求二次函数解析式教案
求二次函数的解析式优秀教案
§26.2.3求二次函数解析式(一)一、教学目标知识与技能目标:1.通过对用待定系数法求二次函数表达式的探究,理解二次函数的三种表达式.2. 能根据不同的条件正确选择表达式,利用待定系数法求二次函数的表达式.方法与过程目标:让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法.情感、态度与价值观:通过学习,让学生养成既能自主探索,又能合作探究的良好学习习惯。
从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣.二、教学重难点重点:求二次函数的函数关系式.难点:根据不同的条件正确选择表达式三、教学过程(一)问题引入1.问题:如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶.它的拱宽AB为4 m,拱高CO为0.8 m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?2.揭示课题(二)温故而知新1.二次函数常见的几种表达方式①一般式②顶点式转化顶点坐标③交点式2.求函数表达式的常见方法是什么?用待定系数法求函数表达式的基本步骤有哪些?(三)探究新知例1.已知二次函数的图象过A(0,1),B(2,4),C(3,10)三点,求这个二次函数解析式.变式练习:已知某抛物线是由抛物线y=x2-x-2平移得到的,且该抛物线经过点A(1,1), B(2,4),求其函数关系式.例2.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的表达式.变式练习:已知某抛物线经过点(2, -1)和( - 1,5)两点,且关于直线x= 1对称,求此二次函数的表达式.例 3.已知二次函数的图象与x轴交于(2,0) 、(-1,0)两点,且过点(0,-2),求此二次函数的表达式.(四)能力提升抛物线的图像经过(0,0)与(12,0)两点,且顶点的纵坐标是3,求它的函数表达式.(五)课堂小结在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.(1)特殊的一般式:y=ax2,已知顶点经过原点.(2)一般式: y=ax2+bx+c ,已知三点坐标或三组值.(3)顶点式: y=a(x-h)2+k ,已知顶点坐标或对称轴或最值.(4)交点式:y=a(x-x1)(x-x2),已知抛物线与x轴的两个交点坐标,并经过另外一个点.(六)解决问题如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶.它的拱宽AB为4 m,拱高CO为0.8 m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?(七)巩固练习1.根据下列条件,分别求出对应的二次函数的表达式.①已知抛物线的顶点在原点,且过点(2,8);②已知抛物线的顶点是(-1, -2),且过点(1,10);③已知抛物线过三点:(0, -2), (1,0),(2,3).2.已知抛物线y=ax2+bx+c过三点:(-1,-1)、(0,-2)、(1,1).①求这条抛物线所对应的二次函数表达式;②写出它的开口方向、对称轴和顶点坐标;这个函数有最大值还是最小值?这个值是多少?3.将抛物线向下平移1个单位,再向右平移4个单位,求所得抛物线开口方向、对称轴和顶点坐标.4.如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2)有一辆宽2.8米,高3米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?(八)布置作业1. 巩固练习2.书第16页4.5题(九)教学反思3212+--=xxy。
二次函数解析式的求法教案(学生版)
如图,矩形DEGF的四个顶点在正三角形ABC的边上。已知△ABC的边长为2,
记矩形DEGF的面积为S边长EF为x求: (1)S关于x的函数解析式和自变量x的取值范围 (2)当x=1.5时,S的值 (3)当时,x的值
5. 关于点对称 关于点对称后,得到的解析式是
例: 已知二次函数
,求满足下列条件的二次函数的解析
式:
(1)图象关于 轴对称;(2)图象关于 轴对称;(3)图象关于经过
其顶点且平行于 轴的直线对称.
二次函数的图象关于原点O(0,0)对称的图象的解析式是.
若二次函数的图象的对称轴是直线x=1.5,并且图象过A(0,-4)和B(4,0) (1)求此二次函数的解析式; (2)求此二次函数图象关于点A对称的解析式
二次函数解析式求法
1.定义型:
此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x的最高次数为2次.
例1、若 y =( m2+ m )xm2 – 2m -1是二次函数,则m = .
2.三种形式
1. 一般式:(,,为常数,); 2. 顶点式:(,,为常数,); 3. 交点式:(,,是抛物线与轴两交点的横坐标). 4 交点距离式 .( 为其中一个与 轴相交的交点的横坐标, 为两交 点之间的距离.)
例: 二次函数的图象与 轴两交点之间的距离是2,且过(2,1)、 (-1,-8)两点,求此二次函数的解析式.
变式: 已知二次函y=ax +bx+c为x=2时有最大值2,其图象在X轴上截得 的线段长为2,求这个二次函数的解析式。
3识图型
例1、已知二次函数的图像如图所示,求其解析式。(运用三种设法) 变式: 如图1, 抛物线与其中一条的顶点为P,另一条与X轴交于M、N 两点。
用待定系数法求二次函数的解析式教案
用待定系数法求二次函数的解析式教案用待定系数法求二次函数的解析式教案(1)年级九年级课题 26.1 用待定系数法求二次函数的解析式教学媒体多媒体教学目标知识技能会用待定系数法求二次函数解析式.过程方法根据条件恰当设二次函数解析式形式,体会二次函数解析式之间的转换.情感态度体会学习数学知识的价值,提高学生学习的兴趣.教学重点运用待定系数法求二次函数解析式.教学难点根据条件恰当设二次函数解析式形式.教学过程设计教学程序及教学内容一、情境引入已知一次函数图像上的两点的坐标,可以利用待定系数法求出它的解析式,要求二次函数的解析式,需要知道抛物线上几个点的坐标?应该怎样求出二次函数解析式?引出课题:用待定系数法求二次函数的解析式.二、探究新知1.二次函数中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?抛物线经过点(-1,10),(1,4),(2, 7),求出这个二次函数的解析式。
得到:已知抛物线上的三点坐标,可以设函数解析式为,代入后得到一个三元一次方程,解之即可得到的值,从而求出函数解析式,这种解析式叫一般式.2.二次函数中有几个待定系数?需要知道图像上几个点的坐标才能求出来?抛物线的顶点坐标为(1, 2),点(1,-1)也在图像上,能求出它的函数解析式吗?得到:知道抛物线的顶点坐标,可以设函数解析式是先代入顶点坐标(1, 2)得到,再代入点(1,-1)即可得到的值,从而求出函数解析式,这种解析式叫顶点式.用待定系数法求二次函数的解析式教案(2)《用待定系数法求二次函数解析式》教学案例《用待定系数法求二次函数解析式》,“待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,在初中七、八年级学生学习了正比例函数、反比例函数、一次函数时已经初步学会了用待定系数法求函数解析式;.因此这节课的学习既是前面知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用.一.教学目标:1、理解二次函数的三种不同形式,并选择恰当的形式用待定系数法确定其解析式。
待定系数法求二次函数解析式教案
待定系数法求二次函数解析式教案教学目标:1.通过教学,学生能够理解待定系数法求解二次函数解析式的基本步骤;2.通过练习和实例分析,学生能够熟练运用待定系数法求解二次函数解析式;3.通过讨论和思考,学生能够了解待定系数法的局限性和适用范围。
教学准备:1.教师准备PPT、黑板、粉笔等教学用具;2.学生准备笔记本和铅笔。
教学过程:一、导入与激发学生兴趣(10分钟)1.教师简要介绍待定系数法的背景和应用领域,激发学生学习的兴趣。
2.通过展示一些实际问题,引导学生思考如何使用待定系数法求解二次函数解析式。
例如:已知二次函数图像上的两个点,如何求解函数的解析式?二、掌握待定系数法的基本步骤(30分钟)1.教师通过PPT或黑板上的例子,详细讲解待定系数法的基本步骤。
(1)假设二次函数的解析式为y=ax²+bx+c,其中a、b、c为待定系数。
(2)根据已知条件列方程:-若已知函数经过其中一点(x₁,y₁),则代入x₁和y₁,得到一个方程;-若已知函数经过两点(x₁,y₁)和(x₂,y₂),则代入x₁、y₁、x₂和y₂,得到两个方程。
(3)解方程得到a、b、c的值。
(4)根据a、b、c的值,得到二次函数的解析式。
2.教师通过白板上的例题,引导学生参与讨论并尝试解答。
例题一:已知二次函数经过点(1,4)和点(2,9),求二次函数的解析式。
例题二:已知二次函数经过点(1,1)和点(2,4),求二次函数的解析式。
例题三:已知二次函数经过点(1,1)和顶点(-1,3),求二次函数的解析式。
3.教师引导学生总结待定系数法的基本步骤,并答疑解惑。
三、巩固运用待定系数法(30分钟)1.教师通过白板上的例题,引导学生熟练运用待定系数法求解二次函数解析式。
例题一:已知二次函数经过点(2,1)和点(3,4),求二次函数的解析式。
例题二:已知二次函数经过顶点(-1,5)和点(1,1),求二次函数的解析式。
2.学生在笔记本上完成课堂练习,并与同桌交流和比较答案。
九年级数学用待定系数法求二次函数解析式教案
22.1.4用待定系数法求二次函数解析式教案一、教学目标1.熟练的掌握二次函数的y=ax+bx+c的性质,并会根据题目要求求出表达式;2.熟练的掌握二次函数的y=a (x-h)+k的性质,并会根据题目条件求出表达式;223.理解二次函数y=a (x-x1)(x-x2)的性质,并会根据题目求表达式.二、教学重难点重点:根据题目条件求二次函数的表达式.难点:理解两根式的表达式的推导过程.三、知识结构课题名称一般式的求解顶点式的求解两根式的求解重点一般式的基本形式顶点式的表达式两根式的理解难点解三元一次方程组根据题目找出顶点坐标找出图象与x轴的两个交点坐标三种表达式的综合应用综合应用根据题目选择合适的表达式四、名师解析知识点一:y=ax2+bx+c(a,b,c为常数,a≠0)的求解例1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式.巩固练习:已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式.知识点二:y =a (x -h )2+k (a ,h ,k 为常数,a ≠0)的求解例2.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式.巩固练习:已知二次函数的图象的顶点坐标为(1,-3),且经过点P (2,0)点,求二次函数的解析式.知识点三:y =a (x -x 1)(x -x 2)(a ≠0,x 1,x 2是抛物线与x 轴两交点的横坐标)的求解例3.二次函数的图象经过A (-1,0),B (3,0),函数有最小值-8,求该二次函数的解析式.巩固练习:1.已知x =1时,函数有最大值5,且图形经过点(0,-3),则该二次函数的解析式2.抛物线y =2x +bx +c 与x 轴交于(2,0)、(-3,0),则该二次函数的解析式知识点四:三种表达式的综合应用例4.根据下列条件求关于x 的二次函数的解析式(1)当x =3时,y最小值=-1,且图象过(0,7)2(2)图象过点(0,-2)(1,2)且对称轴为直线x =(3)图象经过(0,1)(1,0)(3,0)32(4)当x =1时,y =0;x =0时,y =-2,x =2时,y =3(5)抛物线顶点坐标为(-1,-2)且通过点(1,10)例5.已知抛物线y =x +kx -交点;234k 2(k 为常数,且k >0).证明:此抛物线与x 轴总有两个例6.已知关于x 的二次函数y =x -(2m -1)x +m +3m +4y =x 2-(2m -1)x +m 2+3m22+探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数例7.已知:关于x 的函数y =kx -7x -7的图象与x 轴总有交点,k 的取值范围是()2A 、k >7777B 、k ≥且k ≠0C 、k ≥-D 、k >-且k ≠044442例8.抛物线y =-x +bx +c 的部分图象如图所示,则方程-x +bx +c =0的两根2为.巩固练习:21.关于x 的一元二次方程x -x -n =0没有实数根,则抛物线y =x -x -n 的顶点在()2A .第一象限B.第二象限C.第三象限D.第四象限2.已知关于x 的二次函数y =2x -(3m +1)x +m (m >1).证明y =0的x 的值有两个.2练习:二次函数y =ax +bx +c (a ≠0)的图像如图所示,根据图像解答下列问题:2(1)写出方程ax +bx +c =0的两个根;(2)写出不等式ax +bx +c >0的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范值;(4)若方程ax +bx +c =k 有两个不相等的实数根,求k 的取什范围.22223五、课后练习1.当二次函数图象与x 轴交点的横坐标分别是x 1=-3,x 2=1时,且与y 轴交点为(0,-2),求这个二次函数的解析式22.已知二次函数y =ax +bx +c 的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。
求二次函数解析式教案
求二次函数解析式教案一、教学目标1. 理解二次函数的定义和特点;2. 掌握二次函数的基本形式和一般形式的转化;3. 能够根据给出的关键点或者图形画出二次函数的图像;4. 能够运用二次函数解析式解决实际问题。
二、教学重点1. 理解二次函数的定义和特点;2. 掌握二次函数的基本形式和一般形式的转化;三、教学难点1. 能够根据给出的关键点或者图形画出二次函数的图像;2. 能够运用二次函数解析式解决实际问题。
四、教学方法1. 概念讲解法:通过生动形象的比喻,直观地给学生呈现二次函数的定义和特点;2. 案例分析法:通过实际例子,让学生深入理解二次函数的意义和应用;3. 对比分析法:通过对比常见的图形变化,让学生理解二次函数解析式的各项参数分别对函数的图像有什么影响。
五、教学过程1. 二次函数的定义和特点二次函数是一种形如f(x)=ax²+bx+c的函数。
以下是二次函数的一些特点:(1)图像是一个开口向上或向下的抛物线;(2)抛物线的顶点坐标为(-b/2a, f(-b/2a));(3)当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;(4)当a>0时,函数有最小值f(-b/2a);当a<0时,函数有最大值f(-b/2a);(5)当x轴与函数图像有交点时,方程ax²+bx+c=0的解即为交点的横坐标。
2. 二次函数的基本形式和一般形式的转化二次函数的基本形式为f(x)=x²,即抛物线的顶点在原点,开口向上。
一般形式为f(x)=ax²+bx+c。
将一般形式转化为基本形式的方法:(1)当a不等于1时,可通过配方法将一般形式变为a(x-h)²+k的形式,其中h=-b/2a,k=f(h);(2)当a等于1时,可使用完全平方式将一般形式变为(x+h)²-k的形式,其中h=-b/2,k=f(-h)。
将基本形式转化为一般形式的方法:f(x)=a(x-h)²+k,将其展开得到f(x)=ax²-2ahx+ah²+k,与一般形式f(x)=ax²+bx+c比较可得b=-2ah,c=ah²+k。
人教版数学九年级上册22.1.4.2:用待定系数法求二次函数解析式教案
课题:22.1.4 二次函数y=ax ²+bx+c 的图象和性质第2课时 用待定系数法求二次函数的解析式一、教学目标:知识与能力:掌握二次函数解析式的表达方式。
会用待定系数法求二次函数的解析式。
学会利用二次函数解决实际问题。
过程与方法:能根据二次函数的图像及性质解决生活中的实际问题。
二、教学重难点重点:会用待定系数法求二次函数的解析式难点:会选用适当函数表达式求二次函数的解析式三、媒体运用班班通四、教学设计(一)温故而知新我们知道,在学习一次函数的过程中,已知同一直线上的不同两点的坐标,我们可以求出这条直线的解析式.例如:已知直线y=ax+b 经过点A (1.1),点 B (-1,-1),那么这条直线的解析式为:y=x.(二)探究(1)由几个点的坐标可以确定二次函数?这几个点应满足什么条件?(2)如果一个二次函数的图象经过(-1,10),(1,4),(2,7)三个点,能求出这个二次函数的解析式吗?如果能,求出这个二次函数的解析式.分析:(1)确定一次函数.用待定系数法,求出k,b 的值,从而确定一次函数解析式.类似的,我们可以写出这个二次函数的解析式y=ax 2+bx+c ,求出a,b,c 的值.由不共线三点(三点不在同一直线上)的坐标,列出关于a,b,c 的三元一次方程组就可以求出a,b,c 的值.(2)设所求二次函数为y=ax 2+bx+c 由已知,函数图象经过(-1,10),(1,4),(2,7)三点,得关于a,b,c 的三元一次方程组⎪⎩⎪⎨⎧=++=++=+-.724,4,10c b a c b a c b a解这个方程组,得a=2,b=-3,c=5所求二次函数是y=2x 2-3x+5(三)方法小结用待定系数法确定二次函数解析式的基本方法分四步完成:一设、二代、三解、四还原一设:指先设出二次函数的解析式;二代:指根据题中所给条件,代入二次函数的解析式,得到关于a、b、c的方程组三解:指解此方程或方程组四还原:指将求出的a、b、c还原回原解析式中(四)动手做一做已知当x=-1时,抛物线最高点的纵坐标为4,且与x轴两交点之间的距离为6,求此函数解析式。
教案用待定系数法求二次函数的解析式
(修改)教案——22.1.4.2用待定系数法求二次函数解析式【教学目标】1.会用待定系数法求二次函数的解析式.2.体验由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式.3.理解二次函数三种形式的本质.【教学重难点】用待定系数法求二次函数的解析式.【教学过程】一.旧知回顾1.回忆所学函数的解析式?一次函数的解析式为__________________;反比例函数的解析式为__________________;二次函数的解析式为______________________________________________________;2.回忆求一次函数和反比例函数的解析式的方法是什么?此法的一般步骤是什么?二.合作探究问题1:二次函数图象上三个点(-2,1)(-1,0)(0,-3),会求这个函数的解析式?变式:一个二次函数,当自变量x=-2时,函数值y=1,当自变量x=-1时,函数值y=0,当自变量x=0时,函数值y=-3,会求这个函数的解析式?归纳:已知三点或三组对应值,求二次函数解析式的方法叫做一般式法.问题2:二次函数图象过点(1,-8)和顶点(-2,1),会求这个二次函数的解析式?变式1:抛物线过点(1,-8),且当x=-2时,y有最值为1,试求出这个二次函数的解析式.变式2:抛物线过点(1,-8),(0,-3),且其对称轴是直线x=-2,试求出这个二次函数的解析式.变式3:抛物线过点(-1,0),(-3,0),(1,-8),试求出这个二次函数的解析式.归纳:已知顶点坐标或最值或对称轴,求解析式的方法叫做顶点式法.已知抛物线与x轴的交点坐标,求解析式的方法叫做交点式法.要点诠释:在设函数解析式时,一定要根据题中所给条件选择合适形式:①当已知抛物线上的三点坐标时,可设函数的一般式②当已知抛物线的顶点坐标或对称轴或最值时,可设函数的顶点式已知抛物线与x轴的交点坐标,求解析式的方法叫做交点式法.三.课堂练习1.已知二次函数的图像过点(0, 0),(1,-3),(2,-7)三点,求该二次函数解析式.2.若二次函数的图像有最高点为(1,-6),且经过点(2,-8),求此二次函数的解析式.3.若二次函数的图像与x轴的交点坐标为(1,0)、(2,0)且过点(3,4),求此二次函数的解析式.4.如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C 两点的坐标;(3)求过O,B,C三点的圆的面积.四.课堂小结1.二次函数解析式常见两种表示形式 :(1)一般式:2y ax bx c =++(a 、b 、c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a 、h 、k 为常数,a ≠0);(3)交点式:)0,)()((2121≠--=a x x x x x x a y 是交点横坐标,2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下一设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,))((21x x x x a y --=;二代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);三解:解此方程或方程组,求待定系数;四还:将求出的待定系数还原到解析式中.3.要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式: ① 当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;② 当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③ 已知抛物线与x 轴的交点坐标,可设函数的解析式为))((21x x x x a y --=五.教学反思(1)体会解题过程中的数形结合思想与转化思想.(2)活用待定系数法求二次函数的解析式.。
九年级数学上册《用待定系数法求二次函数的解析式》教案、教学设计
九年级的学生已经在之前的学习中掌握了二次函数的基本概念、图像及其性质,具备了一定的数学基础。在此基础上,学生对于用待定系数法求二次函数解析式这一内容,虽然在理论上有一定的认知,但在实际操作中,可能仍存在以下问题:对于待定系数法的理解不够深入,难以灵活运用;在求解过程中,对于参数的选择和方程组的建立可能存在困难。此外,学生对于将实际问题抽象为二次函数模型的能力有待提高。因此,在教学过程中,应注重引导学生理解待定系数法的原理,通过实例分析,培养学生的建模能力和解决问题的策略。同时,关注学生的个体差异,给予不同层次的学生有针对性的指导,激发学生的学习兴趣,提高学生的数学素养。
4.分层教学,关注个体差异
针对不同层次的学生,设置不同难度的练习题,使每个学生都能在原有基础上得到提高。同时,加强对学困生的辅导,帮助他们克服困难,提高自信心。
5.及时反馈,巩固提高
在教学过程中,及时了解学生的学习情况,对学生的疑问进行解答,巩固所学知识。通过课堂练习、课后作业等形式,检验学生的学习效果,促使学生主动复习,提高知识掌握程度。
(二)讲授新知,500字
1.教师讲解待定系数法的原理,通过具体实例解释如何将实际问题抽象为二次函数模型,并引导学生理解待定系数法的基本步骤。
2.分步骤讲解待定系数法的求解过程,强调参数的选择和方程组的建立,让学生掌握求解二次函数解析式的方法。
3.结合课本例题,教师示范解题过程,强调注意事项,提醒学生关注细节。
6.拓展延伸,激发创新
在学生掌握基础知识的基础上,适当拓展延伸,引导学生探索二次函数在其他领域的应用,如物理、几何等,培养学生的创新意识和综合运用能力。
7.总结反思,提升素养
在教学结束时,组织学生进行总结反思,回顾学习过程,总结用待定系数法求二次函数解析式的关键步骤,提升学生的数学素养。
求二次函数解析式教案
求二次函数解析式教案(总3页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除《求二次函数解析式》教案教学目标:【知识与技能】理解求二次函数解析式的方法及步骤;掌握二次函数解析式的三种形式。
【过程与方法】通过复习归纳,使学生经历结合所给条件灵活选择二次函数解析式的形式,达到简便运算,提高学生分析、探索、归纳、概括的能力。
【情感、态度与价值观】培养学生合作学习的良好意识和大胆探索数学知识的好习惯。
教学重点和难点【重点】会利用待定系数法求二次函数的解析式,灵活运用二次函数解析式的三种形式求其解析式。
【难点】根据所给条件灵活选用二次函数解析式的三种表达式求二次函数解析式。
教学方法:探究合作教学过程:一、复习提问,导入课题:请同学们解答下列问题:1、一次函数的解析式是什么?2、请同学们先做一做下面这道题:已知直线经过点A(2,1)、点B(0,5),求经过A、B两点的一次函数表达式.3、请同学们根据上题的解题步骤回答,如何求一次函数解析式?4、二次函数解析式的三种表达式:(1)一般式:(2)顶点式:(3)交点式:这节课我们将依据求一次函数解析式的方法,来学习如何求二次函数解析式二、知识讲解合作交流例1.已知二次函数的图象过(0,1)、(2,5)、(1,2)三点,求这个二次函数的关系式.分析:1、已知二次函数图像上的三个点的坐标,可以设为2、(0,1)、(2,5)、(1,2)是二次函数图像上的点,所以可以。
方法总结:若已知图象上的三个点,常设一般式例2.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式.分析:1、已知二次函数的顶点坐标,可以设为。
2、(0,1)是二次函数图像上的点,所以可以。
方法总结:若已知二次函数的顶点坐标,常设顶点式较为简便;例3、已知抛物线与x轴交于A(3,0),B(2,0)并经过点M(0,1),求抛物线的解析式?分析:1、已知二次函数与x轴的两个交点坐标,可以设为2、(0,1)是二次函数图像上的点,所以可以。
人教版数学九年级上册22.1.4用待定系数法求二次函数解析式(教案)
3.增强学生的数学建模素养:通过建立二次函数模型并求解,让学生体会数学建模的过程,提高学生运用数学知识解决实际问题的能力。
这些核心素养目标将有助于学生更好地理解和掌握二次函数相关知识,为今后的学习和生活打下坚实基础。
此外,我觉得在课堂总结环节,可以更加注重引导学生对所学知识进行梳理和内化。在今后的教学中,我将尝试用提问的方式,让学生们自己总结待定系数法的步骤和应用,以加深他们对知识点的理解和记忆。
最后,我发现学生们在课后提出的问题具有一定的代表性,这说明他们在课堂上可能并未完全听懂。为了解决这个问题,我计划在课后增加辅导环节,及时解答学生们的疑问,帮助他们巩固所学知识。
人教版数学九年级上册22.1.4用待定系数法求二次函数解析式(教案)
一、教学内容
本节课我们将学习人教版数学九年级上册第22章第1节第4部分:“用待定系数法求二次函数解析式”。教学内容主要包括以下两个方面:
1.掌握待定系数法的基本原理,能够运用该方法求解二次函数的解析式;
2.根据实际问题,建立二次函数模型,并利用待定系数法求解。
(2)重点强调二次函数一般形式中,a、b、c三个系数的实际意义,例如a代表开口方向和大小,b代表对称轴位置,c代表y轴截距等;
(3)通过具体实例,让学生学会将实际问题转化为二次函数模型,并运用待定系数法求解。
2.教学难点
(1)理解并运用待定系数法求解二次函数解析式的过程中,如何正确设定未知数;
(2)在列方程过程中,如何处理和解决含有多个未知数的方程组;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
用待定系数法求二次函数的解析式。优秀教学设计(教案)
用待定系数法求二次函数的解析式。
优秀教学设计(教案)本节课的主要内容是用待定系数法求解二次函数的解析式。
虽然学生的数学基础比较薄弱,但是他们已经对此方法有所认识,并且具备一定的分析问题、解决问题能力和创新意识。
在教学中,我们将重点培养学生的观察、比较、归纳、应用以及猜想、验证的研究过程,使他们掌握类比、转化等研究方法,养成既能自主探索,又能合作探究的良好研究惯。
本节课的研究目标包括:1、能根据已知条件选择合适的二次函数解析式;2、会用待定系数法求二次函数的解析式;3、培养学生的探究能力和合作交流的意识,让他们体会实际生活与数学的密切联系,感受数学带给人们的作用,激发研究热情,培养研究兴趣。
在课程中,我们将使用班班通等媒体进行教学,让学生更加直观地了解待定系数法求解二次函数的过程。
课程将以一个例题为引入,让学生通过观察、推理、计算等方式,掌握求解二次函数解析式的方法。
同时,我们将重点讲解如何选用适当的函数表达式求解二次函数解析式,帮助学生克服难点。
已知抛物线的顶点是(1,2),且经过点(2,3)。
求对应的二次函数解析式y=a(x-1)2+2.根据题意,代入点(2,3)可得a(2-1)2+2=3,解得a=1.因此,所求的二次函数为y=(x-1)2+2.又已知该二次函数的图像经过点(4,-3),当x=3时有最大值4.求出对应的二次函数解析式。
解题思路:根据已知条件,可以列出方程组,解出a、b、c的值,从而得到二次函数解析式。
具体步骤如下:1.代入点A(-1,-1)和点B(3,9),可得两个方程:a(-1)2-4(-1)+c=-1a(3)2-4(3)+c=9化简可得:a-c=39a+c=30解得a=2,c=-1,b=0.2.根据二次函数的顶点公式,可得对称轴的方程为x=1,顶点坐标为(1,1)。
3.综上所述,该二次函数的解析式为y=2x2-1.在教学中,我们应该让学生自己思考、自己探索,让他们发现规律,从而更好地掌握求函数解析式的方法。
二次函数教学设计(精选9篇)
二次函数教学设计(精选9篇)《二次函数》数学教案篇一教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。
重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
难点:会运用二次函数知识解决有关综合问题。
教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。
(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。
(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。
学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。
教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。
当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。
当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。
(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。
二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交次函数教案篇二教学目标熟练地掌握二次函数的最值及其求法。
第2课时 用待定系数法求二次函数的解析式(教案)
第2课时用待定系数法求二次函数的解析式(教案)第2课时用待定系数法求二次函数的解析式教学目标:知识与技能】学会利用已知点的坐标用待定系数法求解二次函数的解析式。
过程与方法】介绍二次函数的三点式、顶点式、交点式,结合已知点,灵活地选择恰当的解析式求法。
情感态度】通过用待定系数法求解二次函数解析式的过程,发现二次函数三点式、顶点式与交点式之间的区别及各自的优点,培养学生思维的灵活性。
教学重点:用待定系数法求二次函数的解析式。
教学难点:选择恰当的解析式求法。
教学内容:一、情境导入,初步认识已知一次函数图象上两个点的坐标,可以用待定系数法求出它的解析式。
那么,要求出一个二次函数的表达式,需要几个独立的条件呢?经过交流,明确确定一个二次函数表达式需要三个独立的条件。
二、思考探究,获取新知求二次函数y=ax²+bx+c的解析式,关键是求出待定系数a、b、c的值。
由已知条件(如二次函数图象上的三个点的坐标)列出关于a、b、c的方程组,并求出a、b、c,就可以写出二次函数表达式。
在利用待定系数法求二次函数解析式时,一般可分以下几种情况:1)顶点在原点,可设为y=ax²;2)对称轴是y轴(或顶点在y轴上),可设为y=ax²+k;3)顶点在x轴上,可设为y=a(x-h)²;4)抛物线过原点,可设为y=ax²+bx;5)已知顶点(h,k)时,可设顶点式为y=a(x-h)²+k;6)已知抛物线上三点时,可设三点式为y=ax²+bx+c;7)已知抛物线与x轴两交点坐标为(x₁,0),(x₂,0)时,可设交点式为y=a(x-x₁)(x-x₂)。
三、典例精析,掌握新知根据下列条件,分别求出对应的二次函数解析式。
方法二:根据题意,我们设所求二次函数的解析式为y=a(x-h)²+k(a≠0),则有h=-1,k=3.代入(2,5)得到5=a×9+3,解得a=2/9.因此,所求二次函数的解析式为y=2/9(x+1)²+3,即y=2/9x²+4/9x+29/9.教学说明:可以让学生先独立思考,完成后交流结果,对出现的问题进行自查并反思,加深印象。
求二次函数解析式教案
求二次函数解析式教案沙栏学校陈子华四:探究问题,典例指津例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式.解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0)依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩⎪⎨⎧-===432c b a∴这个二次函数的解析式为y=2x 2+3x -4。
例2:已知抛物线y=ax 2+bx+c=0(a ≠0的顶点坐标为(4,-1),与轴交于点(0,3) ,求这条抛物线的解析式。
解:依题意,设这个二次函数的解析式为y=a(x -4)2-1 (a ≠0)又抛物线与y 轴交于点)3,0(。
∴a(0-4)2-1=3 ∴a=41 ∴这个二次函数的解析式为y=41(x -4)2-1,即y=41x 2-2x+3。
例3:如图,在直角坐标系中,以点A 为圆心,以为半径的圆与x 轴相交于点B ,C ,与y 轴相交于点D ,E 。
若抛物线为x=h3、交点式:y=a(x -x1)(x -x2) (a ≠0),其中x1,x2抛物线与x 轴的交点的横坐标教师分析破题思路: 由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0) ,投影板书: 教师分析破题思路: 此题给出抛物线的顶点坐标为(4,-1),最好抛开题目给出的y=ax 2 +bx+c ,重新设顶点式y=a(x -h) +k (a ≠0),其中点(h,k)为顶点。
投影板书: 教师分析破题思路:学生思考回答并计算学生思考回答并计算经过B,C两点,求抛物线的解析式,并判断点D是否在抛物线上。
解:由,易得在,。
所以点D的坐标为(0,-3)。
设解析式为,由条件知,抛物线的解析式为即当时,,所以点D(0,-3)在抛物线上。
四:速度训练(6 分钟)1:已知抛物线经过A,B,C三点,当X ≥0 时,其图象如图1所示。
求抛物线的解析式,写出顶点坐标。
求二次函数解析式教案
解:∵抛物线对称轴为x=1,且过(3,0)点
∴抛物线与x轴另一焦点为(-1,0)
∴设函数解析式为y=a(x-3)(x+1)(a≠0)
∵抛物线过点(2,-3)点
∴代入有-3a=-3
∴a=1
∴y= x2-2x-3
其他解法
解(二):∵抛物线对称轴为x=1,
∴抛物线顶点为(1,k)
∴设函数解析式为y=a(x-1)2+k(a≠0)
∴
Step 3:课堂讲练
1.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式.
2.已知一个二次函数当x=8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式.
分析:由x≥2时,y随x的增大而增大这个条件,可知抛物线的对称轴为x=2,知道抛物线的对称轴和最小值,即知道抛物线顶点坐标为(2,-1),应用顶点式最为简单,又知道抛物线上一点(1,1),代入即可求二次函数解析式
解:∵抛物线对称轴为x=2,最大值为-1
∴抛物线顶点为(2,-1)
∴设函数解析式为y=a(x-2)2-1(a≠0)
武汉龙文教育学科辅导讲义
授课对象
Xxx
授课教师
Xxx
授课时间
2012-12-23
授课题目
求二次函数解析式
课 型
复习
使用教具
Ppt
教学目标
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求二次函数解析式教学设计
授课班级九(3)授课教师姜庆槐
授课时间2017 授课题目求二次函数解析式
课型新授使用教具PPT
教学目标
1让学生掌握用一般式,顶点式,交点式来求二次函数解析式
2通过练习培养学生的归纳总结能力
教学重点和难点重点:让学生掌握用一般式,顶点式,交点式来求二次函数解析式,让学生充分理解抛物线的对称性,并灵活应用
难点:根据已知条件选择恰当的形式求二次函数的解析式
学情分析学生在以前已经学过用待定系数法求一次函数的解析式,熟悉求函数解析式的一般流程,即一设,二代,三解,四还原,在
复习此知识的基础上引入此课,由于部分同学对此知识有所遗忘,还有部分同学基础知识掌握不牢靠需要加以复习引导。
教学流程及授课简案
Step 1:复习引入
一如何求一次函数的解析式
即一设,二代,三解,四还原
二二次函数有哪些形式
(1)一般式:y=ax2+bx+c(a≠0)
(2)顶点式:y=a(x-h)2+k(a≠0)顶点坐标(h,k)
直线x=h为对称轴,k为顶点坐标的纵坐标,也是二次函数的最值(3)交点式:y=a(x-
x)(x-2x)(a≠0)(1x,2x是抛物线与x轴交点
1
的横坐标),并不是什么时候都能用交点式,当抛物线与x轴有交点时才行Step 2:例题精讲(见PPT)
Step 3:课堂讲练
1.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式.
2.已知一个二次函数对称轴x=8,函数最大值9,且图象过点(0,1),求这个二次函数的关系式
3.已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式.
Step 4:课堂总结
Step 5:布置作业。