第31讲 用假设法解题
假设法解题思路
假设法是一种常用的解题思路,尤其在数学和逻辑问题中。
这种方法的基本思想是:首先对问题进行一些基本的假设,然后根据这些假设推导出一些结论,最后通过比较这些结论与实际情况的差异来确定问题的解。
以下是使用假设法解题的一般步骤:1. 确定问题:首先,你需要明确你要解决的问题是什么。
这可能需要你对问题进行一些分析,以便更好地理解问题的本质。
2. 提出假设:接下来,你需要提出一些可能的假设。
这些假设应该是关于问题的某些方面的猜测或推测。
例如,如果你正在解决一个数学问题,你的假设可能是关于某个未知数的值的猜测。
3. 推导结论:然后,你需要根据你的假设推导出一些结论。
这些结论应该是可以通过逻辑推理得出的。
例如,如果你的假设是某个未知数等于某个值,那么你的结论可能是这个未知数的某个性质。
4. 比较结论与实际情况:最后,你需要将你的结论与实际情况进行比较。
如果它们一致,那么你的假设可能就是正确的,你可以使用它来解决问题。
如果它们不一致,那么你可能需要重新考虑你的假设,或者寻找其他的解决方案。
在使用假设法解题时,有几点需要注意:-你的假设应该是合理的。
这意味着它们应该基于你对问题的理解,而不是随意的猜测。
-你的推导过程应该是严谨的。
这意味着你应该使用正确的逻辑推理方法,避免出现错误。
-你的比较过程应该是公正的。
这意味着你应该公平地对待所有的假设,而不是只接受那些符合你预期的结果的假设。
总的来说,假设法是一种非常有用的解题思路,它可以帮助你更好地理解问题,找到问题的解。
然而,它也需要一定的逻辑思维能力和批判性思维能力,因此,如果你想有效地使用它,你需要不断地练习和提高这些能力。
四年级数学:用假设法解题
用假设法解题一、考点、热点回忆假设法是一种常用的解题方法。
“假设法〞就是根据题目中的条件或结论作出某种假设,然后按条件进展推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。
运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。
二、典型例题例1:今有鸡、兔共居一笼,鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?例2:面值是2元、5元的人民币共27,全计99元。
面值是2元、5元的人民币各有多少?例3:一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?例4:某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元。
结果运到目的地后结算时,玻璃杯厂共得运费920元。
求打碎了几个玻璃杯?例5:某场乒乓球比赛售出30元、40元、50元的门票共200,收入7800元。
其中40元和50元的数相等,每种票各售出多少?三、课堂练习1,鸡与兔共有30只,共有脚70只。
鸡与兔各有多少只?2,鸡与兔共有20只,共有脚50只。
鸡与兔各有多少只?3,鸡与兔共有100只,鸡脚比兔脚多80只。
鸡与兔各有多少只?4,佳有2分、5分硬币共40枚,一共是1元7角。
两种硬币各有多少枚?5,50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人。
问大船和小船各几只?6,小明参加猜谜比赛,共20道题,规定猜对一道得5分,猜错一道倒扣3分〔不猜按错算〕。
小明共得60分,他猜对了几道?7,一批货物用大卡车装要16辆,如果用小卡车装要48辆。
大卡车比小卡车每辆多装4吨,问这批货物有多少吨?8,有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次。
每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?9,一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?四、课后作业1,搬运1000玻璃瓶,规定平安运到一只可得搬运费3角。
六年级假设法解题思路和步骤
假设法是一种常用的解决问题的方法,特别适用于一些复杂的实际问题。
在六年级的数学学习中,假设法主要用于解决一些百分比、倍数等比例关系的问题。
以下是一般的解题思路和步骤:1. 阅读问题:仔细阅读问题,确保理解问题的要求和条件。
2. 确定假设:根据问题内容,确定一个合适的假设。
假设是对问题中未知部分的猜测或推测。
3. 推导结果:利用所给条件和已知信息,推导出与假设相关的结果。
使用逻辑推理和数学运算等方法进行推导。
4. 验证假设:将推导出的结果与问题中给出的要求进行对比,验证假设是否成立。
5. 分析结果:根据验证结果,判断假设是否正确。
如果假设成立,则得到最终答案;如果假设不成立,则需重新考虑假设并重复上述步骤。
下面是一个简单的示例来说明假设法解题的步骤:问题:某个数字的百位数字是3,十位数字是4,个位数字是1,它能被5整除吗?步骤:1. 阅读问题:数字的百位数字是3,十位数字是4,个位数字是1,要求判断是否能被5整除。
2. 确定假设:假设这个数字是XYZ(百位是X,十位是Y,个位是Z),所以假设这个数字是341。
3. 推导结果:由于我们已经假设百位是3,十位是4,个位是1,所以数字341能被5整除的条件是个位是0或者5。
但是341的个位数字是1,所以假设不成立。
4. 验证假设:根据推导结果,我们发现341不能被5整除,与问题要求相反,说明假设不正确。
5. 分析结果:根据验证结果,我们得出结论:数字341不能被5整除。
通过以上步骤,我们使用假设法解题,最终得出了数字341不能被5整除的结果。
在使用假设法时,一定要确保假设是合理且能够帮助解答问题的。
同时,要记住最后一步是对结果的检验,以确保答案的正确性。
三年级奥数举一反三第293031周年龄问题还原法解题假设法解题
三年级奥数举一反三第293031周年龄问题还原法解题假设法解题第二十九周年龄问题专题简析:年龄问题可以说是前面所讲的和差问题及差倍问题的综合,要正确解答这类题,首先要弄清:两个不同年龄的人,年龄之差始终不变,但两个人年龄的倍数关系却在不断地变化。
年龄问题的主要特征是:大小年龄差是一个不变的量。
我们可以抓住差不变这个特点,利用和差、差倍等知识来分析解答这类应用题。
例题1 三年前爸爸年龄是女儿的4倍,爸爸今年43岁,女儿今年多少岁?思路导航:由题意可知爸爸今年43岁,则三年前爸爸的年龄是43-3=40岁,40岁正好是女儿年龄的4倍,女儿三年前的年龄是40÷4=10岁,今年女儿的年龄是10+3=13岁。
练习一1,四年前小林年龄是小丽的2倍,小林今年12岁,小丽今年多少岁?2,五年前爷爷年龄是孙子的7倍,孙子今年14岁,爷爷今年多少岁?3,儿子今年10岁,爸爸今年34岁。
几年前,爸爸的年龄是儿子的4倍?例题2 明明4岁时,妈妈年龄是明明的8倍。
今年明明12岁,妈妈今年多少岁?思路导航:妈妈的年龄是明明的8倍,那么妈妈与明明的年龄相差4×8-4=28岁。
妈妈与明明的年龄差是不变的,今年明明12岁,那么妈妈的年龄是12+28=40岁。
练习二1,玲玲7岁时,爸爸年龄是玲玲的5倍。
今年爸爸40岁,玲玲今年多少岁?2,爷爷63岁时,他的年龄是小青的9倍。
今年小青12岁,爷爷今年多少岁?3,两年前妈妈年龄是儿子的5倍,儿子今年9岁,妈妈今年多少岁?例题3 女儿今年3岁,妈妈今年33岁。
几年后,妈妈的年龄是女儿的7倍?思路导航:女儿今年3岁,妈妈今年33岁,她们的年龄差是33-3=30岁。
她们年龄差不变,几年后,妈妈的年龄是女儿的3倍,把女儿的年龄看作1份,妈妈的年龄就有7份,相差7-1=6份,6份是30岁,所以几年后女儿的年龄是30÷6=5岁。
也就是说,5-3=2年后,妈妈的年龄是女儿的7倍。
假设法解题公式
假设法解题公式【最新版】目录1.引言:介绍假设法解题公式2.假设法解题公式的定义与原理3.假设法解题公式的应用实例4.假设法解题公式的优点与局限性5.结论:总结假设法解题公式的价值与意义正文【引言】假设法解题公式是一种在解决复杂数学问题时常用的方法。
这种方法的核心思想是通过提出一个或多个假设,将问题转化为更简单的形式,从而找到问题的解答。
在本文中,我们将详细介绍假设法解题公式的定义、原理、应用实例以及其优点和局限性。
【假设法解题公式的定义与原理】假设法解题公式指的是在解决数学问题时,通过提出一个或多个假设,将问题转化为更简单的形式,从而找到问题的解答。
这种方法的原理是利用已知的条件和假设,逐步推导出问题的解答。
具体来说,假设法解题公式包括以下几个步骤:1.仔细阅读题目,理解问题的背景和要求。
2.提出一个或多个假设,将问题转化为更简单的形式。
3.利用已知条件和假设,逐步推导出问题的解答。
4.检验解答的正确性,确认假设的合理性。
【假设法解题公式的应用实例】假设法解题公式在解决各种数学问题中都有广泛的应用。
例如,在解决线性方程组问题时,我们可以通过假设某个变量的值,然后将问题转化为一个更简单的线性方程,从而找到问题的解答。
在解决概率问题时,我们可以假设某个事件的发生概率,然后将问题转化为一个更简单的概率计算问题,从而找到问题的解答。
【假设法解题公式的优点与局限性】假设法解题公式的优点在于它能够将复杂的问题转化为更简单的形式,从而降低问题的难度。
此外,假设法解题公式还能够提高解题的效率,因为在提出假设后,问题往往可以更快地找到解答。
然而,假设法解题公式也存在一些局限性。
首先,假设的合理性需要检验,否则可能会导致错误的解答。
其次,在解决某些问题时,可能需要提出多个假设,这会增加解题的难度。
【结论】总之,假设法解题公式是一种在解决复杂数学问题时常用的方法。
这种方法通过提出一个或多个假设,将问题转化为更简单的形式,从而找到问题的解答。
小学三年级奥数第31讲 用假设法解题(含答案分析)
第31讲用假设法解题一、专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
二、精讲精练例1:鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?练习一1、鸡、兔共100只,共有脚280只。
鸡、兔各多少只?2、鸡、兔共50只,共有脚160只。
鸡、兔各几只?例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二1、鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?练习三1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。
小华答对几题?2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。
运后运费为8880元,损失了几箱?例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?1、小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰巧吃完。
小学三年级奥数第31讲 用假设法解题(含答案分析)
已知鸡比兔多25只,鸡和兔一共有170只脚,假如鸡和兔的只数一样多,则共有170-25×2=120(只)脚;由于鸡和兔的只数一样多,我们可以让每一只鸡与一只兔组成一组,则每一组的脚数2+4=6(只),120只脚按照每6只一组可分为120÷6=20(组);共有多少组即有兔多少只,所以兔有20只;再根据鸡比兔多25只即可用加法求解.
答:红气球原来有24个.
故答案为:
24个
解析
因为每天卖掉2只红气球和1只黄气球,说明每天卖掉的红气球个数是黄气球的2倍,即卖掉的红气球总是黄气球的2倍,所以当黄气球卖光时,红气球一定卖掉了黄气球个数的2倍,即红气球卖掉了开始时黄气球个数的2倍,原来红气球个数是黄气球的4倍.
例题4水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。原来水果糖有几块?
思路导航:水果糖的块数是巧克力糖的3倍,如果小红每天吃1块巧克力糖,3块水果糖,那若干天后,两种糖正好同时吃完。现在小红每天吃2块水果糖,少吃3-2=1块,结果若干天后水果糖还剩下7块。所以共吃了7÷1=7天,水果糖有2×7+7=21块。
点评:此题也可以这样分析:因为鸡脚比兔脚多60,不妨先抓出30只鸡来,这样鸡脚和兔脚就一样多了,则剩下的45-30=15只鸡占2份,兔占1份;所以可得兔有15÷3=5只,则鸡就有45-5=40只.
例题2鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?
思路导航:因为鸡比兔多30只,则可以把30只鸡的脚从总数中去掉,剩下的鸡兔就同样多了。每一对鸡和兔共4+2=6只脚,用6去除剩下的鸡兔总脚数,就可求出兔的只数。
例4:水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。原来水果糖有几块?
假设法解题公式
假设法解题公式
(最新版)
目录
1.假设法解题公式的定义与特点
2.假设法解题公式的基本步骤
3.假设法解题公式的应用实例
4.假设法解题公式的优缺点分析
正文
一、假设法解题公式的定义与特点
假设法解题公式是一种通过假设某个变量的值,从而推导出其他变量值的解题方法。
这种方法常常应用于代数、几何、物理等学科中,其特点是通过设立假设,将复杂的问题简化为更易解决的问题,从而快速找到答案。
二、假设法解题公式的基本步骤
1.确定问题:首先要明确题目所求,理解问题的背景和条件。
2.设立假设:根据问题,假设某个变量的值,同时要保证这个假设的合理性。
3.推导公式:根据设立的假设,运用相关的公式和定理,推导出其他变量的值。
4.验证假设:将推导出的结果代入原问题,验证假设是否正确。
5.得出结论:如果假设成立,那么得出的结论就是问题的答案;如果假设不成立,那么需要重新设立假设,直到找到正确的答案。
三、假设法解题公式的应用实例
例如,在一个物理问题中,要求解一个物体在斜面上滑动的时间,可
以假设物体的初速度为 0,然后运用物理公式推导出物体滑动的时间。
四、假设法解题公式的优缺点分析
假设法解题公式的优点在于能够简化问题,快速找到答案;缺点在于假设的设立需要合理,否则可能会导致错误的结果。
数学假设法解题
假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
这样就可以求出师傅加工了【11÷(4/7-3/8)】=56个。
即:师傅:(105×4/7-49)÷(4/7-3/8)=56(个)徒弟:105-56=49(个)答:师傅加工了56个,徒弟加工了49个。
假设法解题公式
假设法解题公式摘要:一、假设法解题公式简介1.假设法解题公式的定义2.假设法解题公式的作用二、假设法解题公式推导1.假设的建立2.假设的验证3.假设的推翻与迭代三、假设法解题公式应用1.数学问题中的应用2.实际问题中的应用3.假设法解题公式的局限性四、假设法解题公式与传统解题方法的对比1.假设法解题公式与传统解题方法的区别2.假设法解题公式与传统解题方法的优势与劣势五、结论1.假设法解题公式的重要性2.假设法解题公式的发展前景正文:一、假设法解题公式简介假设法解题公式是一种数学解题方法,通过建立假设,验证假设,推翻或迭代假设来解决问题。
这种方法强调对问题本质的理解,鼓励思考者采用创造性、系统性的方法解决问题。
二、假设法解题公式推导假设法解题公式分为三个步骤:假设的建立、假设的验证、假设的推翻与迭代。
首先,根据问题的特点,提出一个或多个假设。
然后,通过逻辑推理、实验验证等方式,检验这些假设的正确性。
最后,根据验证结果,推翻原有假设或对其进行迭代,不断逼近问题的真实解。
三、假设法解题公式应用假设法解题公式广泛应用于数学问题,如证明、求解等。
同时,在实际问题中,如科学研究、技术创新等领域,假设法解题公式也发挥着重要作用。
然而,假设法解题公式并非万能,对于某些问题,它可能无法提供有效的解决方案。
四、假设法解题公式与传统解题方法的对比与传统解题方法相比,假设法解题公式更注重思考过程,强调对问题本质的理解。
在某些情况下,假设法解题公式可能比传统方法更高效、更具创造性。
然而,传统解题方法在某些领域有着丰富的经验和成熟的方法论,仍具有一定的优势。
五、结论总的来说,假设法解题公式是一种富有创造性和系统性的解题方法。
在数学和实际问题中,它都发挥着重要作用。
六年级奥数:假设法解题
六年级奥数:假设法解题六年级奥数:假设法解题假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)=8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学奥数基础教程4目录
小学奥数基础教程(四年级)目录第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)小学奥数举一反三(四年级)目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第21讲速算与巧算(二)第22讲平均数问题第23讲定义新运算第24讲差倍问题第25讲和差问题第26讲巧算年龄第27讲较复杂的和差倍问题第28讲周期问题第29讲行程问题(一)第30讲用假设法解题第31讲还原问题第32讲逻辑推理第33讲速算与巧算(三)第34讲行程问题(二)第35讲容斥原理第36讲二进制第37讲应用题(三)第38讲应用题(四)第39讲盈亏问题第40讲数学开放题。
小学数学 用假设法解决问题名师教学PPT课件()
课件PPT
检验:
80÷240= 80×6+240=720(毫升)
好好学习 天天向上
6
探究新知
课件PPT
解:设小杯的容量是x毫 升,
大杯的容量就是X毫升。 检验:
6 X+3 X=720
9X=720
80÷240=
X=80 3X=80×3=240
80×6+240=720(毫升)
好好学习 天天向上
7
的单价是桌子的 。桌子和椅子的单价各 是多少? 把桌子假设成椅子。
2700÷(5+4) =2700÷9
=300(元)……椅子 300×5=1500(元)……桌子 答:桌子的单价是1500元,椅子的单价是300元。
好好学习 天天向上
第四单元 解决问题的策略
课件PPT
1 用假设法解决问题(1)
好好学习 天天向上
1
学习目标
课件PPT
1. 初步学会用“假设”的策略理解题 意、分析数量关系,并能根据问题的特 点确定合理的解题步骤。
2. 在对解决实际问题的不断反思中, 感受“假设”的策略对于解决特定问 题的价值。
好好学习 天天向上
2
情境导入
8
易错提醒
王大爷卖了香蕉6千克和苹果8
千克,共卖了48元,每千克香蕉钱
是苹果的2倍。每千克香蕉和苹
果各多少元?
6÷2= 3(千克)
48÷(3+8)
=48÷11
≈4.36(元)
4.36×2=8.72(元)
答:每千克苹果4.36元,每千克香蕉 8.72元。
好好学习 天天向上
9
课件PPT
易错提醒
错解分析:
课件PPT
假设法解题
假设法解题
这是一个经典的逻辑问题,通常使用假设法来解决。
假设法是一种通过假设某一条件成立或不成立,然后根据这个假设进行推理,最后得出结论的解题方法。
假设法解题的一般步骤如下:
假设某一条件成立或不成立。
根据这个假设进行推理,得出结论。
如果结论与题目中的已知条件矛盾,则说明假设不成立,需要调整假设。
如果结论与题目中的已知条件一致,则说明假设成立。
现在,我们用这个方法来解决这个问题:
题目:有100匹马跟100块石头,马分3种,大型马;中型马跟小型马.其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头.问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)
假设需要 x 匹大马,y 匹中型马和 z 匹小型马。
根据题目,我们可以建立以下方程:
x + y + z = 100 (因为总共有100匹马)
3x + 2y + z/2 = 100 (因为总共有100块石头)
现在我们要来解这个方程组,找出 x, y 和 z 的值。
计算结果为: [{x: 7, y: 31, z: 62}]
所以,需要 7 匹大马,31 匹中型马和 62 匹小型马。
假设法解题公式
假设法解题公式摘要:1.假设法解题的概念与特点2.假设法解题的应用场景3.假设法解题的步骤与实例4.提高假设法解题能力的建议正文:在学习和工作中,我们经常会遇到各种各样的问题,有些问题可能看似简单,实则复杂。
在这种背景下,假设法解题应运而生,它是一种将复杂问题简化为易于理解的问题,从而找到解决方案的方法。
本文将介绍假设法解题的概念、特点、应用场景、步骤及实例,帮助大家提高解题能力。
一、假设法解题的概念与特点假设法解题,顾名思义,就是通过假设来解决问题。
它是一种将问题简化为若干假设,然后通过分析、验证、修正等过程,逐步接近问题真相的解题方法。
假设法解题的特点如下:1.简化了问题:通过假设,将复杂问题分解为若干简单问题,降低了解题的难度。
2.逻辑性强:假设法解题注重推理和论证,有利于培养思维的逻辑性和条理性。
3.灵活性高:假设法解题不受固定模式的限制,可以根据问题的特点灵活调整假设和分析方法。
二、假设法解题的应用场景假设法解题适用于各种领域,尤其在数学、物理、化学等自然科学领域以及社会科学领域具有广泛的应用。
以下是一些典型的应用场景:1.数学问题:如代数方程、几何问题、函数解析等。
2.物理问题:如力学、电磁学、热力学等。
3.化学问题:如化学反应、化学平衡、物质结构等。
4.社会科学:如经济学、心理学、历史学等。
三、假设法解题的步骤与实例假设法解题的具体步骤如下:1.确定问题:明确需要解决的问题。
2.提出假设:根据问题,提出一个或多个可能的解决方案。
3.分析假设:对每个假设进行分析,预测结果。
4.验证假设:通过实验、数据或其他手段,验证假设的正确性。
5.修正假设:根据验证结果,对假设进行修正和完善。
6.得出结论:通过分析和验证,得出问题的解决方案。
以数学问题为例,如求解一元二次方程:ax + bx + c = 0。
步骤如下:1.确定问题:求解方程的根。
2.提出假设:假设方程的根为x1和x2。
3.分析假设:根据求根公式,得出x1和x2的值。
小学三年级奥数第31讲 用假设法解题附答案解析
第31讲用假设法解题一、专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
二、精讲精练例1:鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?练习一1、鸡、兔共100只,共有脚280只。
鸡、兔各多少只?2、鸡、兔共50只,共有脚160只。
鸡、兔各几只?例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二1、鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?练习三1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。
小华答对几题?2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。
运后运费为8880元,损失了几箱?例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?练习四1、小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰巧吃完。
四年级数学下册教案-9 用假设法解决鸡兔同笼问题31-人教版
知识讲解
(难点突破)
过渡:看来这么大的数据,同学们尝试猜测有一定的难度,那我们把它化难为易,从简单入手找出规律,再来尝试猜测解决这个问题。
1.如果鸡兔共8只,共有26条腿,尝试猜测一下鸡、兔可能各有多少只?
2.在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导对学生进行分析,加以课件演示,帮助学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再用课件展示分析过程。通过这两步的学习,大部分学生基本能利用假设法来解答“鸡兔同笼”问题。
难点分析
《鸡兔同笼》问题对于四年级学生而言,学生的逻辑推理能力还不是很强,自主探究解决问题困难较大,对于四年级的孩子来说,大部分学生不是很会做,需要通过教师的引导,学生通过猜测,验证列表,画图,假设等方法参与探究活动,使学生借助展开想象,促进数学思考,找到问题解决的方法。
教学方法
1.以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法等多种解题策略和方法,并用教具和多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突破本节课的重点,主要借助教师引导探究这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。
26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,,鸡、兔的只数还有其他情况吗?腿数是多少?
用假设法求鸡兔同笼问题ppt课件
如何解决生活中的 鸡兔同笼问题?
1. 总只数(总头数) 2. 总脚数 3. 1只鸡的脚数 4. 1只兔的脚数 5. 假设 6. 调整
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
笼子里有若干只鸡和兔,从 上面数,有8个头;从下面数,有 26只脚。鸡和兔各有几只?
从题中你获得了哪些信息? 1. 鸡和兔共8只。 2. 鸡和兔共有26只脚。 3. 1只鸡有2只脚。 4. 1只兔有4只脚。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
这是一个鸡兔同笼问题吗? 1.哪个量相当于总只数? 2. 哪个量相当于总脚数? 3. 哪个量相当于1只鸡的脚数? 4. 哪个量相当于1只兔的脚数?
1.答:12人。 2.答:32棵树。 3.答:女生每人栽2棵树。 4.答:男生每人栽3棵树。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
32只脚
26只脚(减少6只脚)
(3 )只兔 (3)只鸡
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
假设法
假设全是兔 总脚数: 8×4=32(只)
相差的脚数: 32-26=6(只)
鸡的只数: 6 ÷(4-2)=3(只)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,
以及战胜难题的勇气。
可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
第31讲用假设法解题
一、专题简析:
假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:
兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
二、精讲精练
例1:鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?
练习一
1、鸡、兔共100只,共有脚280只。
鸡、兔各多少只?
2、鸡、兔共50只,共有脚160只。
鸡、兔各几只?
例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?
练习二
1、鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?
2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?
例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?
练习三
1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。
小华答对几题?
2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要
赔偿100元。
运后运费为8880元,损失了几箱?
例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?
练习四
1、小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰巧吃完。
原来苹果有多少个?
2、某商店有些红气球和黄气球,红气球的只数是黄气球的4倍。
每天卖出2只红气球和1只黄气球,若干天后,红气球剩下12只,黄气球刚好卖完。
红气球原来有多少只?
例5 :学校买来8张办公桌和6把椅子,共花去1650元。
每张办公桌的价钱是每把椅子的2倍,每张办公桌和每把椅子各多少元?
练习五
1、买4张办公桌9把椅子共用252元,1张桌子和3把椅子的价钱正好相等。
桌、椅单价各多少元?
2、学校买来4个篮球和5个排球,共用了185元。
已知1个篮球比1个排球贵8元,那么篮球每个多少元?排球每个多少元?
三、课后作业
1、鸡、兔共45只,鸡的脚比兔的脚多60只。
鸡、兔各多少只?
2、鸡兔共有脚48只,如果将鸡的只数与兔的只数互换则共有脚42只。
鸡、兔各几只?
3、某车间生产一批服装共250件,生产1件可得25元,如果有1件不符合要求,则倒扣20元。
生产后得到费用5350元,有几件不符合要求?
4、四(3)班有彩色粉笔和白粉笔若干盒,白粉笔是彩色粉笔的7倍。
每天用去2盒白粉笔和1盒彩色粉笔,当彩色粉笔全部用完时,白色粉笔还剩10盒。
原来白色粉笔有多少盒?
5、小明买2个乒乓球和4个皮球共用去52元,6个乒乓球的价钱相当于1个皮球的价钱。
乒乓球、皮球的单位各多少元?。