数学人教版七年级上册相交线

合集下载

人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)

人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)

人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)第十二章相交线与平行线相交线与平行线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外)相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角: 1,2,3,4对顶角与邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3)对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°.(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的邻补角:其中1和2有一条公共边,且他们的另一边互为反向延长线。

像1和2这样的角我们称他们互为邻补角;对顶角:1和3有一个公共的顶点O,并且1的两边分别是3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;1和2互补,2和3互补,因为同角的补角相等,所以1=3。

所以对顶角相等二:垂线(1)垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以.如图所示,图中ABCD,垂足为O。

垂直的两条直线共形成四个直角,每个直角都是90。

垂线段最短(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(2)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(3)实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.点到直线的距离(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.三、平行线在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.如图,直线a与直线b平行,记作a//b平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.(3)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(4)平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.四、平行线的性质同位角、内错角同旁内角同一个平面中的三条直线关系三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点(1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决(2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。

人教版七年级数学教案:5.1.1相交线

人教版七年级数学教案:5.1.1相交线
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-在解决实际问题时,学生可能不知道如何将问题简化为相交线的模型,如测量两条墙面的交线是否垂直。
-对于空间想象能力较差的学生,需要提供更多的实物模型或动态图示来帮助他们理解相交线在三维空间中的关系。
在教学过程中,教师应针对上述重点和难点,采用直观演示、实际操作、问题驱动等教学方法,帮助学生深入理解相交线的概念和性质,并能够灵活运用到实际问题中。同时,通过分层作业和个别辅导,针对不同学生的难点进行有针对性的指导,确保每个学生都能透彻理解本节课的核心知识。
人教版七年级数学教案:5.1.1相交线
一、教学内容
本节课选自人教版七年级数学第五章第一节“相交线”,主要包括以下内容:同一平面内两直线的位置关系,特别是相交线的性质和判定方法。具体内容包括:
1.了解同一平面内两直线的位置关系,掌握相交线的定义。
2.掌握垂直的定义,了解垂直线段的性质。
3.学习相交线形成的四个角,特别是邻补角的定义及性质。
4.掌握如何通过画图和计算来判断两条直线是否垂直。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.空间观念:通过探究相交线的性质,使学生能够理解平面内直线的位置关系,培养其空间想象力和直觉思维能力。

七年级数学相交线

七年级数学相交线

返回
测试
一、判断(每题10分) 1、有公共顶点且相等的两个角是对顶角。( × ) 2、两条直线相交,有两组对顶角。 (√ ) 3、两条直线相交所构成的四个角中有一个角是直角, 那么其余的三个角也是直角。 (√ ) 二、选择(每题10分) 1、如右图直线AB、CD交于点O,OE为射线,那么(C ) A。∠AOC和∠BOE是对顶角; B。∠COE和∠AOD是对顶角; D A C。∠BOC和∠AOD是对顶角; O D。∠AOE和∠DOE是对顶角。 2、如右图中直线AB、CD交于O, C E B OE是∠BOC的平分线且∠BOE=50度, C )度 那么∠AOE=( (A)80;(B)100;(C)130(D)150。 下 页
第二章 相交线、平行线
如上图中是一段铁路桥梁的侧面图,其中有些线如:AB和 CD是相交的,有些线如:MN和PQ是平行的。相交线和平行线都 有许多重要性质,并且在生产和生活中有广泛应用。我们将在前一 章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有 关推理证明的常识,为后面的学习做些准备。
第一节
( D) ( 4 )
二、 填空
1、一个角的对顶角有 一 个,邻补角最多有 两 个,而补角 则可以有 无数 个。 2、右图中∠AOC的对顶角是∠DOB D 邻补角是 ∠AOD和∠COB A 3、如图,直线AB、CD相交于O, 1 ∠AOC=80°;∠1=30°;求∠2的度数 2 E 解:∵∠DOB=∠ AOC ,( 对顶角相等 ) C ∠AOC =80°(已知) B ∴∠DOB= 80 °(等量代换) 又∵∠1=30°( 已知 ) ∴∠2=∠ DOB -∠ 1 = 80°- 30° = 50 °
我们知道邻补角是互 补的,那么对顶角有 什么样的关系呢?

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结人教版七年级上册数学知识点整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

七年级数学人教版相交线 第一课时

七年级数学人教版相交线 第一课时

相交线第一课时祁家湾中学:童学凡教学目标:1、让学生通过学习认识相交线,理解其定义。

2、认识对顶角邻补角。

并会区分补角与邻补角。

3、关于对顶角邻补角的计算解答简单实际问题。

教学重点;相交线的定义,对顶角的大小关系,邻补角与补角区别教学难点;多条直线相交一点对顶角的对数,及角度的计算一、复习准备观察:1、两条直线相交组成几个角?2、将这些角两两相配能得到几对角?讨论:1、每对角中两个角的位置有怎样的关系?2、试根据它们的位置关系将这几对角进行分类两直线相交:分类:∠1和∠2、∠2和∠3、∠3和∠4、∠4和∠1位置关系:1、有公共顶点;2、有一条公共边;3、另一边互为反向延长线。

名称:邻补角二新课探究分类:∠1和∠3、∠2和∠4、位置关系:1、有公共顶点;2、没有公共边;3、两边互为反向延长线。

名称:对顶角有关概念:邻补角:如果两个角有一条公共边,它们的另一边互为反向延长线,那么这两个角互为邻补角。

对顶角:有一个公共顶点一个角的两边是另一个角的两边的反向延长线,那么这两个角互为对顶角。

练习:下面∠1、∠2是对顶角的是:A.(1)B.(2)C.(3)D.(4)练习:下列图中,∠1与∠2是对顶角吗?为什么?(1) (2) (3) (4)否是否否做一做:分别用尺量一量4个交角的度数,各类角的度数有什么关系?答:因为∠1与∠2互补,∠2与∠3互补(邻补角定义),所以∠1=∠3(同角的补角相等),同理∠2=∠4。

两直线相交:分类:1、∠1和∠2、∠2和∠3、∠3和∠4、∠4和∠1位置关系:1、有公共顶;2、有一条公共边;3、另一边互为反向延长线。

名称:邻补角大小关系:邻补角互补分类:∠1和∠3、∠2和∠4、位置关系:1、有公共顶点;2、没有公共边;3、两边互为反向延长线。

名称:对顶角大小关系:对顶角相等课堂练习:1、若∠1与∠2是对顶角,∠1=160,则∠2=______0;若∠3与∠4是邻补角,则∠3+∠4 =______02、若∠1与∠2为对顶角,∠1与∠3互补,则∠2+∠3=180°3、图中是对顶角量角器,你能说出用它测量角的原理吗?答:对顶角相等例1:如图,直线a、b相交。

人教五四学制版七年级上册数学第12章 相交线与平行线含答案

人教五四学制版七年级上册数学第12章 相交线与平行线含答案

人教五四学制版七年级上册数学第12章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=34°,那么∠BED =()A.134°B.124°C.114°D.104°2、已知坐标平面内的点A(-2,4),如果将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,那么平移后点A的坐标是()A.(1,6)B.(-5,6)C.(-5,2)D.(1,2)3、如图,下列各组条件中,能一定得到a//b的是()A.∠1+∠2=180ºB.∠1=∠3C.∠2+∠4=180ºD.∠1=∠44、如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°5、在平面直角坐标系中,将点A(﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A',则点A'的坐标是()A.(4,5)B.(4,3)C.(6,3)D.(﹣8,﹣7)6、已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等。

其中假命题有()A.4个B.3个C.2个D.1个7、如图,AC∥DF,AB∥EF,若∠2=50°,则∠1的大小是()A.60°B.50°C.40°D.30°8、如图,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有( )A.1个B.2个C.3个D.4个9、已知,CE平分,交AB于点E,,则的度数为()A. B. C. D.10、在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(﹣5,2)、N(1,﹣4),将线段MN向上移动3个单位,向左移动2个单位平移后,点M,N的对应坐标为()A.(﹣5,1),(0,﹣5)B.(﹣4,2),(1,﹣3)C.(﹣7,5),(﹣1,﹣1)D.(﹣5,0),(1,﹣5)11、如图,CD是△ABC的角平分线,DE∥BC.若∠A=60°,∠B=80°,则∠CDE 的度数是( )A.20°B.30°C.35°D.40°12、如图,AB//CD,EF与AB、CD分别相交于点E、F,EP⊥EF,且∠BEP=50°,则∠EFD=()A.30°B.40°C.50°D.90°13、如图,下列条件中能判定AB∥CE的是()A.∠B=∠ACEB.∠B=∠ACBC.∠A=∠ECDD.∠A=∠ACE14、如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.D.15、一把直尺和一块三角板(含、角)如图所示摆放,直尺一边与三角板的两直角边分别交于点和点,另一边与三角板的两直角边分别交于点和点,且,那么的大小为()A. B. C. D.二、填空题(共10题,共计30分)16、如图所示,三角形ABC中,∠C=90°,三条边AB,AC,BC中AB>AC,理由:________.又有BC________AB(点B到AC距离,以垂线段最短).17、AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数为________.18、如图,∠1=∠2,∠4=120°,则∠3=________。

人教版七年级上学期数学课件5.1相交线(共21张PPT)

人教版七年级上学期数学课件5.1相交线(共21张PPT)

a b
l
(2)两条直线被第三条直线所截.
a b
E A
1 O3 4 6 5 7 8 2
C
B D
F
两直线AB、CD被第三条直线EF所截, 构成8个角,简称“三线八角”. 直线AB、CD是被截直线,EF是截线.
问题3 观察图中的∠1和∠5,它们与截 线及两条被截直线在位置上有什么特点? 你能给它们起个名字吗?
布置作业
E A
1 O3 4 6 5 7 8 2
B
F
总结归纳
1.同位角、内错角、同旁内角 的位置特征及结构特征. 2.识别同位角、内错角、同 旁内角的方法.
1.习题5.1第12题. 2.在下图中,如果直线AB绕着与截线EF 的交 点O 旋转(转动时直线AB不与截线EF重合), ∠1与∠5的同位角关系是否发生改变?两条 被截直线有没有不相交的位置?
错角的图形特征吗?
F
问题6: (1)你能找出图中还有哪几对角构成内错角? (2)两条直线被第三条直线所截构成的八个角中, 共有几对内错角? (1)除了∠3和∠5是内 错角,还有∠4和∠6 也 构成内错角. (2)共有2对 内错角.
角的名称 同位角
位置特征 在两条被截直线 同旁 , 的______ 同侧 在截线的______ 在两条被截直线 之间 , 的______ 两侧 在截线的______ 在两条被截直线 的______, 在截线的_____
角的名称 同位角
位置特征 在两条被截直线 同旁 , 的______ 同侧 在截线的______ 在两条被截直线 之间 , 的______ 两侧 在截线的______
基本图形 图形结构特征 “ F” 形如字母 ___
内错角
“ Z” 形如字母 ___

(基础题)人教五四学制版七年级上册数学第12章 相交线与平行线含答案

(基础题)人教五四学制版七年级上册数学第12章 相交线与平行线含答案

人教五四学制版七年级上册数学第12章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,△ABC为等边三角形,AB=8,AD⊥BC,点E为线段AD上的动点,连接CE,以CE为边作等边△CEF,连接DF,则线段DF的最小值为()A. B.4 C.2 D.无法确定2、如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°3、如图,a∥b,c与a,b都相交,∠1=50°,则∠2=()A.40°B.50°C.100°D.130°4、在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)5、同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥dB.b⊥dC.a⊥dD.b∥c6、如图,一块直角三角尺的一个顶点落在直尺的一边上,若,则的度数为( )A.45°B.C.D.7、如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有()A.1条B.2条C.3条D.5条8、如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD∥BE的是()A.∠1=∠2B.∠3=∠4C.∠ D=∠5D.∠ B+∠ BAD=180°9、如图所示,下列判断中错误的是()A.因为∠A+∠ADC=180°,所以AB∥CDB.因为AB∥CD,所以∠ABC+∠C=180° C.因为∠1=∠2,所以AD∥BC D.因为AD∥BC,所以∠3=∠410、下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走.A.③B.②③C.①②④D.①②⑤11、如果线段AB与线段CD没有交点,则()A.线段AB与线段CD一定平行B.线段AB与线段CD一定不平行C.线段AB与线段CD可能平行D.以上说法都不正确12、如图,下列条件中,不能判定直线a平行于直线b的是()A.∠3=∠5B.∠2=∠6C.∠1=∠2D.∠4+∠6=180°13、如果△ABC与△A1B1C1关于y轴对称,已知A(﹣4,6)、B(﹣6,2)、C(2,1),现将△A1B1C1向左平移5个单位,再向下平移3个单位后得到△A2B2C2,则点B2的坐标为()A.(﹣13,﹣1)B.(﹣1,﹣5)C.(1,﹣1)D.(1,5)14、如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=60°,则∠2=()A.20°B.60°C.30°D.45°15、如图所示,一辆汽车经过一段公路两次拐弯后,和原来的行驶方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C的度数为 ( )A.38°B.142°C.130°D.140°二、填空题(共10题,共计30分)16、如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=________.17、如图,B处在A处南偏西50°方向,C处在A处的南偏东20°方向,C处在B处的北偏东80°方向,则∠ACB=________.18、如图,CO⊥AB,垂足为O,∠COE﹣∠BOD=4°,∠AOE+∠COD=116°,则∠AOD=________°.19、如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为________ .20、如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB 上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2 ;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2 ;⑤当点D从点A运动到点B 时,线段EF扫过的面积是16 .其中正确结论的序号是________.21、如图,将△ABC沿BC方向平移2cm 得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为________.22、如图,a//b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=________.23、如图,已知AD∥BC,∠B=32°,BD平分∠ADE,则∠DEC=________.24、将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是________.25、如图,在矩形ABCD中,AD=10,AB=8,点P在AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且MP=NC,连接MN交线段PC于点F,过点M作ME⊥PC于点E,则EF= ________.三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=25°,求∠FEC的度数.28、推理填空:已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC于B,CO⊥BC于C(已知)∴∠1+∠3=90°,∠2+∠4=90°∴∠1与∠3互余,∠2与∠4互余又∵∠1=∠2(▲)∴▲ = ▲(▲)∴BE∥CF(▲)29、如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.30、如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,DE∥FB.求证:AB∥DC.请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF、DE分别平分∠ABC与∠ADC,∴ ,.(▲)∵∠ABC=∠ADC,∴▲.∵DE∥FB,∴∠1=∠,(▲),∴∠2=▲.(等量代换),∴AB∥CD.(▲)参考答案一、单选题(共15题,共计45分)1、C2、D3、B5、C6、B7、D8、A9、D10、D11、C12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。

人教版七年级数学相交线与平行线练习及解析

人教版七年级数学相交线与平行线练习及解析

人教版七年级数学相交线与平行线练习1.已知三条直线a,b,c,下列命题中错误的是()A.如果a∥b,b∥c,那么a∥c B.如果a⊥b,b⊥c,那么a⊥c C.如果a⊥b,b⊥c,那么a∥c D.如果a⊥b,a∥c,那么b⊥c 2.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=2:3,则∠BOD=()A.30°B.36°C.45°D.72°3.如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数。

一.选择题(共11小题)1.在同一平面内,三条直线的交点个数不能是()A.1个B.2个C.3个D.4个2.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个B.2个C.3个D.4个3.如图,AC⊥BC,AD⊥CD,AB=a,CD=b,则AC的取值范围()A.大于b B.小于aC.大于b且小于a D.无法确定4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.5.如图,与∠B互为同旁内角的有()A.1个B.2个C.3个D.4个6.同一平面内,直线l与两条平行线a,b的位置关系是()A.l与a,b平行或相交B.l可能与a平行,与b相交C.l与a,b一定都相交D.同旁内角互补,则两直线平行7.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为()A.①②B.①③C.②③D.以上都错8.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°9.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规10.下列画图语句中,正确的是()A.画射线OP=3cm B.连接A,B两点C.画出A,B两点的中点D.画出A,B两点的距离11.下列作图语句正确的是()A.延长线段AB到C,使AB=BCB.延长射线ABC.过点A作AB∥CD∥EFD.作∠AOB的平分线OC二.填空题(共8小题)1.平面内两直线相交有个交点,两平面相交形成条直线.2.如图,已知AB与CD相交于O,OE⊥AB,∠EOD=60°,则∠AOC=.3.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=°.4.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是PM,理由是.5.如图,AC⊥BC,AC=3,BC=4,AB=5,则点B到AC的距离为.6.如图所示,与∠A是同旁内角的角共有个.7.在同一平面内,两条直线有种位置关系,分别是和.8.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有(填写所有正确的序号).解答题(共8小题)1.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°,求∠AOM和∠NOC的度数.2.说出日常生活现象中的数学原理:日常生活现象相应数学原理有人和你打招呼,你笔直向他两点之间直线段最短走过去要用两个钉子把毛巾架安装在墙上桥建造的方向通常是垂直于河两岸人去河边打水总是垂直于河边方向走3.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?4.画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF和平行线GH.(2)判断EF、GH的位置关系是.(3)连接AC和BC,则三角形ABC的面积是.5.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.6.如图,AB∥CD,直线EF分别交AB,CD于E、F,EG平分∠BEF交CD于点G,∠1=50°,求∠2的度数.参考答案:1.已知三条直线a,b,c,下列命题中错误的是( B )A.如果a∥b,b∥c,那么a∥c B.如果a⊥b,b⊥c,那么a⊥c C.如果a⊥b,b⊥c,那么a∥c D.如果a⊥b,a∥c,那么b⊥c 2.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=2:3,则∠BOD=(B)A.30°B.36°C.45°D.72°【分析】根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答。

新人教版七年级数学知识点归纳(上下册)

新人教版七年级数学知识点归纳(上下册)

一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

人教版小学七年级上册数学知识点总结

人教版小学七年级上册数学知识点总结

人教版小学七年级上册数学知识点总结一、数与代数(一)有理数1.有理数的概念有理数是可以表示为两个整数的商的数,包括整数、正分数、负分数。

有理数集用符号Q表示。

2.有理数的分类•正有理数:大于0的有理数,如1, 2, 3等。

•零:0,既不是正数也不是负数。

•负有理数:小于0的有理数,如-1, -2, -3等。

3.有理数的性质•封闭性:两个有理数的和、差、积、商(除数不为零)仍然是有理数。

•交换律:a + b = b + a;a × b = b × a。

•结合律:(a + b) + c = a + (b + c);(a × b) × c = a × (b × c)。

•分配律:a × (b + c) = a × b + a × c。

4.有理数的运算•加法:正数加正数,取相同的符号,并把绝对值相加;正数加负数,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

•减法:转化为加法运算,如a - b = a + (-b)。

•乘法:正数乘正数得正数;正数乘负数得负数;负数乘负数得正数。

•除法:除以一个数等于乘以这个数的倒数。

5.有理数的大小比较•正数大于0,负数小于0,正数大于负数。

•两个负数比较,绝对值大的反而小。

(二)整式的加减1.单项式与多项式•单项式:表示数与字母的积的代数式,如3x, -2y^2等。

•多项式:几个单项式的和,如3x + 2, 5x^2 - 4y等。

2.整式的加减•同类项:所含字母相同,且相同字母的指数也相同的单项式。

•整式的加减:先合并同类项,再进行运算。

3.去括号与添括号•去括号:根据分配律,如a + (b - c) = a + b - c。

•添括号:注意改变括号内各项的符号,如a - b + c = a - (b - c)。

(三)一元一次方程1.一元一次方程的概念只含有一个未知数,且未知数的次数是1的方程叫做一元一次方程。

七年级的数学知识点必看

七年级的数学知识点必看

七年级的数学知识点必看学习从来无捷径。

每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。

下面是小编给大家整理的一些七年级的数学知识点的学习资料,希望对大家有所帮助。

新人教版七年级数学知识第五章相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。

②对应点的线段平行且相等。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

(2023年最新)人教五四学制版七年级上册数学第12章 相交线与平行线含答案

(2023年最新)人教五四学制版七年级上册数学第12章 相交线与平行线含答案

人教五四学制版七年级上册数学第12章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,在所标识的角中,同位角是()A. B. C. , D.2、如图所示,AB∥CD,EF,HG相交于点O,∠1=40°,∠2=60°,则∠EOH的角度为()A.80°B.100°C.140°D.120°3、如图,直线AB∥CD,如果∠1=70°,那么∠BOF的度数是()A.70°B.100°C.110°D.120°4、如图,将直尺与三角尺叠放在一起,如果,那么的度数为()A.62°B.56°C.28°D.72°5、对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°6、下列结论中:①若a=b,则= ,②在同一平面内,若a⊥b,b∥c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;④| ﹣2|=2﹣,正确的个数有()A.1个B.2个C.3个D.4个7、如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于S,①AS=AR,②QP∥AR,③△BRP≌△QSP.其中正确的是()A.全部正确B.①和②C.①D.②8、如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)9、下列说法中,正确的是( )A.图形的平移是指把图形沿水平方向移动B.平移前后图形的形状和大小都没有发生改变C.“相等的角是对顶角”是一个真命题 D.“直角都相等”是一个假命题10、如图,AB⊥CD于O,EF为经过点O的一条直线,∠1与∠2的关系是()A.互余B.互补C.互为对顶角D.相等11、如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为()A. B. C. D.12、如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠DB.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠A BE=2∠D13、如图,a b,且∠1=60°,则∠2=()A.30°B.45°C.60°D.120°14、如图,将一副三角板和一张对边平行的纸条按如图方式摆放两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.25°C.20°D.15°15、如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30 °B.35 °C.40 °D.50 °二、填空题(共10题,共计30分)16、连接直线外一点与直线上各点的所有线段中,________最短.17、如图,________ 与∠C是直线BC与________ 被直线AC所截的同位角,________ 与________ 是直线AB与AC被直线DE所截的内错角,________ 与∠A是直线AB与BC被直线________ 所截的同旁内角.18、如果一个角的两边和另外一个角的两边分别平行,其中一个角是30°,则另外一个角的度数是________.19、如图,点A的坐标为(2,0),点B在直线y=x上,当线段AB最短时,点B的坐标为________.20、如图,EF∥AD,∠1=∠2, ∠BAC=70°,将求∠AGD的过程填空完整。

人教版初中数学七年级上册(五·四学制) 11 相交线-全国公开课一等奖

人教版初中数学七年级上册(五·四学制) 11 相交线-全国公开课一等奖

相交线第一课时教学设计濉溪经济开发区中心学校孙莎莎相交线教材分析本节课研究的相交线是平面内两条直线的两种位置关系中的其中一种情形,这部分内容学生在前两个学段已有所接触,并且学生在上一学期已经学习了直线、射线、线段和角的有关知识,因此,本节课是在学生已有知识和经验的基础上,来进一步研究平面内两条直线相交的情形。

在本节课中首先探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;垂直作为两直线相交的特殊情形,与他有关的概念和结论是学习下一章“平面直角坐标系”的直接基础,本章对垂直的情形进行了专门的研究,探索得出了“过一点有且只有一条直线与已知直线垂直”“垂线段最短”的结论,并给出了点到直线的距离的概念,为学习在平面直角坐标系中确定点的坐标打下基础。

接下来研究两条直线被第三条直线所截的情形,给出了同位角、内错角、同旁内角等概念,为学习平行奠定基础。

在本章中,除了让学生重点掌握以上的基础知识外,还应通过大量的识图和作图训练,来培养学生的图形感,同时,还应在解决问题的过程中注意学生推理能力的培养,这也是教学的难点。

由于本节课的内容较易理解,因此在教学过程中,可尝试利用探究式教学,引导学生自己观察,分析特征,猜想结论,然后推理论证。

§相交线【教学目标】1、具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题2、过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.【教学重点与难点】教学重点:重点:邻补角、对顶角的概念,对顶角性质与应用.教学难点:理解对顶角相等的性质的探索【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。

教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。

人教版 七年级上册数学 第12章 相交线与平行线 单元测试卷(有答案)

人教版 七年级上册数学 第12章 相交线与平行线 单元测试卷(有答案)

七年级上册数学第12章相交线与平行线单元测试卷一.选择题(共10小题).1.三条直线相交,交点最多有()A.1个B.2个C.3个D.4个2.如图所示,∠2和∠1是对顶角的是()A.B.C.D.3.如图,OA⊥OB,OC⊥OD,若∠1=50°,则∠2的度数是()A.20°B.40°C.50°D.60°4.如图,三角形ABC中,∠C=90°,AC=3,AB=6,点P是边BC上的动点,则AP的长不可能是()A.2.5B.3C.4D.55.如图,已知直角△ABC中,∠ACB=90°,CD⊥AB于点D,则表示点A到直线CD距离的是()A.线段CD的长度B.线段AC的长度C.线段AD的长度D.线段BC的长度6.如图,∠1和∠2不是同位角的是()A.B.C.D.7.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角8.同一平面内两条直线的位置关系有()A.相交、垂直B.相交、平行C.垂直、平行D.相交、垂直、平行9.下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°;③若线段AB=3,BC=2,则线段AC的长为1或5;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β﹣∠α).其中正确结论的个数有()A.1个B.2个C.3个D.4个10.观察图形,并阅读相关的文字:那么8条直线相交,最多可形成交点的个数是()A.21B.28C.36D.45二.填空题11.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠AOE=36°,则∠DOE =°.12.如图直线AB,CD相交于O,直线FE⊥AB于O,∠BOD=75°,则∠COF的度数为度.13.如图,∠1与∠2是直线和被直线所截的一对角.14.三条直线相交,最多有个交点.15.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.16.若平面上4条直线两两相交且无三线共点,则共有同旁内角对.17.平面内有四条不同的直线两两相交,若最多有m个交点,最少有n个交点,那么(﹣n)m=.18.如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,那么点B到直线CD的距离是线段的长.19.平面上不重合的四条直线,可能产生交点的个数为个.20.在一平面中,两条直线相交有一个交点;三条直线两两相交最多有3个交点;四条直线两两相交最多有6个交点……当相交直线的条数从2至n变化时,最多可有的交点数P 与直线条数n之间的关系如下表:直线条数n/条2345678…最多交点个数p/个13610…………则n与p的关系式为:.三.解答题21.如图,在直角三角形ABC中,∠C=90°.(1)画出点C到AB的最短路径CD;(2)请指出B到AC的距离是线段的长度.22.如图,两直线AB,CD相交于点O,OE平分∠BOD,且∠AOC:∠AOD=3:7(1)求∠DOE的度数;(2)若∠EOF是直角,求∠COF的度数.23.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?24.如图,点O是直线AB上一点,∠AOC=40°,OD平分∠AOC,∠COE=70°.(1)请你说明DO⊥OE;(2)OE平分∠BOC吗?为什么?25.如图,点P,点Q分别代表两个村庄,直线l代表两个村庄中间的一条公路.根据居民出行的需要,计划在公路l上的某处设置一个公交站.(1)若考虑到村庄P居住的老年人较多,计划建一个离村庄P最近的车站,请在公路l 上画出车站的位置(用点M表示),依据是;(2)若考虑到修路的费用问题,希望车站的位置到村庄P和村庄Q的距离之和最小,请在公路l上画出车站的位置(用点N表示),依据是.26.平面内有不重合的4条直线,请指出这4条直线交点个数的所有情况,并画出相应的草图.参考答案与试题解析一.选择题1.解:如图:,交点最多3个,故选:C.2.解:A.∠1和∠2不是对顶角,B.∠1和∠2不是对顶角,C.∠1和∠2是对顶角,D.∠1和∠2不是对顶角.3.解:∵OA⊥OB,OC⊥OD,∴∠AOB=∠COD=90°.∠BOC=∠AOB﹣∠1=90°﹣50°=40°,∠2=∠COD﹣∠BOC=90°﹣40°=50°.故选:C.4.解:由垂线段最短,得AP≥AC=3,故选:A.5.解:点A到CD的距离是线段AD的长度.故选:C.6.解:A、∠1和∠2是同位角,故此选项不符合题意;B、∠1和∠2是同位角,故此选项不符合题意;C、∠1和∠2是同位角,故此选项不符合题意;D、∠1和∠2不是同位角,故此选项符合题意;故选:D.7.解:直线b、c被直线a所截,则∠1与∠2是同位角,故选:B.8.解:同一平面内的两直线只有相交与平行两种位置关系.故选:B.9.解:①平面内3条直线两两相交,有1个或3个交点;故错误;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°或160°;故错误;③若线段AB=3,BC=2,则线段AC的长为1或5;点C不一定在直线AB上,故错误;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β﹣∠α),故正确.故选:A.10.解:观察图形可得:n条直线相交最多可形成的交点个数为,∴8条直线相交,最多可形成交点的个数为====28.故选:B.二.填空题11.解:∠DOE=∠COD﹣∠COE=180°﹣36°×2=180°﹣72°=108°.故答案为:108.12.解:∵直线FE⊥AB于O,∴∠BOE=90°,∵∠DOE=∠BOE﹣∠BOD,∠BOD=75°,∴∠DOE=15°,∴∠COF=∠DOE=15°.故答案为:15.13.解:∠1与∠2是直线a和b被直线c所截的一对内错角.故答案为:a;b;c;内错.14.解:三条直线相交时,位置关系如图所示:判断可知:最多有3个交点.15.解:为了使李庄人乘火车最方便(即距离最近),过李庄向铁路画垂线段,根据是垂线段最短.故答案为:垂线段最短.16.解:∵平面上4条直线两两相交且无三线共点,∴共有3×4=12条线段.又∵每条线段两侧各有一对同旁内角,∴共有同旁内角12×2=24对.故答案为:24.17.解:每三条不交于同一点,得m==6,都交于同一点,得n=1,(﹣1)6=1,故答案为:1.18.解:∵CD⊥AD,垂足为点D,∴点B到直线CD的距离是线段BD的长,故答案为:BD.19.解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.20.解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点.即p=n(n﹣1),故答案为:p=n(n﹣1).三.解答题21.解:(1)根据题意,如图所示,(2)B到AC的距离是线段BC的长度,故答案为:BC.22.解:(1)∵∠AOC:∠AOD=3:7,∴∠AOC=54°,∠AOD=126°,∴∠BOD=∠AOC=54°,∵OE平分∠BOD,∴∠DOE=∠BOD=×54°=27°;(2)∵∠EOF是直角,∠DOE=27°,∴∠DOF=90°﹣27°=63°,∵∠AOD=126°,∴∠AOF=∠AOD﹣∠DOF=126°﹣63°=63°,∴∠COF=∠AOC+∠AOF=54°°+63°=117°.23.解:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°﹣80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣40°﹣100°=40°.(2)平分理由:∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣100°﹣40°=40°.∴∠AOF=∠3=40°,∴OF平分∠AOD.24.解:(1)∵OD平分∠AOC,∴∠DOC=∠AOC=20.∵∠COE=70°,∴∠DOE=90°,∴DO⊥OE.(2)OE平分∠BOC.理由:∵∠AOC+∠COE+∠BOE=180°,又∵∠AOC=40°,∠COE=70°,∴∠BOE=70°,∴∠BOE=∠COE,∴OE平分∠BOC.25.解:(1)如图,点M即为所示.依据是直线外一点与直线上各点连接的所有线段中垂线段最短(2)如图,点N即为所示.依据是两点之间线段最短;故答案为:直线外一点与直线上各点连接的所有线段中垂线段最短;两点之间线段最短.26.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有3个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有1个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,(8)当三条直线交于一点,第四条直线与其它三条直线有三个交点时,共有4个交点,故4条直线交点个数为:0或1或3或4或5或6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计
就是我们今天这堂课要研究的内容:5.1.1相交线(板书)。

二、探究新知
1、取两根木条a 、b ,
将它们钉在一起,并把它们想像成两条直线,就得
到一个相交线模型。

2、小组合作
3、讨论不同的角的位
置关系,得出邻补角、对顶角的定义,并提醒学生注意:对顶角①是两条直
线相交而得;②有一个公
共顶点;③没有公共边,三个条件缺一不可。

4、邻补角、对顶角的大小有什么关系?讨论后得出对顶角的性质:对顶角相等。

教师要鼓励学生运用自己的语言有条理的表达自己的观点,并说明理由。

5、用几何画板展示对顶角与邻补角的性质 6、用数学语言证明“对顶角相等”
观察并思考当转动一木条的位置时,什么也随着发生了变化? (1)、任意画两条相交的直线,
并标出四个角。

(2)、在形成的四个角中,两
两相配共能组成几对角?各对角
存在怎样的位置关系?根据这种
用现实生活中的例子引出两条直线相交所成的角的问题,自然而贴切。

相关文档
最新文档