《石墨烯的表征》PPT课件

合集下载

石墨烯的表征

石墨烯的表征

石墨烯的表征方法拉曼光谱分析拉曼光谱是碳材料分析与表征的最好工具之一。

图1是石墨、氧化石墨和石墨烯的拉曼光谱。

从图中看出石墨仅在1576 cm-1处存在一个尖而强的吸收峰(G 峰),对应于E2g光学模的一阶拉曼散射,说明石墨的结构非常规整。

当石墨被氧化后,氧化石墨的G峰已经变宽,且移至1578 cm-1处,并且还在1345 cm-1处出现一个新的较强的吸收峰(D峰),表明石墨被氧化后,结构中一部分sp2杂化碳原子转化成sp3杂化结构,即石墨层中的C=C双键被破坏。

此外G带与D带的强度比也表示sp2/sp3碳原子比。

这进一步说明氧化石墨中sp2杂化碳层平面长度比石墨的减小。

当氧化石墨被还原后,还原氧化石墨即石墨烯的拉曼光谱图中也包含有类似氧化石墨的峰位。

石墨烯拉曼光谱图中两个峰(D与G)的强度比高于氧化石墨的,表明石墨烯中sp2杂化碳原子数比sp3杂化碳原子数多,也就是说石墨烯中sp2杂化碳层平面的平均尺寸比氧化石墨的大。

这说明了在本实验条件下氧化石墨被还原时,它只有一部分sp3杂化碳原子被还原成sp2杂化碳原子,即氧化石墨的还原状态结构不可能被完全恢复到原有的石墨状态,也就是说石墨烯的结构和石墨结构还是有差别的。

图1. 石墨(a)、氧化石墨(b)、石墨烯(c)拉曼光谱X-射线衍射分析图2是石墨、氧化石墨和石墨烯的XRD图。

从图中可以看出石墨在2θ约为26°附近出现一个很尖很强的衍射峰,即石墨(002)面的衍射峰,说明纯石墨微晶片层的空间排列非常规整。

石墨被氧化后,石墨(002)面的衍射峰非常小,但在2θ 约为10.6°附近出现很强的衍射峰,即氧化石墨(001)面的衍射峰。

这说明石墨的晶型被破坏,生成了新的晶体结构。

当氧化石墨被还原成石墨烯,石墨烯在2θ约为23°附近出现衍射峰,这与石墨的衍射峰位置相近,但衍射峰变宽,强度减弱。

这是由于还原后,石墨片层尺寸更加缩小,晶体结构的完整性下降,无序度增加。

石墨烯ppt课件

石墨烯ppt课件

04
缺点
设备成本高,制备过 程复杂。
液相剥离法制备过程及优化策略
过程
将石墨或膨胀石墨分散在溶剂中,通 过超声波、热应力等作用剥离出单层 或少层石墨烯。
优化策略
选择适当的溶剂和剥离条件,如超声 功率、时间、温度等,以提高剥离效 率和石墨烯质量。
优点
制备过程简单,成本低。
缺点
难以制备大面积、单层的石墨烯。
未来挑战和机遇并存局面思考
技术挑战
石墨烯制备技术仍存在一些难题 ,如大规模制备、成本控制、质 量稳定性等,需要加强技术研发
和创新。
市场机遇
随着石墨烯技术的不断突破和市场 需求的持续增长,石墨烯产业将迎 来更广阔的发展空间,企业需要抓 住机遇,积极拓展市场。
跨界融合
石墨烯产业需要与其他产业进行跨 界融合,共同推动产业升级和创新 发展,如与互联网、人工智能等产 业的深度融合。
THANKS
感谢观看
消费电子市场需求
随着消费电子产品的不断更新换代, 石墨烯在智能手机、平板电脑、可穿 戴设备等领域的应用需求将持续增长 。
新能源市场需求
石墨烯在新能源领域具有广阔的应用 前景,如太阳能电池、锂离子电池、 燃料电池等,未来市场需求将不断扩 大。
医疗健康市场需求
石墨烯在生物医疗领域的应用也逐渐 受到关注,如生物传感器、药物载体 、医疗器械等,未来市场需求有望持 续增长。
三维多孔支架、细胞培养基质、神经修复导管
石墨烯组织工程支架材料的研究进展及前景
骨组织工程、皮肤组织工程、心肌组织工程
安全性评价和毒理学问题关注
石墨烯的生物安全性问题
01 细胞毒性、免疫原性、遗传毒性
石墨烯的体内代谢和毒性机制

石墨烯PPT课件

石墨烯PPT课件
10
• 化学分散法 化学分散法是将氧化
石墨与水以1mg/mL的 比例混合, 用超声波 振荡至溶液清晰无颗 粒状物质,加入适量 肼在1 0 0℃回流2 4 h ,产生黑色颗粒状沉 淀,过滤、烘干即得 石墨烯。Sasha Stankovich 等利用化 学分散法制得厚度为1 nm左右的石墨烯。
11
石墨烯的性质

石墨烯最大的特性是其中电子的运动速度达到
了光速的1/300,远远超过了电子在一般导体中的
运动速度。,或更准确地,应称为“载荷子”(electric
charge carrier),具有一定的相对论性。
为了进一步说明石墨烯中的载荷子的特殊性质
,我们先对相对论量子力学或称量子电动力学做一 些了解。
经典物理学中,一个能量较低的电子遇到势 垒的时候,如果能量不足以让它爬升到势垒的顶端 ,那它就只能待在这一侧;在量子力学中,电子在 某种程度上是可以看作是分布在空间各处的波。当 它遇到势垒的时候,有可能以某种方式穿透过去, 这种可能性是零到一之间的一个数;而当石墨烯中 电子波以极快的速度运动到势垒前时,就需要用量 子电动力学来解释。量子电动力学作出了一个更加 令人吃惊的预言:电子波能百分百地出现在势垒的 另一侧: 相对论性的载荷子可以在其中完全自由地 15 穿行。
12
石墨烯的力学性能
可以毫不夸张的说,石墨烯的力学 性能可以用完美来形容。
虽然它只是一层原子织成的网,但
由于C原子之间的键合力很强,它拥有
很高的强度,科学家制得了一些只有
100分之一头发丝宽度的石墨烯薄片后,
使用原子尺寸的金属和钻石探针对它们
进行穿刺,从而测试它们的强度。让科
学家震惊的是,石墨烯比钻石还强硬,
9

《石墨烯的表征》课件

《石墨烯的表征》课件
《石墨烯的表征》PPT课 件
欢迎来到本次课件主题,今天我们将一起探索石墨烯的表征方法和未来的发 展方向。
石墨烯简介
石墨烯是由石墨层剥离而成的一种特殊形态的碳材料。它具有单原子厚度、 高比表面积、高机械强度、高导电性、高热导率等状态。
传统和特殊表征方法
传统的表征方法包括透射电镜和扫描电子显微镜,用于观察晶体结构和形貌。特殊的表征方法包括原子力显微 镜和拉曼光谱,能够揭示石墨烯的电学、热学、力学等性质。
优缺点和未来发展Βιβλιοθήκη 向各种表征方法的优缺点需要综合考虑,未来石墨烯的表征方法需要更多样化, 更专业化,以更好地服务于石墨烯产业的发展。
参考文献
• Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nature nanotechnology, 2008, 3(4): 210-215.
操作流程
使用电子束扫描石墨烯样品表面并记录图像,可以得到石墨烯的形貌和导电性信息。
观察结果
扫描电子显微镜下清晰显示出石墨烯片层的层数以及表面的几何形态。能够量测出石墨烯的 粗糙度和导电性。
原子力显微镜观察石墨烯
样品制备
使用化学气相沉积法在硅晶片上 制备石墨烯样品。
操作流程
观察结果
使用原子力显微镜照射样品表面, 通过控制探针与样品的距离来记 录石墨烯表面的高度变化。
石墨烯表面会有起伏,形成皱褶 结构,原子力显微镜可以清晰地 观察石墨烯表面的这种形态和变 化。
拉曼光谱分析石墨烯

2024版《石墨烯的研究》PPT课件

2024版《石墨烯的研究》PPT课件

目录•引言•石墨烯的基本性质•石墨烯的制备方法•石墨烯的应用领域•石墨烯的挑战与前景•结论引言石墨烯是一种由单层碳原子组成的二维材料。

石墨烯具有极高的电导率、热导率和机械强度等优异性能。

石墨烯的发现引起了科学界的广泛关注,被认为是未来材料科学的重要发展方向之一。

石墨烯的背景与概念0102 03推动材料科学的发展石墨烯作为一种新型材料,其研究有助于推动材料科学的发展,为制备更高性能的材料提供新的思路和方法。

促进相关产业的发展石墨烯的优异性能使其在电子、能源、生物等领域具有广泛的应用前景,其研究有助于促进相关产业的发展。

提高国家科技实力石墨烯作为一种具有重要战略意义的材料,其研究水平的提高有助于提高国家的科技实力和竞争力。

石墨烯的研究意义国内研究现状国内石墨烯研究起步较早,目前已经取得了一系列重要成果,包括石墨烯的制备、表征、应用等方面。

国外研究现状国外石墨烯研究也非常活跃,许多国际知名大学和科研机构都在开展石墨烯相关的研究工作。

发展趋势未来石墨烯的研究将更加注重应用基础研究,探索石墨烯在各个领域的应用潜力,同时加强石墨烯的规模化制备和产业化应用等方面的研究。

国内外研究现状及发展趋势石墨烯的基本性质石墨烯是由单层碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。

二维碳纳米材料石墨烯中的碳原子以六边形进行排列,每个碳原子与周围三个碳原子通过σ键相连,形成稳定的晶格结构。

碳原子排列方式石墨烯中碳-碳键长约为0.142nm ,每个晶格内有三个σ键,所有碳原子均为sp2杂化。

原子尺寸零带隙半导体石墨烯是一种零带隙半导体,其载流子在狄拉克点附近呈现线性色散关系,具有极高的载流子迁移率。

高电导率由于石墨烯中载流子的特殊性质,其电导率极高,甚至超过铜等传统导体。

量子霍尔效应在低温强磁场条件下,石墨烯会表现出量子霍尔效应,这是其独特电学性质之一。

石墨烯的强度极高,其抗拉强度是钢铁的数百倍,同时具有优异的韧性。

石墨烯简介PPT课件

石墨烯简介PPT课件

精选
17
应用与性能的关系
E
Relation between application and performance
精选
应用与性能的关系
精选
20
应用与性能的关系
透明度大
透明电极
电导率高
触控屏幕
比表面积大
太阳能电池
力学性能好 导热系数大
晶体管 复合材料
电子迁移率高
锂离子电池
精选
21
应用与性能的关系
B
精选
石墨烯的性能
力学性质:106N/cm2 光学性质:2.3%
Science, 321, 385 (2008) Science 320, 1308 (2008)
热学性质:5300 W/mK 电学性质:1/300光速
Nano Lett. 8, 902 (2008) Science, 306, 666 (2004)
精选
16
石墨烯的表征—其它方法
石墨烯表征方法
热重—示差扫描
用于分析温度变化过程中的物理化学变化,如物质含量、 分解和氧化还原等,研究样品的热失重行为和热量变化。
低温氮吸附测试
测定石墨烯的孔结构和比表面积,计算比表面积、孔径大小、 孔分布、孔体积等物理参数。
傅里叶变换红外光谱分析(FT-IR)
用来识别化合物和结构的官能团,在石墨烯制备中主要用于 氧化石墨烯的基面和边缘位的官能团的识别。
石墨烯的优异性能
精选
19
制备方法 Preparation Method
C
精选
机械剥离法
碳纳米管横向切割法
微波法 电弧放电法 光照还原法 外延生长法
石墨烯制备方法
石墨氧化还原法 电化学还原法

石墨烯的表征

石墨烯的表征

光学显微镜法和扫描电镜法
光学显微镜法
扫描电镜法
光学显微镜是快速简便表征石墨烯 SEM 也可以用来表征石墨烯形貌,
层数的一种有效方法。采用涂有氧 化物的硅片作为衬底,调整硅的厚 度到300nm,在一定波长光波的照
这是因为SEM 图像的颜色和表面褶 皱可以大致反映出石墨烯的层数。
射下,可以利用衬底和石墨烯的反
XPS表征
X射线光电子能谱分析可以用于石墨烯及其衍生物或 复合材料中化学结构和化学组分的定性及定量研究。 GO在C1s谱图上主要有4种结合能的特征信号峰 284.5、286.4、287.8和289.0eV,分别对应于碳碳双 键和单键(C=C,C—C)、环氧基和烷氧基(C—O) 羰基(C=O)和羧基(COOH)。通常以 O/C比来反 映石墨的氧化程度和氧化石墨的还原程度XPS也可用 于表征氧化石墨的还原过程。在还原过程中,随着 产物中含氧基团的不断去除,碳氧键相关的信号峰 会减弱,碳峰与碳氧峰的相对峰强明显增大此外, 在XPS谱图上还会反映出碳氧键、碳碳键以外的其它 信号峰,从而可以用于监控石介绍
石墨烯的表征主要分为图像类和图谱类,图像类以 光学显微镜、透射电镜(TEM)、扫描电子显微镜 (SEM)和原子力显微分析(AFM)为主,而图谱 类则以拉曼光谱(Raman)、红外光谱(IR)、X 射线光电子能谱(XPS)和紫外光谱(UV)为代表。 其中,TEM、SEM、Raman、AFM 和光学显微镜一 般用来判断石墨烯的层数,而IR、XPS和UV则可对 石墨烯的结构进行表征,用来监控石墨烯的合成过 程。
石墨烯的表征方法介绍
NJU 2015.3.6
石墨烯的表征方法类型
为了研究石墨烯的层数和结构,现在主要 有以下表征方法,光学显微镜法,扫描电 子显微镜法(SEM)透射电子显微镜法 (TEM),原子力显微镜法(AFM),拉 曼光谱(Raman),红外光谱(IR),X射 线光电子能谱(XPS),和紫外-可见光谱 (UV-Vis)。

2024石墨烯技术PPT课件

2024石墨烯技术PPT课件

contents •石墨烯概述•石墨烯制备方法•石墨烯表征技术•石墨烯应用领域•石墨烯产业发展现状与趋势•总结与展望目录石墨烯定义与结构定义结构石墨烯的每个碳原子与周围三个碳原子通过共价键连接,形成稳定的六边形结构。

这种结构使得石墨烯具有出色的力学、电学和热学性能。

石墨烯性质与特点力学性质石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,可以弯曲成各种形状而不断裂。

电学性质石墨烯具有优异的导电性能,电子在其中的移动速度极快,使得石墨烯成为理想的电极材料。

热学性质石墨烯具有极高的热导率,可以快速地将热量从一个区域传递到另一个区域,这使得石墨烯在散热领域具有广阔的应用前景。

光学性质石墨烯对光的吸收率很低,且透光性极好,这使得石墨烯在透明导电薄膜等领域具有潜在的应用价值。

石墨烯发现历程及意义发现历程石墨烯最初是由英国曼彻斯特大学的两位科学家通过机械剥离法从石墨中分离出来的。

这一发现引起了科学界的广泛关注,并开启了石墨烯研究的新篇章。

意义石墨烯的发现不仅打破了二维晶体无法稳定存在的传统认知,而且为材料科学、凝聚态物理以及电子器件等领域的发展带来了新的机遇。

石墨烯的优异性能使得它在能源、环保、医疗、航空航天等领域具有广阔的应用前景,有望引领新一轮的技术革命和产业变革。

机械剥离法01020304原理优点缺点应用领域化学气相沉积法在高温下,碳源气体在催化剂表面分解并沉积形成石墨烯。

可控制备大面积、高质量的石墨烯;与现有半导体工艺兼容。

设备成本高,制备过程中可能产生有毒气体。

透明导电薄膜、电子器件、传感器等。

原理优点缺点应用领域原理优点缺点应用领域氧化还原法利用溶剂将石墨剥离成单层或少层石墨烯,适用于大规模生产。

液相剥离法碳化硅外延法电弧放电法激光诱导法通过高温处理碳化硅晶体,使其表面外延生长出石墨烯,适用于制备高质量石墨烯。

利用电弧放电产生的高温高压条件,将石墨转化为石墨烯,但产量较低。

利用激光束照射石墨表面,诱导出石墨烯,但设备成本较高。

石墨烯的表征方法知识讲解

石墨烯的表征方法知识讲解

AFM表征
将氧化石墨烯沉积 在云母片上,利用蔗 糖溶液还原后进行 AFM 表征,如图所 示,图中的高度剖面 图(ΔZ )对应着图中 两点(Z1、Z2)的高 度差即石墨烯的厚 度,同时若将直线上 测量点选择在石墨 烯片层的两端,还可 以粗略测量石墨烯 片层的横向尺寸。
XRD表征
在用氧化还原法制石墨烯的实验中,对天然石墨、氧
曲线c是石墨烯的XRD图,可以看出(002)层间距的衍射峰右 移至23°左右,且变低变宽。这说明经过肼还原的氧化石墨 烯仍有部分含氧官能团残存于碳层中,从而使得该石墨烯的 层间距要稍大于0.34 nm。
Raman表征
拉曼光谱是用来表征碳材料最常用的、快速的、非破 坏性和高分辨率的技术之一。
理论上, 石墨烯在 SiO2/Si 基底上的拉曼 G 峰强度随着 层数的增加而线性增加, 其强度正比于激光穿透深度 范围内的石墨烯层数。实验发现石墨烯的 G 峰强度在 10 层以内线性增加。在少层范围内, 可以通过拉曼光 谱比较快速准确地判断石墨烯的层数。另外, G 峰频 率随层数增加向低波数位移, 与层数的倒数成线性关 系,ωG ( n )= ωG( ∞)+ β/n, 其中 β≈5.5 cm-1
石墨烯的表征方法
石墨烯简介
石墨烯是由单层 sp2碳原子组成的 六方蜂巢状二维 结构,它是一种 碳质新材料。其 结构分解可以变 成零维的富勒烯 ,卷曲可以形成 一维的碳纳米管 ,叠加可以形成 三维石墨。
TEM表征
在TEM 照片中 ,不能精确地表 征石墨纳米薄片 的厚度,但可以 从片层翘起的边 缘和突起褶皱的 宽度,估测片层 的厚度。 图(a)中的样品为单层的石墨烯。图2(b)中的样 品层数较厚,是几层叠加的结果
IR表征
红外光谱在石墨烯研究中,主 要用来表征石墨烯及其衍生 物或复合材料的化学结构。

石墨烯-最终版PPT课件

石墨烯-最终版PPT课件

.
14
小结
这种方法生长石墨烯是最有可能实现C 基集成 电路的有效途径之一。但单晶SiC的价格昂贵,石墨 烯的制作成本非常高,生长条件苛刻,目前还难以实 现大面积制备。
在可控制备及性能研究上存在着以下问题: 外延石墨烯的可控生长机制有待进一步深入研究, 其生长的可控性(层数、晶畴大小、大面积均匀一致 性)有待进一步增强。
机械剥离法 化学气相沉积法(CVD) 表面外延生长法 氧化石墨还原法 ……
.
6
利用机械力将石墨烯片从高度定向热解石墨表面剥离开来 的制备方法。Geim等就是采用微机械剥离法得到了石墨 烯,并进行了表征 ,他们将薄片的两面粘在一种特殊的胶 带上,通过撕开胶带将石墨烯剥离开,制备的石墨烯片最 大宽度可以达到10um以上。目前,该法仍是制备石墨烯 最简单直接的方法。
.
4
石墨烯的性质
极高的载流 子迁移率, 常温下超过 15000 cm2/V·s
世界上电 阻率最小 的材料
——多才多艺
极高的强度,理论 弹性模量1000GPa、 拉伸强度125GPa
石墨烯
良好的透光性, 单层只吸收 2.3%的光
较大的比表 面积 2600m2/g
导热系数高达
5300W/m·K
.
5
石墨烯的制备
表面外延生长法 机械剥离法
化学气相沉积法
氧化石墨还原法
.
19
表面外延生长法
表面外延生长法是渗碳原 理的进一步推广,提高了 石墨烯的晶体完整度,但 该法的成本比前面两种方 法更高。
氧化石墨还 原法
机械剥离法
表面外延生长法
化学气相沉积法
.
20
其他方法如有机合成法、 直接超声剥离法甚至生物 还原法等都提供了可供借 鉴的思路。将不同的方法 结合起来也有一定的前景。

石墨烯材料PPT课件

石墨烯材料PPT课件

1985
第7页/共111页
石墨烯的晶格结构与其相应的倒格矢空间
第8页/共111页
石墨烯能带结构
第9页/共111页
石墨烯层数的表征方法
(1)扫描隧道显微镜(STM)
具有很高的空间分辨率,横向为 0.1~0.2nm,纵向可达0.001nm。
单层石墨烯厚度只有0.335nm
第10页/共111页
(2)原子力显微镜表征
石墨烯的组成与结构
第1页/共111页
石墨简介
石墨(graphite)是一种结晶形碳。 六方晶系,为铁墨色至深灰色。密度 2.25克/厘米3,硬度1.5,熔点3652℃, 沸点4827℃。质软,有滑腻感,可导 电。
化学性质不活泼,耐腐蚀,与酸、 碱等不易反应。在空气或氧气中加 强热,可燃烧并生成二氧化碳。强氧 化剂会将它氧化成有机酸。
研究人员发现单氢化及双氢化锯齿状边的石墨烯具有铁磁性。此外,通过对 石墨烯不同方向的裁剪及化学改性可以对其磁性能进行调控。研究表明分子在石 墨烯表面的物理吸附将改变其磁性能。例如氧的物理吸附增加石墨烯网络结构的 磁阻,位于石墨烯纳米孔道内的钾团簇将导致非磁性区域的出现。
第25页/共111页
石墨烯的优异特性
第27页/共111页
• 分数量子霍尔效应和异常量子霍尔效应
第28页/共111页
整数量子霍尔效应
1985年的诺贝尔物理学奖
量子霍尔效应只发生于二维导体。这效应促成了一种新度
量衡标准,称为电阻率量子(resistivity quantum)
h/e2;垂直于外磁场的载流导线,其横向电导率会呈现量
子化值。称这横向电导率为霍尔电导(Hall
第36页/共111页
•外延生长法

《石墨烯形貌物相》课件

《石墨烯形貌物相》课件

在电子器件领域,石墨烯的优异 导电性能和良好的透光性使其有 望替代硅成为下一代电子器件的 基础材料。
石墨烯在电池、传感器、电子器 件、生物医学等领域具有广泛的 应用前景。
在传感器领域,石墨烯的高灵敏 度和快速响应特性使其成为气体 、湿度和压力等传感器制造的理 想材料。
在生物医学领域,石墨烯因其良 好的生物相容性和电性能,可用 于药物输送、生物检测和肿瘤治 疗等方面。
原子力显微镜
原子力显微镜(AFM)可以用于研究 石墨烯表面的原子级粗糙度和形貌。
原子力显微镜具有高分辨率和高灵敏 度,能够提供更深入的石墨烯表面结 构信息。
AFM可以观察到石墨烯表面的原子排 列和缺陷,以及表面粗糙度等信息。
THANKS
感谢观看
其导电性能受到一定限制 ,但具有较高的电子迁移 率和稳定性。
半导体相石墨烯的制备方 法包括化学气相沉积、还 原氧化石墨烯等。
绝缘体相石墨烯
绝缘体相石墨烯是指具有绝缘体性质的的石墨烯。 绝缘体相石墨烯在制备特定功能材料方面有一定应用。
其导电性能极差,通常不用于电子器件制造。
绝缘体相石墨烯的制备方法包括化学气相沉积、氢化等 。
04
石墨烯的制备方法
机械剥离法
总结词
通过简单机械力将石墨烯从石墨中分离出来,是最早制备石墨烯的方法。
详细描述
机械剥离法是最早用于制备石墨烯的方法,通过将石墨进行反复剥离和贴合, 利用机械力将石墨烯从石墨表面分离出来。该方法操作简单,但产量较低,适 用于实验室研究。
化学气相沉积法
总结词
利用化学反应在气相中生长石墨烯,具有较高的生产效率和 可控性。
02
石墨烯的形貌
单层石墨烯
结构特点
由单层碳原子以蜂巢状排列构成 ,二维平面结构。

石墨烯的表征

石墨烯的表征

拉曼光谱分析拉曼光谱是碳材料分析与表征的最好工具之一。

图1是石墨、氧化石墨和石墨烯的拉曼光谱。

从图中看出石墨仅在1576cm-1处存在一个尖而强的吸收峰(G 峰),对应于E2g光学模的一阶拉曼散射,说明石墨的结构非常规整。

当石墨被氧化后,氧化石墨的G峰已经变宽,且移至1578cm-i处,并且还在1345cm-i处出现一个新的较强的吸收峰(D峰),表明石墨被氧化后,结构中一部分sp2杂化碳原子转化成sp3杂化结构,即石墨层中的C=C双键被破坏。

此外G带与D带的强度比也表示sp2/sp3碳原子比。

这进一步说明氧化石墨中sp2杂化碳层平面长度比石墨的减小。

当氧化石墨被还原后,还原氧化石墨即石墨烯的拉曼光谱图中也包含有类似氧化石墨的峰位。

石墨烯拉曼光谱图中两个峰(D与G)的强度比高于氧化石墨的,表明石墨烯中sp2杂化碳原子数比sp3杂化碳原子数多,也就是说石墨烯中sp2杂化碳层平面的平均尺寸比氧化石墨的大。

这说明了在本实验条件下氧化石墨被还原时,它只有一部分sp3杂化碳原子被还原成sp2杂化碳原子,即氧化石墨的还原状态结构不可能被完全恢复到原有的石墨状态,也就是说石墨烯的结构和石墨结构还是有差别G(aG(c)0100200RamanShift/匚图1.石墨(a)、氧化石墨(b)、石墨烯(c)拉曼光谱X-射线衍射分析图2是石墨、氧化石墨和石墨烯的XRD图。

从图中可以看出石墨在20约为26°附近出现一个很尖很强的衍射峰,即石墨(002)面的衍射峰,说明纯石墨微晶片层的空间排列非常规整。

石墨被氧化后,石墨(002)面的衍射峰非常小,但在20约为10.6°附近出现很强的衍射峰,即氧化石墨(001)面的衍射峰。

这说明石墨的晶型被破坏,生成了新的晶体结构。

当氧化石墨被还原成石墨烯,石墨烯在20约为23°附近出现衍射峰,这与石墨的衍射峰位置相近,但衍射峰变宽,强度减弱。

这是由于还原后,石墨片层尺寸更加缩小,晶体结构的完整性下降,无序度原子力显微镜表征原子力显微镜图像能得到石墨烯的横向尺寸,面积和厚度等方面的信息。

大面积石墨烯的制备、表征及应用41页PPT

大面积石墨烯的制备、表征及应用41页PPT
大面积石墨烯的制备、表征及应用
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
45、自己的饭量自吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

此外,用于观察的衬底也可以选用
着石墨烯层数的增多,褶皱程度越
其它材料,如Si3N4、Al2O3和PMMA 等,所得的石墨烯和衬底背景颜色 的光对比度也可以通过许多图像处
来越小。这样可以认为在图像中颜 色较深的位置石墨层数较多,颜色
理的方法来达到准确分辨的目的。
较浅的位置石墨层数相对较少.
光学显微镜法是表征单层和多层石墨烯最直接的方法,但是并不能精确分 辨石墨烯的层数,SEM也只能大致判断石墨烯的层数
原子力显微镜表征
原子力显微镜被认为是用于石墨烯形貌表征的最有力的技术之一。AFM利用原子探针慢慢靠近或 接触被测样品表面,当距离减小到一定程度以后原子间的作用力将迅速上升,因此,由显微探针 受力的大小就可以直接换算出样品表面的高度,从而获得样品表面形貌的信息。石墨经过氧化后, 层间距会增大到0.77nm 左右。剥离后的氧化石墨烯吸附在云母片等基底上,会增加0.35nm左右 的附加层,所以单层氧化石墨烯在AFM下观测到的厚度一般在0.7-1.2nm左右。将氧化石墨烯沉积 在云母片上,利用蔗糖溶液还原后进行AFM 表征,如图1所示,图中的高度剖面图(ΔZ)对应着 图中两点(Z1、Z2)的高度差即石墨烯的厚度,同时若将直线上测量点选择在石墨烯片层的两端, 还可以粗略测量石墨烯片层的横向尺寸.
单层石墨烯在SEM下是有着一定厚
射光光强的不同所造成的颜色和对
度褶皱的不平整面,为了降低其表
比度差异来分辨层数。这是由于单 层石墨层和衬底对光线产生一定的 干涉,有一定的对比度,因而在光
面能,单以分辨出单层石墨烯。 褶皱明显大于双层石墨烯,并且随
透射电子显微镜法
随着溶胶法制备石墨烯膜的出现,以及无支撑石墨烯膜器件特性的改善,TEM 近来成为了悬浮状石墨烯 结构表征的有利工具。采用透射电镜,可以借助石墨烯边缘或褶皱处的电子显微像来估计石墨烯片的层 数和尺寸,这种方式虽然简便快速,但是只能用来估算,无法对石墨烯的层数给予精确判断。若结合电 子衍射(ED)则可对石墨烯的层数做出比较准确的判断。利用透射电镜中的电子衍射可以判断石墨烯的 层数。当改变电子束入射方向时,单层石墨烯的各个衍射斑点的强度基本保持不变,而对于双层以及多 层的石墨烯,由于层间干涉效应的存在,电子束入射角的改变会带来衍射斑点强度的明显变化.这种通过 改变入射电子束方向,根据在不同电子束入射角的情况下石墨烯衍射斑点强度的变化规律来判断样品的 层数的方法可以非常明确地将单层与多层石墨烯区分开。但这种方法只适合大块样品,而且解释很困难。
AFM
石 墨 烯 的
图 像 和 高 度 剖 面 图
拉曼光谱表征
拉曼光谱是用来表征碳材料最常用的、快速的、非破坏性和高分辨率的技术之一。光谱看起来很简单,一般只 是由波数范围在1000-2000cm-1内的几个非常强的特征峰和少数其它调制结构组成,但谱峰的形状、强度和位置 的微小变化,都与碳材料的结构信息相关由于单层石墨烯、多层石墨烯和石墨的电子结构不同,随着层数的增 加,在拉曼光谱中对应形状、位置和强度等都会发生变化,根据这些变化就可以初步判断石墨烯的层数。石墨 烯的拉曼光谱图上主要有3个峰,分别是D、G和2D峰(倍频峰)D峰一般出现在1350cm-1 (1300-1400cm-1)附 近,是由芳香环中sp2碳原子的对称伸缩振动(径向呼吸模式)引起的,且需要一个缺陷才能激活,因此D峰的 强度通常用来衡量材料结构的无序度。G峰主要出现在1580cm-1 (1560-1620cm-1 )附近,它是由sp2 碳原子间 的附拉近,伸振是动由引碳起原子的,中它两对个应具于有布反里向渊动区量中的心声的子双E2g共光振学跃声迁子引的起振的动,。它而的2D移峰动出和现形在状26与80石cm墨-1 烯(的26层60数-2密70切0c相m-关1 )。
光学显微镜法和扫描电镜法
光学显微镜法
扫描电镜法
光学显微镜是快速简便表征石墨烯 层数的一种有效方法。采用涂有氧 化物的硅片作为衬底,调整硅的厚 度到300nm,在一定波长光波的照
SEM 也可以用来表征石墨烯形貌, 这是因为SEM 图像的颜色和表面褶 皱可以大致反映出石墨烯的层数。
射下,可以利用衬底和石墨烯的反
石墨烯的表征方法介绍
陈丁丁 电子科学与工程学院
NJU 2015.3.6
石墨烯的表征方法类型
为了研究石墨烯的层数和结构,现在主要有以下表征方法,光学显微镜法, 扫描电子显微镜法(SEM)透射电子显微镜法(TEM),原子力显微镜法 (AFM),拉曼光谱(Raman),红外光谱(IR),X射线光电子能谱(XPS), 和紫外-可见光谱(UV-Vis)。
石墨烯的具体表征方法介绍
石墨烯的表征主要分为图像类和图谱类,图像类以 光学显微镜、透射电镜(TEM)、扫描电子显微镜 (SEM)和原子力显微分析(AFM)为主,而图谱类 则以拉曼光谱(Raman)、红外光谱(IR)、X射 线光电子能谱(XPS)和紫外光谱(UV)为代表。 其中,TEM、SEM、Raman、AFM 和光学显微镜一般 用来判断石墨烯的层数,而IR、XPS和UV则可对石 墨烯的结构进行表征,用来监控石墨烯的合成过程。
机械剥离石墨烯样品的拉曼表征
以机械剥离的石墨烯样品为例。如图a所示,单层石墨烯的G峰位置比石墨的高3-5cm-1(这里的红移 可能是由于化学掺杂引起的),石墨烯的2D峰是一个尖锐的单峰,强度是G峰的4倍,而石墨的2D 峰由2D1和2D2两个峰组成,强度分别是其G峰的1/4和1/2倍。石墨的2D峰强度和石墨烯的2D峰强 度相近。随着石墨烯层数的增加,2D峰的形状和强度都有明显的变化。如图(b)、(c)所示,分 别为在514和633nm光照下,石墨烯2D峰形状、位置和强度的变化。从图可以观察到随着石墨烯层数 的增加,2D峰变得越来越宽,2D1峰的强度越来越小,整体有红移的趋势。而多层(n>5)石墨烯 的2D峰形状和强度与石墨的2D峰非常相似,很难区分出来。可以看出,利用拉曼图谱中2D峰的半高 宽和G/2D峰强之比可以确定石墨烯的层数。当石墨烯的半高宽约为30 cm-1且G/2D强度比<0.7时, 可以判断是单层.当石墨烯的2D峰半高宽约为50 cm-1且G/2D强度比在0.7-1.0之间时是双层;当G/ 2D强度比>1时可以推断是多层
相关文档
最新文档