数学建模简介及数学建模常用方法精选版
数学建模简介及数学建模常用方法
数学建模简介及数学建模常用方法数学建模,简单来说,就是用数学的语言和方法来描述和解决实际问题的过程。
它就像是一座桥梁,将现实世界中的复杂问题与数学的抽象世界连接起来,让我们能够借助数学的强大工具找到解决问题的有效途径。
在我们的日常生活中,数学建模无处不在。
比如,当我们规划一次旅行,考虑路线、时间和费用的最优组合时;当企业要决定生产多少产品才能实现利润最大化时;当交通部门设计道路规划以减少拥堵时,这些背后都有着数学建模的身影。
那么,数学建模具体是怎么一回事呢?数学建模首先要对实际问题进行观察和分析,明确问题的关键所在,确定需要考虑的因素和变量。
然后,根据这些因素和变量,运用数学知识建立相应的数学模型。
这个模型可以是一个方程、一个函数、一个图表,或者是一组数学关系。
接下来,通过对模型进行求解和分析,得到理论上的结果。
最后,将这些结果与实际情况进行对比和验证,如果结果不符合实际,就需要对模型进行修正和改进,直到得到满意的结果。
数学建模的过程并不是一帆风顺的,往往需要不断地尝试和调整。
但正是这种挑战,让数学建模充满了魅力和乐趣。
接下来,让我们了解一下数学建模中常用的一些方法。
第一种常用方法是线性规划。
线性规划是研究在一组线性约束条件下,如何使一个线性目标函数达到最优的数学方法。
比如说,一个工厂要生产两种产品,每种产品需要不同的资源和时间,而工厂的资源和时间是有限的,那么如何安排生产才能使利润最大呢?这时候就可以用线性规划来解决。
第二种方法是微分方程模型。
微分方程可以用来描述一些随时间变化的过程,比如人口的增长、传染病的传播、物体的运动等。
通过建立微分方程,并求解方程,我们可以预测未来的发展趋势,从而为决策提供依据。
第三种是概率统计方法。
在很多情况下,我们面临的问题具有不确定性,比如市场需求的波动、天气的变化等。
概率统计方法可以帮助我们处理这些不确定性,通过收集和分析数据,估计概率分布,进行假设检验等,为决策提供风险评估和可靠性分析。
数学建模知识及常用方法
数学建模知识及常用方法数学建模是一种综合运用数学知识和方法来解决实际问题的过程。
它涉及到多个学科领域,如数学、统计学、计算机科学等,并充分利用了数学模型的概念和数学方法的理论基础。
在实际应用中,数学建模被广泛应用于物理学、生物学、经济学、社会学等各个领域,为决策提供了重要的参考依据。
一、数学建模的基本步骤1.确定问题:明确问题的目标和需求,界定问题的范围和限制。
2.建立模型:根据问题需求,选择适当的数学模型,构建问题的数学描述。
3.求解模型:利用数学方法和计算工具,对模型进行求解,得到问题的解答。
4.模型验证:对解答进行分析和验证,评估模型的准确性和可靠性。
5.结果分析:根据解答结果,给出相应的结论和建议,提供决策参考。
二、数学建模的常用方法1.差分方程模型:差分方程是一类描述自然现象变化规律的数学方程,常用来建立动态系统的模型,如种群增长模型、股票价格预测模型等。
2.微分方程模型:微分方程是关于函数及其导数的方程,常用来描述变化率问题,如物理学中的牛顿第二定律、生物学中的生物变化过程等。
3.线性规划模型:线性规划是一种数学优化方法,用于解决线性约束条件下的最大化或最小化问题,广泛应用于生产计划、资源配置等方面。
4.整数规划模型:整数规划是一种将变量限制为整数的线性规划方法,主要应用于需要整数解决方案的问题,如项目选址、货物装载等。
5.动态规划模型:动态规划是一种将问题转化为一系列相互关联但具有较小规模的子问题的优化方法,通过求解子问题的最优解,得到原问题的最优解。
6.贝叶斯统计模型:贝叶斯统计是一种基于贝叶斯定理的推断统计方法,常用于根据已有的信息更新对未知情况的概率预测。
7.神经网络模型:神经网络是一种模拟人脑神经元连接方式的计算模型,通过模拟神经网络的学习和训练过程,实现对复杂模式的自动识别和预测。
8.时间序列模型:时间序列是一组按照时间顺序排列的数据,通过对时间序列数据的分析和建模,可以预测未来的趋势和变化规律,如股票市场预测、天气预报等。
数学建模各类方法归纳总结
数学建模各类方法归纳总结数学建模是一门应用数学领域的重要学科,它旨在通过数学模型对现实世界中的问题进行分析和解决。
随着科技的不断发展和应用需求的增加,数学建模的方法也日趋多样化和丰富化。
本文将对数学建模的各类方法进行归纳总结,以期帮助读者更好地了解和应用数学建模。
一、经典方法1. 贝叶斯统计模型贝叶斯统计模型是一种基于概率和统计的建模方法。
它通过利用先验知识和已知数据来确定未知数据的后验概率分布,从而进行推理和预测。
贝叶斯统计模型在金融、医药、环境等领域具有广泛应用。
2. 数理统计模型数理统计模型是基于概率统计理论和方法的建模方法。
它通过收集和分析样本数据,构建统计模型,并通过参数估计和假设检验等方法对数据进行推断和预测。
数理统计模型在市场预测、风险评估等领域有着重要的应用。
3. 线性规划模型线性规划模型是一种优化建模方法,它通过线性目标函数和线性约束条件来描述和解决问题。
线性规划模型在供应链管理、运输优化等领域被广泛应用,能够有效地提高资源利用效率和降低成本。
4. 非线性规划模型非线性规划模型是一种对目标函数或约束条件存在非线性关系的问题进行建模和求解的方法。
非线性规划模型在经济学、物理学等领域有着广泛的应用,它能够刻画更为复杂的现实问题。
二、进阶方法1. 神经网络模型神经网络模型是一种模拟人脑神经元系统进行信息处理的模型。
它通过构建多层神经元之间的连接关系,利用反向传播算法进行训练和学习,实现对复杂数据的建模和预测。
神经网络模型在图像识别、自然语言处理等领域取得了显著的成果。
2. 遗传算法模型遗传算法模型是一种模拟自然界生物进化过程的优化方法。
它通过模拟遗传、交叉和突变等过程,逐步搜索和优化问题的最优解。
遗传算法模型在组合优化、机器学习等领域具有广泛的应用。
3. 蒙特卡洛模拟模型蒙特卡洛模拟模型是一种基于随机模拟和概率统计的建模方法。
它通过生成大量的随机样本,通过对样本进行抽样和分析,模拟系统的运行和行为,从而对问题进行求解和评估。
01模型数学建模
01模型数学建模
摘要:
一、数学建模的概述
1.数学建模的定义
2.数学建模的意义
二、数学建模的方法
1.确定问题
2.建立数学模型
3.求解数学模型
4.验证模型
三、数学建模的应用
1.自然科学领域
2.社会科学领域
3.工程技术领域
正文:
一、数学建模的概述
数学建模是一种运用数学方法,对现实世界中的问题进行抽象、建模、求解和验证的过程。
它是数学与具体学科相结合的产物,旨在通过数学语言和工具,刻画和研究各种现象和问题。
数学建模在科学研究和实际应用中具有重要意义,能够帮助我们更好地理解和解决实际问题。
二、数学建模的方法
1.确定问题
数学建模的第一步是确定问题,这需要对实际问题进行深入了解,找出问题的关键点,并明确问题的目标。
2.建立数学模型
在建立数学模型时,需要将实际问题抽象成数学问题,找到合适的数学方法和工具,描述问题的主要特征和关系。
3.求解数学模型
求解数学模型是数学建模的核心环节,需要运用数学知识和技巧,解决模型中的数学问题,得到模型的结果。
4.验证模型
验证模型是对数学模型进行检验的过程,需要将模型的结果与实际问题进行比较,看是否符合实际情况,以此来评估模型的有效性和准确性。
三、数学建模的应用
数学建模在自然科学、社会科学和工程技术等领域都有广泛的应用。
例如,在物理学中,通过建立运动方程来描述物体的运动状态;在经济学中,通过建立经济模型来预测市场行为;在工程技术中,通过建立结构模型来分析建筑物的稳定性等。
数学建模常用算法和模型全集
数学建模常用算法和模型全集数学建模是一种将现实世界的问题转化为数学问题,并通过建立数学模型来求解的方法。
在数学建模中,常常会用到各种算法和模型,下面是一些常用的算法和模型的全集。
一、算法1.线性规划算法:用于求解线性规划问题,例如单纯形法、内点法等。
2.非线性规划算法:用于求解非线性规划问题,例如牛顿法、梯度下降法等。
3.整数规划算法:用于求解整数规划问题,例如分支定界法、割平面法等。
4.动态规划算法:用于求解具有最优子结构性质的问题,例如背包问题、最短路径问题等。
5.遗传算法:模拟生物进化过程,用于求解优化问题,例如遗传算法、粒子群算法等。
6.蚁群算法:模拟蚂蚁寻找食物的行为,用于求解优化问题,例如蚁群算法、人工鱼群算法等。
7.模拟退火算法:模拟固体退火过程,用于求解优化问题,例如模拟退火算法、蒙特卡罗模拟等。
8.蒙特卡罗算法:通过随机抽样的方法求解问题,例如蒙特卡罗模拟、马尔科夫链蒙特卡罗等。
9.人工神经网络:模拟人脑神经元的工作原理,用于模式识别和函数逼近等问题,例如感知机、多层感知机等。
10.支持向量机:用于分类和回归问题,通过构造最大间隔超平面实现分类或回归的算法,例如支持向量机、核函数方法等。
二、模型1.线性模型:假设模型的输出与输入之间是线性关系,例如线性回归模型、线性分类模型等。
2.非线性模型:假设模型的输出与输入之间是非线性关系,例如多项式回归模型、神经网络模型等。
3.高斯模型:假设模型的输出服从高斯分布,例如线性回归模型、高斯朴素贝叶斯模型等。
4.时间序列模型:用于对时间序列数据进行建模和预测,例如AR模型、MA模型、ARMA模型等。
5.最优化模型:用于求解优化问题,例如线性规划模型、整数规划模型等。
6.图论模型:用于处理图结构数据的问题,例如最短路径模型、旅行商问题模型等。
7.神经网络模型:用于模式识别和函数逼近等问题,例如感知机模型、多层感知机模型等。
8.隐马尔可夫模型:用于对具有隐藏状态的序列进行建模,例如语音识别、自然语言处理等。
数学建模简介1
数学建模的方法和步骤
模型假设
在明确建模目的,掌握必要资料的基础上, 通过对资料的分析,根据对象的特征和建 模目的,找出起主要作用的因素,对问题 进行必要的、合理的简化,用精确的语言 提出若干符合客观实际的合理假设。
数学建模的方法和步骤
模型假设
作出合理假设,是建模至关重要的一步。 如果对问题的所有因素一概考虑,无疑是 一种有勇气但方法欠佳的行为,所以高超 的建模者能充分发挥想象力、洞察力和判 断力 ,善于辨别主次,而且为了使处理方 法简单,应尽量使问题线性化、均匀化。
看谁答得快
1、某甲早8时从山下旅店出发沿一路径上山,下 午5时到达山顶并留宿。次日早8时沿同一路径下 山,下午5时回到旅店。某乙说,甲必在两天中 的同一时刻经过路径中的同一地点,为什么?
2、两兄妹分别在离家2千米和1千米且方向相反 的两所学校上学,每天同时放学后分别以4千米/ 小时和2千米/小时的速度步行回家,一小狗以6千 米/小时的速度从哥哥处奔向妹妹,又从妹妹处奔 向哥哥,如此往返直至回家中,问小狗奔波了多 少路程?
四、模型的特点:
逼真性和可行性 渐进性 强健性 可移植性 非预测性 条理性 技艺性 局限性
五、建模能力的培养:
具有广博的知识(包括数学和各种实际知 识)、丰富的经验、各方面的能力、注意 掌握分寸。
具有丰富的想象力和敏锐的洞察力
类比法和理想化方法
直觉和灵感
实例研究法
学 习 、 分 析 别 人 的 模 型 亲 手 去 做
模型集中反映了原型中人们需要的那一部分特征
什么是数学建模
什么是数学模型?
简单地说:数学模型就是对实际问题的一种 数学表述。
具体一点说:数学模型是以部分现实世界为某 种研究目的的一个抽象的、简化的数学结构。 这种数学结构可以是数学公式、算法、表格、 图示等。
数学建模方法大汇总
数学建模方法大汇总数学建模是数学与实际问题相结合,通过建立数学模型来解决实际问题的一种方法。
在数学建模中,常用的方法有很多种,下面将对常见的数学建模方法进行大汇总。
1.描述性统计法:通过总结、归纳和分析数据来描述现象和问题,常用的统计学方法有平均值、标准差、频率分布等。
2.数据拟合法:通过寻找最佳拟合曲线或函数来描述和预测数据的规律,常用的方法有最小二乘法、非线性优化等。
3.数理统计法:通过样本数据对总体参数进行估计和推断,常用的方法有参数估计、假设检验、方差分析等。
4.线性规划法:建立线性模型,通过线性规划方法求解最优解,常用的方法有单纯形法、对偶理论等。
5.整数规划法:在线性规划的基础上考虑决策变量为整数或约束条件为整数的情况,常用的方法有分支定界法、割平面法等。
6.动态规划法:通过递推关系和最优子结构性质建立动态规划模型,通过计算子问题的最优解来求解原问题的最优解,常用的方法有最短路径算法、最优二叉查找树等。
7.图论方法:通过图的模型来描述和求解问题,常用的方法有最小生成树、最短路径、网络流等。
8.模糊数学法:通过模糊集合和隶属函数来描述问题,常用的方法有模糊综合评价、模糊决策等。
9.随机过程法:通过概率论和随机过程来描述和求解问题,常用的方法有马尔可夫过程、排队论等。
10.模拟仿真法:通过构建系统的数学模型,并使用计算机进行模拟和仿真来分析问题,常用的方法有蒙特卡洛方法、事件驱动仿真等。
11.统计回归分析法:通过建立自变量与因变量之间的关系来分析问题,常用的方法有线性回归、非线性回归等。
12.优化方法:通过求解函数的最大值或最小值来求解问题,常用的方法有迭代法、梯度下降法、遗传算法等。
13.系统动力学方法:通过建立动力学模型来分析系统的演化过程,常用的方法有积分方程、差分方程等。
14.图像处理方法:通过数学模型和算法来处理和分析图像,常用的方法有小波变换、边缘检测等。
15.知识图谱方法:通过构建知识图谱来描述和分析知识之间的关系,常用的方法有图论、语义分析等。
数学建模简介及数学建模常用方法
利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要 做出进一步的简化或假设。在难以得出解析解时,也应当借助计算机求出 数值解。 5 .模型分析。
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简
化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起
数学模型,然后运用先进的数学方法及计算机技术进行求解。简而言之
,
建立数学模型的这个过程就称为数学建模。
模型是客观实体有关属性的模
至于它是否真的能飞则无关紧要;
拟。陈列在橱窗中
然而参加航模比赛的飞机模
的飞机模型外形应
型则全然不同, 如果飞行性能
当像真正的飞机,
不佳, 外形再像飞机, 也不能
算是一个好的模型。模型不一定是 对实体的一种仿照,也可以是对实 体的某些基本属性的抽象,例如, 一张地质图并不需要用实物来模 拟,它可以用抽象的符号、文字和 数字来反映出该地区的地质结构。 数学模型也是一种模拟,是用数学 符号、数学式子、程序、图形等对 实际课题本质属性的抽象而又简洁 的刻画,它或能解释某些客观现象, 或能预测未来的发展规律,或能为 控制某一现象的发展提供某种意义 下的最优策略或较好策略。数学模 型一般并非现实问题的直接翻版, 它的建立常常既需要人们对现实问 题深入细微的观察和分析,又需要 人们灵活巧妙地利用各种数学知 识。这种应用知识从实际课题中抽 象、提炼出数学模型的过程就称为 数学建模。 实际问题中有许多因素, 在建立数学模型时你不可能、也没 有必要把它们毫无遗漏地全部加以
常用的数学建模方法总结
2常用的建模方法
(I)初等数学法。
主要用于一些静态、线性、确定性的模型。
例如,席位分配问题,学生成绩的比较,一些简单的传染病静态模型。
(2)数据分析法。
从大量的观测数据中,利用统计方法建立数学模型,常见的有:回归分析法,时序分析法。
(3)仿真和其他方法。
主要有计算机模拟(是一种统计估计方法,等效于抽样试验,可以离散系统模拟和连续系统模拟),因子试验法(主要是在系统上做局部试验,根据试验结果进行不
断分析修改,求得所需模
型结构),人工现实法(基于对系统的了解和所要达到的目标,人为地组成一个系统)。
(4)层次分析法。
主要用于有关经济计划和管理、能源决策和分配、行为科学、军事科学、军事指挥、运输、农业、教育、人才、医疗、环境等领
域,以便进行决策、评价、分析、预测等。
该方法关键的一步是建立层次结
构模型。
数学建模方法详解
数学建模方法详解数学建模是指利用数学方法来研究和分析实际问题,并通过构建数学模型来描述和解决这些问题的过程。
数学建模具有很高的理论性和广泛的应用性,可以应用于科学、工程、经济等众多领域。
下面详细介绍几种常用的数学建模方法。
一、优化建模方法优化建模方法是指在给定的约束条件下,寻求其中一种目标函数的最优解。
该方法常用于生产、运输、资源分配等问题的优化调度。
优化建模的一般步骤包括确定决策变量、建立目标函数和约束条件、制定求解算法以及分析和验证最优解。
二、动力系统建模方法动力系统建模方法是指将实际问题转化为一组微分方程或差分方程,研究系统在时间上的演化规律。
该方法可以用于描述和预测物理、生物、经济等多个领域的系统行为。
动力系统建模的关键在于建立正确的微分方程或差分方程,并选择合适的求解方法。
三、决策分析建模方法决策分析建模方法是指将决策问题转化为数学模型,并采用数学方法进行决策分析和评估。
该方法常用于风险管理、投资决策、供应链管理等领域。
决策分析建模的关键在于准确描述决策者的目标和偏好,并选择合适的决策规则进行决策分析。
四、统计建模方法统计建模方法是指利用统计学理论和方法来描述和分析实际问题。
该方法多用于数据分析、预测和模式识别等领域。
统计建模的过程包括收集数据、建立概率模型、估计模型参数以及进行模型检验和应用。
五、图论建模方法图论建模方法是指利用图论的理论和方法来描述和分析网络结构和关联关系。
该方法常用于社交网络分析、路径规划、电力网络优化等领域。
图论建模的关键在于构建网络模型,并选择适当的图算法进行分析和优化。
六、随机模型建模方法随机模型建模方法是指利用随机过程和概率论的理论和方法来描述和分析随机现象。
该方法常用于金融风险管理、信号处理、系统可靠性评估等领域。
随机模型建模的关键在于建立正确的随机过程模型,并进行概率分布和随机变量的分析。
七、模拟建模方法模拟建模方法是指利用计算机仿真技术来模拟和分析实际问题。
数学建模常用方法介绍
数学建模常用方法介绍数学建模是指利用数学方法对实际问题进行数学描述和分析的过程。
它是数学与实际问题相结合的一种科学研究方法。
在数学建模中,常用的方法有线性规划、非线性规划、动态规划、数值模拟、统计分析等。
下面将介绍这些常用的数学建模方法。
1.线性规划线性规划是一种优化问题的数学描述方法,可以用于求解最优化问题,例如最大化利润或最小化成本。
线性规划的基本思想是在一定的约束条件下,通过线性目标函数和线性约束条件,寻找最优解。
线性规划常用的算法有单纯形法、内点法等。
2.非线性规划非线性规划是一种在约束条件下求解非线性最优化问题的方法。
与线性规划不同,非线性规划中目标函数和/或约束条件是非线性的。
非线性规划的求解方法包括梯度下降法、牛顿法等。
3.动态规划动态规划是一种常用的求解最优化问题的方法,它可以用于求解具有重叠子问题结构的问题。
动态规划将原问题分解为一系列子问题,并通过保存子问题的解来避免重复计算,从而降低计算复杂度。
动态规划常用于求解最短路径问题、背包问题等。
4.数值模拟数值模拟是通过数值方法对实际问题进行计算机模拟和仿真的方法。
数值模拟在现代科学和工程中得到广泛应用。
数值模拟方法包括有限差分法、有限元法、蒙特卡洛方法等。
5.统计分析统计分析是通过数理统计方法对数据进行分析和推断的方法。
统计分析可以帮助我们了解数据的分布、关系和趋势,并做出科学的推断和预测。
统计分析方法包括假设检验、方差分析、回归分析等。
除了以上常用方法,还有一些其他常用的数学建模方法,例如图论、随机过程、优化算法等。
不同的问题需要选用不同的数学建模方法。
为了解决实际问题,数学建模需要结合实际背景和需求,在数学建模的过程中运用合适的数学方法,建立准确的模型,并通过数学分析和计算机辅助求解,得到符合实际情况的解答和结论。
数学建模的过程不仅仅是将数学工具应用于实际问题,更要注重问题的形式化、合理性和可行性。
在实际建模过程中,需要对问题进行适当的简化和假设,并考虑到模型的稳定性和可靠性。
数学建模知识点总结
数学建模知识点总结本文对数学建模的知识点进行总结,旨在帮助读者快速了解数学建模的核心概念和方法。
一、数学建模的基础知识1. 数学建模的定义:数学建模是通过数学方法解决实际问题的过程,包括问题的分析、建立数学模型、求解模型、结果的分析和验证等步骤。
2. 常用的数学模型:常见的数学模型包括线性模型、非线性模型、离散模型、连续模型等,不同类型的模型适用于不同的问题。
3. 数学建模的步骤:数学建模一般包括问题的形式化、模型的建立、模型的求解、模型的验证和结果的分析等步骤,每个步骤都需要仔细思考和合理选择方法。
二、数学建模的常用方法1. 数理统计方法:数理统计是数学建模中常用的方法之一,通过对问题数据的统计分析来获得问题的特征和规律,从而建立数学模型。
2. 最优化方法:最优化是数学建模中求解优化问题的常用方法,通过选择合适的优化目标函数和约束条件,求解出问题的最优解。
3. 微分方程方法:微分方程是数学建模中描述变化和关系的常用工具,通过建立微分方程模型,可以有效地描述问题的动态变化情况。
4. 图论方法:图论是数学建模中研究图结构和图算法的重要分支,通过构建问题的图模型,可以利用图论的方法解决相关问题。
5. 随机过程方法:随机过程是数学建模中研究随机事件发生的规律和模式的数学工具,通过建立随机过程模型,可以对问题进行概率分析和预测。
三、数学建模的案例应用1. 交通流量预测:通过建立交通流量模型,预测不同时间段和不同路段的交通流量,以便制定合理的交通管理策略。
2. 股票价格预测:通过建立股票价格模型,预测未来股票价格的变动趋势,为投资者提供参考和决策依据。
3. 环境污染控制:通过建立环境污染模型,分析污染源和传播规律,提出合理的环境保护措施和污染治理方案。
4. 生产优化调度:通过建立生产优化模型,分析生产过程中的瓶颈和制约因素,优化生产调度方案,提高生产效率。
5. 疾病传播模拟:通过建立疾病传播模型,分析疾病传播的潜在风险和影响因素,制定合理的防控措施。
数学建模文档
数学建模引言数学建模是通过数学方法和技巧来解决实际问题的过程。
它涵盖了多个学科领域,包括数学、统计学、计算机科学和物理学等。
在各个领域中,数学建模被广泛应用于研究、工程和决策分析等方面。
本文将介绍数学建模的基本概念、步骤和常用的建模方法,并通过一个具体的案例来说明数学建模在实际问题中的应用。
数学建模的步骤数学建模通常包括以下几个步骤:1.问题的描述和分析:首先需要清楚地描述和分析实际问题,明确问题的目标和限制条件,了解问题的背景和相关的知识。
2.建立数学模型:根据问题的特点和所需的分析结果,选择合适的数学方法和模型来描述和求解问题。
数学模型可以是代数方程、微分方程、最优化问题等形式。
3.求解数学模型:利用数学工具和计算机软件,对建立的数学模型进行求解。
可以通过数值方法、解析方法或近似方法等方式来求解模型。
4.模型的验证和误差分析:对得到的模型结果进行验证和误差分析,评估模型的准确性和可靠性。
如果模型存在误差或不足之处,需要对模型进行修正和改进。
5.结果的解释和应用:将模型的结果进行解释和应用,得出对实际问题的结论和建议。
可以通过图表、报告、论文等形式来展示和传达模型的结果。
常用的数学建模方法在数学建模中,常用的方法包括:1.线性规划:线性规划是一种优化方法,用于求解线性约束条件下的最优解。
它主要应用于资源分配、生产计划、运输问题等方面。
2.非线性规划:非线性规划是线性规划的扩展,可以解决具有非线性约束条件的最优化问题。
它适用于工程设计、经济决策、参数估计等领域。
3.微分方程模型:微分方程模型是描述动态系统变化的数学模型,适用于物理、生物、化学等领域。
它可以用来研究系统的稳定性、振荡行为和变化趋势等问题。
4.统计建模:统计建模是通过统计学方法对数据进行分析和模拟,用来推断总体特征和预测未来趋势。
它在市场调研、投资决策、风险评估等方面有着广泛的应用。
案例:货车配送路线优化为了说明数学建模在实际问题中的应用,我们以货车配送路线优化为例。
数学建模资料
数学建模资料数学建模是一种将数学方法应用于现实问题解决的过程,通过建立数学模型,分析问题,得出结论,并给出合理的建议和决策。
本文将介绍数学建模的基本概念、常用方法和应用领域。
一、数学建模的基本概念数学建模是一种将现实问题转化为数学问题的过程。
在建模过程中,需要明确问题的目标和约束条件,并选择合适的数学模型进行描述和求解。
数学建模可以分为确定性建模和随机建模两种类型,分别适用于不同类型的问题。
确定性建模是指在建模过程中,假设所有的参数和变量都是确定的,不存在随机性。
常用的确定性建模方法包括线性规划、整数规划、动态规划等。
随机建模是指在建模过程中,考虑随机因素对问题的影响。
常用的随机建模方法包括概率模型、统计模型、随机过程等。
二、数学建模的常用方法1. 数学规划方法数学规划是一种通过建立数学模型,求解最优解的方法。
常见的数学规划方法包括线性规划、整数规划、非线性规划等。
数学规划方法适用于优化问题,如资源分配、生产计划等。
2. 统计分析方法统计分析是通过收集和分析数据,得出结论的方法。
常见的统计分析方法包括假设检验、回归分析、方差分析等。
统计分析方法适用于数据分析和预测问题,如市场调研、销售预测等。
3. 数值计算方法数值计算是通过数值方法求解数学模型的方法。
常见的数值计算方法包括迭代法、差分法、积分法等。
数值计算方法适用于求解复杂的数学问题,如微分方程、偏微分方程等。
4. 图论方法图论是一种研究图的性质和关系的方法。
常见的图论方法包括最短路径算法、最小生成树算法、网络流算法等。
图论方法适用于描述和分析复杂的网络结构,如交通网络、电力网络等。
三、数学建模的应用领域数学建模在各个领域都有广泛的应用,以下列举几个常见的应用领域:1. 金融与投资数学建模可以用于金融市场的风险评估、投资组合优化等问题。
通过建立数学模型,分析市场趋势和风险,帮助投资者做出合理的投资决策。
2. 环境与资源管理数学建模可以用于环境保护和资源管理的问题。
数学建模简介课件
数据质量的可靠性
在数据驱动的数学建模中,如何保证 数据的质量和可靠性是一个重要的问 题,需要采取一系列的数据清洗和预 处理技术。
多学科交叉的数学建模
数学与其他学科的结合
数学建模已经不再局限于传统的数学领域,而是与其他学 科如物理、化学、生物、工程等相结合,形成多学科交叉 的数学建模。
跨学科知识的整合
它涉及到对问题的深入理解、相关数 据的收集和分析、选择合适的数学方 法和工具、建立数学模型、求解模型 并解释结果等步骤。
数学建模的应用领域
01
02
03
04
自然科学
物理、化学、生物等学科中的 问题可以通过数学建模进行定
量分析和模拟。
工程和技术
在机械、电子、航空航天、计 算机等领域,数学建模被广泛 应用于设计、优化和预测。
详细描述
传染病传播是一个动态的过程,受到个体行 为、环境因素和疾病特性等多种因素的影响 。通过建立数学模型,我们可以模拟疾病的 传播过程,预测疫情的发展趋势,并提供有 效的防控措施。常见的模型包括SIR模型和
SEIR模型。
物流优化模型
要点一
总结词
描述了如何使用数学模型来优化物流网络,提高运输效率 并降低成本。
总结词
微分方程建模是利用微分方程来描述和解决实际问题的数学 建模方法。
详细描述
微分方程建模通过建立数学模型来描述现实世界中变量之间 的关系,特别是那些随时间变化的变量之间的关系。例如, 人口增长模型、传染病传播模型等都是通过微分方程来建立 的。
微分方程建模
总结词
微分方程建模是利用微分方程来描述和解决实际问题的数学 建模方法。
跨学科知识的整合
在多学科交叉的数学建模中,如何有效地整合不同学科的 知识是一个重要的问题,需要具备跨学科的知识和视野。
数学建模型
数学建模:理论与实践的桥梁引言数学建模是一种将实际问题抽象为数学问题,然后使用数学工具进行求解的过程。
它广泛应用于科学研究、工程技术、经济管理等多个领域,是连接理论与实践的重要桥梁。
本文将介绍数学建模的基本概念、步骤和一些常见的建模方法。
数学建模的基本概念数学建模是指根据研究对象的本质特性和数量关系,运用数学语言建立相应的数学模型,并通过计算或逻辑推理得到解决问题的方法或策略。
数学模型可以是方程、不等式、函数等数学表达式,也可以是图形、算法等更复杂的结构。
数学建模的步骤1. 问题提出:明确需要解决的实际问题。
2. 假设条件:根据问题的实际情况,设定合理的假设条件。
3. 模型建立:基于假设条件,选择合适的数学工具和方法,建立数学模型。
4. 模型求解:运用数学方法对模型进行求解,得到问题的解。
5. 模型检验:通过实验或实际应用来验证模型的正确性和实用性。
6. 模型改进:根据检验结果对模型进行调整和完善。
常见的数学建模方法- 统计分析法:适用于数据量大、变量多的问题,如市场分析、风险评估等。
- 优化方法:包括线性规划、非线性规划等,适用于资源分配、路径选择等问题。
- 仿真模拟法:通过计算机模拟实际情况,适用于复杂系统的分析和预测。
- 图论与网络分析:适用于交通网络、社交网络等问题的研究。
- 微分方程模型:适用于描述连续变化的自然现象,如人口增长、生态平衡等。
结论数学建模作为一种科学方法,不仅能够帮助我们更好地理解世界,还能够为我们提供解决问题的有效工具。
随着科技的发展,数学建模的应用将更加广泛,其方法和工具也将不断丰富和完善。
对于学习和研究数学建模的人来说,掌握其基本原理和方法,能够在实际工作中发挥重要作用。
数学建模知识点总结
数学建模知识点总结一、数学建模概述1.1 数学建模的概念数学建模是利用数学方法和技术解决实际问题的过程,是将实际问题抽象成数学模型,再通过数学分析和计算来解决问题的一种方法。
数学建模可以应用于工程、科学、经济、环境等各个领域,对于解决复杂的实际问题具有重要的作用。
1.2 数学建模的基本步骤数学建模的基本步骤包括问题分析、建立数学模型、求解模型、模型验证和应用。
在处理实际问题时,首先要对问题进行充分的分析,然后建立相应的数学模型,再通过数学方法来求解模型,最后对模型进行验证和应用。
1.3 数学建模的应用范围数学建模的应用范围非常广泛,可以涉及到自然科学、社会科学、工程技术等各个领域。
例如,在工程领域可以用数学建模来设计飞机、汽车、桥梁等结构的强度和稳定性;在环境科学领域可以用数学建模来研究气候变化、环境污染等问题;在生物医学领域可以用数学建模来研究人体的生理过程。
1.4 数学建模的意义数学建模可以帮助人们更好地理解实际问题,设计出更优秀的工程产品,提高生产效率,优化资源配置,解决环境污染等问题,对于推动科技进步和社会发展具有重要的意义。
二、数学建模的数学基础2.1 微积分微积分是数学建模的基础。
微积分是研究变化的数学分支,包括导数、积分、微分方程等概念。
在数学建模中,微积分可以用来描述变化率、优化函数、求解微分方程等问题。
2.2 线性代数线性代数是数学建模的另一个基础。
线性代数是研究向量、矩阵、线性方程组等概念的数学分支,可以用来描述多维空间的几何关系、解决大规模线性方程组等问题。
2.3 概率论与统计学概率论与统计学是数学建模的重要工具。
概率论研究随机事件的概率分布、随机过程等概念,统计学研究数据的收集、处理、分析等方法。
在数学建模中,概率论和统计学可以用来描述随机现象、分析数据、评估模型等问题。
3.1 最优化方法最优化方法是数学建模常用的方法之一。
最优化方法是研究如何找到使目标函数取得最大(小)值的变量取值。
常用数学建模方法及实例
常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。
常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。
一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。
它常用于资源分配、生产计划、供应链管理等领域。
例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。
产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。
工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。
公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。
二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。
整数规划常用于离散决策问题。
例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。
公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。
它广泛应用于经济、金融和工程等领域。
例3:公司通过降低售价和增加广告费用来提高销售额。
已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。
已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。
四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。
例4:求解最短路径问题。
已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。
求从起始城市到目标城市的最短路径。
五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。
数学建模期末知识总结
数学建模期末知识总结一、数学建模的基本概念和方法数学建模是一种通过数学方法来描述、分析和解决实际问题的过程。
它是将实际问题抽象为数学模型,并运用数学理论和技巧进行定量分析和解决的一种方法。
数学建模的基本方法有三种:经验建模、类比建模和理论建模。
1. 经验建模:这种建模方法基于经验和规律,根据已有的数据和知识来建立模型。
通过寻找观察到的规律和现象,进而通过数学公式或图表进行描述和预测。
这种方法适用于问题比较简单,没有复杂的内在机制和规律的情况。
2. 类比建模:这种建模方法是将一个相似的问题或系统作为模板,通过类比得出与实际问题相似的模型。
类比建模要求找到与实际问题相似的关系,并将相似的情况应用于实际问题的分析和解决。
这种方法适用于问题比较复杂,但与已知的问题相似的情况。
3. 理论建模:这种建模方法是根据理论原理和数学模型来描述和解决实际问题。
它要求将实际问题转化为数学问题,并运用数学理论和技巧进行分析和解决。
这种方法适用于具有明确的数学模型和理论依据的问题。
二、数学建模的基本步骤数学建模的基本步骤包括问题的分析、建立数学模型、进行模型分析与计算、验证模型以及模型的优化。
1. 问题的分析:对于实际问题,首先要对问题进行充分的了解和分析。
要搞清楚问题的背景和条件,明确问题的要求和目标,并将问题抽象为数学问题。
对问题的分析是建立数学模型的前提。
2. 建立数学模型:根据问题的特点和要求,选择合适的数学方法和工具,建立数学模型。
数学模型是实际问题的抽象描述,包括变量的定义和关系的建立。
数学模型的建立需要考虑问题的尺度、假设和约束条件等。
3. 进行模型分析与计算:建立好数学模型后,需要对模型进行分析与计算。
通过数学分析和计算,得出模型的解析解或数值解。
这一步需要根据实际情况选择合适的数学工具和计算方法。
4. 验证模型:对于得到的模型解,需要对模型进行验证。
这一步是检验模型的准确性和有效性的过程。
可以通过比较模型的预测结果与实际观测数据的符合程度来验证模型。
数学建模思想方法大全及方法适用范围
数学建模思想方法大全及方法适用范围数学建模是指运用数学方法和技巧解决实际问题的过程。
不同的问题需要不同的建模方法和思想,下面是一些常用的数学建模思想方法及其适用范围。
1.数学规划方法:包括线性规划、整数规划、非线性规划等。
适用于有约束条件的最优化问题,如资源分配、生产计划等。
2.动态规划方法:适用于具有最优子结构的问题,通过将问题划分为子问题,并利用子问题的最优解构建原问题的最优解。
常用于路径规划、资源管理等。
3.随机过程方法:适用于具有随机特性的问题,如排队论、随机模拟等。
常用于风险评估、金融风险管理等领域。
4.图论方法:适用于用图形表示问题的结构和关系的问题,如网络优化、旅行商问题等。
5.统计建模方法:包括回归分析、时间序列分析、方差分析等。
适用于通过样本数据建立数学模型,分析和预测问题。
6.数据挖掘方法:包括聚类分析、关联规则挖掘、分类预测等。
适用于从大规模数据中发现隐藏的模式和规律。
7.模糊综合评价方法:适用于多指标评价和决策问题,通过模糊数学的方法将主观和客观指标进行综合评价,辅助决策。
8.最优化方法:包括梯度下降法、遗传算法、模拟退火等。
适用于求解无约束优化问题和非线性问题。
9.离散事件系统建模方法:适用于描述离散事件发展过程的问题,如物流调度、生产流程优化等。
10.时空建模方法:适用于描述时空变化和相互作用的问题,常用于交通流动、城市规划等领域。
11.复杂网络建模方法:适用于分析复杂系统中的网络结构和动态特性,如社交网络、生物网络等。
12.随机优化方法:将随机性引入传统的优化方法,如随机梯度下降法、遗传算法等。
以上是一些常用的数学建模思想方法及其适用范围,实际问题的建模过程中可以根据具体情况选择合适的方法,甚至可以综合运用多种方法。
数学建模的关键在于将实际问题抽象为数学问题,并选择合适的数学工具进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模简介及数学建模常用方法Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
随着社会的发展,生物、医学、社会、经济……各学科、各行业都涌现现出大量的实际课题,亟待人们去研究、去解决。
但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益。
他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学。
而且不止是要用到数学,很可能还要用到别的学科、领域的知识,要用到工作经验和常识。
特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机。
可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的。
你所能遇到的都是数学和其他东西混杂在一起的问题,不是“干净的”数学,而是“脏”的数学。
其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现。
也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型。
数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性。
通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究。
数学模型的另一个特征是经济性。
用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出。
但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真。
所谓“模型就是模型”(而不是原型),即是该性质。
数学建模是利用数学方法解决实际问题的一种实践。
即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
简而言之,建立数学模型的这个过程就称为数学建模。
模型是客观实体有关属性的模拟。
陈列在橱窗中的飞机模型外形应当像真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再像飞机,也不能算是一个好的模型。
模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号、文字和数字来反映出该地区的地质结构。
数学模型也是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。
实际问题中有许多因素,在建立数学模型时你不可能、也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素。
数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具、数学方法去解答这个实际问题。
如果有现成的数学工具当然好。
如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展。
例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明。
求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的。
因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁。
而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路。
而在现在,要真正解决一个实际问题,离了计算机几乎是不行的。
数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢不是。
既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的。
因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等。
如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施。
但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进。
应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型。
从这一意义上讲,可以说数学建模是一切科学研究的基础。
没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。
1.机理分析?机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
(1)比例分析法--建立变量之间函数关系的最基本最常用的方法。
(2)代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
(3)逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
(4)常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率" 的表达式。
(5)偏微分方程--解决因变量与两个以上自变量之间的变化规律。
2.测试分析方法?测试分析方法就是将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。
回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
时序分析法--处理的是动态的相关数据,又称为过程统计方法。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法,在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。
3.仿真和其他方法?计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
离散系统仿真--有一组状态变量。
连续系统仿真--有解析表达式或系统结构图。
因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备。
首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息。
2.模型假设。
在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼、简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面。
一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解。
不同的简化假设会得到不同的模型。
假设作得不合理或过分简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作。
通常,作假设的依据,一是出于对问题内在规律的认识。
二是来自对数据或现象的分析,也可以是二者的综合。
作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化,经验在这里也常起重要作用。
写出假设时,语言要精确,就象做习题时写出已知条件那样。
3.模型构成。
根据所作的假设以及事物之间的联系,利用适当的数学工具去刻画各变量之间的关系,建立相应的数学结构——即建立数学模型。
把问题化为数学问题。
要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用。
4.模型求解。
利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要做出进一步的简化或假设。
在难以得出解析解时,也应当借助计算机求出数值解。
5.模型分析。
对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等。
6.模型检验。
分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改、补充假设或重新建模,有些模型需要经过几次反复,不断完善。
7.模型应用。
所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善。
应用的方式自然取决于问题的性质和建模的目的。
1.美国大学生数学建模竞赛简介?1985年在美国出现了一种叫做MCM 的一年一度的大学生数学模型竞赛(1987年全称是MathematicalCompetitionin Modeling ,1988年改全称为Mathe- -maticalContestinModeling,其缩写均为MCM )。
这并不是偶然的,在1985年以前美国只有一种大学生数学竞赛 (TheWilliamLowellPutnammathemat icalCompetition,简称Putman 或普特南数学竞赛),这是由美国数学协会(MAA--MathematicalAssociationofAmerica 的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。
在国际上产生很大影响,现已成为国际性的大学生的一项着名赛事。
该竞赛每年2月或3月进行。
我国自1989年首次参加这一竞赛,历届均取得优异成绩。