分式方程概念及解法

合集下载

(完整)分式方程概念及解法

(完整)分式方程概念及解法

分式方程的概念,解法知识要点梳理要点一:分式方程的定义分母里含有未知数的方程叫分式方程。

要点诠释:1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。

2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.要点二:分式方程的解法1。

解分式方程的其本思想把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解.2.解分式方程的一般方法和步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。

(2)解这个整式方程。

(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。

注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。

3. 增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.规律方法指导1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.经典例题透析:类型一:分式方程的定义1、下列各式中,是分式方程的是()A.B.C.D.举一反三:【变式】方程中,x为未知量,a,b为已知数,且,则这个方程是( )A.分式方程B.一元一次方程C.二元一次方程D.三元一次方程类型二:分式方程解的概念2、请选择一组的值,写出一个关于的形如的分式方程,使它的解是x=0这样的分式方程可以是______________。

八年级数学分式方程

八年级数学分式方程

工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。

分式方程ppt课件

分式方程ppt课件
36
36
根据题意,得 x =
+2,
(1+50%)x
解得 x=6.
经检验,x=6 是方程的解.
答:该施工队原计划每天改造 6 m.
知3-练
例 5 [情境题 校园文化]为了进一步丰富校园文体活动,
某中学准备一次性购买若干个足球和排球,用480 元
购买足球的数量和用390 元购买排球的数量相同,已
知足球的单价比排球的单价多15 元.





③ =x;④
+3=




其中是分式方程的是________(填序号).
③④
知识点 2 分式方程的解法
知2-讲
1. 解分式方程的基本思路:去分母,把分式方程转化为整
式方程.
2. 解分式方程的一般步骤
知2-讲
3. 检验分式方程解的方法
(1)直接检验法:将整式方程的解代入原分式方程,这
车的速度.
知3-练
思路引导:
知3-练
解:设大型客车的速度为x km/h,


则小型客车的速度为1.2x km/h,12 min= h.


根据题意,得 -


= ,解得x
.
经检验,x = 6 0 是方程的解.
答:大型客车的速度是60 km/h.
= 6 0.
知3-练
3-1.[中考·广州] 随着城际交通的快速发展, 某次动车平

;(3) =1;
- +





(4)

;(5) -2=x(a为非零常数).

+ -
解题秘方:利用判别分式方程的依据——分母中含有

分式方程及其解法课件

分式方程及其解法课件

高阶分式方程的解法实例
总结词
通过降阶、变量代换等方法,将高阶分式方 程转化为低阶或可直接求解的分式方程。
详细描述
高阶分式方程可以通过降阶、变量代换等方 法,将其转化为低阶或可直接求解的分式方
程。例如,对于形如 "a1x1+a2x2+...+anxn/b1x1+b2x2+...+b nxn=c" 的高阶分式方程,可以先将高阶项 进行降阶或变量代换,将其转化为可直接求
分式方程及其解法课件

CONTENCT

• 分式方程的基本概念 • 分式方程的解法 • 分式方程的解法技巧 • 分式方程的解法实例 • 分式方程的解法总结与反思
01
分式方程的基本概念
分式方程的定义
总结词
分式方程是数学中一类带有分式的等式,用于描述某些特定情况 下的数量关系。
详细描述
分式方程是数学中一类带有分式的等式,通常用来描述两个或多 个量之间的关系。分式方程中的分母不能为零,因为分母代表一 个量所占的比例或份额。
适用范围
分式方程的解法适用于解决涉及分数 、比例、百分数等实际问题的数学问 题,同时也可以用于解决一些代数和 几何问题。
不适用范围
对于一些过于复杂或抽象的分式方程 ,分式方程的解法可能无法解决,或 者解决起来非常困难。
解法的改进与展望
改进
在解分式方程时,可以尝试引入更多的数学工具和方法,例Байду номын сангаас使用分数运算规则、因式 分解、变量替换等技巧,以提高解题效率和准确性。
通过约分、通分、消去分母等方法,将 分式方程转化为整式方程进行求解。
VS
详细描述
一元分式方程通常可以通过约分、通分和 消去分母的方法,将方程转化为整式方程 ,然后利用整式方程的解法求解。例如, 对于形如 "ax+b/cx+d=e" 的分式方程, 可以先通分,然后移项、合并同类项,最 后求解整式方程。

分式方程知识点归纳

分式方程知识点归纳

分式方程知识点归纳分式方程是指含有分子和分母的方程,分子和分母分别为代数式或数字,并且方程中包含有未知数的方程。

下面将分式方程的知识点进行归纳,以便更好地理解和应用分式方程。

一、基本概念:1.分式方程的定义:含有未知数、带有分式形式的等式称为分式方程。

2.分式的定义:分式是由一个或多个代数式构成的比。

二、分式方程的解的性质:1.分式方程的等价方程:分式方程可以转化为多项式方程进行求解,这样可以得到等价的方程,两者的解是相同的。

2.分式方程的根的性质:一个分式方程的解,如果使得分式方程中的分子等于0,则该解就是方程的根。

三、分数的性质:1.分式的约分:分式的分子和分母同时除以它们的公因式,可以得到分式的约分式。

2.分式的通分:将不同分母的分式通过找到它们的最小公倍数,转化为具有相同分母的等价分式。

3.分数的四则运算:分数之间可以进行加减乘除的运算,需要注意分子和分母的相应运算。

四、分式方程的解法:1.乘法解法:对分式方程的两边同乘以一个使得方程中的分母消去的数,从而化简为一个多项式方程。

2.加减消去解法:对分式方程的两边同乘以使得方程中的分母消去的数,然后将方程中的分式整理为一个多项式,并进行求解。

3.代入解法:将分式方程中的一个未知数表示成另一个未知数的代数式,再代入到分式方程中,得到一个不含有代入的未知数的分式方程,进而进行求解。

4.通分解法:对分式方程的两边同时乘以方程中所有的分母的积,将分式方程化简为一个多项式方程进行求解。

五、分式方程的解的判定:1.当方程的分式的分子为0时,方程的解为0。

2.当方程的分式的分子和分母存在着相同的因式时,方程的解为使得分式方程中的分子等于0的值。

3.当分式方程的分母的值等于0时,方程没有解。

六、应用:分式方程在实际问题中的应用非常广泛,例如在物理学和金融学中,经常需要使用分式方程来解决实际问题。

比如计算财务利润率、财务收益率、物体的运动速度等。

七、常见的分式方程:1.一次方程:分式方程的分子和分母都是一次函数的方程。

分式方程的解

分式方程的解

分式方程的解分式方程是指方程中含有分数的方程,例如:$\frac{x}{2}+\frac{x}{3}=5$。

分式方程的解是指能够使得该方程成立的所有变量值。

下面将从以下几个方面详细介绍分式方程的解。

一、分式方程的基本概念1. 分式分式是指形如$\frac{a}{b}$的表达式,其中$a$和$b$都是实数,且$b\neq 0$。

2. 分式方程分式方程是指含有至少一个分式的等式或不等式。

例如:$\frac{x}{2}+\frac{x}{3}=5$就是一个分式方程。

3. 分母在一个分数中,下面那个数叫做分母。

例如,在$\frac{a}{b}$中,$b$就是分母。

二、解一元一次分式方程1. 消去分母首先要做的事情就是消去所有的分母。

具体方法为:将等号两边乘以所有项的公共倍数来消去所有项中的分母。

2. 移项将未知量移到等号同侧,常数移到另外一侧。

3. 合并同类项将同类项合并,并把未知量系数化为1。

4. 检验答案将求得的未知量代入原来的方程中,检验是否成立。

三、解二元一次分式方程1. 消去分母同样地,需要将所有的分母消去。

2. 变形将含有两个未知量的项移到等号同侧,常数移到另外一侧。

3. 将两个未知量分离将含有一个未知量的项移到等号同侧,另一个未知量移到另外一侧。

4. 求解根据已经得到的式子求解出某一个未知量。

5. 检验答案将求得的未知量代入原来的方程中,检验是否成立。

四、注意事项1. 在解分式方程时,需要注意不能除以0。

2. 在消去分母时,需要注意所有项都要乘以公共倍数。

3. 在检验答案时,需要注意代入原来的方程中进行检验。

4. 在解二元一次分式方程时,需要注意将两个未知量分离时要保持符号不变。

分式方程与分式方程的求解

分式方程与分式方程的求解

分式方程与分式方程的求解分式方程是数学中常见的一种方程形式,它含有分数形式的未知数或者分式表达式。

对于初中学生来说,掌握分式方程的求解方法是非常重要的。

本文将以实际问题为例,介绍分式方程的概念、求解方法以及应用。

一、什么是分式方程分式方程是指方程中含有分数形式的未知数或分式表达式的方程。

例如:$\frac{1}{x}+\frac{2}{y}=3$、$\frac{2}{x+1}-\frac{1}{y-1}=\frac{1}{2}$等。

二、分式方程的求解方法1. 清除分母首先,我们需要将分式方程中的分母消去,以此来简化方程。

具体的方法是,将方程两边乘以分母的最小公倍数,从而得到一个整式方程。

例如,对于方程$\frac{1}{x}+\frac{2}{y}=3$,我们可以将方程两边同时乘以$xy$,得到$y+2x=3xy$。

这样,我们就得到了一个整式方程,可以通过传统的方程求解方法来解答。

2. 分离变量有时候,分式方程可以通过分离变量的方法来求解。

具体的方法是,将方程中的分式表达式分离到等式两边,从而得到两个独立的方程。

例如,对于方程$\frac{2}{x+1}-\frac{1}{y-1}=\frac{1}{2}$,我们可以将分式表达式分离到等式两边,得到$\frac{2}{x+1}=\frac{1}{2}+\frac{1}{y-1}$。

然后,我们可以通过交叉相乘的方法得到两个独立的方程,进而求解。

三、分式方程的应用分式方程在日常生活中有着广泛的应用。

下面以两个实际问题为例,介绍分式方程的应用。

1. 水果拼盘小明在制作水果拼盘时,用了$\frac{1}{2}$个苹果、$\frac{1}{3}$个橙子和$\frac{1}{4}$个香蕉,最后拼盘上水果的总重量是1.5千克。

那么,拼盘上水果的总重量是多少千克?设拼盘上水果的总重量为$x$千克,则根据题意,可以得到分式方程$\frac{1}{2}x+\frac{1}{3}x+\frac{1}{4}x=1.5$。

人教版数学八年级上册15.分式方程的定义及解法课件

人教版数学八年级上册15.分式方程的定义及解法课件
人教版 数学 八年级 上册
理解分式方程的概念并会判断一个方程是否是分式 方程.
掌握解分式方程的基本思路和解法.
一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90
千米所用时间,与以最大航速逆流航行60千米所用时间相等.设江水的流速
为x千米/时,根据题意可列方程
90 30+x
60 30
我们再来观察去分母的过程:
90 60 30+x 30 x
① 两边同乘(30+x)(30-x) 当x=6时,(30+x)(30-x)≠0
90(30-x)=60(30+x)
真相揭秘: 分式两边同乘了不为0的式子,所得整式方程的解与分式方程的 解相同.
1 10 x 5 x2 25
两边同乘(x+5)(x-5)
方程的解是原分式方程的解;否则,这个解不是原分式方程的解.
“去分母法”解分式方程的步骤
1.在方程的两边都乘以最简公分母,约去分母,化成整式方程. 2.解这个整式方程. 3.把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方 程的解是原分式方程的解,否则原分式方程无解; 4.写出原方程的根.

当x=5时,
x+5=10 (x+5)(x-5)=0
真相揭秘:分式两边同乘了等于0的式子,所得整式方程的解使分母为0,这 个整式方程的解就不是原分式方程的解.
分式方程解的检验------必不可少的步骤 解分式方程时,去分母后所得整式方程的解有可能使原方程的分母为0,
所以分式方程的解必须检验.
检验方法: 将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式
“去分母” 即方程两边同乘最简公分母.这也是解分式方程的一般方法.

分式方程的应用

分式方程的应用
详细描述
分式方程可以用来解决各种实际问题,如速度、时间和距离问题、溶液混合问题 、经济问题等。通过建立数学模型,将实际问题转化为分式方程,可以方便地求 解并得到实际问题的答案。
02
分式方程在物理中的应用
速度、距离和时间的关系
总结词
分式方程在物理中的速度、距离和时间关系问题中有着广泛的应用,通过建立分式方程,可以求解出物体的运动 速度、距离和时间的关系。
市场营销策略。
05
分式方程在日常生活中的应用
交通流量问题
总结词
分式方程在交通流量问题中有着广泛的应用,可以用来 描述和分析道路、铁路、航空等交通方式的流量和运输 情况。
详细描述
在交通流量问题中,分式方程可以用来描述不同交通工 具之间的速度、时间和距离关系,以及交通流量的变化 规律。例如,在高速公路上,可以使用分式方程来描述 汽车的速度、加速度和刹车距离之间的关系,从而词
分式方程在资源分配问题中也有着重要的应用,可以 用来描述和分析如何合理地分配有限的资源。
详细描述
在资源分配问题中,分式方程可以用来描述资源的分配 比例和优先级,以及如何平衡不同利益相关方的需求和 利益。例如,在医疗资源分配中,可以使用分式方程来 描述如何根据患者的病情和医生的建议来合理地分配医 疗资源和医疗费用。
详细描述
重力加速度是物体在地球表面附近自由下落的加速度,其大小约为9.8m/s²。通过建立分式方程,我 们可以表示出物体下落过程中的加速度与时间的关系,进而求解出物体下落的高度和时间。
电学中的欧姆定律
总结词
欧姆定律是电学中的一个基本定律,通 过建立分式方程,可以求解出电路中的 电流、电压和电阻之间的关系。
VS
详细描述
欧姆定律指出,在同一电路中,电流与电 压成正比,与电阻成反比。通过建立分式 方程,我们可以表示出电路中的电流、电 压和电阻之间的关系,进而求解出电路中 的电流和电压。这对于分析电路的工作原 理和解决实际问题具有重要的意义。

分式方程的运算

分式方程的运算

分式方程的运算分式方程是含有分式的方程,它通常涉及到分式的运算,是数学中的一个重要概念。

本文将介绍分式方程的定义、性质、解法以及常见应用等内容。

一、分式方程的定义分式方程是指方程中含有一个或多个分式的方程。

它的一般形式可以表示为:f(x) = g(x)其中,f(x)和g(x)是以x为变量的分式函数。

例如,下面是一些常见的分式方程的例子:1. x + 2/x = 32. (x + 1)/x + (x + 3)/(x + 2) = 43. 1/(x - 1) + 2/(x - 2) + 3/(x - 3) = 4二、分式方程的性质1.变量的定义域对于分式方程中的变量,需要找出它的定义域,即使方程成立。

例如,在第一个例子中,由于分母不能为0,所以x不能等于0。

2.通解和特解解分式方程可以得到通解,通解是指包括所有满足方程的解的一个集合。

特解是满足方程的具体解。

通过求解,可以得到方程的通解,然后再根据实际情况求得特解。

3.分式方程的等价性分式方程和分式的等价性也是分式方程的一个重要性质。

如果两个分式在除去分母后相等,那么它们就是等价的。

利用这个性质,可以对分式方程进行变形和简化,方便求解。

三、分式方程的解法解分式方程的一般步骤如下:1.整理方程将方程中的各项整理到等式的一侧,形成一个整式等于一个分式的形式。

2.求公倍数对于分式方程中的分母,需要求取它们的最小公倍数。

这是因为只有最小公倍数的整数倍采用相同的分母,才能进行分式的相加或相减。

3.消去分母通过乘以适当的公倍数,将分母消去。

4.化简方程将方程进行化简,使得方程的形式更简单明了。

5.求解方程对于消去分母后得到的等式,利用方程的性质进行求解。

6.检查解将求解得到的解代入原方程,检查是否满足方程。

四、分式方程的应用分式方程在实际问题中具有广泛的应用。

其中一个重要的应用是在物理学中,特别是在电路分析中。

例如,使用分式方程可以求解电路中的电流、电压等问题。

小学数学知识归纳认识简单的分式方程和解法

小学数学知识归纳认识简单的分式方程和解法

小学数学知识归纳认识简单的分式方程和解法分式方程是小学数学中一个较为复杂的内容,但是只要掌握了一些基本概念和解法,就能轻松应对。

本文将从简单的分式方程开始介绍,帮助读者加深对分式方程的理解,并掌握解决它们的方法。

一、分式方程的概念分式方程是由分式组成的等式,其中分式是由数字和变量组成的含有分母的式子。

它的一般形式可以表示为:a/b = c/d其中,a、b、c、d都可以是数字或变量,且分母b和d不能为零。

二、简单分式方程的解法1. 清除分母当分式方程中存在分母时,为了简化计算,我们需要先将方程两边的分母消去。

具体步骤如下:(1)找到方程中的最小公倍数,记为m;(2)将方程两边的分数乘以m,从而消除分母;(3)将等式两边的式子整理,得到一个简单的方程;(4)解这个简单的方程,即可得到原分式方程的解。

2. 同分母分式方程若分式方程的分母相等,则可以将方程直接转化为分子的等式。

具体步骤如下:(1)将分式方程中的分母设为相同的数值;(2)将等号两边的分子相等,得到一个简单的方程;(3)解这个简单的方程,即可得到原分式方程的解。

三、应用实例为了更好地理解和掌握简单分式方程的解法,我们来看一些具体的应用实例。

例一:解方程 2/x + 1/(x+2) = 3/2解法:首先,我们可以求出方程两边分母的最小公倍数,发现为2x(x+2)。

然后,将方程两边的式子乘以2x(x+2),得到 2(x+2) + x = 3x(x+2)/2。

进一步整理,得到 2x + 4 + x = 3x^2 + 6x,即 3x^2 + 3x - 2x - 6x - 4= 0。

合并同类项,得到 3x^2 - 5x - 4 = 0。

通过因式分解或二次求根公式,解得 x = -1 或x ≈ 1.33。

例二:解方程 (x+3)/2 - (x-2)/3 = 4解法:首先,我们可以找到方程左右两边的最小公倍数,发现为6。

然后,将方程两边的式子乘以6,得到3(x+3) - 2(x-2) = 24。

分式方程及答案

分式方程及答案

分式方程及答案分式方程是指方程中含有分数的方程。

分式方程的求解是数学中重要的内容之一,它在解决实际问题中有着广泛的应用。

本文将介绍分式方程的基本概念及求解方法。

一、分式方程的基本概念分式方程是由含有分数的代数式(称为分式)所构成的等式。

它的一般形式为:$\dfrac{A(x)}{B(x)}=C(x)$,其中$A(x)$、$B(x)$和$C(x)$均是关于$x$的多项式。

二、分式方程的求解方法1. 清除分母:首先要将分式方程中的分母清除掉,从而将分式转化为线性方程。

我们可以通过两边乘以分母的最小公倍数来实现,从而消去分母。

2. 求解线性方程:清除分母后,我们得到一个线性方程。

通过求解线性方程,我们可以得到解的集合。

三、实例分析让我们通过一个实例来更好地理解分式方程的求解过程。

假设我们要解下面的分式方程:$\dfrac{x-1}{2}+\dfrac{x+3}{4}=x+1$。

首先,我们可以通过乘以最小公倍数4来清除分母。

得到等式$2(x-1)+(x+3)=4(x+1)$。

接下来,我们进行求解线性方程的步骤。

首先展开方程,得到$2x-2+x+3=4x+4$。

继续化简,我们得到$3x+1=4x+4$。

继续移项和整理,得到$x=-3$。

所以,原方程的解为$x=-3$。

四、小结分式方程是数学中重要的内容之一。

通过清除分母并求解线性方程,我们可以得到分式方程的解。

在解决实际问题时,我们常常会遇到含有分数的方程,因此熟练掌握分式方程的求解方法对于数学学习和问题解决都具有重要意义。

以上就是对分式方程及其求解方法的简要介绍。

希望通过本文的阐述,读者能够对分式方程有更深入的了解,并能够灵活运用所学知识解决实际问题。

分式的方程

分式的方程

分式的方程引言分式的方程是指含有分式表达式的方程,即方程中包含有形如a/b的表达式,其中a和b为多项式。

解分式方程是高中数学中的一个重要内容,也是学习代数方程的基础。

本文将详细讨论分式的方程的概念、性质以及解题方法。

分式的概念分式是两个多项式相除的结果,通常写成a/b的形式,其中a和b分别为多项式。

分式中有两个重要的概念:分子和分母。

分子是除号上方的多项式,分母是除号下方的多项式。

分式的值可以通过将分子除以分母来计算。

分式的性质1.分式可以化简:当分子和分母有公因式时,可以进行约分,化简分式,使其形式更简单。

2.分式可以相加相减:当分母相同的时候,可以直接对分子进行加减运算得到结果,分母保持不变。

3.分式可以相乘相除:将两个分式相乘时,将分子乘以分子,分母乘以分母;将一个分式除以另一个分式时,将分子乘以除数的倒数,分母乘以除数。

4.分式的倒数:将分式的分子与分母互换位置得到分式的倒数,倒数的值等于原分式的倒数。

分式方程的定义分式方程是一个等式,其中至少有一个变量出现在分式的分子或分母中。

分式方程的解是使得方程两边相等的变量的值。

一次分式方程的解法对于一次分式方程,可以使用以下方法进行解题: 1. 清除分母:将分式方程两边的分母消去,得到一个代数方程。

2. 收集同类项:将方程中的同类项进行整理,使方程变得更简洁。

3. 求解代数方程:解代数方程得到变量的值。

4. 检验解的合法性:将解代入原方程中,检验等式是否成立。

高次分式方程的解法对于高次的分式方程,可以使用以下方法进行解题: 1. 清除所有分母:将所有分母消去,得到一个高次方程。

2. 求解高次方程:可以使用因式分解、配方法等等进行求解。

3. 检验解的合法性:将解代入原方程中,检验等式是否成立。

分式方程的应用分式方程在实际问题中有广泛的应用,特别是在物理、化学等领域中。

以下是一些常见的应用场景: 1. 比例问题:分式方程可以用来描述一种比例关系。

分式方程ppt课件

分式方程ppt课件

•分式方程基本概念•分式方程解法•分式方程应用举例•分式方程与实际问题结合目•分式方程求解技巧与注意事项•分式方程练习题与答案解析录01分式方程基本概念分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程。

分母中含有未知数(或含有未知数整式的有理方程)叫做分式方程。

分式方程是指分母里含有未知数的有理方程。

分式方程与整式方程区别方程形式不同未知数位置不同分式方程是分式的形式,而整式方程是整式的形式。

解法不同02分式方程解法通过通分,将分式方程转化为整式方程。

注意去分母后,整理得到的整式方程的解需要检验,以排除增根。

适用于分子、分母均为多项式的分式方程。

去分母法通过引入新的变量,将分式方程转化为整式方程。

换元法可以简化复杂的分式方程,降低求解难度。

适用于具有特定结构的分式方程,如分子或分母含有根式、指数等。

换元法判别式法因式分解法将分式方程的分子或分母进行因式分解,从而简化方程。

因式分解法可以方便地找到分式方程的解,特别是当分子或分母含有公因式时。

适用于分子、分母均可因式分解的分式方程。

03分式方程应用举例千米,一辆汽车从甲地开千米。

问这辆汽车需要多少小时才能到达乙地?01020304利润= 售价-进价利润率= 利润÷进价×100%售价= 进价×(1 +利润率)进价= 售价÷(1 +利润率)举例:某商店以每双6.5元的价格购进一批凉鞋,售价为7.4元。

卖到还剩5双时,除成本外还获利44元。

这批凉鞋共有多少双?04分式方程与实际问题结合实际问题转化为分式方程通过分析实际问题的数量关系,建立分式方程模型。

将实际问题中的已知量和未知量用字母表示,根据问题中的等量关系列出分式方程。

注意分式方程中分母不能为0的条件,确保方程的合法性。

分式方程求解实际问题通过去分母、去括号、移项、合并同类项等步骤,将分式方程化为整式方程。

解整式方程,求得未知数的值。

检验求得的解是否符合实际问题的要求,确保解的合理性。

分式方程的解法与应用实例讨论

分式方程的解法与应用实例讨论

分式方程的解法与应用实例讨论一、分式方程的定义与性质1.1 分式方程的概念:分式方程是含有未知数的分式等式。

1.2 分式方程的性质:分式方程的解与方程的系数、常数项有密切关系。

二、分式方程的解法2.1 去分母法:将分式方程中的分母消去,使方程变为整式方程。

2.2 代入法:将分式方程中的未知数表示为其他变量的函数,然后代入整式方程求解。

2.3 加减法:通过对分式方程进行加减运算,消去分式中的分母。

2.4 乘除法:通过对分式方程进行乘除运算,将分式方程转化为整式方程。

三、分式方程的解法实例3.1 去分母法实例:解方程x−12=3−x4。

3.2 代入法实例:解方程x+23=5x−1。

3.3 加减法实例:解方程x3−2x=1。

3.4 乘除法实例:解方程2x−13⋅x+14=12。

四、分式方程的应用实例4.1 实际问题:某商品的原价是100元,打八折后的价格是多少?4.2 实际问题:甲、乙两地相距300公里,甲地到乙地的客车每小时行驶60公里,客车行驶2小时后离甲地还有多少公里?4.3 实际问题:一个长方形的长比宽多5cm,且长方形的面积是30cm²,求长方形的宽是多少cm?五、分式方程的拓展与提高5.1 含有多个未知数的分式方程:解方程组x+y3=2和x−y4=1。

5.2 不等式与分式方程的综合:解不等式组x−12>1和3−x4≤0。

5.3 函数与分式方程的综合:已知函数f(x)=x+2x−1,求函数的值域。

六、分式方程的综合训练6.1 给出一个分式方程,要求解方程并检验解的正确性。

6.2 给出一个实际问题,要求用分式方程表示问题,并求解方程。

6.3 结合函数、不等式等知识,解决一个涉及分式方程的综合问题。

以上是关于分式方程的解法与应用实例讨论的知识点总结。

希望对您的学习有所帮助。

习题及方法:一、去分母法习题1.1 解方程x+12=3−x4。

答案:将方程两边同乘以4,得到2(x+1)=3−x,然后解得x=13。

分式方程运算法则

分式方程运算法则

分式方程运算法则分式方程运算法则是求解分式方程的一种方法,通过运用这些法则可以简化分式方程的计算过程,提高解题效率。

本文将介绍分式方程运算法则的基本概念和具体应用。

一、基本概念1. 分式方程:含有未知数的分式表达式与常数之间的等式称为分式方程。

2. 分式方程的解:使得方程两边相等的未知数的值称为分式方程的解。

1. 相等性原则:分式方程两边可以同时加减相同的分式。

2. 反等性原则:分式方程两边可以同时取倒数。

3. 分配律:分式方程两边可以同时乘以相同的分式。

4. 消去律:若分式方程的两边有相同的因式,则可以约去这个因式。

5. 取倒数法则:分式方程两边可以同时取倒数。

6. 乘法法则:分式方程两边可以同时乘以相同的分式。

7. 加减法法则:分式方程两边可以同时加减相同的分式。

三、具体应用1. 求解分式方程的一般步骤:a. 化简分式方程,将其变为最简形式。

b. 利用分式方程运算法则进行变形,使方程的未知数项单独出现在一边,常数项单独出现在另一边。

c. 根据方程的形式,进行进一步计算,得到未知数的值。

d. 检验解是否符合原方程。

2. 举例说明:设分式方程为:(2x+1)/(3x-4) = (5x-7)/(2x-3)。

a. 先将分式方程的两边进行化简,得到:(2x+1)(2x-3) = (5x-7)(3x-4)。

b. 利用分式方程运算法则进行变形,得到:4x^2-6x+2x-3 = 15x^2-20x-21x+28。

c. 进一步计算得到:4x^2-4x-3 = 15x^2-41x+28。

d. 化简方程,得到:11x^2-37x+31 = 0。

e. 求解这个二次方程,得到:x = 1 或 x = 31/11。

f. 检验解,将解代入原方程进行验证。

通过以上的例子,可以看出分式方程运算法则的应用可以将原方程进行化简和变形,使得方程的求解更加简单明了。

分式方程运算法则是求解分式方程的重要方法,它通过运用相等性原则、反等性原则、分配律、消去律、取倒数法则、乘法法则和加减法法则等规则,对分式方程进行变形和化简,从而得到方程的解。

第6讲 分式方程及其应用

第6讲 分式方程及其应用

经检验,x=40 是分式方程的根.
∴B 采样点送检车的平均速度为 40×1.5=60(km/h),
∴B 采样点送检车的行驶时间为 45÷60=0.75(h).
∵3.2+0.75=3.95<4,∴B 采样点采集的样本不会失效.
1.(2021 恩施)分式方程
A.x=1

C.x=


+1=
-

的解是( D )



A.x=
B.x=
C.x=
D.x=






[变式 2](2021 连云港)解方程:
+
(x+1)2-4=(x+1)(x-1),
整理,得2x-2=0,解得x=1.
检验:当x=1时,(x+1)(x-1)=0,
∴原方程无解.

=1.
- -
解:方程两边同乘(x+1)(x-1),得
∴x=1是增根,应舍去.
-
8.(2021 潍坊)若 x<2,且

0
+|x-2|+x-1=0,则 x=
-
.
1 .
9.(2021 东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展
荒山绿化,打造美好家园,促进旅游发展.某工程队承接了 90 万平方米的荒山绿化任务,为了迎接雨
季的到来,实际工作时每天的工作效率比原计划提高了 25%,结果提前 30 天完成了任务.设原计划每
1.(2022 方城期中)给出下列方程:
-

+


+

分式方程及其应用

分式方程及其应用

分式方程及其应用一、分式方程的基本解法:1.分式方程的概念:分母中含有未知数的方程叫作分式方程.2.可化为一元一次方程的分式方程的解法:(1)解分式方程的基本思想是:把分式方程转化为整式方程.(2)解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程;②解这个整式方程;③验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根.注意:(1)增根能使最简公分母等于0;(2)增根是去分母后所得整式方程的根.3.解分式方程产生增根的原因:增根的产生是在解分式方程的第一步“去分母”时造成的,根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的方程是原方程的同解方程,如果方程的两边都乘以的数是0 ,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根.【例1】解下列分式方程:(1)131x x+=-(2)31244xx x-+=--(3)21122xx x=---(4)11222xx x-=---(5)212xx x+=+(6)2216124xx x--=+-【例2】(1)若关于x 的方程1233mx x=+--有增根,则m =________.(2)解关于x 的方程2224222x a a x x+-=--会产生增根,则a 的值是________.(3)若关于x 的分式方程11044a xx x---=--无解,则a 的值为________.(4)若关于x 的分式方程2111m x x+=--的解为整数,则m 的取值范围是________.(5)若关于x 的分式方程311x a x x--=-无解,则a =________.二、巧解分式方程: 【例3】(1)111141086x x x x +=+---- (2)2263503x x x x-++=-(3)()()()()()1111111220212022x x x x x x x +++=------…(4)方程222313x x x x-+=-中,如设23y x x =-,原方程可化为整式方程:________.【拓1】观察下列方程及其解的特征:①12x x+=的解为121x x ==; ②152x x +=的解为12x =,212x =;③1103x x +=的解为13x =,213x =;…… 解答下列问题: ①请猜想:方程1265x x +=的解为________; ②请猜想:关于x 的方程1x x +=________的解为1x a =,21x a=(0a ≠); ③上题中的结论可以证明是正确的,请用该结论来解方程:315132x x x x -+=-.【拓2】24111181111x x x x +++=-+++.三、分式方程的应用:【例4】(20宝应模拟)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( ) A .600060001520x x -=+ B .600060001520x x -=+ C .600060002015x x -=- D .600060002015x x-=-【拓3】某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x 套,则根据题意可得方程为( ) A .()16040018120%x x +=+ B .()16040016018120%x x -+=+ C .1604001601820%x x -+= D .()40040016018120%x x-+=+【例5】一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度行驶,一小时后加速为原来的1.5倍,并比原计划提前40分钟到达目的地,求前一小 时的平均速度.【拓4】有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独 完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队 先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超 过79000元,则两工程队最多可以合作施工多少天?四、真题演练:1.(21扬州三模)若关于x 的分式方程21mx x=-有正整数解,则整数m 的值是( ) A .3 B .5 C .3或5 D .3或42.(19仪征期中)定义:如果一个关于x 的分式方程a b x=的解等于1a b -,我们就说这个方程叫差解方程.比如:243x =就是个差解方程.如果关于x 的分式方程2mm x =-是一个差解方程,那么m 的值是( ) A .2 B .12 C .12- D .2-3.(20邗江月考)扬州轨道交通线网规划2020年由4条线路组成,其中1号线一期工程全长30千米,预计运行后的平均速度是原来乘公交车的1.5倍,行驶时间则缩短半小时.设原来公交车的平均速度为x 千米/时,则下列方程正确的是( ) A .30301.50.5x x +=B .30301.50.5x x -= C .30300.5 1.5x x +=D .30300.5 1.5x x-=4.(21高邮期末)如果关于x 的不等式组521113()22m x x x -≥⎧⎪⎨-<+⎪⎩有且仅有四个整数解,且关于y的分式方程28122my y y --=--有非负数解,则符合条件的所有整数m 的和是( ) A .13 B .15 C .20 D .225.(21仪征期末)若关于x 的分式方程312mx -=+的解为负数,则m 的取值范围为________.6.(21邗江期末)关于x 的方程1122m x x-=--有增根,则m 的值为________.7.(19宝应月考)若关于x 的分式方程21011m x x -=-+无解,则m =________.8.(18高邮期中)已知关于x 的分式方程111x k kx x +-=+-的解为负数,则k 的取值范围是________.9.(19江都期中)若关于x 的方程4122ax x x =+--无解,则a 的值是________.10.(20广陵期中)要使方程121x x a=--有正数解,则a 的取值范围是________.11.(21仪征期末)若关于x 的分式方程12221(2)(1)x x x ax x x x --+-=-+-+的解为负数,则a 的取值范围是________.12.(19邗江月考)对于非零实数a 、b ,规定21a ab b a⊗=-.若(21)1x x ⊗-=,则x 的值为________.13.(20仪征期中)对于两个不相等的实数a 、b ,我们规定{in }m h a b 、表示a 、b 中较小的数的一半,如min 2{}31h =、,那么方程22{i }m n h x x xx=-+、的解为________.14.(20仪征期中)定义运算“※”: , , aa b a ba b b a b b a⎧>⎪⎪-=⎨⎪<⎪-⎩※,若52x =※,则x 的值为________.15.(20仪征期中)若32248168224816321111111a x x x x x x x =+++++--+++++,则a 的值是________.16.(2021·扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问:原先每天生产多少万剂疫苗?17.(20邗江月考)疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题: (1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?18.(21邗江期末)对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为0,则x a =或x b =.因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程abx a b x+=+的两个解分别为1x a =,2x b =.利用上面建构的模型,解决下列问题: (1)若方程px q x+=的两个解分别为11x =-,24x =.则p =________,q =________;(2)已知关于x 的方程222221n n x n x +-+=+两个解分别为1x ,2x (12x x <).求12223x x -的值.19.(21高邮期末)八年级学生去距学校12km 的珠湖小镇游玩,一部分学生骑自行车先走,其余学生20min 后乘汽车出发,结果他们同时到达、已知汽车的速度是骑车学生速度的3倍.(1)求骑车学生的速度;(2)游玩中八(4)班班主任为增强班级凝聚力决定让全班学生在户外拓展区参加一次户外拓展活动,班主任根据该项目收费标准支付了1575元,请根据该项目收费信息确定全班人数.户外拓展收费标准:人数 收费 不超过30人 人均收费50元超过30人每增加1人,人均收费降低1元,但人均收费不低于40元20.(2020·扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染. 进货单:商品 进价(元/件)数量(件)总金额(元)甲7200 乙3200李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程的概念,解法
知识要点梳理
要点一:分式方程的定义
分母里含有未知数的方程叫分式方程。

要点诠释:
1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。

2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和
都是分式方程,而关于的方程和都是整式方程。

要点二:分式方程的解法
1. 解分式方程的其本思想
把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。

2.解分式方程的一般方法和步骤
(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。

(2)解这个整式方程。

(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公
分母等于零的根是原方程的增根。

注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。

3. 增根的产生的原因:
对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。

当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。

规律方法指导
1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.
经典例题透析:
类型一:分式方程的定义
1、下列各式中,是分式方程的是()
A.B.C.D.
举一反三:
【变式】方程中,x为未知量,a,b为已知数,且,则这个方程是()
A.分式方程B.一元一次方程C.二元一次方程D.三元一次方程
类型二:分式方程解的概念
2、请选择一组的值,写出一个关于的形如的分式方程,使它的解是x=0这样的分式方程可以是______________.
举一反三:
【变式】在中,哪个是分式方程的解,为什么?
类型三:分式方程的解法
3、解方程
举一反三:
【变式】解方程:(1)=; (2)+=2.
类型四:增根的应用
4、当m为何值时,方程会产生增根( )
A. 2
B. -1
C. 3
D.-3
举一反三:
【变式】.若方程=无解,则m=。

学习成果测评
基础达标
选择题(请将唯一正确答案的代号填入题后的括号内)
1.要把分式方程化成整式方程,方程两边需要同时乘以().
A.2x-4 B.x C.2(x-2) D.2x(x-2)
2.方程的解是().
A.1 B.-1 C.±1 D.0
3.把分式方程的两边同时乘以(x-2),约去分母得().
A.1-(1-x)=1 B.1+(1-x)=1
C.1-(1-x)=x-2 D.1+(1-x)=x-2
填空题
4.已知若(a、b都是整数),则a+b的值是______.5.已知,则______________.
6.已知,则分式的值为______________.
解答题
7.解方程
(1);(2).
8.观察图示的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:
(1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示.
(2)猜想并写出与第n 个图形相对应的等式.
综合探究
解答题
9.先阅读下列一段文字,然后解答问题.
已知:
方程21
11
=-x x 的解是x 1=2,x 2=21
-;
方程32
21
=-x x 的解是x 1=3,x 2=31
-;
方程43
31
=-x x 的解是x 1=4,x 2=41
-;
方程54
41
=-x x 的解是x 1=5,x 2=51
-.
问题:观察上述方程及其解,再猜想出方程11
10101=-x x 的解,并写出检验.
10.阅读理解题:
阅读下列材料,关于x 的方程:
c c x x 11
+=+的解是x 1=c ,x 2=c 1

c c x x 22+=+的解是x 1=c ,x 2=c 2

c c x x 3
3
+=+的解是x 1=c ,x 2=c 3
;…….
(1)请观察上述方程与解的特征,比较关于x 的方程c m
c x m
x +=+(m ≠0)与它们的关系,

猜想
它的解是什么,并利用“方程的解”的概念进行验证.
(2)由上述的观察、比较、猜想、验证,可以得出结论:•如果方程的左边是未知数与其倒数的倍数,方程右边的形式与左边完全相同,只把其中未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x 的方程:1212-+=-+
a a x x .
答案与解析:
选择题
1.D (提示:关键是要将分式方程化成整式方程,所以选项A 、B 、C 均不能达到目的.)
2.D (提示:本题不用考虑选项A 、B 、C ,因为x=1或者-1时,原方程没有意义.只需要将x=0带入原方程检验即可.)
3.D (提示:本题有两个地方需要注意:(1)去分母时第二个分式的分子要带括号,这样可以避免符 号出错;(2)方程的右边也要乘以(x-2).)
填空题
4.19 (提示:本题的关键是找出通项,
,即可求出a 、b 的值.)
5. (提示:先将两边平方,可得x 2+=14,然后将所求代数式取倒数,求得
=15,最后再取倒数即可.)
6.(提示:由得出x-y=-3xy,带入所求分式的分子和分母即可.)
解答题
7.(1)3(提示:按解方程的步骤,注意不要跳步.)
(2)无解(提示:本题要注意解方程后一定要检验.)
8.(1);图示略.
(2)(提示:找到通项是本题关键,建议大家先关注第(2)问.)
综合探究
解答题
9.x1=11,x2=-;代入检验即可.
10.(1)x1=c,;代入检验.(2).。

相关文档
最新文档