第11章 三角形单元教学计划
【大单元教学】人教版数学八上 第十一章 三角形 单元教学设计
2
11.3
多边形及其内角和
2
达成评价
课题
课时目标
达成评价
评价任务
11.1.1 三角形的 边
1.认识三角形并会用几 何语言表示三角形,了 解三角形分类. 2.掌握三角形的三边关 系. 3.运用三角形三边关系
学生能够认识三角 形并了解三角形的 分类 能掌握三角形三边 关系并运用三边关 系解决问题
任务 1.引言得出三 角形有关概念 任务 2.探究三角形 三边关系 任务 3.出示例题 任务 4.归纳总结
三 角
11.1.3 三角形稳定性
形
11.2.1 三角形内角
11.2.2 三角形外角
11.3.1 多边形
思考:三角形分类
探究:三角形三边关系
例题解析 活动 1:三角形高 活动 2:三角形中线以及重心 活动 3:三角形角平分线 例题解析 探究:三角形稳定性 举例 例题 探究:三角形内角和 例题 直角三角形性质
解决有关的问题.
11.1.2 三角形的 1.掌握三角形的高,中 学生会画三角形的 任务 1:由实际问题
高,中线与角平 线及角平分线的概念. 高,中线,角平分线; 引出三角形的高
分线
2.掌握三角形的高,中 并且能根据概念解 任务 2:探究三角形
线及角平分线的画法. 决问题
中线的概念以及中
3. 掌握钝 角三 角形的
角和公式就是利用上述方法得到的,将多边形的有关内容与三角形的有关内容紧接安排.
可以加强它们之间的联系,便于学生学习.
学情分析
"三角形”是《课程标准》”几何与图形”的重要内容.在第四章《几何图形初步》、 第五章《相交线与平行线》中,学生已经学习了直线、线段、射线、角等基本的平面图形,
《第十一章三角形章起始课》教学设计 2023-2024学年人教版数学八年级上册
《三角形》章起始课教学设计一.内容和内容解析三角形是最简单的封闭图形,项武义先生曾说:“三角形是仅次于线段和直线的基本几何图形,而空间的大部分基本性质都已经在三角形的几何性质中充分体现。
三角形之所以成为古希腊几何学研究的主角,其原因也就是:三角形既简单而又能充分反映空间的本质.”张景中院士也说过:“欧几里得给我们的解题工具,主要是全等三角形和相似三角形.”这足以说明,掌握好三角形的知识就意味着理解了空间大部分的基本性质.同时,三角形的知识是研究其他几何图形不可或缺的基础,其研究路径、过程和方法可以迁移到四边形等较复杂图形的研究中,具有统领性、一贯性.因此,三角形的学习对整个几何学习具有奠基意义.本节课是“三角形”章起始课,主要是让学生在小学阶段对三角形已有的感性认识的基础上,科学认识三角形的概念、基本要素及表示方法,进一步熟悉三角形的研究思路和结构体系,认识三角形的性质、分类和边角关系,加深对三角形的理解.基于以上分析,确定本节课的教学重点是:三角形的定义,按是否有边相等对三角形分类,三角形的三边关系.二、教学背景和学情分析人教版教材将三角形内容安排在八年级上册,但北师大版、华东师大版、冀教版、苏科版等教材均把三角形内容安排在七年级下册,因此本节课我尝试用七年级学生进行授课.学生在小学阶段已经接触过三角形的一些知识(按角分类、内角和、三边关系等),也已经具备线段、角以及相交线(对顶角、邻补角)、平行线(性质、判定)等几何知识的储备,能够进行简单的推理和证明,并且初步认识到它们的研究思路,但七年级学生的抽象思维能力还比较弱,不能很好地做到“顺利地提取知识”和“有条理地梳理知识”.因此,《三角形》章起始课应该通过对小学三角形知识以及七上学习的角的知识的梳理,使学生明确这些知识的基本归属,为后续的学习做好统领、打好桩基.基于以上分析,确定本节课的教学难点是:依据角的研究思路确定三角形的研究思路,体会类比的数学思想.三、教学目标1.经历“角”和“三角形”知识结构的适切类比,理解几何图形学习的研究思路,积累几何图形学习的基本活动经验,发展学生系统地认识问题、发现问题、提出问题的意识和能力.2.掌握三角形的定义,表示方法,组成要素,能够按照不同的标准对三角形进行分类,初步认识特殊的等腰三角形、等边三角形.3.掌握三角形的两边之和大于第三边,两边之差小于第三边,初步感受严谨的几何证明.四、教学过程:(一)复习回顾问题:我们在七年级上学期学习过角,我们当时学习了有关角的哪些知识?是从哪些方面学习的?教师ppt出示角的研究思路,引导学生用这样的框架去研究三角形.设计意图:回顾角的研究思路,从定义,到表示,到特例,到分类,到关系,到应用,教会学生研究几何图形的基本思路.(二)自主拼图,尝试下定义出示小学课本中三角形的定义,提出问题:这样的定义是否严谨?还需要补充什么要求?拼一拼:教师准备好磁性线段,请同学上黑板将其拼成三角形.发现当三条线段中,有两条线段的长度之和等于第三条线段长时,无法拼出三角形.引出三角形定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.练习:判断以下图形是否是三角形,说明理由.类比角的组成要素和表示方法,介绍三角形的组成要素:三个顶点,三条边,三个角;介绍三角形的表示方法.设计意图:学生在小学阶段学习了三角形的定义,但是由于当初年龄的限制,小学阶段的三角形定义不能严谨地表述清楚三角形的内在逻辑关系.因此,我采用拼图的操作方式,让学生通过“做中学”“悟中学”体会到认知冲突,在操作、观察、思考的基础上,通过必要的引导、辨识,规范三角形的定义,形成对三角形概念的准确理解.(三)三角形的分类教师指出:按照我们的研究框架图,接下来我们应该研究三角形的分类.小学时我们学习了三角形按角分类,三角形可以分成锐角三角形,直角三角形,钝角三角形.其中特殊的直角三角形还具有特殊的性质,我们以后会再研究.活动:拼一拼:教师提供两副三角板,你能分别拼出这三种三角形吗?观察图形,分别给这三个三角形命名,预设有同学会说出等腰三角形,等边三角形,等腰直角三角形,引出三角形的按边分类.设计意图:三角板是学生从小学开始就熟悉的工具,用三角板引出等腰三角形,等边三角形,能够充分激发学生的学习兴趣.请学生在导学案上自主完成,教师评价修改,共同得出三角形的分类.(四)三角形中的关系回到一开始的拼图问题中,是不是任意三条线段都能拼出三角形?预设学生回答:三角形的任意两边之和大于第三边.教师引导:小学中我们已经通过实验操作已经知道了三角形的任意两边之和大于第三边,进入中学后我们要学习对于这个结论进行严谨的证明.理论依据:两点之间,线段最短.AC +BC >AB AB +AC >BC BC +AB >AC由AC +BC >AB ,移项得:AB -AC <BC ,即:三角形中两边之差小于第三边. 回到研究框架图中,在三角形中我们还会研究哪些关系?预设回答:角的关系(内角和定理),边和角的关系(大边对大角).设计意图:章建跃老师说过“几何图形的组成要素的关系就是性质”,在此观念指导下,让对三角形的基本性质有大致了解,这节课先重点研究边的性质,帮助学生做好从实验几何到论证几何的过渡.(五)简单介绍两个三角形的关系:我们刚才研究了一个三角形内部元素之间的关系,那两个三角形之间有怎样的关系呢?三角形等腰三角形三边都不相等的三角形腰和底不相等的等腰三角形等边三角形B CA两个形状大小都相同的三角形叫全等三角形,形状相同,大小不同的两个三角形叫相似三角形. (六)巩固练习1.例:图1中有几个三角形?用符号表示出这些三角形.变式1:如图2,延长BD 与过C 的直线相较于点E则图2中新增加的三角形是?变式2:图2中,若AB =3,AC =5,则线段BC 的取值范围是?若线段BC 的长度为整数,则BC的值为多少?2.介绍从五角星中能够剪出的两种等腰三角形叫黄金三角形,它的底边长与腰长的比值是黄金分割比.设计意图:带着问题结束本节课的学习,学生在课后会去查阅资料,用本节课学到的研究方法去研究黄金三角形的性质,达到学以致用的目的.7.课堂小结师生共同总结本节课的主要知识结构.设计意图:通过思维导图回顾本节课所研究的内容,对后续学习进行展望,让学生充满期待. 完整知识体系的建立促使学生进一步积累几何研究的经验,形成后续四边形等其他几何图形的研究范式.8.结束语道德经有云:道生一,一生二,二生三,三生万物.(课件出示一条直线,两条射线形成角,三条线段形成三角形.)从浩瀚的星空到宏伟的建筑,从路边不知名的野花到水分子的内部结构,到处都有三角形的身影,《追忆似水年华》的作者普鲁斯特说过:真正的发现之旅,不在于寻找新的风景,而在于拥有新的眼光!让我们学会用数学的眼光去观察世界吧!设计意图:新课标强调教会学生用数学的眼光观察世界,学习了本节课的知识之后让学生观察生活中的三角形,会有不一样的感受.同时引用道德经中的名言,把数学知识拉升到哲学的高度,让学生体会到不同学科之间的内在联系和统一.六、板书设计附录:三角形章起始课导学案1.三角形的分类按角分类按边分类2.判断正误:(1)等边三角形是锐角三角形;()(2)一个钝角三角形一定不是等腰三角形;()(3)等边三角形是特殊的等腰三角形;()(4)直角三角形一定不是等腰三角形;()(5)三角形按边分类,可以分为三边都不相等的三角形,等腰三角形和等边三角形. ()3. 图.变式1:如图2,延长BD与过C的直线相较于点E变式2:图2中,若AB=3,AC=5,则线段BC的取值范围是:( )<BC<( )。
人教版数学八年级上册《第十一章三角形章起始课》教学设计
3.学生在小组合作和课堂讨论中表现出较强的参与意识,但个别学生可能缺乏主动性和合作精神。
4.部分学生对数学学习兴趣不足,需要教师在教学中激发兴趣,提高学生的学习积极性。
针对以上学情,教师在教学过程中应关注学生的个体差异,采用差异化教学策略,鼓励学生积极参与课堂活动,提高学生的几何思维能力和解决问题的能力。同时,注重培养学生的学习兴趣,激发学生的学习内驱力,使他们在轻松愉快的氛围中学习三角形知识。
3.结合实例,讲解三角形的分类,如锐角三角形、直角三角形、钝角三角形等。
4.通过动态演示,让学生直观地理解三角形的性质和分类。
5.教师讲解三角形在实际问题中的应用,如测量、设计等,使学生认识到三角形的重要性。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组讨论以下问题:
a.三角形的性质有哪些?
作业布置要求:
1.学生要认真完成作业,注意书写规范,保持卷面整洁。
2.家长要关注学生的学习进度,协助学生完成作业,并签字确认。
3.教师要及时批改作业,给予评价和指导,关注学生的个体差异,针对性地进行辅导。
3.设计多样化的练习题,让学生在解答过程中巩固三角形的知识,培养学生分析问题、解决问题的能力。
4.通过课堂讨论、小组合作等形式,培养学生合作交流的能力,激发学生的学习兴趣和主动性。
(三)情感态度与价值观
1.培养学生对几何图形的兴趣,激发学生学习数学的积极性,树立学生的自信心。
2.培养学生勇于探索、严谨治学的学习态度,养成独立思考、善于提问的学习习惯。
(6)拓展提高:引导学生运用三角形知识解决实际问题,提高学生的应用能力和创新意识。
八年级数学上册第十一章三角形单元整体设计备课新版新人教版
三角形是《课程标准》中“图形与几何”的重要内容,本章 主要内容有与三角形有关的线段、角,多边形及其内角和 等.三角形的高、中线和角平分线是三角形中的主要线段,在 知道三角形的内角和等于180°的基础上,通过推理论证出三角 形外角的性质,借助三角形的内角和与外角和探究多边形的内 角和与外角和.这些知识加深了学生对于三角形的认识,既是 学习特殊三角形的基础,也是研究其他图形的基础.
6.了解多边形的概念及多边形的顶点、边、内角、外角与对 角线;探索并掌握多边形内角和与外角和公式.
7.了解正多边形的概念.
教学目标 1. 理解三角形及与三角形有关的线段(边、高、中线、角平分线)的概念,
证明三角形两边的和大于第三边,了解三角形重心的概念,了解三角 形的稳定性. 2.理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探 索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是 直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的 和. 3.了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索 并求 1. 理解三角形及其内角、外角、中线、高线、角平分线等概念,
了解三角形的稳定性. 2.探索并证明三角形的内角和定理.掌握它的推论:三角形
的外角等于与它不相邻的两个内角的和. 3.证明三角形的任意两边之和大于第三边. 4.了解三角形重心的概念.
5.探索并掌握直角三角形的性质定理:直角三角形的两个锐 角互余,掌握有两个角互余的三角形是直角三角形.
人教版八年级数学上册第十一章三角形单元教材分析教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:三角形的基本性质、分类及判定;勾股定理及其逆定理;三角函数的定义和应用。
3.小组合作题要求组内成员共同参与,分工合作,形成高质量的讨论报告或研究报告。
4.教师在批改作业时,要关注学生的解题思路和方法,给予针对性的评价和建议,以提高学生的学习效果。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以生活中的三角形实物为切入点,如三角板、三角形屋顶等,引导学生观察并思考这些三角形的共同特点,激发学生的学习兴趣。
2.提出问题:让学生尝试回答以下问题:(1)三角形是什么?(2)三角形有哪些基本性质?(3)我们为什么要学习三角形?
3.创设情境:通过展示一些三角形在生活中的应用,如桥梁、自行车架等,让学生感受到三角形在实际生活中的重要性,为新课的学习奠定基础。
3.培养学生团队合作意识,让学生在小组合作中学会倾听、交流、协作,提高人际沟通能力。
4.培养学生的审美观念,让学生在探究三角形美的过程中,感受数学的魅力,提高对数学美的鉴赏能力。
5.培养学生的创新意识,鼓励学生多角度、多方法解决问题,激发学生的创造潜能。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了平面几何的基本概念和性质,具有一定的几何图形识别和分析能力。在此基础上,学生对三角形的认识将从直观感知逐步过渡到理性认识。然而,学生对三角形性质的深入理解和运用尚需进一步培养和引导。此外,学生在解决实际问题时,对数学知识的应用能力有待提高。因此,在教学过程中,应关注以下几个方面:
最新人教版初二数学八年级上册 第十一章三角形 全单元教案
第十一章三角形11.1与三角形有关的线段11.1.1三角形的边◇教学目标◇【知识与技能】1.认识三角形的概念及其基本要素;2.掌握三角形三条边之间的关系.【过程与方法】1.通过操作对比、观察、推理、交流等活动认识三角形及其概念和表示方法,运用分类思想对三角形进行分类;2.经历度量三角形边长的实践活动中,理解三角形的三边关系. 【情感、态度与价值观】培养学生的符号语言表达能力,体会三角形在日常生活中的应用价值.◇教学重难点◇【教学重点】三角形的三边关系.【教学难点】三角形三边关系的应用.◇教学过程◇一、情境导入埃及金字塔、常见的交通标志和移动信号塔都是什么形状?在我们日常生活中还有哪些东西是三角形的?二、合作探究探究点1三角形的概念典例1看图填空:(1)图中共有个三角形,它们是;(2)△BGE的三个顶点分别是,三条边分别是,三个角分别是;(3)△AEF中,顶点A所对的边是;(4)∠ACB是△的内角,∠ACB的对边是.[解析]根据三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.[答案](1)4;△ABC,△EBG,△AEF,△CGF(2)B,G,E;BE,EG,BG;∠B,∠BEG,∠BGE(3)EF(4)ACB;AB探究点2三角形的分类典例2如图,过A,B,C,D,E五个点中的任意三点画三角形.(1)以AB为边画三角形,能画几个?写出各三角形的名称.(2)分别指出(1)中的三角形中的等腰三角形和钝角三角形.[解析](1)如图所示,以AB为边的三角形能画3个,分别是△EAB,△DAB,△CAB.(2)△ABD是等腰三角形,△EAB,△CAB是钝角三角形.探究点3三角形的三边关系典例3已知三角形的三条边互不相等,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个符合上述条件的第三边长.(2)符合上述条件的三角形有多少个?[解析](1)第三边长是4.(答案不唯一)(2)∵2<m<16,∴m的值为4,6,8,10,12,14,共六个.【归纳总结】在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.变式训练“佳园工艺店”打算制作一批两边长分别是7分米,3分米,第三边长为奇数的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有几种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元/分米,问至少需要多少钱购买材料?(忽略接头)[解析](1)三角形的第三边x满足:7-3<x<3+7,即4<x<10.因为第三边又为奇数,因而第三边可以为5,7或9.故要制作满足上述条件的三角形木框共有3种.(2)制作这种木框的木条的长为:3+5+7+3+7+7+3+7+9=51(分米),所以51×8=408(元).答:至少需要408元购买材料.三、板书设计三角形的边三角形◇教学反思◇由于初次接触三角形的相关元素,教师要注意引导学生发现三角形的三边关系,要留给学生充足的时间和空间去思考讨论,培养学生解决问题的能力.11.1.2三角形的高、中线与角平分线◇教学目标◇【知识与技能】1.了解三角形的高、中线、角平分线的概念;2.会用工具准确画出三角形的高、中线、角平分线.【过程与方法】1.让学生经历画三角形的高、中线、角平分线过程,理解三角形的高、中线、角平分线的特点以及符号语言和图形语言的表达方法;2.培养学生观察、分析、作图、解决问题的能力.【情感、态度与价值观】培养学生敢于实践操作、勇于发现、大胆探索、合作创新的精神.◇教学重难点◇【教学重点】三角形的高线、中线、角平分线的概念及画法.【教学难点】探究三角形的三条高线、三条角平分线、三条中线都交于一点的过程.◇教学过程◇一、情境导入有一块三角形的地,小明的爸爸想种花草,妈妈想种菜.于是想平分三角形的面积,一半种花草,一半种菜,不知如何作,小明说,这还不好办,做一边的中线就行了,聪明的你,能帮他们家把这块地分成面积相等的两部分吗?知道小明这样做的原因吗?二、合作探究探究点1三角形的高典例1如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD,BE相交于点F,连接CF.(1)在△ABC中,AC边上的高为,BC边上的高为;(2)在△ABD中,AD边上的高为;(3)在△BCE中,CE边上的高为;(4)在△BCF中,BC边上的高为;(5)在△ABF中,AF边上的高为,BF边上的高为. [解析]三角形的高即从三角形的一个顶点向它的对边所在直线引垂线,顶点和垂足间的线段.[答案](1)BE;AD(2)BD(3)BE(4)FD(5)BD;AE【归纳提升】锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.变式训练下列尺规作图,能判断AD是△ABC边上的高的是()[答案] D探究点2中线的特性典例2三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形[解析]根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.[答案] B【技巧点拨】三角形的中线把三角形分为两个等底同高的三角形,这两个三角形的面积相等.探究点3三角形的角平分线典例3如图,CD,BE分别是△ABC的角平分线,它们相交于点I,则:(1)∠ACD=∠= ∠ACB,∠ABC= ∠ABE.(2)BI是∠的平分线,CI是∠的平分线.(3)若∠ABC=60°,∠ACB=80°,则∠BIC= 度.(4)你能画出△ABC的第三条角平分线吗?[解析](1)BCD;;2.(2)ABC;ACB.(3)110°.(4)连接AI并延长,即为∠BAC的角平分线.探究点4三角形的中线与周长典例4如图,AD是△ABC的中线,且AB=10 cm,AC=6 cm,求△ABD与△ACD的周长之差.[解析]∵AD为中线,∴BD=CD,∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC,∵AB=10,AC=6,∴△ABD与△ACD的周长之差=10-6=4 cm.变式训练在△ABC中,AB=AC,AD是中线,△ABC的周长为34 cm,△ABD的周长为30 cm,求AD的长.[解析]由题意得AB+AC+BC=34,AB+AD+BD=30,∵AB=AC,BD=BC,∴②×2得2AB+2AD+BC=60,③③-①得2AD=26,∴AD=13 cm.三、板书设计三角形的高、中线与角平分线三角形的高、中线与角平分线◇教学反思◇通过本课时的教学要让学生认识三角形的三条重要线段的概念、图形和它们的相关特性,如三角形的中线把三角形分为面积相等的两部分,三角形的三条高线、三条中线、三条角平分线都相交于一点的性质,应逐步加强学生几何语言的表达能力.11.1.3三角形的稳定性◇教学目标◇【知识与技能】了解三角形的稳定性以及三角形的稳定性在实际生活中的应用.【过程与方法】培养动手操作、归纳概括能力,提高运用知识解题的能力,训练思维的灵活性.【情感、态度与价值观】感受生活中数学的美学价值,体会生活中处处有数学,体验学习数学的乐趣.◇教学重难点◇【教学重点】三角形的稳定性.【教学难点】三角形稳定性的应用.◇教学过程◇一、情境导入三角形在我们日常生活中应用广泛,仔细观察上面一组图片,你知道有些物体的形状做成三角形的原因吗?三角形形状的物体有什么作用?二、合作探究探究点1三角形的稳定性典例1如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性[解析]观察图可发现图中窗钩构造了一个三角形AOB,根据三角形稳定性,可得答案.[答案] D变式训练如图所示是一个起重机的示意图,在起重架中间增加了很多斜条,它所运用的几何原理是()A.三角形两边之和大于第三边B.三角形具有稳定性C.三角形两边之差小于第三边D.直角三角形[答案] B探究点2四边形的不稳定性的应用典例2(1)工程建筑中经常采用三角形的结构,如屋顶的钢架,输电线的支架等,这里运用的三角形的性质是.(2)下列图形具有稳定性的有个.①正方形;②长方形;③直角三角形;④平行四边形.(3)已知四边形的四边长分别为2,3,4,5,这个四边形的四个内角的大小能否确定?(4)要使五边形木架(用5根木条钉成)不变形,工人准备再钉上两根木条,如图的两种钉法中正确的是.(5)要使四边形木架(用4根木条钉成)不变形,至少需要加1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,……,如果要使一个n边形木架不变形,至少需要加根木条固定.[解析](1)三角形的稳定性.(2)1.(3)不能确定.(4)方法一.(5)根据三角形具有稳定性,可以知道需要的木条数等于过多边形的一个顶点的对角线的条数.过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.【技巧点拨】这里是利用三角形的稳定性以及多边形的对角线解决问题,考虑到利用对角线把多边形分成三角形是解题的关键.变式训练如图,由6条钢管铰接而成的六边形是不稳定的,请你再用三条钢管连接使之稳固.(方法很多,请提供四种不同连接方法)[解析]根据三角形具有稳定性,将六边形分成若干个小三角形即可. [答案]如图所示.(答案不唯一,合理即可)探究点3克服四边形的不稳定性典例3如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A,C两点之间B.E,G两点之间C.B,F两点之间D.G,H两点之间[解析]用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.[答案] B【方法点拨】三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.三、板书设计三角形的稳定性三角形的稳定性◇教学反思◇通过对生活中三角形稳定性的探索,吸引学生的注意力,调动学生的积极性,体会数学的应用价值.11.2与三角形有关的角11.2.1三角形的内角◇教学目标◇【知识与技能】应用三角形内角和定理解决一些简单的实际问题.【过程与方法】通过小组学习,经历得出三角形内角和等于180°的过程,进一步提高学生利用所学知识解决问题的能力.【情感、态度与价值观】经历猜想、归纳、证明等过程,学会研究问题的方法.◇教学重难点◇【教学重点】三角形内角和定理.【教学难点】三角形内角和定理的推理过程.◇教学过程◇一、情境导入如图,小学的时候我们通过度量或剪拼得到:∠A+∠B+∠ACB=180°.现在你能用我们学习的方法给出证明吗?二、合作探究探究点1三角形内角和定理典例1如图,在△ABC中,BD为△ABC的角平分线,如果∠A=47°,∠ADB=116°,求∠ABC和∠C的度数.[解析]∵∠A=47°,∠ADB=116°,∴∠ABD=180°-47°-116°=17°,∵BD为△ABC的角平分线,∴∠ABC=2∠ABD=34°,∴∠C=180°-47°-34°=99°.变式训练如图,在△ABC中,∠BAC=56°,∠ABC=74°,BP,CP分别平分∠ABC 和∠ACB,则∠BPC=()A.102°B.112°C.115°D.118°[答案] D探究点2三角形内角和定理的应用典例2如图,△ABC中,∠B=65°,∠BAD=40°,∠AED=100°,∠CDE=45°,求∠CAD的度数.[解析]在△ABD中,∵∠B=65°,∠BAD=40°,∴∠BDA=180°-(∠B+∠BAD)=180°-(65°+40°)=75°,∵∠CDE=45°,∴∠ADE=180°-(∠BDA+∠CDE)=180°-(75°+45°)=60°,在△ADE中,∵∠AED=100°,∴∠CAD=180°-∠ADE-∠AED=180°-60°-100°=20°.变式训练完成下面的推理过程:如图,在三角形ABC中,已知∠2+∠3=180°,∠1=∠A,试说明∠CFD=∠B.解:∵∠2+∠DEF=180°(邻补角定义),∠2+∠3=180°(已知),∴(同角的补角相等).∴AC∥EF().∴∠CDF= (两直线平行,内错角相等).∵∠1=∠A(已知),∴∠CDF=∠A(等量代换).∴DF∥AB().∴∠CFD=∠B().[答案]∠DEF=∠3;内错角相等,两直线平行;∠1;同位角相等,两直线平行;两直线平行,同位角相等探究点3直角三角形的两锐角互余典例3如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°[解析]根据直角三角形两锐角互余求出∠CBD,再根据角平分线的定义解答.∵CD⊥BD,∠C=55°,∴∠CBD=90°-55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.[答案] D变式训练如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于点E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A.15°B.20°C.25°D.30°[答案] B三、板书设计三角形的内角三角形的内角和◇教学反思◇本节课主要是通过小学的探究形式,引导学生寻找做辅助线,对三角形的内角和等于180°进行严谨的证明,慢慢培养学生对证明的理解,逐步认识几何证明的必要性.在解决问题的过程中,关注学生在推理中语言使用的准确性,引导学生用规范的格式进行书写.11.2.2三角形的外角◇教学目标◇【知识与技能】了解三角形的外角的两条性质,能利用三角形的外角性质解决问题.【过程与方法】经历观察、探索、交流等过程,增强表达能力和推理能力.【情感、态度与价值观】通过观察和动手操作,体会探索过程,学会推理的数学思想方法,培养主动探索、勇于发现,敢于实践及合作交流的习惯.◇教学重难点◇【教学重点】三角形的外角的性质.【教学难点】探究三角形外角的性质,进行相关计算.◇教学过程◇一、情境导入两只野狼在如图的A处发现有一只野牛离群独自在O处觅食,野狼打算用迂回的方式,一只先从A前进到B处,然后再折回在C处截住野牛返回牛群的去路D处,另一只则直接从A处扑向野牛,已知∠BAC=40°,∠ABC=70°,问野狼从B处要转多少度才能直达C处? 二、合作探究探究点1三角形的外角典例1如图,CE是△ABC的外角∠ACD的平分线,若∠B=25°,∠ACE=60°,则∠A=()A.105°B.95°C.85°D.25°[解析]先根据角平分线的性质求出∠ACD的度数,再由三角形外角的性质即可得出结论.∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°.∵∠B=25°,∴∠A=120°-25°=95°.[答案] B变式训练一副三角板有两个三角形,如图叠放在一起,则∠α的度数是()A.120°B.135°C.150°D.165°[答案] D探究点2三角形外角的性质的应用典例2如图,已知D为△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=30°,∠D=40°,求∠ACD的度数.[解析]∵DF⊥AB,∠D=40°,∴∠DFB=90°,∴∠B=90°-∠D=90°-40°=50°,∵∠ACD是△ABC的外角,∠A=30°,∴∠ACD=∠B+∠A=50°+30°=80°.【技巧点拨】解决几何问题的关键是认准图形,找出图中三角形的外角,利用“三角形的一个外角等于和它不相邻的两个内角的和”的性质和三角形内角和定理解决.变式训练如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110°B.115°C.120°D.125°[答案] A三、板书设计三角形的外角三角形的外角◇教学反思◇本节课的教学围绕三角形的外角识别、性质及应用展开教学,在讲解外角和内角关系时层层递进,使重点得到突出;及时根据学生学习的情况进行点评和分析;对于易错问题及时讲解,此外注意指导学生总结解题思路和方法,让学生对所学知识的掌握更到位.11.3多边形及其内角和11.3.1多边形◇教学目标◇【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图等过程,进一步发展空间能力.【情感、态度与价值观】经历探索、归纳等过程,学会研究问题的方法.◇教学重难点◇【教学重点】了解多边形、内角、外角、对角线等数学概念以及凸多边形和正多边形的概念.【教学难点】多边形定义的准确理解.◇教学过程◇一、情境导入请同学们回忆一下三角形的概念,并尝试说明多边形的概念.二、合作探究探究点1多边形的概念典例1如图所示的图形中,属于多边形的有()A.3个B.4个C.5个D.6个[解析]根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫做多边形.显然只有第一个、第二个、第五个是多边形.[答案] A变式训练如图,下列图形不是凸多边形的是()[答案] C探究点2正多边形的概念典例2我们知道各边都相等,各角都相等的多边形是正多边形,小明却说各边都相等的多边形就是正多边形,各角都相等的多边形也是正多边形,他的说法对吗?如果不对,你能举反例(画出相应图形)说明吗?[解析]他的说法错误.菱形各边相等,但不是正多边形.如图,菱形ABCD的四个角不相等,不是正多边形;矩形各个角相等,但四边不一定相等,不是正方形.探究点3多边形的剪切典例3若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为()A.14或15或16B.15或16C.14或16D.15或16或17[解析]因为一个多边形截去一个角后,根据剪的角度、方式不同,多边形的边数可能增加了一条,也可能不变或减少了一条,依此即可解决问题.一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.[答案] A【技巧点拨】一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.变式训练把一个四边形锯掉一个角,剩下的多边形是()A.三角形B.四边形C.五边形D.三角形或四边形或五边形[答案] D三、板书设计多边形多边形◇教学反思◇通过类比的数学思想,引导学生理解多边形的相关概念,引导学生自主探索多边形的边数与对角线的数量关系.教师应注重课堂小结,激发学生参与的主动性.11.3.2多边形的内角和◇教学目标◇【知识与技能】了解多边形的内角、外角等概念,能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.【过程与方法】经历合作、交流等过程,初步形成推理思维.【情感、态度与价值观】经历猜想、探索、归纳等过程,学会多角度、全方位研究问题的方法,体会转化、类比等数学思想.◇教学重难点◇【教学重点】多边形的内角和公式与外角和公式.【教学难点】多边形的内角和定理的推导以及对多边形外角和的理解.◇教学过程◇一、情境导入如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A 点时,一共走的路程是多少米?你能计算吗?二、合作探究探究点1多边形的内角和典例1已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形[解析]设这个多边形是n边形,内角和是(n-2)·180°,这样就得到一个关于n的方程,从而求出边数n的值.[答案] C变式训练把n边形变为(n+x)边形,内角和增加了720°,则x的值为()A.4B.6C.5D.3[答案] A探究点2多边形的外角和典例2小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多()A.1080°B.720°C.540°D.360°[解析]根据多边形的内角和公式(n-2)·180°,外角和等于360°列出算式求解即可.(8-2)×180°-360°=1080°-360°=720°.故该游戏盘的内角和比外角和多720°.[答案] B【方法总结】多边形的外角和与边数无关,任何多边形的外角和都是360°.变式训练如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.7[答案] C探究点3正多边形的内角与外角典例3如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3B.4C.5D.6[答案] D变式训练如图,边长相等的正方形、正六边形的一边重合,则∠1的度数为()A.20°B.25°C.30°D.35°[答案] C探究点4多边形外角的理解典例4如图,小东在足球场的中间位置,从A点出发,每走6 m向左转60°,已知AB=BC=6 m.(1)小东是否能走回A点,若能回到A点,则需走多少米?走过的路径是一个什么图形?为什么?(路径A到B到C到…)(2)求出这个图形的内角和.[解析](1)∵从A点出发,每走6 m向左转60°,∴360°÷60°=6,∴走过的路径是一个边长为6的正六边形.(2)正六边形的内角和为(6-2)×180°=720°.三、板书设计多边形的内角和多边形的内角◇教学反思◇通过丰富有趣的探究活动,让学生积极参与其中,充分调动学生的学习热情,使学生灵活掌握多边形内角和与外角和的概念与运用.多数学生能达到预期目的,对课上吃力的同学,课下还要及时进行进一步的关注,以后在课堂上还应充分给学生探究的时间和空间,使每一个学生均有收获.。
2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.1.3 三角形的稳定性教案
第十一章三角形11.1 与三角形有关的线段11.1.3 三角形的稳定性第1课时三角形的稳定性一、教学目标【知识与技能】了解三角形的稳定性以及三角形的稳定性在实际生活中的应用.【过程与方法】培养动手操作、归纳概括能力,提高运用知识解题的能力,训练思维的灵活性.【情感、态度与价值观】感受生活中数学的美学价值,体会生活中处处有数学,体验学习数学的乐趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】了解三角形的稳定性及其在生产、生活中的应用.【教学难点】1.了解三角形的稳定性.2.体会三角形的稳定性在生产和生活中的应用,会利用三角形的稳定性解决实际问题。
.五、课前准备教师:课件、三角尺、四边形框架、小木棍等。
学生:三角尺、四边形框架、小木棍、细绳。
六、教学过程(一)导入新课教师问:三角形在我们日常生活中应用广泛,在我们的生产和生活中哪里用到了三角形?学生回答:房屋的人字梁、大桥钢架、索道支架、建筑用的三脚架等.教师问:观察下图,将四边形木架上再钉一根木条,将它的一对顶点连接起来,然后再扭动它,这时木架的形状还会改变吗?(二)探索新知师生互动,探究新知1.通过实际操作探索三角形的稳定性教师问:如图,在盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条.为什么要这样做?(出示课件3)学生讨论,得出各种结论.这样不容易变形.教师问:将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(出示课件5)生动手操作,通过实验得出结论:它的形状不会改变.教师问:将四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?学生动手操作,通过实验得出结论:它的形状会改变.教师总结:(1)三角形具有稳定性.(2)四边形没有稳定性.(出示课件6)教师问:在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?学生动手操作,通过实验得出结论:它的形状不会改变.教师问:经过以上三次实验,你发现了什么规律?学生讨论回答:可以发现,三角形不会变形,即三角形具有稳定性,而四边形不具有稳定性.教师总结讲解:(出示课件7)“只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.2.通过生活中的实例感受数学知识在生产和生活中的应用教师问:三角形的稳定性在我们的生产和生活中有哪些应用?学生回答:起重机、屋顶架构等.(出示课件8-10)教师问:四边形的不稳定性在我们的生产和生活中有哪些应用?学生回答:衣服挂架、放缩尺等.(出示课件13-15)例:要使四边形木架不变形,至少要钉上一根木条,把它分成两个三角形使它保持形状,那么要使五边形,六边形木架,七边形木架保持稳定该怎么办呢?(出示课件20)师生共同解答如下:都加上木条,分成三角形即可,如下图:总结点拨:为了使多边形具有稳定性,一般需要用木条将多边形固定成由一个一个的三角形组成的形式.(三)课堂练习(出示课件23-28)1.下列图中具有稳定性有()A.1个B.2个C.3个D.4个2.下列关于三角形稳定性和四边形不稳定性的说法正确的是()A.稳定性总是有益的,而不稳定性总是有害的B.稳定性有利用价值,而不稳定性没有利用价值C.稳定性和不稳定性均有利用价值D.以上说法都不对3. 如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.三角形两边之和大于第三边C.长方形的四个角都是直角D.三角形的稳定性4. 如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A. 节省材料,节约成本B. 保持对称C. 利用三角形的稳定性D. 美观漂亮5. 如图,用钉子把木棒AB、BC和CD分别在端点B、C处连接起来,用橡皮筋把AD连接起来,设橡皮筋AD的长是x,(1)若AB=5,CD=3,BC=11,试求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?(3)AB、BC、CD能围成一个三角形吗?参考答案:1.C2.C3.D4.C5. 解:(1)x最大值= AB + BC + CD = 19.x最小值=BC – AB – CD = 3;(2)3 < x < 19;(3)不能.(四)课堂小结今天我们学了哪些内容:本节课主要学习三角形的稳定性、四边形的不稳定性及其在生产、生活中的应用.(五)课前预习预习下节课(11.2.1)的相关内容。
第十一章 三角形【教案】八年级上册数学
一、单元学习主题本单元是“图形与几何”领域“图形的性质”主题中的“三角形”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段图形与几何领域包括“图形的性质”“图形的变化”和“图形与坐标”三个主题,学生将进一步学习点、线、面、角、三角形、多边形和圆等几何图形,从演绎证明、运动变化、量化分析三个方面研究这些图形的基本性质和相互关系.“图形的性质”强调通过实验探究、直观发现、推理论证来研究图形,在用几何直观理解几何基本事实的基础上,从基本事实出发推导图形的几何性质和定理,理解和掌握尺规作图的基本原理和方法.三角形是图形与几何领域的主要内容,它在义务教育阶段的数学课程中占有重要地位.三角形是最简单的封闭图形,既顺承前面学过的线段、角、平行线及相交线,又为后续四边形等图形的学习提供思路、方法的支持.显而易见,三角形处于前衔后联的核心地位.三角形是仅次于线段和直线的基本几何图形,而空间的大部分基本性质都已经在三角形的几何性质中充分体现.三角形的知识是研究其他几何图形不可或缺的基础,三角形的应用几乎遍及初中几何的所有章节.2.本单元教学内容分析人教版教材八年级上册第十一章“三角形”,本章包括三个小节:11.1与三角形有关的线段;11.2与三角形有关的角;11.3多边形及其内角和.“图形的性质”主题中的“三角形”包括:与三角形有关的线段(边、高、中线、角平分线)——三角形的稳定性——三角形的内角和定理、外角的性质——多边形的内角和与外角和.本章从内容来看,包括很多重要的概念和性质定理:三角形的概念及三边关系、推理证明三角形内角和等于180°、认识多边形的对角线、推理证明多边形内角和公式、外角和等于360°等.本章是前面所学知识的延伸,又是学习全等三角形、四边形、相似三角形、三角函数等章节的基础,起到承上启下的作用.通过学习,培养学生几何图形意识和初步的动手操作技能,拓展学生归纳、总结、切割、分析复杂图形的能力.通过三角形知识的研究进一步了解几何中研究问题的基本思路和方法,也为将来进一步研究全等三角形、等腰三角形、相似三角形和平行四边形等内容奠定了知识基础,提供了研究思路.这不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且是深入贯彻实施《标准2022》的素养理念的渠道,有利于促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量.三、单元学情分析本单元内容是人教版教材数学八年级上册第十一章的三角形,学生在小学已经学过三角形的一些知识,对三角形的许多重要性质有所了解,在七年级又学过线段、角以及相交线、平行线等知识,初步了解了一些简单几何体和平面图形及其基本特征,会进行简单的推理,已具备一定的逻辑思维能力,掌握了一定的探究方法.三角形和多边形也是学生生活中最常见的图形,有了相应的表象知识,学生更乐于深入学习,积极探索.本章从学生熟悉的生活与社会情境入手,以三角形结构化数学知识主题为载体,在符合学生认知发展规律的数学与科学情境中,让学生经历“用数学的眼光发现和提出问题,用数学的思维与数学的语言分析和解决问题”的过程,并从中获得数学学习的活动经验和积累,初步养成独立思考、探究质疑、合作交流等学习习惯,初步形成自我反思的意识,同时在形成与发展“四基”的过程中形成抽象能力、推理能力、运算能力、几何直观和空间观念等.四、单元学习目标1.理解三角形及其内角、外角、中线、高、角平分线等概念,了解三角形重心的概念,了解三角形的稳定性.2.探索并证明三角形两边的和大于第三边,并会运用这一性质解决问题.3.探索并证明三角形的内角和定理,掌握它的推论:三角形的外角等于与它不相邻的两个内角的和.4.探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形.5.理解并掌握三角形外角的概念,掌握三角形外角的性质和三角形外角和,解决与三角形外角有关的简单计算和证明问题,发展学生的抽象思维,培养模型观念和应用意识.6.了解多边形的概念及多边形的边、内角、外角、凸多边形、正多边形等有关特征,探索并证明多边形的内角和与外角和公式并能应用解决简单问题,体会化归思想和从具体到抽象的研究问题的方法,培养学生的模型观念、应用意识和创新意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版初中八年级数学上册《第十一章 三角形》大单元整体教学设计
人教版八年级数学上册《第十一章三角形》大单元整体教学设计一、内容分析与整合(一)教学内容分析人教版初中数学八年级上册的《第十一章三角形》是几何学习中的一个重要章节,它不仅承载着对三角形基础概念和性质的全面介绍,还扮演着连接学生先前所学与后续几何知识深入探索的桥梁角色。
本章内容丰富多彩,深入浅出地引导学生走进三角形的奇妙世界,为他们构建一个系统而坚实的几何知识体系。
在这一章节中,学生们将首先接触到三角形的各种线段,包括边、高、中线以及角平分线等。
这些看似简单的概念,实则是解锁三角形众多性质的关键。
通过学习,学生们将理解每条线段在三角形中的独特位置和作用,以及它们如何相互关联,共同塑造三角形的形态与特性。
例如,中线不仅将对应的底边平分,还将三角形分为面积相等的两部分,这一性质的学习对于学生后续理解更复杂的几何问题大有裨益。
除了线段,章节还深入探讨了三角形的角,包括内角和外角。
学生将学习如何计算三角形的内角和,这一基础知识是证明许多三角形性质的基础。
外角的概念及其与相邻内角的关系,也将被详尽阐述,帮助学生从多角度审视三角形的角特征,培养他们的空间想象力和逻辑推理能力。
本章还拓展到了多边形及其内角和的内容,进一步丰富了学生的几何视野。
多边形作为三角形的延伸,其内角和的计算方法不仅加深了学生对几何图形内在规律的认识,也为后续学习更复杂几何图形打下了坚实的基础。
更为重要的是,本单元的教学不仅仅局限于理论知识的传授,更注重培养学生的实践操作能力和逻辑推理能力。
通过实际测量、作图、证明等一系列活动,学生被鼓励亲自动手,体验知识的生成过程,从而在实践中深化对三角形性质的理解。
这种“做中学”的方式,极大地提升了学生的学习兴趣和参与度,使他们在探索中发现几何之美,培养解决问题的能力和创新思维。
《第十一章三角形》不仅是初中数学课程中的一个核心章节,更是学生几何思维形成的关键时期。
通过本章的学习,学生不仅能够掌握三角形的基础概念和性质,更能在实践中锻炼几何直觉,学会用数学的眼光观察世界,为后续更深层次的几何学习乃至整个数学学习旅程奠定坚实的基础。
人教版八年级上数学教学设计《第11章三角形》
人教版八年级上数学教学设计《第11章三角形》一. 教材分析人教版八年级上数学第11章《三角形》是初中数学的重要内容,本章主要介绍三角形的性质、分类以及三角形的相关计算。
通过本章的学习,使学生掌握三角形的性质,理解三角形分类,会用三角形的知识解决实际问题。
教材内容安排合理,循序渐进,注重培养学生自主探究、合作学习的能力。
二. 学情分析八年级的学生已经具备了一定的几何知识,对图形的认识有一定的基础。
但是,对于三角形的一些性质和分类,学生可能还存在着一些模糊的认识。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,自主探究三角形的性质和分类,提高他们分析问题、解决问题的能力。
三. 教学目标1.知识与技能:使学生掌握三角形的性质,理解三角形的分类,会运用三角形的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、讨论等方式,培养学生的观察能力、操作能力、思考能力和合作能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极向上的精神风貌。
四. 教学重难点1.教学重点:三角形的性质、分类以及三角形的相关计算。
2.教学难点:三角形性质的证明,三角形分类的理解和应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识三角形,激发学生的学习兴趣。
2.自主探究法:引导学生通过观察、操作、思考、讨论等方式,自主探究三角形的性质和分类。
3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。
4.讲解法:对于一些难以理解的概念和性质,教师进行详细讲解,引导学生理解。
六. 教学准备1.教具准备:三角板、直尺、圆规等。
2.教学课件:制作相关的教学课件,辅助教学。
3.练习题:准备一些有关三角形性质和分类的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如电线杆、自行车三角架等,引导学生认识三角形,激发学生的学习兴趣。
提问:你们对这些三角形有什么了解?2.呈现(10分钟)展示三角形的相关图片,引导学生观察三角形的特征。
人教版八年级上册第十一章《三角形性质探究》教学设计
(1)启发式教学:引导学生主动发现问题、解决问题,培养学生的思维能力。
(2)直观教学:利用教具、实际操作等方式,帮助学生建立清晰的几何图形概念。
(3)分层教学:针对学生的个体差异,设计不同难度的教学任务,使每个学生都能在原有基础上得到提高。
(4)情感教育:关注学生的情感需求,激发学习兴趣,培养良好的学习态度。
6.课后作业:布置适量的作业,巩固所学知识。
7.教学评价:通过课堂表现、作业完成情况等方面,评价学生的学习效果。
8.教学反思:教师课后总结教学过程中的优点和不足,不断改进教学方法,提高教学质量。
二、学情分析
八年级学生已经具备了一定的几何图形认知基础,掌握了基本的几何概念和性质。在此基础上,学生对三角形的性质探究具有一定的认知基础,但可能对三角形的内角和定理、等腰三角形性质及勾股定理的理解和应用仍存在困难。此外,学生在空间想象能力和逻辑思维能力方面发展不均衡,需要针对不同学生的实际情况进行因材施教。
人教版八年级上册第十一章《三角形性质探究》教学设计
一、教学目标
(一)知识与技能
1.理解三角形的定义,掌握三角形的分类、性质和判定方法。
2.学会运用三角形的内角和定理,解决实际问题。
3.掌握等腰三角形的性质,能运用等腰三角形的判定方法,解决相关问题。
4.熟练运用勾股定理,解决直角三角形相关问题。
5.培养学生的空间想象能力和逻辑思维能力。
4.通过生活中的实例导入,激发学生的学习兴趣,为新课的学习做好铺垫。
(二)讲授新知,500字
1.教师引导学生复习三角形的定义,回顾已知的三角形性质。
2.探究三角形的内角和定理:教师提出问题,引导学生猜想三角形的内角和是多少度,并让学生在小组内进行验证。
第十一章三角形单元教学设计
第十一章三角形单元教学设计第一篇嗨,亲爱的小伙伴们!今天咱们要来聊聊第十一章三角形的单元教学设计啦。
三角形这玩意儿,可有趣着呢!一开始呀,咱们得让大家知道啥是三角形,就像认识新朋友一样,先搞清楚它长啥样。
咱们可以拿好多生活中的例子,比如三角形的屋顶、三角尺,让大家一下子就明白。
然后呢,讲讲三角形的边和角。
边的长短有啥关系,角的大小又有啥讲究。
这里咱们可以来些小游戏,比如让同学们比一比谁能更快地说出三角形边和角的特点。
再接着,三角形的分类可不能少。
锐角三角形、直角三角形、钝角三角形,还有等腰三角形、等边三角形,得让同学们分得清清楚楚。
可以弄个分类大比拼,看谁分得又准又快。
还有三角形的内角和,这可是个重要的知识点。
咱们可以通过实验,让同学们自己动手量一量、拼一拼,发现内角和的秘密。
呀,再做做练习题,巩固巩固所学的知识。
怎么样,小伙伴们,是不是感觉三角形的世界很精彩呀?第二篇嘿,朋友们!咱们要开启第十一章三角形的奇妙之旅啦!先来说说三角形的定义,简单来讲,就是三条线段围成的封闭图形。
这时候,咱们可以在黑板上画几个形状各异的三角形,让大家找找共同点。
然后到三角形的三边关系啦。
两边之和大于第三边,两边之差小于第三边。
这可得好好记住,可以通过一些实际的例子来加深印象,比如走路选路线。
再看看三角形的内角和是 180 度这个神奇的规律。
咱们可以让同学们分组讨论,想想怎么证明这个结论。
还有三角形的外角,它和内角又有啥关系呢?这也是很有趣的一部分哦。
别忘了给大家留一些有趣的作业,比如观察生活中还有哪些地方用到了三角形的知识。
怎么样,准备好和三角形成为好朋友了吗?。
第11章 三角形单元教学计划
第11章三角形单元教学计划一、教科书内容和课程学习目标本章首先介绍三角形的有关概念和性质.例如,在了解三角形的高的基础上,了解三角形的中线、角平分线.又如,在知道三角形的三个内角的和等于180°的基础上,了解这个结论成立的道理.通过本章内容的学习,可以丰富和加深学生对三角形的认识.另一方面,这些内容是以后学习各种特殊三角形(如等腰三角形、直角三角形)的基础,也是研究其他图形的基础知识.以三角形的有关概念和性质为基础,本章接着介绍多边形的有关概念与多边形的内角和、外角和公式.三角形是多边形的一种,因而可以借助三角形建立多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来.三角形是最简单的多边形,因而常常将多边形分为若干个三角形,利用三角形的性质研究多边形.多边形的内角和公式就是利用上述方法,由三角形的内角和等于180°得到的.将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习.镶嵌作为课题学习的内容安排在本章的最后,学习这个内容要用到多边形的内角和公式.通过这个课题的学习,学生可以经历从实际问题抽象出数学问题,建立数学模型,综合应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力.二、教学目的1.了解与三角形有关的线段(边、高、中线、角平分线),知道三角形两边的和大于第三边,会画出任意三角形的高、中线、角平分线,了解三角形的稳定性.2.了解与三角形有关的角(内角、外角),会用平行线的性质与平角的定义说明三角形内角和等于180°,探索并了解三角形的一个外角等于与它不相邻的两个内角的和.3.了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并了解多边形的内角和与外角和公式.4.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.三、教学重点:三角形的性质,包括:三角形两边的和大于第三边;三角形的内角和等于180°;三角形的一个外角等于与它不相邻的两个内角的和;多边形内角和公式等等。
第十一章三角形教学设计2023-2024学年人教版八年级数学上册+
八年级数学上册第十一章《三角形》第一课时1.整体设计思路、指导依据说明本节课主要是通过学生熟悉的事物,经过观察,合作、探究、思考的过程,让学生体会和认识三角形。
让学生通过摆三角形,发现三角形三边之间的关系,充分体现学生在教学中的主体地位。
2.教学背景分析教学内容分析:三角形是最基本的图形,通过三角形的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础。
学生情况分析:从目前学生的认知上来说,学生在总结三角形之间的关系时,可能在数学语言的描述上不够规范,表达上可能不够严密,但只要学生表达的意思对,教师应该给予肯定,同时教师应该给学生更多的探究学习的时间,毕竟数学模型的建立和思维的发展需要经历一个漫长的过程。
3.教学目标分析1.结合实例,进一步认识三角形的概念及其基本元素,能识别不同形状的三角形。
2.会用符号,字母表示三角形,并了解按各自边长关系对三角形进行定义。
3.理解三角形三边不等关系,经历度量三角形边长的实践活动,会判断三条线段是否能构成三角形,并能运用它解决一些简单的实际问题。
4.教学重点、难点分析教学重点:掌握三角形的三边关系教学难点:三角形的三边关系的理解和应用5.教学过程设计步骤1:创设情境(5分钟)多媒体展示生活中的三角形,请学生看这些图形并从中发现三角形。
教师叙述:三角形是一种常见的几何图形,从古埃及的金字塔到现代的现代化飞机、飞船,从宏大的建筑到微小的分子结构,处处都有三角形的身影。
在我们的生活中几乎随处可见三角形。
它简单,有趣,也十分有用。
三角形可以帮助我们更好认识周围世界,解决很多的实际问题。
今天开始我们将系统地学习三角形,去探寻三角形的魅力,今天我们首先从三角形的边开始学习。
(设计意图:学生联系生活,讨论解决问题,激发学生的学习兴趣)步骤2:导入新课(15分钟)(一)认识三角形活动一:请同学们自己动手画一个三角形。
第十一章 三角形章节复习(教学设计)-八年级数学上册同步备课系列(人教版)
第十一章三角形章节复习教学设计一、教学目标:1.梳理本章的知识结构网络,回顾与复习本章知识.2.结合图形回顾本章知识点,复习几种基本的画图,复习简单的证明技巧,在此基础上进行典型题、热点题的较大量的训练,旨在提高同学们对三角形有关知识、多边形内角和、外角和知识综合运用能力.3.通过初步的几何证明的学习培养学生的推理能力,通过由特殊到一般的探究过程的训练培养学生的探索能力,创新能力,以达到培养学生良好学习习惯的目的.二、教学重点、难点:重点:三角形的三条重要线段、三角形的内角和、外角和、多边形的内角和、外角和等知识的灵活运用.难点:简单的几何证明及几何知识的简单应用.三、教学过程:知识网络知识梳理1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.线段AB,BC,CA是三角形的边.点A,B,C是三角形的顶点.∠A,∠B,∠C 是相邻两边组成的角,叫做三角形的内角,简称三角形的角.顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”.△ABC的三边,有时也用a,b,c来表示.顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB用c表示.2.三角形的分类:3.三角形的三边关系:三角形的两边之和大于第三边,两边之差小于第三边.已知三角形的两边a、b(a>b),则第三边的范围“a-b<第三边<a+b”4.三角形的高、中线与角平分线:高:顶点与对边垂足间的线段,三条高或其延长线相交于一点,如图.中线:顶点与对边中点间的线段,三条中线相交于一点(重心),如图.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.三条角平分线相交于一点,如图.5.三角形的内角和与外角:(1)三角形的内角和等于180°;(2)直角三角形的两个锐角互余;(3)直角三角形的判定:有两个角互余的三角形是直角三角形;(4)三角形的一个外角等于与它不相邻的两个内角的和;(5)三角形的一个外角大于和它不相邻的任何一个内角.6.多边形及其内角和:(1)在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.正多边形是各个角都相等,各条边都相等的多边形.(2)从n边形的一个顶点出发,能引出(n﹣3)条对角线;(3)经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形;(4)n边形一共有n(n-3)�条对角线.(5)n边形内角和等于(n-2)×180°(n≥3的整数)(6)n边形的外角和等于360°(7)正多边形的每个内角的度数是n n 180)2( 或n360180 (8)正多边形的每个外角的度数是n360考点解析考点一:三角形的三边关系例1.已知a 、b 、c 为△ABC 的三边长,且a 2+b 2=6a +10b ﹣34,其中c 是△ABC 中最长的边长,且c 为整数,求c 的值.解:∵a 2+b 2=6a +10b ﹣34,∴a 2﹣6a +9+b 2﹣10b +25=0,∴(a ﹣3)2+(b ﹣5)2=0,∴a =3,b =5,∴5﹣3<c <5+3,即2<c <8.又∵c 是△AB C 中最长的边长,∴c =5、6、7.例2.已知a,b,c 是△ABC 的三边长.(1)若a ,b ,c 满足,(a -b )2+�−�=0,试判断△ABC 的形状;(2)化简:�−�−�+�−�+�-�−�−�.解:(1)∵(a -b )2+|�−�|=0,∴(a -b )2=0且|�−�|=0,∴a =b =c ,∴△ABC 是等边三角形.(2)∵a ,b ,c 是△ABC 的三边长,∴b -c -a <0,a -b +c >0,a -b -c <0,原式=-(b -c -a )+a -b +c -[-(a -b -c )]=a +c -b +a -b +c -b -c +a=3a -3b +c.例3.已知a ,b ,c 分别为△ABC 三边的长,且满足a +b =3c -2,a -b =2c -6.(1)求c 的取值范围;(2)若△ABC 的周长为18,求c 的值.(1)解:∵a ,b ,c 分别为△ABC 三边的长,a +b =3c -2,a -b =2c -6,3-226c c c c>∴<∴解得2<c <6.(2)∵△ABC 的周长为18,a +b =3c -2,∴a +b +c =4c -2=18.解得c =5.【迁移应用】【1-1】下列长度的三条线段能组成三角形的是()A .3cm 、3cm 、6cmB .3cm 、5cm 、7cmC .2cm 、4cm 、6cmD .2cm 、9cm 、6cm答案:B【1-2】已知三角形的三边长分别为2,a -1,4,则化简|a -3|-|a -7|的结果为___________.答案:2a -10【1-3】已知a ,b ,c 是ABC 的三边长,a 、b 满足2|7|(2)0a b ,且ABC 的周长为偶数,则边长c 的值为多少?解:∵a ,b 满足|a −7|+(b −2)2=0,∴a −7=0,b −2=0,解得a =7,b =2,根据三角形的三边关系,得7−2<c <7+2,即:5<c <9,又∵三角形的周长为偶数,a +b =9,∴c =7.考点二:三角形中的重要线段例4.如图,在△AB C 中,∠ABC =40°,∠C =60°,AD ⊥BC 于D,AE 是∠BAC 的平分线.(1)求∠DAE 的度数;(2)指出AD 是哪几个三角形的高.解:(1)AD ⊥BC 于D,∴∠ADB =∠ADC =90°∵∠ABC =40°,∠C =60°,∴∠BAD =50,∠CAD =30°∴∠BAC =50°+30°=80°∵AE 是∠BAC 的平分线,∴∠BAE =40°.∴∠DAE=∠BAD-∠BAE=50°-40°=10°.(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.例5.如图,在△AB C中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长;(2)求BC边的取值范围.解:(1)∵AD是BC边上的中线,∴BD=C D.∵△ABD的周长-△ADC的周长=(AB+AD+BD)-(AC+AD+CD)=AB-AC=2,即AB—AC=2①.又AB+AC=10②,①+②得2AB=12,解得AB=6.∴AC=4.(2)∵AB=6,AC=4,∴2<BC<10.例6.如图,在△AB C中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF和△BEF的面积分别为S△ABC,S△ADF和S△BEF,且S△ABC=12,求S△ADF-S△BEF的值.解:∵点D 是AC 的中点,∴AD =12A C.∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,∴S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.【点睛】三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.【迁移应用】【2-1】如图,在△AB C 中,∠ACB =90°,CD ⊥AB 于D ,图中可以作为△ACD 的高的线段有()A .0条B .1条C .2条D .3条【2-2】如图,在△AB C 中,∠C =90°,D ,E 是AC 上两点,且AE =DE ,BD 平分∠EBC ,那么下列说法中不正确的是()A .BE 是△ABD 的中线B .BD 是△BCE 的角平分线C.∠1=∠2=∠3D.S△AEB=S△EDB【2-3】如图,在△AB C中,点D是BC上的一点,DC=2BD,点E是AC的中点,S△ABC=20cm2,则S△ADE=_____cm2.答案:【2-1】C;【2-2】C;【2-3】� �.考点三:有关三角形内、外角的计算例7.如图,AD平分∠BAC,∠EAD=∠ED A.(1)求证:∠EAC=∠B;(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD=��∠BA C.∵∠EDA=∠B+∠BAD,∠EAD=∠CAD+∠EAC,∠EDA=∠EAD,∴∠EAC=∠B.(2)解:由(1)可知∠EAC =∠B =50°.设∠CAD =x ,则∠E =3x ,∠EAD =∠ADE =x +50°,∴50°+x +50°+x +3x =180°.∴x =16°.∴∠E =3x =48°.例8.如图,在△AB C 中,三条内角平分线AD ,BE ,CF 相交于点O ,OG ⊥BC于点G .(1)若∠ABC =40°,∠BAC =60°,求∠BOD 和∠COG 的度数;解:∠BOD =∠OAB +∠OBA12∠BAC +12∠ABC =50°,∠COG =90°-∠OCG=90°-12(180°-∠ABC -∠BAC )=90°-40°=50°.解:∠BOD =∠COG .理由如下:∵∠BOD =∠OAB +∠OBA12∠BAC +12∠ABC =12(180°-∠ACB )=90°-12∠ACB ,∠COG =90°-∠OCG =90°-12∠ACB ,∴∠BOD=∠COG.【迁移应用】【3-1】如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°答案:B【3-2】一副三角板如图所示摆放,则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β答案:B【3-3】如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是_______.答案:50°,【3-4】一个锐角三角形,所有内角的度数均为正整数,且最小角是最大角的15则这个锐角三角形三个内角的度数为___________________.答案:17°、78°、85°考点4:多边形的内角和与外角和例9.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.解:∵∠A+∠D+∠F=180°,∠B+∠C+∠E+∠G=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°+360°=540°.例10.一个多边形剪去一个内角后,得到一个内角和为1980°的新多边形,求原多边形的边数.解:设新的多边形的边数为n,∵新的多边形的内角和是1980°,∴180°×(n﹣2)=1980°,解得:n=13,∵一个多边形从某一个顶点出发截去一个角后所形成的新的多边形是十三边形,①若截去一个角后边数增加1,则原多边形边数为12,②若截去一个角后边数不变,则原多边形边数为13,③若截去一个角后边数减少1,则原多边形边数为14,∴原多边形的边数可能是:12或13或14.例11.如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为(C)A.80米B.96米C.64米D.48米【迁移应用】【4-1】把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数可能是_______________________________.答案:十七边形或十八边形或十九边形【4-2】一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是()A.8B.9C.10D.11答案:D【4-3】如图,已知正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A.36°B.54°C.60°D.72°答案:B考点六:本章中的思想方法:1.方程思想:例13.如图,在△AB C中,∠C=∠ABC,BE⊥AC,△BDE是等边三角形,求∠C的度数.解:设∠C=x°,则∠ABC=x°∵△BDE是等边三角形∴∠ABE=60°∴∠EBC=x°-60°∵BE⊥AC,∴∠BEC=90°在△BCE中,根据三角形内角和定理得90+x+x-60=180,解得x=75∴∠C=75°【点睛】在角的求值问题中,常常利用图形关系或内角、外角之间的关系进行转化,然后通过三角形内角和定理列方程求解.【迁移应用】如图,△AB C中,BD平分∠ABC,∠1=∠2,∠3=∠C,求∠1的度数.解:设∠1=x,根据题意得∠2=x.因为∠3=∠1+∠2,∠4=∠2,所以∠3=2x,∠4=x,又因为∠3=∠C,所以∠C=2x.在△AB C中,根据三角形内角和定理,得x+2x+2x=180°,解得x=36°,所以∠1=36°.2.分类讨论思想:例13.已知等腰三角形的两边长分别为10和6,则三角形的周长是________.【解析】由于没有指明等腰三角形的腰和底,所以要分两种情况讨论:第一种10为腰,则6为底,此时周长为26;第二种10为底,则6为腰,此时周长为22.【点睛】别忘了用三边关系检验能否组成三角形这一重要解题环节.3.化归思想:如图,△AOC与△BOD是有一组对顶角的三角形,其形状像数字“8”,我们不难发现有一重要结论:∠A+∠C=∠B+∠D.这一图形也是常见的基本图形模型,我们称它为“8字型”图.例14.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.解:连接CD,由“8字型”模型图可知∠F+∠G=∠FCD+∠GDC,∴∠A+∠B+∠BCF+∠EDG+∠E+∠F+∠G=∠A+∠B+∠BCF+∠EDG+∠E+∠FCD+∠GDC=∠A+∠B+∠BCD+∠CDE+∠E=(5-2)×180°=540°.。
第十一章三角形教案
本章节核心素养目标紧密贴合新教材要求,注重培养学生的学科素养,提高其几何图形认识和运用、逻辑思维、实际问题解决及团队协作能力。
三、教学难点与重点
1.教学重点
-三角形的定义及其内角和定理:理解三角形的定义,掌握三角形内角和为180°的定理,并能运用到实际解题中。
举例:
a.在讲解三角形内角和定理的难点时,教师可通过以下方法帮助学生突破:
-引导学生通过折叠、拼接等动手操作,观察和验证三角形内角和定理。
-通过具体例题,如等腰三角形、直角三角形等,展示内角和定理的应用。
b.在讲解海伦公式的难点时,教师可以:
-通过图形或实际例子,解释海伦公式的推导过程。
-设计不同类型的练习题,让学生反复练习,掌握海伦公式的运用。
3.重点难点解析:在讲授过程中,我会特别强调三角形的内角和定理以及相似与全等三角形的判定这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关的实际问题,如计算不规则三角形的面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用三角板和直尺测量三角形边长,并计算面积。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版八年级上册数学教案:第十一章三角计算单元备课
人教版八年级上册数学教案:第十一章三角计算单元备课一、教学目标1. 理解三角函数的概念,包括正弦、余弦和正切。
2. 掌握三角函数在直角三角形中的计算方法。
3. 能够在实际问题中运用三角函数进行计算。
二、教学内容1. 三角函数的概念及符号表示2. 正弦、余弦与正切的计算方法3. 直角三角形中的三角函数计算4. 三角函数在实际问题中的应用三、教学重点和难点重点:掌握三角函数的概念与计算方法,理解三角函数在直角三角形中的应用。
难点:将三角函数运用于实际问题的解决。
四、教学过程与方法1. 导入新知识(5分钟)- 引导学生回顾直角三角形的基本概念和性质。
- 提出问题,激发学生对于三角函数的好奇心。
2. 研究三角函数的概念与符号表示(15分钟)- 通过讲解和示例,引导学生理解正弦、余弦和正切的定义与符号表示。
- 强调角度的单位和正、负值的含义。
- 给予学生练的机会,巩固所学知识。
3. 研究三角函数的计算方法(20分钟)- 结合直角三角形的特点,讲解正弦、余弦和正切的计算方法。
- 通过示例讲解与练,让学生能够熟练地运用计算公式。
4. 讲解直角三角形中的三角函数计算(20分钟)- 通过具体图形引导学生研究如何计算直角三角形中角度的大小和边长。
- 教授学生如何根据已知条件,利用三角函数解决实际问题。
5. 研究三角函数在实际问题中的应用(15分钟)- 提供实际问题,引导学生将所学的知识运用到解决问题中。
- 鼓励学生思考,分析问题,并利用三角函数给出解决方法。
6. 小结与展示(10分钟)- 总结本节课所学内容,强调三角函数的重要性和应用领域。
- 展示学生解决实际问题的思路和方法。
五、教学资源1. 人教版八年级上册数学教材2. 幻灯片3. 白板、黑板、彩色粉笔4. 教学实例、练题和答案5. 角度度量器6. 计算器六、教学评价与反馈1. 课堂练:在课堂上进行个人或小组练,检验学生对于知识点的掌握情况。
2. 答题与讨论:鼓励学生积极参与答题与讨论,评价他们对于解题思路和方法的正确理解与应用能力。
《第十一章三角形章起始课》教案
学生小组讨论环节,大家围绕三角形在实际生活中的应用展开了热烈的讨论。我在这个过程中积极引导学生,提出一些开放性问题,帮助学生开拓思维。从成果分享来看,学生们对于三角形的应用有了更深入的理解。但我也发现,有些学生在讨论中较为沉默,可能是因为他们对知识点掌握不够自信。因此,我需要在课后多关注这些学生,帮助他们弥补知识漏洞。
-举例:通过实际操作,让学生尝试用三条线段组成三角形,加深对三角形基本性质的理解。
2.教学难点
a.三角形的内角和定理的应用:学生在理解内角和定理的基础上,需要学会将其应用于实际问题,如角度求解、证明等。
-举例:给出一个已知两个内角的三角形,求第三个内角的度数;或通过已知角度关系,证明三角形类型。
b.三角形分类的识别:学会区分不同类型的三角形(如等边三角形、等腰三角形、直角三角形等),并能运用其性质解决问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的基本概念。三角形是由三条线段首尾相连围成的平面图形。它在几何学中具有重要地位,广泛应用于日常生活和各类工程领域。
2.案例分析:接下来,我们来看一个具体的案例。例如,在桥梁设计中,三角形结构因其稳定性被广泛应用。通过这个案例,了解三角形在实际中的应用。
《第十一章三角形章起始课》教案
一、教学内容
《第十一章三角形章起始课》教案,本节课将围绕以下内容展开:
1.教材章节:人教版初中数学七年级下册第十一章第一节《三角形的认识》。
2.内容列举:
人教版八年级数学上册第11章三角形单元课时教学设计
5.三角形的面积:教师引导学生运用割补法、海伦公式等方法计算三角形的面积,并总结出三角形面积的计算公式。
(三)学生小组讨论
1.教师将学生分成若干小组,每组发放一张含有三角形的图形,要求学生观察并讨论以下问题:
人教版八年级数学上册第11章三角形单元课时教学设计
一、教学目标
(一)知识与技能
1.理解三角形的定义及基本性质,掌握三角形内角和为180°。
2.学会运用三角板、直尺等工具准确画出三角形,并能够识别和判定等腰三角形、等边三角形及其性质。
3.熟练掌握三角形中位线定理,并能运用该定理解决实际问题。
4.学会运用勾股定理计算直角三角形的边长,并能解决实际生活中的问题。
5.能够运用三角形的面积公式计算三角形的面积,并解决与三角形面积相关的实际问题。
(二)过程与方法
1.通过观察、操作、探索等实践活动,培养学生的观察能力、动手能力和逻辑思维能力。
2.通过小组讨论、合作交流等形式,培养学生的团队协作能力和语言表达能力。
3.引导学生运用已知的几何知识解决三角形相关问题,提高学生的知识迁移能力。
3.培养学生勇于探索、积极思考、克服困难的精神,增强学生的自信心。
4.注重培养学生的审美观念,让学生在欣赏几何图形中感受数学之美。
5.通过对三角形的学习,引导学生认识到事物之间的相互联系,学生在经过前两年的数学学习后,已经具备了一定的几何图形认知基础和逻辑思维能力。他们对三角形的概念、性质等已有初步了解,但在深入理解和应用方面仍存在困难。此外,学生在空间想象能力、问题解决策略等方面发展不均衡,个别学生可能对几何图形的学习兴趣不高。因此,在本章节的教学中,教师需要关注以下几点:
人教版八年级数学上册第11章三角形单元课时说课稿
3.教师点评:对学生的表现进行点评,指出他们的优点和需要改进的地方,并提供具体的改进建议。
4.总结提升:总结本节课的主要知识点,强调三角形在数学学习中的重要性,并鼓励学生在今后的学习中继续探索。
(五)作业布置
课后作业将包括以下内容,其目的是巩固课堂所学知识,培养学生的独立思考和解决问题的能力:
(二)教学反思
在教学过程中,我预见到可能出现的问题包括学生对抽象概念的理解困难、课堂参与度不高以及学生对作业的反感。为应对这些问题,我会采用直观的教学手段,如使用模型和动画;设计互动环节,如小组讨论和问题解答;以及将作业与学生的兴趣相结合。课后,我将通过学生的课堂表现、作业完成情况和问卷调查来评估教学效果。具体的反思和改进措施包括:根据学生的反馈调整教学方法和节奏;针对学生的弱点提供额外的辅导和练习;不断更新教学资源,以增强教学的吸引力和有效性。
人教版八年级数学上册第11章三角形单元课时说课稿
一、教材分析
(一)内容概述
本节课为“人教版八年级数学上册第11章三角形单元课时说课稿”,在整个课程体系中,本章内容是几何知识的重要组成部分,对培养学生的空间想象能力和逻辑思维能力具有重要意义。本章主要知识点包括:
1.三角形的定义及其分类。
2.三角形的性质,如内角和定理、外角定理、中位线定理等。
(二)媒体资源
我将使用以下教具、多媒体资源或技术工具来辅助教学:
1.三角板、直尺、圆规等传统教具,用于直观展示三角形的性质和构造。
2.多媒体课件,包括PPT和教学视频,用于展示三角形的动态变化和定理的证明过程。
3.电子白板,用于实时展示学生的解题过程和教师的讲解内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章三角形单元教学计划
一、教科书内容和课程学习目标
本章首先介绍三角形的有关概念和性质.例如,在了解三角形的高的基础上,了解三角形的中线、角平分线.又如,在知道三角形的三个内角的和等于180°的基础上,了解这个结论成立的道理.通过本章内容的学习,可以丰富和加深学生对三角形的认识.另一方面,
这些内容是以后学习各种特殊三角形(如等腰三角形、直角三角形)的基础,也是研究其他图形的基础知识.
以三角形的有关概念和性质为基础,本章接着介绍多边形的有关概念与多边形的内角和、外角和公式.三角形是多边形的一种,因而可以借助三角形建立多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来.三角形是最简单的多边形,因而常常将多边形分为若干个三角形,利用三角形的性质研究多边形.多边形的内角和公式就是利用上述方法,由三角形的内角和等于180°得到的.将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习.
镶嵌作为课题学习的内容安排在本章的最后,学习这个内容要用到多边形的内角和公式.通过这个课题的学习,学生可以经历从实际问题抽象出数学问题,建立数学模型,综合应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力.
二、教学目的
1.了解与三角形有关的线段(边、高、中线、角平分线),知道三角形两边的和大于第三边,会画出任意三角形的高、中线、角平分线,了解三角形的稳定性.
2.了解与三角形有关的角(内角、外角),会用平行线的性质与平角的定义说明三角形内角和等于180°,探索并了解三角形的一个外角等于与它不相邻的两个内角的和.
3.了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并了解多边形的内角和与外角和公式.
4.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.
三、教学重点:
三角形的性质,包括:三角形两边的和大于第三边;三角形的内角和等于180°;三角形的一个外角等于与它不相邻的两个内角的和;多边形内角和公式等等。
四、教学难点:
三角形的性质的应用及镶嵌
五、教学方法:
(一)加强与实际的联系
三角形是最常见的几何图形之一,在生产和生活中有广泛的应用.通过举出三角形的实际例子让学生认识和感受三角形,形成三角形的概念.多边形概念的引入,也是类似处理的.
(二)加强与已学内容的联系
学生在前两个学段已学过三角形的一些知识,对三角形的许多重要性质有所
了解,在第三学段又学过线段、角以及相交线、平行线等知识,初步了解了一些简单几何体和平面图形及其基本特征,会进行简单的说理.
上述内容是学习本章的基础:三角形的高、中线、角平分线分别与已学过的垂线、线段的中点、角的平分线有关;用拼图的方法认识三角形的内角和等于180°可以启发学生得出说明这个结论正确的方法,而说明的过程中要用到平行线的性质与平角的定义.教学中应注意本章内容与已学内容的联系,帮助学生掌握本章所学内容.另一方面,又注意让学生通过本章内容的学习,复习巩固已学的内容.
(三)加强推理能力的培养
在本章中加强推理能力的培养,一方面可以提高学生已有的水平,另一方面又可以为学生正式学习证明作准备.为达到上述要求,教学中应注意以下内容的处理:
(1)由“两点之间,线段最短”说明“三角形两边的和大于第三边”;
(2)由平行线的性质与平角的定义说明“三角形的内角和等于180°”;
(3)由“三角形的内角和等于180°”得出“三角形的一个外角等于与它不相邻的两个内角的和”;
(4)由“三角形的内角和等于180°”得出多边形内角和公式;
(5)由多边形内角和公式得出多边形外角和公式;
(6)由多边形内角和公式说明任意一个三角形、四边形或正六边形可以镶嵌平面.
上述内容都包含了推理,教科书注意分析得出结论的思路,通过多提问题,留给学生足够的思考时间,让学生经历得出结论的过程.
(四)把握好教学要求
与三角形有关的一些概念在本章中只要求达到了解(认识)的程度就可以了,进一步的要求可通过后续学习达到.如在本章中知道什么是三角形的角平分线就可以了,如学生在画角平分线时发现三条角平分线交于一点,可直接肯定这个结论,对这个结论的证明在后面学习“全等三角形”一章时再介绍.同样,三条中线交于一点的结论也可直接点明,以后还会知道这个点是三角形的重心.在本章中,三角形的稳定性是通过实验得出的,待以后学过“三边对应相等的两个三角形全等”,可进一步明白其中的道理.说明三角形的内角和等于180°有一定的难度,只要学生了解得出结论的过程,不要在辅助线上花太多的精力,以免影响对内容本身的理解与掌握.要明确本章仍是正式介绍证明的准备阶段,对推理的要求应循序渐进.
六、教学安排
本章教学时间约需10课时,具体分配如下(仅供参考):
7.1 与三角形有关的线段2课时
7.2 与三角形有关的角2课时
7.3 多边形及其内角和3课时
7.4 课题学习镶嵌1课时
数学活动小结2课时。