专升本高数入学试题库

合集下载

专升本高数定积分练习题

专升本高数定积分练习题

专升本高数定积分练习题### 专升本高数定积分练习题#### 一、基础题1. 计算定积分 \(\int_{0}^{1} x^2 dx\)。

2. 计算定积分 \(\int_{1}^{2} \frac{1}{x} dx\)。

3. 计算定积分 \(\int_{-2}^{2} x dx\)。

4. 计算定积分 \(\int_{0}^{\pi/2} \sin x dx\)。

#### 二、提高题5. 计算定积分 \(\int_{0}^{1} e^x dx\)。

6. 计算定积分 \(\int_{-1}^{1} \cos x dx\)。

7. 计算定积分 \(\int_{0}^{1} \ln x dx\)。

8. 计算定积分 \(\int_{0}^{\pi} \tan x dx\)。

#### 三、应用题9. 计算定积分 \(\int_{0}^{a} \frac{1}{\sqrt{a^2 - x^2}} dx\),其中 \(a > 0\)。

10. 计算定积分 \(\int_{0}^{\pi/2} \sin^2 x dx\)。

#### 四、挑战题11. 计算定积分 \(\int_{0}^{1} x^3 \ln x dx\)。

12. 计算定积分 \(\int_{0}^{1} \frac{\sin x}{x} dx\)。

#### 答案解析1. \(\int_{0}^{1} x^2 dx = \left[\frac{1}{3}x^3\right]_{0}^{1} = \frac{1}{3}\)2. \(\int_{1}^{2} \frac{1}{x} dx = [\ln x]_{1}^{2} = \ln 2 -\ln 1 = \ln 2\)3. \(\int_{-2}^{2} x dx = \left[\frac{1}{2}x^2\right]_{-2}^{2} = 2 - (-2) = 4\)4. \(\int_{0}^{\pi/2} \sin x dx = [-\cos x]_{0}^{\pi/2} = -\cos(\pi/2) + \cos(0) = 1\)5. \(\int_{0}^{1} e^x dx = [e^x]_{0}^{1} = e - 1\)6. \(\int_{-1}^{1} \cos x dx = [\sin x]_{-1}^{1} = \sin(1) -\sin(-1) = 2\sin(1)\)7. \(\int_{0}^{1} \ln x dx = \left[x\ln x - x\right]_{0}^{1}= (1\ln 1 - 1) - (0\ln 0 - 0) = -1\)8. \(\int_{0}^{\pi} \tan x dx\) 此积分发散,因为 \(\tan x\)在 \(x = \frac{\pi}{2}\) 处无界。

专升本高等数学(含答案)

专升本高等数学(含答案)

高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。

A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。

专升本高数试题及答案

专升本高数试题及答案

专升本高数试题及答案一、选择题(每题2分,共10分)1. 函数f(x)=x^2-4x+3在区间[0,6]上的最大值是()。

A. 3B. 4C. 6D. 92. 极限lim(x→0) (sin(x)/x) 的值是()。

A. 0B. 1C. 2D. 无穷大3. 设f(x)是定义在R上的函数,若f(0)=-1,f'(0)=2,则f'(π)的值是()。

A. 2B. -2C. π^2D. 无法确定4. 曲线y=x^3-3x^2+2x在点(1,0)处的切线斜率是()。

A. 0B. 1C. -1D. 25. 已知数列{an}满足a1=2,an+1=an+n,数列{an}的前n项和Sn=()。

A. n^2+nB. n^2C. n(n+1)/2D. n^3/3二、填空题(每题2分,共10分)6. 微分方程dy/dx + y = x的通解是 y = ________。

7. 若曲线y=x^2上一点P(x0,y0)处的切线方程为y=2x-1,则x0=_______。

8. 函数f(x)=x^3-6x^2+9x+2在x=2处的导数f'(2)=_______。

9. 已知级数∑n=1^∞ (1/n^2)是收敛的,其和为π^2/6,则∑n=1^∞ (1/n^3)的和为_______。

10. 若函数f(x)=sin(x)+cos(x),则f''(π/4)=_______。

三、计算题(每题10分,共30分)11. 求函数f(x)=2x^3-x^2+1在区间[-1,2]上的最大值和最小值。

12. 求曲线y=x^2-4x+3与直线y=6的交点坐标。

13. 求函数f(x)=ln(x)+1/x在区间(0,1)上的单调性。

四、证明题(每题15分,共30分)14. 证明:对于任意正整数n,有1^2 + 1/2^2 + 1/3^2 + ... +1/n^2 < 2。

15. 证明:函数f(x)=e^x - x在区间(0, +∞)上是单调递增的。

数学专升本考试题及答案

数学专升本考试题及答案

数学专升本考试题及答案一、选择题(每题2分,共10题)1. 下列哪个数是最小的自然数?A. 0B. 1C. 2D. 3答案:A2. 圆的周长公式是?A. C = πdB. C = 2πrC. C = πr²D. C = 4πr答案:B3. 函数y = 2x + 3的斜率是多少?A. 2B. 3C. -2D. -3答案:A4. 以下哪个选项是二次函数的一般形式?A. y = ax² + bx + cB. y = ax + bx + cC. y = ax² + bxD. y = ax + c答案:A5. 等差数列的公差为d,首项为a₁,第n项的通项公式是什么?A. aₙ = a₁ + (n-1)dB. aₙ = a₁ - (n-1)dC. aₙ = a₁ + ndD. aₙ = a₁ - nd答案:A6. 以下哪个选项是复数的代数形式?A. a + biB. a - biC. a + bD. a - b答案:A7. 矩阵A和矩阵B相乘的结果记作什么?A. ABB. BAC. A + BD. A - B答案:A8. 微分方程dy/dx = 3x的通解是什么?A. y = 3x² + CB. y = x³ + CC. y = 3x + CD. y = x + C答案:A9. 以下哪个选项是二项式定理的展开式?A. (a + b)ⁿ = Σ (n choose k) * a^(n-k) * b^kB. (a + b)ⁿ = Σ (n choose k) * a^k * b^(n-k)C. (a + b)ⁿ = Σ (n choose k) * a^(n-k) * b^kD. (a + b)ⁿ = Σ (n choose k) * a^k * b^(n-k)答案:B10. 以下哪个选项是定积分的几何意义?A. 曲线下面积B. 曲线上面积C. 曲线间面积D. 曲线外面积答案:A二、填空题(每题2分,共5题)1. 函数y = sin(x)的周期是______。

2024年专升本高数试题

2024年专升本高数试题

2024年专升本高数试题一、下列关于函数极限的说法,正确的是:A. 若函数在某点的左右极限相等,则该点处函数极限存在B. 无穷大是函数极限的一种,表示函数值可以无限增大或减小C. 有界函数的极限一定存在D. 函数在某点极限存在,则该函数在该点一定连续(答案:B)二、设函数f(x) = x2 - 3x + 2,则f(x)在区间[1,3]上的最小值为:A. -1B. 0C. 2D. 5(答案:B)三、下列关于导数的说法,错误的是:A. 导数描述了函数值随自变量变化的速率B. 常数的导数为0C. 函数的导数在其定义域内一定连续D. 直线斜率的数学表达就是导数(答案:C)四、设f(x) = ex,则f'(x) =A. exB. xexC. e(x+1)D. 1(答案:A)五、下列关于定积分的说法,正确的是:A. 定积分是函数在某一区间上所有函数值的和B. 定积分的值与积分变量的选取无关C. 定积分可以看作是由无穷多个小矩形面积的和逼近得到的D. 定积分只能用于计算面积(答案:C)六、设函数f(x) = x3 - x2,则f(x)在x=1处的切线斜率为:A. 1B. 2C. 3D. 0(答案:B)七、下列关于微分方程的说法,错误的是:A. 微分方程是含有未知函数及其导数的方程B. 微分方程的解是满足方程的函数C. 微分方程的阶数指的是方程中最高阶导数的阶数D. 所有微分方程都有唯一解(答案:D)八、设函数f(x) = sin(x) + cos(x),则f'(x) =A. sin(x) - cos(x)B. cos(x) - sin(x)C. -sin(x) + cos(x)D. sin(x) + cos(x)(答案:B)。

2023年专升本高数入学试题库

2023年专升本高数入学试题库

专科起点升本科《高等数学(二)》入学考试题库(共180题)1.函数、极限和持续(53题)1.1函数(8题) 1.1.1函数定义域 1.函数lgarcsin 23x xy x =+-旳定义域是( )。

A A. [3,0)(2,3]-; B. [3,3]-; C. [3,0)(1,3]-; D. [2,0)(1,2)-.2.假如函数()f x 旳定义域是1[2,]3-,则1()f x旳定义域是( )。

DA. 1[,3]2-; B. 1[,0)[3,)2-⋃+∞; C. 1[,0)(0,3]2-⋃; D. 1(,][3,)2-∞-⋃+∞.3. 假如函数()f x 旳定义域是[2,2]-,则2(log )f x 旳定义域是( )。

B A. 1[,0)(0,4]4-; B. 1[,4]4; C. 1[,0)(0,2]2- ; D. 1[,2]2. 4.假如函数()f x 旳定义域是[2,2]-,则3(log )f x 旳定义域是( ).DA . 1[,0)(0,3]3-⋃;B . 1[,3]3;C . 1[,0)(0,9]9-⋃ ;D . 1[,9]9.5.假如)(x f 旳定义域是[0,1],则(arcsin )f x 旳定义域是( )。

CA. [0,1];B. 1[0,]2; C. [0,]2π ; D. [0,]π. 1.1.2函数关系6.设()()22221,1x f x x x xϕϕ+⎡⎤==⎣⎦-,则()f x =( ).A A .211x x +-; B. 211x x -+; C. 121x x -+; D. 121x x +-. 7.函数331xx y =+旳反函数y =( )。

BA .3log ()1x x +; B. 3log ()1x x -; C. 3log ()1x x -; D. 31log ()x x-.8.假如2sin (cos )cos 2xf x x=,则()f x =( ).CA .22121x x +-; B. 22121x x -+; C. 22121x x --; D. 22121x x ++.1.2极限(37题) 1.2.1数列旳极限9.极限123lim ()2n n nn →+∞++++-=( ).BA .1; B. 12; C. 13; D. ∞.10.极限2123lim 2n nn→∞++++=( ).A A .14; B. 14-; C. 15; D. 15-11.极限111lim 1223(1)n n n →∞⎛⎫+++=⎪⋅⋅+⎝⎭( ).CA .-1; B. 0; C. 1; D. ∞.12.极限221111(1)222lim1111333n nn n→+∞-+++-=++++( ).A A .49;B. 49-;C. 94;D. 94-1.2.2函数旳极限13.极限x →∞=( ).CA .12; B. 12-; C. 1; D. 1-. 14.极限01limx x→=( ).AA .12; B. 12-; C. 2; D. 2-. 15.极限01limx x→=( ).BA. 32-; B. 32 ; C. 12- ; D. 12. 16.极限1x →=( ).CA. -2 ;B. 0 ;C. 1 ;D. 2 .17.极限4x →=( ).BA .43-; B. 43; C. 34-; D. 34. 18.极限x →∞= ( ).DA .∞; B. 2; C. 1; D. 0.19.极限2256lim2x x x x →-+=- ( ).D A .∞; B. 0; C. 1; D. -1.20.极限3221lim 53x x x x →-=-+ ( ).A A .73-; B. 73; C. 13; D. 13-. 21.极限2231lim 254x x x x →∞-=-+ ( ).C A .∞; B.23; C. 32; D. 34. 22.极限sin limx xx→∞=( ).BA .1-; B. 0; C. 1; D. 2.23.极限01lim sinx x x→=( ).B A .1-; B. 0; C. 1; D. 2.24.极限02sin 1limxx tdt t x →-=⎰( ).BA .12; B. 12-; C. 13; D. 13-.25.若232lim 43x x x kx →-+=-,则k =( ).AA .3-; B. 3; C. 13-; D. 13. 26.极限2323lim 31x x x x →∞++=- ( ).B A .∞; B. 0; C. 1; D. -1.1.2.3无穷小量与无穷大量27.当0x →时,2ln(12)x +与2x 比较是( )。

高等数学试题及答案专升本

高等数学试题及答案专升本

高等数学试题及答案专升本高等数学试题及答案(专升本)一、选择题(每题4分,共40分)1. 极限lim(x→0) (sin x)/x 的值是()。

A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = x^2 + 3x - 4的导数是()。

A. 2x + 3B. 2x - 3C. x^2 + 3D. x^2 - 3答案:A3. 曲线y = x^3 - 3x + 2在点(1, 0)处的切线斜率是()。

A. 1B. -1C. 3D. -3答案:B4. 不定积分∫(3x^2 - 2x + 1)dx 的结果是()。

A. x^3 - x^2 + x + CB. x^3 + x^2 - x + CC. x^3 - x^2 + x + CD. x^3 + x^2 - x + C答案:C5. 函数y = e^x 的原函数是()。

A. e^x + CB. e^(-x) + CC. e^x - CD. e^(-x) - C答案:A6. 已知函数f(x) = 2x + 1,g(x) = 3x - 2,则f[g(x)]的表达式是()。

A. 6x - 3B. 6x + 1C. 9x - 5D. 9x + 1答案:C7. 函数y = ln(x) 的反函数是()。

A. e^yC. x^yD. y^x答案:A8. 函数y = x^2 在区间[-2, 2]上的最大值是()。

A. 0B. 4C. -4D. 2答案:B9. 函数y = x^3 - 3x^2 + 2x 的极值点是()。

A. x = 0B. x = 1C. x = 2答案:B10. 曲线y = x^2 + 2x + 1与直线y = 3x + 2的交点个数是()。

A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)11. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 2x - 3) 的值是 _______。

答案:112. 函数f(x) = x^3 - 6x^2 + 11x - 6的二阶导数是 _______。

专升本基础高数试题及答案

专升本基础高数试题及答案

专升本基础高数试题及答案一、选择题(每题3分,共30分)1. 函数 \( f(x) = x^2 - 4x + 4 \) 的最小值是:A. 0B. 1C. 4D. 无法确定2. 极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是:A. 0B. 1C. 2D. 无穷大3. 曲线 \( y = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的切线斜率是:A. 0B. 1C. -1D. 24. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)5. 函数 \( y = \ln(x) \) 的导数是:A. \( \frac{1}{x} \)B. \( x \)C. \( \ln(x) \)D. \( 1 \)6. 级数 \( \sum_{n=1}^{\infty} \frac{1}{n^2} \) 是:A. 收敛的B. 发散的C. 条件收敛D. 无法确定7. 函数 \( f(x) = e^x \) 的 \( n \) 阶导数是:A. \( e^x \)B. \( x^n \)C. \( n \cdot e^x \)D. \( n! \cdot e^x \)8. 微分方程 \( y'' - y' - 6y = 0 \) 的一个特解是:A. \( e^x \)B. \( e^{2x} \)C. \( e^{-3x} \)D. \( x^2 \)9. 函数 \( f(x) = \sin x + \cos x \) 的周期是:A. \( \pi \)B. \( 2\pi \)C. \( 4\pi \)D. \( 1 \)10. 函数 \( f(x) = \frac{1}{x} \) 在 \( x = 0 \) 处是:A. 连续的B. 可导的C. 不连续的D. 有界但无界的答案1. B2. B3. D4. A5. A6. A7. A8. C9. B10. C二、填空题(每题2分,共20分)1. 函数 \( g(x) = 3x + 2 \) 的反函数是 \( g^{-1}(x) = ______ \)。

专升本高数试题及详解答案

专升本高数试题及详解答案

专升本高数试题及详解答案一、选择题(本题共5小题,每小题3分,共15分)1. 下列函数中,不是偶函数的是()。

A. y = x^2B. y = |x|C. y = cos(x)D. y = sin(x)2. 函数f(x) = 2x^3 - 6x^2 + 9x + 5在区间(-∞,+∞)内的最大值是()。

A. 5B. 9C. 12D. 无法确定3. 设曲线y = x^2上点P(-1, 1),则过点P的切线方程为()。

A. y = -2x - 1B. y = -x - 2C. y = x - 2D. y = 2x + 14. 以下哪个级数是收敛的?()A. ∑((-1)^n)/nB. ∑n^2C. ∑(1/n)D. ∑((-1)^(n+1))/n^25. 若函数f(x)在点x=a处连续,则必有()。

A. f(a)存在B. f(a) = 0C. lim(x->a-) f(x) = f(a)D. lim(x->a+) f(x) = f(a)二、填空题(本题共5小题,每小题2分,共10分)1. 若函数f(x) = 3x - 5,则f(2) = _______。

2. 曲线y = x^3在点(1,1)处的切线斜率为 _______。

3. 设数列{an}是等差数列,且a3 = 7,a5 = 13,则该数列的公差d= _______。

4. 若级数∑an收敛,则级数∑(an/2^n) _______(填“收敛”或“发散”)。

5. 利用定积分的几何意义,计算曲边梯形的面积,若y = 2x + 1在[0, 2]上的面积为 _______。

三、解答题(本题共4小题,共75分)1. (15分)求函数f(x) = x^2 - 4x + 3的单调区间,并证明。

2. (15分)设函数f(x) = ln(x + 2),求f(x)的n阶导数f^(n)(x)。

3. (20分)计算定积分∫[0, 4] (2x^2 - 3x + 1) dx,并说明其几何意义。

高数二专升本真题及答案

高数二专升本真题及答案

高数二专升本真题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)2. 曲线 y = x^3 - 2x 在点 (1, -1) 处的切线斜率是:A. 0B. 1C. -1D. 33. 定积分∫[0,1] x^2 dx 的值是:A. 1/3B. 1/4C. 1/2D. 14. 以下哪个选项是微分方程 y'' - y' - 6y = 0 的一个解?A. y = e^3xB. y = e^xC. y = e^(-3x)D. y = e^(2x)5. 函数 f(x) = sin(x) + cos(x) 的值域是:A. [-1, 1]B. [0, √2]C. [-√2, √2]D. [1, √2]6. 已知函数 f(x) = 2x - 1,求 f'(2) 的值是:A. 3B. 2C. 1D. 07. 极限lim(x→∞) (1 + 1/x)^x 的值是:A. eB. 1C. 0D. ∞8. 函数 y = ln(x) 的导数是:A. 1/xB. xC. ln(x)D. 19. 已知曲线 y = x^2 + 3x - 2,求该曲线在 x = -1 处的切线方程是:A. y = -2x - 1B. y = -2x + 1C. y = x + 2D. y = x - 210. 以下哪个选项是函数 y = x^3 - 6x^2 + 9x + 5 在 x = 2 处的泰勒展开式?A. 5B. -3C. 13D. 1二、填空题(每题2分,共20分)11. 微分方程 y' + 2y = 6 是___________方程的一种。

12. 函数 f(x) = x^3 - 5x^2 + 6x + 7 在 x = 1 处的导数值是___________。

13. 定积分∫[-1,1] |x| dx 的值是___________。

专升本数学入学考试题《高等数学(二)》含答案

专升本数学入学考试题《高等数学(二)》含答案

北京邮电大学现代远程教育专科起点升本科《高等数学(二)》入学考试题库(共65题)1.函数、极限和连续(53题)1.1函数(8题)1.1.1函数定义域1.函数lg arcsin 23x x y x =+-的定义域是( )。

A A. [3,0)(2,3]-; B. [3,3]-;C. [3,0)(1,3]-; D. [2,0)(1,2)-. 2.如果函数()f x 的定义域是1[2,]3-,则1()f x的定义域是( )。

D A. 1[,3]2-; B. 1[,0)[3,)2-⋃+∞; C. 1[,0)(0,3]2-⋃; D. 1(,][3,)2-∞-⋃+∞. 3. 如果函数()f x 的定义域是[2,2]-,则2(log )f x 的定义域是( )。

B A. 1[,0)(0,4]4-; B. 1[,4]4; C. 1[,0)(0,2]2- ; D. 1[,2]2. 4.如果函数()f x 的定义域是[2,2]-,则3(log )f x 的定义域是( ).DA . 1[,0)(0,3]3-⋃;B . 1[,3]3;C . 1[,0)(0,9]9-⋃ ;D . 1[,9]9.5.如果)(x f 的定义域是[0,1],则(arcsin )f x 的定义域是( )。

CA. [0,1];B. 1[0,]2; C. [0,]2π ; D. [0,]π. 1.1.2函数关系 6.设()()22221,1x f x x x x ϕϕ+⎡⎤==⎣⎦-,则()f x =( ).A A .211x x +-; B. 211x x -+; C. 121x x -+; D. 121x x +-. 7.函数331xx y =+的反函数y =( )。

B A .3log ()1x x +; B. 3log ()1x x -; C. 3log ()1x x -; D. 31log ()x x-.8.如果2sin (cos )cos 2x f x x=,则()f x =( ).C A .22121x x +-; B. 22121x x -+; C. 22121x x --; D. 22121x x ++.1.2极限(37题)1.2.1数列的极限9.极限123lim ()2n n n n →+∞++++-=( ).B A .1; B. 12; C. 13; D. ∞. 10.极限2123lim 2n n n→∞++++=( ).A A .14; B. 14-; C. 15; D. 15- 11.极限111lim 1223(1)n n n →∞⎛⎫+++= ⎪⋅⋅+⎝⎭( ).C A .-1; B. 0; C. 1; D. ∞.12.极限221111(1)222lim 1111333n n n n →+∞-+++-=++++( ).A A .49; B. 49-; C. 94; D. 94- 1.2.2函数的极限13.极限2x x x →∞+=( ).C A .12; B. 12-; C. 1; D. 1-. 14.极限011lim x x x →+-=( ).A A .12; B. 12-; C. 2; D. 2-. 15.极限0311lim x x x →+=( ).B A. 32- ; B. 32 ; C. 12- ; D. 12 .1x →A. -2 ; B. 0 ; C. 1 ; D. 2 .17.极限42132x x x →+-=-( ).B A .43-; B. 43; C. 34-; D. 34. 18.极限22lim(11)x x x →∞+-= ( ).DA .∞; B. 2; C. 1; D. 0.19.极限2256lim 2x x x x →-+=- ( ).DA .∞; B. 0; C. 1; D. -1.20.极限3221lim 53x x x x →-=-+ ( ).AA .73-; B. 73; C. 13; D. 13-.21.极限2231lim 254x x x x →∞-=-+ ( ).CA .∞; B. 23; C. 32; D. 34.22.极限sin lim x xx →∞=( ).BA .1-; B. 0; C. 1; D. 2.23.极限01lim sin x x x →=( ).BA .1-; B. 0; C. 1; D. 2.24.极限020sin 1lim xx tdtt x →-=⎰( ).BA .12; B. 12-; C. 13; D. 13-.25.若232lim 43x x x kx →-+=-,则k =( ).AA .3-; B. 3; C. 13-; D. 13.331x x →∞-A .∞; B. 0; C. 1; D. -1.1.2.3无穷小量与无穷大量27.当0x →时,2ln(12)x +与2x 比较是( )。

专升本试题及答案高数

专升本试题及答案高数

专升本试题及答案高数一、选择题(每题2分,共20分)1. 函数f(x)=x^2-2x+3在区间[0,3]上的最大值是()。

A. 2B. 3C. 4D. 5答案:C2. 设函数f(x)=x^3-3x^2+2x+1,求f'(x)的值。

A. 3x^2-6x+2B. x^2-6x+1C. 3x^2-9x+2D. x^3-9x^2+2答案:C3. 曲线y=x^2与直线x=2所围成的图形的面积是()。

A. 2B. 4C. 8D. 16答案:C4. 已知等差数列{an}的前n项和为S_n=n^2,求a_1的值。

A. 0B. 1C. 2D. 3答案:A5. 极限lim (n→∞) (1+1/n)^n 的值是()。

A. eB. 1C. 2D. 3答案:A6. 函数y=sin(x)的周期是()。

A. πB. 2πC. π/2D. 4π答案:B7. 微分方程dy/dx + y = x的通解是()。

A. y = e^x - x/eB. y = e^x + xC. y = e^(-x) - x/eD. y =e^(-x) + x答案:D8. 曲线y=x^3-6x^2+11x-6在点(1,4)处的切线斜率是()。

A. -2B. 0C. 2D. 4答案:C9. 函数f(x)=x^3-3x^2+2x+1在x=1处的导数值是()。

A. -2B. 0C. 2D. 4答案:A10. 已知函数f(x)=x^2+2x+1,求f''(x)的值。

A. 2x+2B. 2x+4C. 4x+2D. 4x+4答案:B二、填空题(每题2分,共10分)1. 函数f(x)=x^2+1在x=-1处的导数值是____。

答案:22. 函数f(x)=ln(x)的原函数是____。

答案:xln(x)-x+C3. 曲线y=x^2与直线y=4x-5平行的切点坐标是____。

答案:(5,25)4. 函数y=x^3-6x^2+11x-6的极小值点是____。

专升本的高数试题及答案

专升本的高数试题及答案

专升本的高数试题及答案一、选择题(每题2分,共20分)1. 设函数f(x)的定义域为R,若f(x) = x^2 + 2x + 3,求f(-1)的值。

A. 0B. 1C. 2D. 32. 函数y = sin(x)的周期是:A. πB. 2πC. π/2D. 4π3. 已知等差数列的首项a1=3,公差d=2,求第10项a10的值。

A. 23B. 21C. 19D. 174. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. 2D. 无穷大5. 曲线y = x^3 - 6x^2 + 9x在x=2处的切线斜率是:A. 0B. 1C. -1D. 36. 函数y = 2^x的反函数是:A. y = log2(x)B. y = log10(x)C. y = e^xD. y = sin(x)7. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。

A. 0B. -4C. 4D. 无法确定8. 曲线y = x^2与直线y = 4的交点坐标是:A. (2, 4)B. (-2, 4)C. (2, -4)D. (-2, -4)9. 已知曲线y = x^2 + 2x + 1,求其在x=1处的切线方程。

A. y = 2x - 1B. y = x + 2C. y = 2x + 1D. y = x - 210. 函数y = x^3 - 3x^2 + 2的导数是:A. 3x^2 - 6xB. 3x^2 - 6x + 2C. 3x^2 - 6x - 2D. 3x^2 - 6x + 1答案:1. B 2. B 3. B 4. B 5. D 6. A 7. A 8. A,B 9. A 10. A二、填空题(每题2分,共20分)1. 若f(x) = x^3 - 2x^2 + 5x - 6,求f'(x) = __________。

答案:3x^2 - 4x + 52. 函数y = cos(x)的导数是 __________。

数学专升本入学考试题库

数学专升本入学考试题库

北京邮电大学现代远程教育专科起点升本科《高等数学(二)》入学考试题库(共65题)1.函数、极限和连续(53题)1.1函数(8题)1.1.1函数定义域1.函数lg arcsin 23x x y x =+-的定义域是()。

A A.[3,0)(2,3]-;B.[3,3]-; C.[3,0)(1,3]-;D.[2,0)(1,2)-.2.如果函数()f x 的定义域是1[2,]3-,则1()f x的定义域是()。

D A.1[,3]2-;B.1[,0)[3,)2-⋃+∞; C.1[,0)(0,3]2-⋃;D.1(,][3,)2-∞-⋃+∞. 3.如果函数()f x 的定义域是[2,2]-,则2(log )f x 的定义域是()。

B A.1[,0)(0,4]4-;B.1[,4]4;C.1[,0)(0,2]2-;D.1[,2]2. 4.如果函数()f x 的定义域是[2,2]-,则3(log )f x 的定义域是().D A .1[,0)(0,3]3-⋃;B .1[,3]3;C .1[,0)(0,9]9-⋃;D .1[,9]9.5.如果)(x f 的定义域是[0,1],则(arcsin )f x 的定义域是()。

CA.[0,1];B.1[0,]2;C.[0,]2π;D.[0,]π. 1.1.2函数关系 6.设()()22221,1x f x x x x ϕϕ+⎡⎤==⎣⎦-,则()f x =().A A .211x x +-;B.211x x -+;C.121x x -+;D.121x x +-. 7.函数331xx y =+的反函数y =()。

BA .3log ()1x x +;B.3log ()1x x -;C.3log ()1x x -;D.31log ()x x-. 8.如果2sin (cos )cos 2x f x x=,则()f x =().C A .22121x x +-;B.22121x x -+;C.22121x x --;D.22121x x ++. 1.2极限(37题)1.2.1数列的极限9.极限123lim ()2n n n n →+∞++++-=().B A .1;B.12;C.13;D.∞. 10.极限2123lim 2n n n →∞++++=().A A .14;B.14-;C.15;D.15- 11.极限111lim 1223(1)n n n →∞⎛⎫+++= ⎪⋅⋅+⎝⎭().C A .-1;B.0;C.1;D.∞.12.极限221111(1)222lim 1111333n n n n →+∞-+++-=++++().A A .49;B.49-;C.94;D.94- 1.2.2函数的极限13.极限lim x x→∞=().CA .12;B.12-;C.1;D.1-. 14.极限0x →=().A A.12;B.12-;C.2;D.2-. 15.极限0x →=().B A.32-;B.32;C.12-;D.12.11x x →-A.-2;B.0;C.1;D.2.17.极限4x →=().B A .43-;B.43;C.34-;D.34. 18.极限x →∞=().DA .∞;B.2;C.1;D.0.19.极限2256lim 2x x x x →-+=-().D A .∞;B.0;C.1;D.-1.20.极限3221lim 53x x x x →-=-+().A A .73-;B.73;C.13;D.13-. 21.极限2231lim 254x x x x →∞-=-+().C A .∞;B.23;C.32;D.34. 22.极限sin lim x x x→∞=().B A .1-;B.0;C.1;D.2. 23.极限01lim sin x x x →=().B A .1-;B.0;C.1;D.2.24.极限020sin 1lim xx t dt t x →-=⎰().BA .12;B.12-;C.13;D.13-. 25.若232lim 43x x x k x →-+=-,则k =().A A .3-;B.3;C.13-;D.13.331x x →∞-A .∞;B.0;C.1;D.-1.1.2.3无穷小量与无穷大量27.当0x →时,2ln(12)x +与2x 比较是()。

专升本高数试题及答案文库

专升本高数试题及答案文库

专升本高数试题及答案文库一、选择题1. 函数f(x)=x^2+3x+2在区间[-5,1]上的最大值是()。

A. 6B. 7C. 8D. 9答案:B2. 设函数f(x)=x^3-2x^2-3x+1,求f'(x)。

A. 3x^2-4x-3B. x^3-4x^2C. 3x^2-4x+1D. x^3-2x^2答案:A3. 若曲线y=x^2与直线y=4x-5相切,则切点坐标为()。

A. (1,3)B. (2,3)C. (1,1)D. (2,4)答案:A二、填空题4. 若函数f(x)=x^3-6x^2+11x-6的零点为x0,则x0的值为______。

答案:15. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值。

答案:32三、解答题6. 求函数y=x^3-6x^2+9x+2在区间[0,3]上的单调性。

答案:函数y=x^3-6x^2+9x+2的导数为y'=3x^2-12x+9。

令y'>0,解得x>1或x<3。

因此,函数在区间[0,1]和[2,3]上单调递增,在区间[1,2]上单调递减。

7. 求曲线y=x^2-4x+3与x轴的交点坐标。

答案:令y=0,解得x^2-4x+3=0,即(x-1)(x-3)=0,所以曲线与x轴的交点坐标为(1,0)和(3,0)。

四、证明题8. 证明:对于任意实数x,不等式e^x > 1+x恒成立。

答案:设函数f(x)=e^x-x-1,求导得f'(x)=e^x-1。

当x>0时,f'(x)>0,函数f(x)单调递增;当x<0时,f'(x)<0,函数f(x)单调递减。

因此,f(x)的最小值出现在x=0处,即f(0)=e^0-0-1=0。

所以对于任意实数x,有f(x)≥f(0)=0,即e^x≥1+x。

五、综合题9. 已知函数f(x)=sin(x)+cos(x),求f(x)在区间[0,π/2]上的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3x
7.函数厂=3弔的反函数…
)。B
xx
AIog3^—);B.log3();C.
11—X
x
|og3(R);
D.
1 -x
Iog3().
x
・2
c打田―、sin X
8.女口果f (cos x)=
cos2x
,则f(x)=(
B.
1 —X2
2x2+1
C.
1 —X2
2x2—1
D.
1+x2
2x2+1
1.2极限(37题)
19.极限
20.极限
21.极限
22.极限
23.极限
24.极限
D.
lim
x-H
A. -2
x—1
B. 0
lim
X
4
3;B.
18.极限
A-
C.
=(
C.
).C
D.
D.
A处;B. 2;
C. 1;
D. 0.
X
x-2
C. 1;
D. -1.
X
lim
X
7
B.
3
lim
TC
C.
D.
3x
-5x
B.-
C.
D.
lim
A -1;B.
1 1 1
1--+-2+…+(-1)n-n
2 22'丿2n
1 1 1
1+ +…+
3 32
_4
9
=(
B.
3n
9
C.-:
D.
1.2.2函数的极限
13.极限limUx2+x
=(
B.
_-
2
C.
1;D.
-1
14极限xmox
=(
1
-2;C.
2;D.
-2.
J3x+1-1
15.极限lim
xT
A.-
C.
16.极限
17.极限
5.如果f(x)的定义域是[0,1],则
f (arcsinX)的定义域是(
1
A.[0,1];B.[0,—];
2
C.[0,l];
D.[0,
1.1.2函数关系
2+x2
6.设fp(x2)—,W(x戶L」1 -X
1
-,则f(x)=(
x
2x+1
A J; B. 9 ; C. 4
X—1x+12x+1
D.
X+1
2x—1
[ -2,—],则f(一)的定义域是(
3x
A.[-尹];
B.
C.[—?,0)50,3];
[-;
2
1
D.
3.如果函数f(x)的定义域是
[—2, 2],则f (log2x)的定义域是(
)。B
B.
4.如果函数f (X)的定义域是
[―2,2],则fQogsX)的定义域是(
).D
1 1 1
[亍,3];C.[-9,0)50,9];D.[9,9].
专科起点升本科《高等数学(二)》入学考试题库(共180题)
1
1.1函数(8题)1.1.1函数定义域
1.函数y =Ig
x-2
—+arcsin^的定义域是(
3
)。A
A.[-3,0)U(2,3];
B.[d,3];
C.[-3,0)U(1,3];
D.[-2,0)U(1,2).
2.如果函数f (x)的定义域是
11
C.
D.
2.
1
lim xsin
A -1;B.
C.
D.
2.
X

‘0
dt
=(
B.
1
-2;C.
1;D.-1
1.2.1数列的极限
1+2+3+…
9.极限nlim(
10.极限
-4 n2
1 1
A 1;B.-;C.
2
1+2+3+•…+n lim-n_^
A-
4
D.
11.极限
12.极限
2n2
B. 4;C.
lim』
F (1 .22 3
=(
D.
+…+1=(
n(n+1)丿
A -1;B. 0;C. 1;D.处
lim
n—jfcc
相关文档
最新文档