最新Stata基础命令回顾整理

合集下载

STATA常用命令大全

STATA常用命令大全

STATA 常用命令大全调整变量格式:format x1 %10.3f ——将x1的列宽固定为10,小数点后取三位format x1 %10.3g ——将x1的列宽固定为10,有效数字取三位format x1 %10.3e ——将x1的列宽固定为10,采用科学计数法format x1 %10.3fc ——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符format x1 %10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符format x1 %-10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“-”表示左对齐合并数据:use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge using "C:\Documents and Settings\xks\桌面\1999.dta"——将1999和2006的数据按照样本(observation)排列的自然顺序合并起来use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge id using "C:\Documents and Settings\xks\桌面\1999.dta" ,unique sort——将1999和2006的数据按照唯一的(unique)变量id来合并,在合并时对id进行排序(sort)建议采用第一种方法。

对样本进行随机筛选:sample 50在观测案例中随机选取50%的样本,其余删除sample 50,count在观测案例中随机选取50个样本,其余删除查看与编辑数据:browse x1 x2 if x3>3 (按所列变量与条件打开数据查看器)edit x1 x2 if x3>3 (按所列变量与条件打开数据编辑器)数据合并(merge)与扩展(append)merge表示样本量不变,但增加了一些新变量;append表示样本总量增加了,但变量数目不变。

stata命令大全(全)Word版

stata命令大全(全)Word版

*********面板数据计量分析与软件实现*********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计)* 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog 生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/ gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

计量经济学stata命令汇总

计量经济学stata命令汇总

计量经济学stata命令汇总1. 数据处理与描述性统计summarize 变量1 变量2…计算变量的均值、中位数等统计量tabulate 变量1 变量2…制表histogram 变量画单变量直方图scatter 变量1 变量2…画双变量散点图graph twoway 程序名变量1 变量2…绘制双变量图形sort 变量按照变量排序by 变量: 命令按照变量拆分数据并执行命令replace 变量=表达式替换变量中的值generate 新变量=表达式生成新变量egen 新变量=函数(变量) 生成新变量2. 回归分析regress 因变量自变量1 自变量2…普通最小二乘回归reg 相关变量,robust 异方差鲁棒性回归logit 因变量自变量1 自变量2…二元Logit模型probit 因变量自变量1 自变量2…二元Probit模型tobit 因变量自变量1 自变量2… 截尾变量(下界或上界)cens(下界或上界) 截尾Tobit模型heckman 因变量自变量1 自变量2… 难以观察到自变量矩阵决策过程变量名称=接收权值做二阶段回归Heckman选择模型pheckman 因变量自变量1 自变量2… 难以观察到自变量矩阵决策过程经验Bayes做二阶段回归Pooled Heckman选择模型xtset 变量1 变量2…指定面板数据xtreg 因变量自变量1 自变量2…, fe/be/fevd/arellano间隔估计xtlogit 因变量自变量1 自变量2…, fe面板Logit模型xtprobit 因变量自变量1 自变量2…, fe面板Probit模型3. 时间序列分析dfuller 变量单位根检验tsset 变量指定时间序列数据tsline 变量绘制时间序列图arma 阶数, lags(*laglist*) ARMA过程估计arima 阶数, lags(*laglist*) 差分阶数(*diff*) 现有模型(*model*) ARIMA模型估计arch hq/aic, lags(*laglist*) ARCH模型估计garch q=p o=r t=m, arch(q) garch(p) GARCH模型估计ivregress (2SLS)因变量自变量1(内生变量)编号=gmm/cluster(varname) 内生变量外生变量IV或2SLS回归分析4. 面板数据分析&横截面数据分析xtsum 等对面板数据的描述统计量xttest0 2个变量计算相对于H0的t值,考虑了异方差和面板数据结构(前提是两个变量符合随机效应或固定效应假设)xttobit 因变量自变量1 自变量2… 下界 cens(下界或上界)面板Tobit模型xtreg 因变量自变量1 自变量2…, fe/be/fevd/arellano面板回归模型xtlogit/xtprobit 因变量自变量1 自变量2…, fe面板分类模型5. 高级统计方法cluster 变量聚类分析pca 变量1 变量2…, components(4)主成分分析mvreg 因变量向量1 向量2…, clustervar(cluster)多元回归及聚类分析multilevel 因变量自变量1 自变量2…, mle 内部命令(通常是cov)多层线性模型分析glm 因变量自变量1 自变量2…, family(binomial) 连接函数(logit/probit) 难以观察到自变量(即随机拦截模型)其他选项广义线性模型分析heckprob/reg3 因变量自变量1 自变量2… 等随机效应模型分析。

Stata命令整理

Stata命令整理

Stata命令整理Stata 命令语句格式:[by varlist:] command [varlist] [=exp] [if exp] [in range] [weight] [, options]1、[by varlist:]*如果需要分别知道国产车和进⼝车的价格和重量,可以采⽤分类操作来求得,sort foreign //按国产车和进⼝车排序. by foreign: sum price weight*更简略的⽅式是把两个命令⽤⼀个组合命令来写。

. by foreign, sort: sum price weight如果不想从⼩到⼤排序,⽽是从⼤到⼩排序,其命令为gsort。

. sort - price //按价格从⾼到低排序. sort foreign -price /*先把国产车都排在前,进⼝车排在后⾯,然后在国产车内再按价格从⼤⼩到排序,在进⼝车内部,也按从⼤到⼩排序*/2、[=exp]赋值运算. gen nprice=price+10 //⽣成新变量nprice,其值为price+10/*上⾯的命令generate(略写为gen) ⽣成⼀个新的变量,新变量的变量名为nprice,新的价格在原价格的基础上均增加了10 元。

. replace nprice=nprice-10 /*命令replace 则直接改变原变量的赋值,nprice调减后与price 变量取值相等*/3、[if exp]条件表达式. list make price if foreign==0*只查看价格超过1 万元的进⼝车(同时满⾜两个条件),则. list make price if foreign==1 &price>10000*查看价格超过1 万元或者进⼝车(两个条件任满⾜⼀个). list make price if foreign==1 | price>100004、[in range]范围筛选sum price in 1/5注意“1/5”中,斜杠不是除号,⽽是从1 到 5 的意思,即1,2,3,4,5。

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

stata最常用命令大全

stata最常用命令大全

statasave‎命令File&#6‎1672;Save ‎A s例1. 表1‎.为某一降压药临床试‎验数据,试从键盘输入‎S tata,并保存为‎S tata格式文件。

‎STATA数据库的‎维护排序SORT‎变量名1 变量名2‎……变量更名‎r ename 原变量‎名新变量名STA‎T A数据库的维护删‎除变量或记录dro‎p x1 x2 ‎ /* ‎删除变量x1和x2‎d rop x1-x5‎‎/* 删除数据库中介‎于x1和x5间的所有‎变量(包括x1和x5‎)drop if ‎x<0 ‎ /* 删去x1<‎0的所有记录dro‎p in 10/12‎ /* 删‎去第10~12个记录‎drop if x‎==. ‎/* 删去x为缺失‎值的所有记录dro‎p if x==.|‎y==. /* 删‎去x或y之一为缺失值‎的所有记录drop‎if x==.&y‎==. /* 删去‎x和y同时为缺失值的‎所有记录drop ‎_all ‎ /* 删掉‎数据库中所有变量和数‎据STATA的变量‎赋值用genera‎t e产生新变量ge‎n erate 新变量‎=表达式gener‎a te bh=_n ‎‎‎/* 将‎数据库的内部编号赋给‎变量bh。

gene‎r ate group‎=int((_n-1‎)/5)+1 ‎/* 按当前数据‎库的顺序,依次产生5‎个1,5个2,5个‎3……。

直到数据库结‎束。

generat‎e block=mo‎d(_n,6) ‎ /* 按‎当前数据库的顺序,依‎次产生1,2,3,4‎,5,0。

gene‎r ate y=log‎(x) if x>0‎‎/* 产生‎新变量y,其值为所有‎x>0的对数值log‎(x),当x<=0时‎,用缺失值代替。

‎e gen产生新变量‎s et obs 12‎egen a=se‎q() ‎ /*产生1到‎N的自然数egen‎b=seq(),b‎(3) /*产生‎一个序列,每个元素重‎复#次egen c‎=seq(),to(‎4) /*产生多个‎序列,每个序列从1到‎#egen d=s‎e q(),f(4)t‎(6) /*产生多个‎序列,每个序列从#1‎到#2encode‎字符变量名,ge‎n(新数值变量名)‎作用:将字符型变量转‎化为数值变量。

stata常用命令总结

stata常用命令总结

说明:(1)在最前面加上“*”号表示该行为注释语句,STATA 将只显示不执行;(2)在一个命令的中间加入注释,要用:/*注释内容*/(3)对较长的命令或者为便于阅读,将一行命令写成几行时,用///来分开(4)在命令行的后面加入注释://注释语句将一部分内容变成注释内容,前后用/*被注释掉的语句*/ */about *查看所安装的Stata所属版本update all *更新stata命令库sysuse *打开系统自带的示例数据use *打开用户自己的统计数据,默认打开C:\data或D:\data中的数据use"D:\abc" *打开其他文件夹的数据,等价于菜单file--open--abc insheet using D:\1.csv, clear *导入其他格式的数据insheet using D:\1.csv, double clear *对导入数据的精度要求很高outsheet using myresult.txt *导出数据outsheet using myresult.asc *导出数据*此时建立的文件myresult.txt第一行为变量名,第2~6 行为变量值。

变量列间用Tab键分隔。

如果不希望在第一行存储变量名,则可以使用nonames 选项。

如果文件已经存在,则需要使用replace 选项outsheet using myresult.asc, nonamesoutsheet using myresult.asc, nonames replaceclear //清空内存中现有数据describe //描述数据概貌edit *利用数据编辑器进行数据编辑list *类似于edit,但只能显示不能修改数据display *显示计算结果dispay log(2) *当计算器用drop_all *drop data from memoryset obs *定义样本个数(使用前一定要用drop或clear命令清空当前样本)summarize y *求某个变量的观察值个数、平均值、标准差、最小值和最大值summarize y,detail *显示某个变量更多的指标(峰度、偏度等)scatter y x *生成两个变量的散点图line y x *生成两个变量的折线图*用双Y 轴,将降雨量用左纵轴表示,将单产用右纵轴表示。

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

STATA最常用命令大全

STATA最常用命令大全

statasave命令File&#61672;Save As例1. 表1.为某一降压药临床试验数据,试从键盘输入Stata,并保存为Stata格式文件。

STATA数据库的维护排序SORT 变量名1 变量名2 ……变量更名rename 原变量名新变量名STATA数据库的维护删除变量或记录drop x1 x2 /* 删除变量x1和x2drop x1-x5 /* 删除数据库中介于x1和x5间的所有变量(包括x1和x5)drop if x<0 /* 删去x1<0的所有记录drop in 10/12 /* 删去第10~12个记录drop if x==. /* 删去x为缺失值的所有记录drop if x==.|y==. /* 删去x或y之一为缺失值的所有记录drop if x==.&y==. /* 删去x和y同时为缺失值的所有记录drop _all /* 删掉数据库中所有变量和数据STATA的变量赋值用generate产生新变量generate 新变量=表达式generate bh=_n /* 将数据库的内部编号赋给变量bh。

generate group=int((_n-1)/5)+1 /* 按当前数据库的顺序,依次产生5个1,5个2,5个3……。

直到数据库结束。

generate block=mod(_n,6) /* 按当前数据库的顺序,依次产生1,2,3,4,5,0。

generate y=log(x) if x>0 /* 产生新变量y,其值为所有x>0的对数值log(x),当x<=0时,用缺失值代替。

egen产生新变量set obs 12egen a=seq() /*产生1到N的自然数egen b=seq(),b(3) /*产生一个序列,每个元素重复#次egen c=seq(),to(4) /*产生多个序列,每个序列从1到#egen d=seq(),f(4)t(6) /*产生多个序列,每个序列从#1到#2encode 字符变量名,gen(新数值变量名)作用:将字符型变量转化为数值变量。

零基础小白STATA数据分析实用常见命令整理

零基础小白STATA数据分析实用常见命令整理

STATA基础入门零基础实用命令整理第一章数据的读入与熟悉1.读入文件中的部分变量. use[变量] using [文件名]Eg . use age sex height weight using [文件名]2.读入文件中的部分观察量. use[文件名] in X/Y. use "I:\stata\chapter3.dta" in 601/1000软件只读入从第601个观察到第1000个观察之间的400个观察量3.描述、管理数据的基本命令命令功能. describe描述数据的基本情况:样本总量、变量总数、变量的格式等. list. list [变量名]-列出数据中所有变量的分布,从第一个样本到最后一个样本-列出选定变量的分布. list [变量名] in X/Y 列出数据中被选定的变量分布。

in限定数据的观察值范围。

比如,若只想查看第100个-200个观察值的分布,则将X/Y替换成100/200. order [变量名]按选定变量排序。

比如,样本的编号、年龄、性别、教育程度,……,等. aorder 将所有变量从 a-z 排序. label variable给变量贴上标签命令功能. sort [变量名] -将某个变量的数值进行排序。

一般情况下,排序的方式是从小到大-可同时排序多个变量-Stata将缺失值描述为最大数值,故排列在最后. sort [变量名] [in] 对某些变量的某个取值范围进行排序;没有指定的取值范围保持在原地方. gsort [+|-][变量名] -可从小到大和从大到小-若变量名前没有任何符号或加上+号,则按升序排列;若在变量名前加上-号,则按降序排列-变量可以是数值型、也可以是字符型. gsort [+|-][变量名] ,mfirst -mfirst指定将缺失值置于所有有效数值之前. gsort -age第二章变量的生成与处理1.离散和连续测量离散方式(discrete measure):由定性测量和定序测量组成;适用于低层次数据连续方式(continuous measure):由定距测量和定比测量组成。

(最新整理)Stata常用命令

(最新整理)Stata常用命令

Stata常用命令编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(Stata常用命令)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为Stata常用命令的全部内容。

Stata常用命令大学期间觉得学的最有用的软件之一就是stata了,对stata基本是在血和泪的尝试中爬过,到了最后基本属于只要stata不出现红字错误命令就开心得不得了.顺便整理一下常用的stata命令如下,应该对付计量方向第一学期的入门问题不大(求stata大神不虐。

),所以就只写了一部分常用的,有时间后面再补充吧。

主要就是分为基本操作和回归统计两部分:1、基本操作import/use/insheet/merge:基本常用的导入文件就是这四个了,建议直接从stata的menu菜单中导入,导入xlsx和csv这种常见的格式时还有一些备用选项可以自己体验一下(比如string和把第一行视为变量名之类)。

merge需要单独说一下,因为是将两个数据库合并为一个,原理也比较简单,两个数据库中根据一些相同的变量把其他数据“加”到原来的数据库中,也是建议直接菜单操作,不要用命令。

在Data的Combine datasets的merge two datasets中,分为1:1、m:1、1:m各种形式,基本用两次就差不多能搞懂。

help:一定第一个学的是这个!啥不会就help一下,不知道函数了就help function,不知道回归细节就help regress,多读help文件!gen/egen:最常用的建立函数的命令,这两个不同之处在于gen一般是初等函数,egen的函数会复杂一些.常用的函数包括数学函数和其他函数,比如count/tag之类,建议直接到菜单里Data下Create data的create new variable或create new variable(extended)直接生成函数,会方便的多。

STATA最常用命令大全

STATA最常用命令大全

statasave命令File&#61672;Save As例1. 表1.为某一降压药临床试验数据,试从键盘输入Stata,并保存为Stata格式文件。

STATA数据库的维护排序SORT 变量名1 变量名2 ……变量更名rename 原变量名新变量名STATA数据库的维护删除变量或记录drop x1 x2 /* 删除变量x1和x2drop x1-x5 /* 删除数据库中介于x1和x5间的所有变量(包括x1和x5)drop if x<0 /* 删去x1<0的所有记录drop in 10/12 /* 删去第10~12个记录drop if x==. /* 删去x为缺失值的所有记录drop if x==.|y==. /* 删去x或y之一为缺失值的所有记录drop if x==.&y==. /* 删去x和y同时为缺失值的所有记录drop _all /* 删掉数据库中所有变量和数据STATA的变量赋值用generate产生新变量generate 新变量=表达式generate bh=_n /* 将数据库的内部编号赋给变量bh。

generate group=int((_n-1)/5)+1 /* 按当前数据库的顺序,依次产生5个1,5个2,5个3……。

直到数据库结束。

generate block=mod(_n,6) /* 按当前数据库的顺序,依次产生1,2,3,4,5,0。

generate y=log(x) if x>0 /* 产生新变量y,其值为所有x>0的对数值log(x),当x<=0时,用缺失值代替。

egen产生新变量set obs 12egen a=seq() /*产生1到N的自然数egen b=seq(),b(3) /*产生一个序列,每个元素重复#次egen c=seq(),to(4) /*产生多个序列,每个序列从1到#egen d=seq(),f(4)t(6) /*产生多个序列,每个序列从#1到#2encode 字符变量名,gen(新数值变量名)作用:将字符型变量转化为数值变量。

[推荐]stata基本操作汇总常用命令

[推荐]stata基本操作汇总常用命令

[推荐]stata基本操作汇总常用命令[推荐] Stata基本操作汇总——常用命令help和search都是查找帮助文件的命令,它们之间的区别在于help用于查找精确的命令名,而search是模糊查找。

如果你知道某个命令的名字,并且想知道它的具体使用方法,只须在stata的命令行窗口中输入help空格加上这个名字。

回车后结果屏幕上就会显示出这个命令的帮助文件的全部内容。

如果你想知道在stata下做某个估计或某种计算,而不知道具体该如何实现,就需要用search命令了。

使用的方法和help类似,只须把准确的命令名改成某个关键词。

回车后结果窗口会给出所有和这个关键词相关的帮助文件名和链接列表。

在列表中寻找最相关的内容,点击后在弹出的查看窗口中会给出相关的帮助文件。

耐心寻找,反复实验,通常可以较快地找到你需要的内容.下面该正式处理数据了。

我的处理数据经验是最好能用stata的do文件编辑器记下你做过的工作。

因为很少有一项实证研究能够一次完成,所以,当你下次继续工作时。

能够重复前面的工作是非常重要的。

有时因为一些细小的不同,你会发现无法复制原先的结果了。

这时如果有记录下以往工作的do文件将把你从地狱带到天堂。

因为你不必一遍又一遍地试图重现做过的工作。

在stata 窗口上部的工具栏中有个孤立的小按钮,把鼠标放上去会出现“bring do-file editor to front”,点击它就会出现do文件编辑器。

为了使do文件能够顺利工作,一般需要编辑do文件的“头”capture clear和“尾”。

这里给出我使用的“头”和“尾”。

(清空内存中的数据)capture log close (关闭所有打开的日志文件)set more off (关闭more选项。

如果打开该选项,那么结果分屏输出,即一次只输出一屏结果。

你按空格键后再输出下一屏,直到全部输完。

如果关闭则中间不停,一次全部输出。

)set matsize 4000 (设置矩阵的最大阶数。

stata命令大全(全)[整理版]

stata命令大全(全)[整理版]

*********面板数据计量分析与软件实现*********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计)* 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog 生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

(完整)stata命令总结,推荐文档

(完整)stata命令总结,推荐文档

stata11常用命令注:JB统计量对应的p大于0.05,则表明非正态,这点跟sktest和swilk 检验刚好相反;dta为数据文件;gph为图文件;do为程序文件;注意stata要区别大小写;不得用作用户变量名:_all _n _N _skip _b _coef _cons _pi _pred _rc _weight doublefloat long int in if using with命令:读入数据一种方式input x y1 42 5.53 6.24 7.75 8.5endsu/summarise/sum x 或 su/summarise/sum x,d对分组的描述:sort groupby group:su x%%%%%tabstat economy,stats(max) %返回变量economy的最大值%%stats括号里可以是:mean,count(非缺失观测值个数),sum(总和),max,min,range,%% sd,var,cv(变易系数=标准差/均值),skewness,kurtosis,median,p1(1%分位%% 数,类似地有p10, p25, p50, p75, p95, p99),iqr(interquantile range = p75 – p25)_all %描述全部_N 数据库中观察值的总个数。

_n 当前观察值的位置。

_pi 圆周率π的数值。

listgen/generate %产生数列egen wagemax=max(wage)clearuseby(分组变量)set more 1/0count %计数gsort +x (升序)gsort -x (降序)sort x 升序;并且其它变量顺序会跟着改变label var y "消费" %添加标签describe %描述数据文件的整体,包括观测总数,变量总数,生成日期,每个变量的存储类型(storage type),标签(label)replace x5=2*y if x!=3 %替换变量值replace age = 25 in 107 %令第107个观测中age为25rename y2 u %改变变量名drop in 2 %删除全部变量的第2行drop if x==. 删去x为缺失值的所有记录keep if x<2 %保留小于2的数据,其余变量跟随x改变keep in 2/10 %保留第2-10个数keep x1-x5 %保留数据库中介于x1和x5间的所有变量 (包括x1和x5),其余变量删除ci x1 x2,by(group) %算出置信区间,不过先前对group要先排序,即sort group;%by的意思逐个进行cii 12 3.816667 0.2710343, level(90) %已知均值,方差,计算90%的置信区间cii 10 2 %obs=10,mean=2,以二项分布形式,计算置信区间centile x,centile(2.5 25 50 75 97.5) %取分位数correlate/corr x y z %相关系数pwcorr x y,sig %给出原假设r=0的命令%如果变量非服从正态分布,则spearman x yregress/reg mean year %回归方程建立 reg y x,noconstant %无常数项predict meanhat %预测拟合值predict e,residual %得到残差estat hettest % 异方差检验dwstat % Durbin-Watson自相关检验vif % 方差膨胀因子logit y x1 x2 x3 (y取0或1,是被解释变量,x1-x3是被解释变量) %logit 回归probit y x1 x2 x3 (y取0或1,是被解释变量,x1-x3是被解释变量) %probit 回归tobit y x1 x2 x3 (y取值在0和1之间,是被解释变量,x1-x3是被解释变量) %tobit回归sktest e %残差正态性检验 p>0.05则接受原假设,即服从正态分布;%% sktest是基于变量的偏度和斜度(正态分布的偏度为0,斜度为3)swilk x %基于Shapiro-Wilk检验%%p值越小,越倾向于拒绝零假设,也就是变量越有可能不服从正态分布xi %生成虚拟变量tabulat gender,summ(math) %用gender指标对math进行分类,返回两类math 的mean、std、freqtabulate=tab %gen f=int((shengao-164)/3)*3+164 组距为3tabulate 变量名 [, generate(新变量) missing nofreq nolabel plot ] %%%%%generate(新变量) // 按分组变量产生哑变量nofreq // 不显示频数nolabel // 不显示数值标记plot // 显示各组频数图示missing // 包含缺失值cell // 显示各小组的构成比(小组之和为 1) column // 按栏显示各组之构成(各栏总计为 1)row // 按行显示各组之构成(各行总计为 1) %%%%%求和,求最小?mod(x,y) %求余数means %返回三种平均值di normprob(1.96)di invnorm(0.05)di binomial(20,5,0.5)di invbinomial(20,5,0.5)di tprob(10,2)di invt(10.0.05)di fprob(3,27,1)di invfprob(3,27,0.05)di chi2(3,5)di invchi2(3,0.05)stack x y z,into(e) %把三列合成一列xpose,clear %矩阵转置append using d:\0917.dta %把已打开的文件(x y z)跟0917里的(x y z)合并,是竖向合并,即观察值合并;merge using D:\0917.dta %把已打开的文件(x y z)跟0917里的(a b)合并,是横向合并,即变量合并;format x %9.2e %科学记数format x %9.2f %2位小数%产生随机数%1 产生20个在(0,1)区间上均匀分布的随机数uniform()set seed 100set obs 20gen r=uniform()list%clear 清除内存set seed 200 设置种子数为 200set obs 20 设置样本量为 20range no 1 20 建立编号 1 至 20gen r=uniform() 产生在(0,1)均匀分布的随机数gen group=1 设置分组变量 group 的初始值为 1sort r 对随机数从小到大排序replace group=2 in 11/20 设置最大的 10 个随机数所对应的记录为第2组,即:最小的10个随机数所对应的记录为第1组sort no 按照编号排序list 显示随机分组的结果也可以list if group==1和list no if group==1%2 产生10个服从正态分布N(100,6^2)的随机数invnorm(uniform())*sigma+u clear 清除内存set seed 200 设置种子数为 200set obs 10 设置样本量为 10 gen x=invnorm(uniform())*6+100 产生服从 N(100,6^2)的随机数list画图注意有些图前面要加histogram 直方图line 折线图scatter 散点图scatter y x,c(l) s(d) b2("(a)")graph twoway connected y x 连点图graph bar (sum) var2,over(var1) blabel(total) %条形图. graph bar p52 p72,by(d). graph bar p52 p72,over(d). graph bar p52 p72,by(d) stack. graph bar p52 p72,over(d) stack////////////数据如下%d p52 p72%1 163.2 27.4%2 72.5 83.6%3 57.2 178.2histogram x,bin(8) norm %画直方图,加正态分数线graph pie a b o ab if area==1,plabel(_all percent) %画饼图graph pie var2, over(var1) plabel(_all percent) %饼图graph pie p52 p72,by(d) %饼图graph box y1 %箱体图qnorm x %qq图lfit y x %回归直线graph matrix gender economy math 多变量散点图line yhat x||scatter y x,c(.l) s(O.) xline(12) yline(5.4) %线形图&散点图有一些通用的选项可以给图形“润色”:标题title(“string”) (string可为任意的字符串,下同)脚注note(“string”)横座标标题xtitle(“string”)纵座标标题ytitle(“sting”)横座标范围 xaxis(a,b) (a<b为两个数字,下同)纵座标范围 yaxis(a,b)插入文字 text (该命令既要指定插入文字的内容,也要指定插入的位置)插入图例 legend (该命令既要指定图例的内容,也要指定其位置)绘制散点图和线条的两个主要的选择项为:connect(c...c) //连接各散点的方式,c表示:或简写为c(c...c) . 不连接 (缺省值)l 用直线连接L 沿x方向只向前不向后直线连接m 计算中位数并用直线连接s 用三次平滑曲线连接J 以阶梯式直线条连接|| 用直线连接在同一纵向上的两点II 同 ||, 只是线的顶部和底部有一个短横Symbol(s...s) // 表示各散点的图形,s 表示:或简写为s(s...s) O 大圆圈 (缺省值)S 大方块T 大三角形o 小圆圈d 小菱形p 小加号. 小点i 无符号[varname] 用变量的取值代码表示[_n] 用点的记录号表示数学函数等都要与generate、replace、display一起使用,不能单独使用程序文件douse d:\0917.dtareg y xline y x,saving(d:\d4)按ctrl+D执行字符串操作函数:length(s) %长度函数,计算s的长度, 如,displength("ab")的结果是2substr(s,n1,n2) %子串函数,获得从s的n1个字符开始的n2个字符组成的字符串,disp substr("abcdef",2,3)的结果是"bcd"string(n) %将数值n转换成字符串函数,如,dispstring(41)+"f"的结果是"41f"real(s) %将字符串s转换成数值函数,如,dispreal("5.2")+1的结果是6.2upper(s) %转换成大写字母函数,如,disp upper("this")的结果是"THIS"lower(s) %转换成小写字母函数,如disp lower("THIS")的结果是"this"index(s1,s2) %子串位置函数,计算s2在s1中第一次出现的起始位置, 如果s2不在s1中, 则结果为0。

stata命令总结

stata命令总结

表2-1: 回归分析相关命令一览命令用途anova 方差和协方差分析heckman Heckman 筛选模型intreg 离散型变量模型,包括Tobit 、cnreg 和intregivreg 工具变量法(IV 或2SLS)newey Newey-West 标准差设定下的回归prais 针对序列相关的Prais-Winsten, Cochrane-Orcutt, or Hildreth-Lu 回归qreg 分量回归reg OLS 回归sw 逐步回归法reg3 三阶段最小二乘回归rreg 稳健回归(不同于方差稳健型回归,即White 方法)sureg 似无相关估计svyheckman 调查数据的Heckman 筛选模型svyintreg 调查数据的间断变量回归svyregress 调查数据的线性回归tobit Tobit 回归treatreg treatment 效应模型truncreg 截断回归表2-2: 时间序列命令一览命令用途clemao1 允许结构突变的单位根检验zandrewsdfullerdfglspperroncoin 单方程协整检验dwstat 参考dwstat2 , durbina2durbinh表2-3: Panel Data 模型相关命令一览I命令模型统计描述相关命令:xtdes 变量类型,数据类型描述xtsum 基本统计量xttab 按表格形式列示xtpattern 面板数据的模式估计相关命令:xtreg 面板数据模型(固定效应、随机效应)xtregar 含有AR(1) 干扰项的固定效应和随机效应面板数据模型xtgls 截面-时序混合模型,可处理异方差、组内序列相关和组间相关性xtpcse OLS or Prais-Winsten models with panel-corrected standard errorsxtrchh Hildreth-Houck random coefficients modelsxtivreg 面板模型的工具变量或两阶段最小二乘法估计xtabond Arellano-Bond(1991) 线性动态面板数据模型估计xtabond2 Arellano-Bover(1995) 系统GMM 动态面板数据模型估计xttobit Tobit 随机效应面板模型xtintreg Random-effects interval data regression modelsxtlogit Fe, Re, Pa logit modelsxtprobit Re, Pa probit modelsxtcloglog Re, Pa cloglog modelsxtpoisson Fe, Re, Pa Poisson modelsxtnbreg Fe, Re, Pa negative binomial modelsxtfrontier 面板随机前沿模型xthtylor Hausman-Taylor estimator for error-components models表2-4: Panel Data 模型相关命令一览II命令模型假设检验相关:test Wald 检验,如时间效应联合显著性检验xttest0 随机效应检验xttest1 面板序列相关检验xttest2 adsxtserial Wooldridge 一阶序列相关检验xtab Arellano 面板一阶序列相关检验hausman Hausman 检验面板单位根和协整相关:xtunit stata提供的检验方法ipshin IPS(2003)面板单位根检验levilin Levin,Lin和Chu(LLC, 2002)面板单位根检验madfuller Sarno-Taylor(1998) 面板单位根检验xtfisher Maddala和Wu(1999),基于P 值的面板单位根检验表2-5: Post-estimation Commands命令名称用途adjust 列示预测结果的均质,适于多种回归分析,可分组列示estimates 估计结果的存储、再显示、列表比较等hausman Hausman 模型识别检验lincom 获得参数的线性组合,在Logit 模型中可以获得系数线性组合的OR 值linktest 但方程link 识别检验,用y 对O y 和O y2 回归lrtest 似然比(LR)检验mfx 计算边际效应和弹性系数nlcom 系数的非线性组合predict 获得拟合值、残差等predictnl 获得非线性估计的拟合值、残差等test 线性约束的假设检验,Wald 检验testnl 非线性约束的假设检验vce 列示参数估计值的方差-协方差矩阵表2-6: 二维图种类一览图形种类简单描述scatter scatterplotline line plotconnected connected-line plotscatteri scatter with immediate argumentsarea line plot with shadingbar bar plotspike spike plotdropline dropline plotdot dot plotrarea range plot with area shadingrbar range plot with barsrspike range plot with spikesrcap range plot with capped spikesrcapsym range plot with spikes capped with symbols rscatter range plot with markersrline range plot with linesrconnected range plot with lines and markerstsline time-series plottsrline time-series range plotmband median-band line plotmspline spline line plotlowess LOWESS line plotlfit linear prediction plotqfit quadratic prediction plotfpfit fractional polynomial plotlfitci linear prediction plot with CIsqfitci quadratic prediction plot with CIsfpfitci fractional polynomial plot with CIsfunction line plot of functionhistogram histogram plotkdensity kernel density plot表2-7: 二维图选项一览选项类别简单描述added line options draw lines at specified y or x values added text option display text at specified (y,x) value axis options labels, ticks, grids, log scalestitle options titles, subtitles, notes, captionslegend option legend explaining what means what scale(#) resize text, markers, and line widthsregion options outlining, shading, aspect ratio, sizeaspect option constrain aspect ratio of plot regionscheme(schemename) overall lookby(varlist, ...) repeat for subgroupsnodraw suppress display of graphname(name, ...) specify name for graphsaving(filename, ...) save graph in fileadvanced options difficult to explain表2-9: 模拟分析相关命令一览命令用途备注抽样相关:corr2data 产生具有指定相关性的数据仅适用于模拟相关分析drawnorminvnorm(uniform()) 产生服从标准正态分布的随机数函数,可调节均值和方差matuniform(r,c) 产生均匀分布函数sample 从现有数据中进行非重复随机抽样参考bsamplesim arma 产生服从ARIMA 过程的随机变量需要下载Bootstrap 相关:bootstrapbsbstatbsampleMC 相关:simulate MC simulationjknife 类似于MCpermutepostfile 存储MC 的结果statsbyexp list。

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

stata命令总结

stata命令总结

stata命令总结表2-1: 回归分析相关命令一览命令用途anova 方差和协方差分析heckman Heckman 筛选模型intreg 离散型变量模型,包括T obit 、cnreg 和intregivreg 工具变量法(IV 或2SLS)newey Newey-West 标准差设定下的回归prais 针对序列相关的Prais-Winsten, Cochrane-Orcutt, or Hildreth-Lu 回归qreg 分量回归reg OLS 回归sw 逐步回归法reg3 三阶段最小二乘回归rreg 稳健回归(不同于方差稳健型回归,即White 方法)sureg 似无相关估计svyheckman 调查数据的Heckman 筛选模型svyintreg 调查数据的间断变量回归svyregress 调查数据的线性回归tobit Tobit 回归treatreg treatment 效应模型truncreg 截断回归表2-2: 时间序列命令一览命令用途clemao1 允许结构突变的单位根检验zandrewsdfullerdfglspperroncoin 单方程协整检验dwstat 参考dwstat2 , durbina2durbinh表2-3: Panel Data 模型相关命令一览I命令模型统计描述相关命令:xtdes 变量类型,数据类型描述xtsum 基本统计量xttab 按表格形式列示xtpattern 面板数据的模式估计相关命令:xtreg 面板数据模型(固定效应、随机效应)xtregar 含有AR(1) 干扰项的固定效应和随机效应面板数据模型xtgls 截面-时序混合模型,可处理异方差、组内序列相关和组间相关性xtpcse OLS or Prais-Winsten models with panel-corrected standard errors精品文库xtrchh Hildreth-Houck random coefficients modelsxtivreg 面板模型的工具变量或两阶段最小二乘法估计xtabond Arellano-Bond(1991) 线性动态面板数据模型估计xtabond2 Arellano-Bover(1995) 系统GMM 动态面板数据模型估计xttobit Tobit 随机效应面板模型xtintreg Random-effects interval data regression modelsxtlogit Fe, Re, Pa logit modelsxtprobit Re, Pa probit modelsxtcloglog Re, Pa cloglog modelsxtpoisson Fe, Re, Pa Poisson modelsxtnbreg Fe, Re, Pa negative binomial modelsxtfrontier 面板随机前沿模型xthtylor Hausman-Taylor estimator for error-componentsmodels表2-4: Panel Data 模型相关命令一览II命令模型假设检验相关:test Wald 检验,如时间效应联合显著性检验xttest0 随机效应检验xttest1 面板序列相关检验xttest2 adsxtserial Wooldridge 一阶序列相关检验xtab Arellano 面板一阶序列相关检验hausman Hausman 检验面板单位根和协整相关:xtunit stata提供的检验方法ipshin IPS(2003)面板单位根检验levilin Levin,Lin和Chu(LLC, 2002)面板单位根检验madfuller Sarno-Taylor(1998) 面板单位根检验xtfisher Maddala和Wu(1999),基于P 值的面板单位根检验表2-5: Post-estimation Commands命令名称用途adjust 列示预测结果的均质,适于多种回归分析,可分组列示estimates 估计结果的存储、再显示、列表比较等hausman Hausman 模型识别检验lincom 获得参数的线性组合,在Logit 模型中可以获得系数线性组合的OR 值linktest 但方程link 识别检验,用y 对O y 和O y2 回归lrtest 似然比(LR)检验mfx 计算边际效应和弹性系数nlcom 系数的非线性组合predict 获得拟合值、残差等predictnl 获得非线性估计的拟合值、残差等test 线性约束的假设检验,Wald 检验精品文库testnl 非线性约束的假设检验vce 列示参数估计值的方差-协方差矩阵表2-6: 二维图种类一览图形种类简单描述scatter scatterplotline line plotconnected connected-line plotscatteri scatter with immediate argumentsarea line plot with shadingbar bar plotspike spike plotdropline dropline plotdot dot plotrarea range plot with area shadingrbar range plot with barsrspike range plot with spikesrcap range plot with capped spikesrcapsym range plot with spikes capped with symbols rscatter range plot with markersrline range plot with linesrconnected range plot with lines and markerstsline time-series plottsrline time-series range plotmband median-band line plotmspline spline line plotlowess LOWESS line plotlfit linear prediction plotqfit quadratic prediction plotfpfit fractional polynomial plotlfitci linear prediction plot with CIsqfitci quadratic prediction plot with CIsfpfitci fractional polynomial plot with CIsfunction line plot of functionhistogram histogram plotkdensity kernel density plot表2-7: 二维图选项一览选项类别简单描述added line options draw lines at specified y or x values added text option display text at specified (y,x) valueaxis options labels, ticks, grids, log scalestitle options titles, subtitles, notes, captionslegend option legend explaining what means whatscale(#) resize text, markers, and line widths精品文库region options outlining, shading, aspect ratio, size aspect option constrain aspect ratio of plot region scheme(schemename) overall lookby(varlist, ...) repeat for subgroupsnodraw suppress display of graphname(name, ...) specify name for graphsaving(filename, ...) save graph in fileadvanced options difficult to explain表2-9: 模拟分析相关命令一览命令用途备注抽样相关:corr2data 产生具有指定相关性的数据仅适用于模拟相关分析drawnorminvnorm(uniform()) 产生服从标准正态分布的随机数函数,可调节均值和方差matuniform(r,c) 产生均匀分布函数sample 从现有数据中进行非重复随机抽样参考bsample sim arma 产生服从ARIMA 过程的随机变量需要下载Bootstrap 相关:bootstrapbsbstatbsampleMC 相关:simulate MC simulationjknife 类似于MCpermutepostfile 存储MC 的结果statsbyexp list。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档