函数为单调函数,可根据函数的单调性求值域.⑦数形结合:根据函数的几何图形,利用数型结合的方法来求值域.(2)正弦,余弦,正切函数值在三角形内角范围内的变化情况:①当角度在 0°~90°间变化时,正弦值随着角度的增大而增大,且 0≤sinα≤1;余弦值随着角度的增大而减小,且 0≤cosα≤1;正切值随着角度的增大而增大,tanα>0.②当角度在 90°~180°间变化时,正弦值随着角度的增大而减小,且 0≤sinα≤1;余弦值随着角度的增大而减小,且﹣1≤cosα≤0;正切值随着角度的增大而增大,tanα<0.2/ 2。

1.2.2三角形当中的几何计算(1)

1.2.2三角形当中的几何计算(1)
sin(A B) sin C; cos(A B) cosC; tan(A B) tan C;
(5)sin(A-B)=0⇔A=B;
(6)在ABC中,A B a b sin A sin B.
(7)sin sin 或 若、是三角形的内角则有
(8)在△ABC 中,三边分别为 a,b,c(a<b<c) (1)若 a2+b2>c2,则△ABC 为锐角三角形. (2)若 a2+b2=c2,则△ABC 为直角三角形. (3)若 a2+b2<c2,则△ABC 为钝角三角形.
.
[解]
证法一(角化边):左边=ab- -ccab22+ +22abcccc22- -ba22
=a2-2ca2+b2·b2-2cb2+a2=ba=22RR
sin sin
Hale Waihona Puke B A=ssiinn
B A
=右边,
其中 R 为△A BC 外接圆的半径.
∴ab- -ccccooss
B A
=ssiinn
B A
.
[针对训练 2]
人教版高中数学必修5第一章《解三角形》
1.2.2三角形中的几何计算
学习目标
1.记住正弦定理、三角形的面积公式及余弦定理和 其推论; 2.会用正弦定理、余弦定理、三角形的面积公式, 余弦定理的推论计算三角形中的一些量
难点:探寻解题的思路与方法.
知识点梳理 1.正弦定理
a b c 2R(其中R为ABC外接圆的半径) sin A sinB sinC
【典例 3】
(3)∵|A→B+A→C |= 6, ∴|A→B|2+|A→C |2+2A→B·A→C =6, 即 c2+b2+2=6,∴c2+b2=4. ∵c2=2,∴b2=2,b= 2. ∴△A B C 为正三角形. ∴S△ABC= 43×( 2)2= 23.

三角形几何计算

三角形几何计算

2010---2011学年高二数学必修5导学案 第二章 解三角形 04 使用时间2010。

09.18 编制人: 张春鑫 张德付 审核人: 领导签字: 班级: 小组 : 姓名: 组内评价: 教师评价:DCBA一、三角形中的几何计算【使用说明】1、阅读教材54---55页内容,完成导学案的问题、例题及深化提高。

2、认真完成,规范书写;不懂的地方用笔标记,课上小组合作探讨时重点解决。

【重点难点】重点:利用正弦定理、余弦定理进行三角形边与角的互化 难点:正弦定理与余弦定理及其综合应用 学习目标:1、 掌握正弦定理、余弦定理,并能初步运用它们解斜三角形;2、 能够运用正弦定理、余弦定理进行三角形边与角的互化3、 培养和提高分析、解决问题的能力 二、问题导学1、 正弦定理的内容:__________________,变形为_________,三角形正弦面积公式 为__________________2、 余弦定理的内容是__________________________________,变形为__________________________________3、 应用正余弦定理解三角形的问题分为四类① 已知三角形的两角和其中一边的对角 ② 已知三角形的两角和任一边 ③ 已知两边和它们的夹角 ④ 已知三角形的三边。

4、 三角形形状的判断,主要有以下两条途径(1)利用正弦、余弦定理把已知条件转化为边边关系,通过分解因式、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正弦、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这个结论 三、合作探究 例1、(1)在ABC ∆中,若4:2:3sin :sin :sin =C B A ,则C cos 的值为( )A 、41B 、41-C 、32D 、32-(2)在ABC ∆中,已知,cos ,sin B a c C a b ==则ABC ∆一定是( )A 、等边三角形B 、等腰直角三角形C 、等腰三角形D 、直角三角形(3)在ABC ∆中,A=600,b=1, ABC s ∆=3,则Aasin 的值为 ( ) A 、8138 B 、3326 C 、3392 D 、72 例2、如图,在ABC ∆中,,2,3===BC AC AB B 的平分线交过点A 且与BC 平行的线与D 。

§2 三角形中的几何计算

§2 三角形中的几何计算

一.学习目标:1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;2. 掌握三角形的面积公式的简单推导和应用;3. 能证明三角形中的简单的恒等式.二、问题导学:思考并回答下列问题:复习1:在∆ABC 中(1)若1,120a b B ===︒,则A 等于 . (2)若a =2b =,150C =︒,则c = _____.复习2:在ABC ∆中,a =2b =,150C =︒,则高BD = ,三角形面积= .知识提炼:在三角形ABC 中,常用的性质或结论: 1. 三角形面积公式:S =12ab sin C = = = = . 2..____________________⇔⇔>b a 3.._____________::=c b a 4.任意两边之和_____第三边,任意两边之差_____第三边。

5..______)cos(_______)sin(=+⇔=+⇔-=+B A B A C B A π6..________sin sin ⇒=B A 7..______________2sin 2sin ⇒=B A 8.._______________,222则若c b a <+三、合作探究例1.在∆ABC 中,B =45︒,AC=10,552cos =C , (1) 求B C 边的长;(2) 记AB 的中点为D ,求中线CD 的长。

拓展.在∆ABC 中,B=45︒,D 是BC 边上的一点,AD=10,AC=14,CD=6,求AB 的长。

小结:例2:在∆ABC 中,已知C B bc B c C b cos cos 2sin sin 2222=+,试判断三角形的形状。

ABD C拓展:在∆ABC 中,a,b,c 分别是A,B,C 的对边,且满足(a+b+c )(a+bb-c )=3ab, 2cosAsinB=sinC,试判断∆ABC 的形状。

小结:例3:在∆ABC 中,a,b,c 分别是A,B,C 的对边,已知.3,2π==C c(1)若∆ABC 的面积为,3求a,b 的值; (2)若sinB=2sinA ,求∆ABC 的面积。

三角形 几何公式

三角形 几何公式

三角形几何公式三角形是几何学中最基本的图形之一,它由三条边和三个角组成。

在研究三角形的性质和计算其各种参数时,我们可以运用一些几何公式,这些公式可以帮助我们更好地理解和解决与三角形相关的问题。

一、周长公式三角形的周长可以通过三条边的长度之和来计算。

假设三角形的边长分别为a、b、c,则周长P等于三边之和,即P = a + b + c。

二、面积公式三角形的面积是计算三角形大小的重要指标之一。

根据三角形的不同特点,我们可以使用不同的公式来计算面积。

1. 根据两条边和夹角计算面积如果我们已知三角形的两条边a、b和它们夹角C,可以使用以下公式计算面积S:S = 1/2 * a * b * sinC其中,sinC表示夹角C的正弦值。

2. 根据三边长度计算面积如果我们已知三角形的三条边a、b、c的长度,可以使用海伦公式来计算面积S:S = √[s(s-a)(s-b)(s-c)]其中,s是三角形半周长,计算公式为s = (a + b + c)/2。

三、正弦定理正弦定理是三角形中非常重要的一个定理,它可以帮助我们计算三角形的边长和角度。

正弦定理表达式如下:a/sinA = b/sinB = c/sinC其中,a、b、c分别表示三角形的边长,A、B、C表示对应的角度。

四、余弦定理余弦定理也是三角形中常用的一个定理,它可以帮助我们计算三角形的边长和角度。

余弦定理表达式如下:c^2 = a^2 + b^2 - 2abcosC其中,a、b、c分别表示三角形的边长,C表示对应的角度。

五、正切定理正切定理是三角形中另一个重要的定理,它可以帮助我们计算三角形的边长和角度。

正切定理表达式如下:tanC = (a + b)/(a - b)其中,a、b分别表示三角形的两边,C表示对应的角度。

六、勾股定理勾股定理是三角形中最为著名的一个定理,它可以帮助我们判断三条边长是否构成一个直角三角形。

勾股定理表达式如下:c^2 = a^2 + b^2其中,a、b、c分别表示三角形的两条边和斜边的长度。

§2 三角形中的几何计算

§2  三角形中的几何计算

公式的 作用有 哪些?
可解的三 角形
①已知两角和任一边, ①已知三边,求各角. 求另一角和其他两条边. ②已知两边和它们的夹 ②已知两边和其中一边 角,求第三边和其他两 的对角,求另一边和其 个角. 他两角.
1.能够正确运用正弦定理、余弦定理等知识、方法 解决一些与测量以及几何计算有关的实际问题.(重 点、难点) 2.通过对全章知识的总结提高,系统深入地掌握本 章知识及典型问题的解决方法.
答:该机器人最快可在线段 AD 上离点 A 7 dm 的点 C 处截住足球.
【变式练习】
在△ABC 中,已知 AB=4 6,cos∠ABC= 6,AC 边上的中
3
6
线 BD= 5,求 sin A 的值.
【解题关键】要求 sin A 的值,需根据“D 是 AC 的中点”这个条件,取 BC 的
中点 E,连结 DE,则 DE∥AB,所以∠ABE+∠BED=180°,根据题目中的条件
求解.
【变式练习】
已知⊙O 的半径为 R,在它的内接三角形 ABC 中,有 2R(sin2A -sin2C)=( 2a-b)sin B 成立,求△ABC 面积 S 的最大值.
【解题关键】 先根据已知式子由正弦定理把角转化为边的关 系,然后运用余弦定理整理求出△ABC面积S的最大值.
解析: 由已知条件得
3
2
(1)求 b 的值.
(2)求 ABC 的面积.
【解析】(1)由题意知: sin A
1 cos2 A
3 3

sin B sin(A ) sin Acos cos Asin cos A
2
2
2
6 3

由正弦定理得:

三角形中的几何计算

三角形中的几何计算

海伦公式:S=sqrt[s(s-)(s-b)(s-c)]其中s是半周长、b、c是三角形 的三边长 向量法:利用向量的叉乘和点积计算面积
积分法:利用积分计算面积
解析法:利用解析几何的方法计算面积
公式:周长=边长1+边长2+边长3 应用:适用于任意三角形 计算步骤:测量各边长然后相加 注意事项:测量误差可能导致计算结果不准确
反三角函数:用于计算三角形的角度和边 长
,
01 单 击 添 加 目 录 项 标 题 02 三 角 形 的 基 本 性 质 03 三 角 形 的 几 何 计 算 方 法 04 三 角 形 的 几 何 定 理 05 三 角 形 的 几 何 应 用
任意三角形的内角和为180度 任意三角形的外角和为360度 任意三角形的边长与角度之间存在一定的关系可以通过三角函数进行计算 三角形中的边长与角度的关系可以用于解决实际问题如测量、绘图等
钝角三角形:有一个角为 钝角其他两个角为锐角
锐角三角形:三个角均为 锐角
正三角形:三个角均为 60度三边相等
内角和:三角形内角和为180度 外角和:三角形外角和为360度 内角计算:已知两个内角可以求出第三个内角 外角计算:已知一个外角可以求出其他两个外角
勾股定理:用于计算直角三角形的边长 海伦公式:用于计算任意三角形的边长 余弦定理:用于计算任意三角形的边长 正弦定理:用于计算任意三角形的边长
勾股定理:直角 三角形中两直角 边的平方和等于 斜边的平方
证明方法:多种 如面积法、向量 法等
应用:解决实际 问题如测量、建 筑等
推广:勾股定理 的推广如高斯勾 股定理等
余弦定理是描述 三角形中任意两 边和其夹角的余 弦值的关系
余弦定理公式: c^2 = ^2 + b^2 - 2b*cos(C)

三角形中的几何计算

三角形中的几何计算

例题讲解
同理,在ΔABD中, AB=5, ,∠ADB=45°
因为AD∥BC,所以∠BAD=180 °-∠ABC
解 在ΔABC中, AB=5,AC=9,∠BCA=30°.由正弦定理,得
例2 一次机器人足球比赛中,甲队1号机器人由点A开始作匀速直线运动,到达点B时,发现足球在点D处正以2倍于自己的速度像点A作匀速直线滚动.如图所示,已知 若忽略机器人原地旋转所需的时间,则该机器人最快可在何处截住足球?
在ΔABC中,由余弦定理得
例题讲解
思考 为什么 出现负值
AC
0
2
3
2
2
=
+
-
x
x
b
a
是方程

例3 锐角三角形中,边
的面积.
的长度及
的度数,边
ABC
C的三内角A、B、C成等差,而A、B、C三内角的对边a、b、c成等比.试证明:△ABC为正三角形.
证明:
∵a、b、c成等比,∴b2=ac
∵A、B、C成等差,∴2B=A+C, 又A+B+C=180o,∴B=60o,A+C=120o
又由余弦定理得:

,即
,∴a=c
又∵B=60o,∴△ABC是正三角形.
例题讲解
例5 如图 设A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.
B
A
D
C
δ
γ
β
α
例题讲解
2.2.1 三角形中的几何 计算
单击添加副标题
单击此处添加文本具体内容,简明扼要地阐述你的观点
复习回顾
1.边与角的关系
大边对大角.大角对大边
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解法二:由正弦定理得 a=2RsinA,b=2RsinB, c=2RsinC,代入 coasA=cobsB=cocsC得: csoinsAA=csoinsBB=csoinsCC, 由csoinsAA=csoinsBB得,sinAcosB-sinBcosA=0, ∴sin(A-B)=0.又-π<A-B<π.
定理得 sin∠ABADB=sAinDB,
∴AB=AD·ssinin∠BADB=10sisnin4650°°=10×2
3 2 =5
6.
2
[方法总结 ] 解决这类问题的关键是待求量纳入三角形 中,看已知条件是什么,还缺少哪些量,这些量又在哪个三角 形中,应选择正弦定理还是余弦定理求解.
对于平面图形的计算问题,首先要把所求的量转化到三角 形中,然后选用正弦定理、余弦定理解决.构造三角形时,要 注意使构造三角形含有尽量多个已知量,这样可以简化运算.
3.三角形的两边长为 3cm、5cm,其夹角的余弦是方程 5x2
-7x-6=0 的根,则此三角形的面积是( )
A.6cm2
B.125cm2
C.8cm2
D.10cm2
[答案] A
[解析] 解方程 5x2-7x-6=0,得 x1=-35或 x2=2. 由题意,得三角形的两边长为 3cm、5cm,其夹角的余弦 为-35,∴夹角的正弦为 45, 故三角形的面积 S=12×3×5×45=6cm2.
(4)三角形内的诱导公式 sin(A+B)=___s_in_C___,cos(A+B)=_-__c_o_s_C__,
tan(A+B)=_-__t_a_n_C__,sinA+2 B=__c_o_s_C2___, 1
cosA+2 B=__si_n_C2____,tanA+2 B=__ta_n_C2____; (5)在△ABC 中,tanA+tanB+tanC=__ta_n_A__·t_a_n_B_·_ta_n_C___.
∴A-B=0 得 A=B.同理得 B=C,∴A=B=C.
所以△ABC 为等边三角形.
5.在△ABC中,三个角A、B、C的对边边长分别为a=3, b=4,c=6,则bccosA+accosB+abcosC的值为________.
[答案]
61 2
[解析] bccosA+cacosB+abcosC
=bc·b2+2cb2c-a2+ca
如图,△AOB是等边三角形,∠ AOC=45°,OC=,A, B,C三点共线.
(1)求sin∠BOC的值. (2)求线段BC的长.
[解析] (1)∵△AOB 是等边三角形,∠ AOC=45°, ∴∠BOC=45°+60°.
∴ sin ∠ BOC = sin(45°+ 60°) = sin45°cos60°+ cos45°sin60°

2+ 4
6 .
(2)在△OBC 中,sin∠OCOBC=sin∠BCBOC,
∴BC=sin∠BOC·sin∠OCOBC=
2+ 4
6·sin620°=1+
3 3.
∴线段
BC
的长为
1+
3 3.
利用正、余弦定理求角度问题
在△ABC中,已知 AB=436,cos∠ABC= 66, AC 边上的中线 BD= 5,求 sinA 的值.
2.在△ABC中,已知 B=45°,c=2 2,b=433,则 A 的
值是( )
A.15°
B.75°
C.105°
D.75°或 15°
[答案] D
[解析] ∵sibnB=sincC,
∴sinC=csibnB=2
2sin45°= 43
23.
ቤተ መጻሕፍቲ ባይዱ
3
∵0°<C<180°.∴C=60°或 120°,∴A=75°或 15°.
求出∠ADB,在△ABD中,利用正弦定理求出AB.
[解析] 在△ADC 中,AD=10,AC=14,DC=6, 由余弦定理得 cos∠ADC=AD2+2ADDC·D2-C AC2
=1002+×3160- ×1696 =- 12,∵∠ ADC∈(0,π)
∴∠ADC=120°,∠ADB=60°.
在△ABD 中,AD=10,∠B=45°,∠ADB=60°,由正弦
1.已知△ABC 周长为 20,面积为 10 3,A=60°,则 BC 边
长为( )
A.5
B.6
C.7
D.8
[答案] C [解析] 由题设 a+b+c=20,12bcsin60°=10 3,
∴bc=40.
a2=b2+c2-2bccos60°=(b+c)2-3bc=(20-a)2-120.
∴a=7.
小斜幂并大斜幂减中斜幂,余半之,自乘于以;以小斜幂乘大
斜幂,减上,余四约之,为实;一为从隅,开平方得积.”用
今天的符号来表示即是 S=
1 4[a
2c2-?c2+a22-b2?2],你能用所
学的知识证明这个结论吗?
三角形中的常用结论 (1)A+B+C=__1_8_0_°___; (2)在三角形中大边__大__角____,反之大角对__大__边____; (3)任意两边之和__大__于____第三边,任意两边之差__小__于____ 第三边;
·c2+2ac2a-b2+ab
a2+b2-c2 · 2ab
=a2+b22+c2=32+422+62=621.
课堂典例讲练
三角形中基本量(如长度、高度、角度等)的 计算问题 在△ABC中,已知∠B=45°,D是BC边上的一 点,AD=10,AC=14,DC=6,求AB的长.
[分析] 在△ADC中,利用余弦定理求出∠ ADC,从而可
[分析] 要求 sinA 的值,需根据“ D 是 AC 的中点”这个 条件,取 BC 的中点 E,连结 DE,则 DE∥AB,所以∠ ABE+ ∠BED=180°,根据题目中的条件 cos∠ABC= 66,进而求得 cos∠BED=- 66.又由 DE 綊12AB,得 DE=12×4 36=236.在△
第二章 解三角形
第二章 §2 三角形中的几何计算
1 课前自主预习
2 课堂典例讲练
4 本节思维导图
3 易混易错点睛
5 课时作业
课前自主预习
我国南宋数学家秦九韶 (约 1202~
1261) 独立地发现了求三角形面积的方
法.他把三角形的三边分别叫作大斜、
中斜、小斜 (如图),他在著作《数书九章》卷五中记述:“以
4.若coasA=cobsB=cocsC,则△ABC 的形状为 __________ .
[答案] 等边三角形
[解析] 解法一:由正弦定理得csoinsAA=csoinsBB=csoinsCC, 即 tanA=tanB=tanC, ∵A、B、C∈(0,π),∴A=B=C, ∴△ABC 为等边三角形.
相关文档
最新文档