一级倒立摆的Simulink仿真设计

合集下载

一阶倒立摆建模及simulink仿真

一阶倒立摆建模及simulink仿真

《现代控制理论》三级项目报告题目:一级倒立摆控制系统设计姓名:刘然学号:160103010258专业:过程控制4班指导教师:吴忠强分数:2019年4月一级倒立摆控制系统设计倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。

对于倒立摆系统的控制研究长期以来被认为是控制理论及其应用领域里引起人们极大兴趣的问题,倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统。

研究倒立摆控制能有效地反映控制中的许多问题,倒立摆研究具有重要的理论价值和应用价值,理论上,它是检验各种新的控制理论和方法的有效实验装置。

应用上,倒立摆广泛应用于控制理论研究!航空航天控制,机器人、杂技顶杆表演等领域,在自动化领域中具有重要的价值。

另外,由于此装置成本低廉,结构简单,便于用模拟、数字等不同方式控制,在控制理论教学和科研中也有很多应用。

本文中,以一级倒立摆为研究对象,对它的起摆以及稳定控制做了研究,主要工作如下:1.首先介绍了倒立摆系统的组成和控制原理,建立了一级倒立摆的数学模型,对倒立摆系统进行定性分析,说明在平衡点是能控的。

2.分析了倒立摆的起摆过程,对倒立摆的起摆能量反馈控制进行分析与说明。

3.在matlab2018a的simulink库下对倒立摆构造单级倒立摆状态反馈控制系统的仿真模型。

4.对这次仿真的总结。

一、倒立摆的控制目标倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。

当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

二、建立单级倒立摆系统的状态空间模型其中,质量为M的小车在水平方向滑动,质量为m的球连在长度为L的刚性摆一端,x表示小车的位移,u是作用在小车上的力,通过移动小车使带有小球的摆杆始终处于垂直的位置。

为了简单起见,假设小车和摆仅在一个平面内运动,且不考虑摩擦、摆杆的质量和空气阻力。

如图1图1设系统的动态特性可以用小车的位移和速度及杆偏离垂线的角度θ和角速度⋅θ来描述。

直线一级倒立摆的自动起摆与稳摆控制

直线一级倒立摆的自动起摆与稳摆控制

直线一级倒立摆的自动起摆与稳摆控制(Simulink仿真)通过对倒立摆系统的力学及运动学分析,建立系统的非线性数学模型为可见,直线一级倒立摆为单输入双输出系统,利用Simulink可建立上式的框图模型,如图1所示。

图1 直线一级倒立摆系统的非线性Simulink模型倒立摆的起摆问题,是控制理论中的一个经典实验,其实质是倒立摆系统从一个稳定的平衡状态(垂直向下)在外力的作用下自动转移到另一个平衡状态(垂直向上)。

在这个过程中,要求起摆快速,但又不能过于超调。

由于输入、输出之间的非线性,许多常用的线性控制理论都不适用。

基于非线性理论,目前常用的几种起摆方法为:Bang-Bang控制、能量控制、仿人智能控制等。

这里采用Bang-Bang控制作为起摆方法,LQR控制作为稳摆方法,Simulink框图如图2所示。

图2 倒立摆自动起摆控制Simulink框图(Bang-Bang + LQR)图2中,子系统“Inverted Pendulum”是直线一级倒立摆的非线性模型,如图1所示;S函数“ang_proc”模块用于摆杆角度的处理,即将任意角度信号转换为“ -π ~ π”之间的对应值;子系统“Bang-Bang Controller”为Bang-Bang控制器;子系统“LQR Controller”为LQR 控制器。

双击“Bang-Bang Controller”模块可打开Bang-Bang控制器框图如下:图3 Bang-Bang控制器框图图3中,bang_controller是为实现Bang-Bang控制算法而编写的S函数,信号Ang_s是Bang-Bang控制切换角,F_bang是Bang-Bang控制作用力。

双击“LQR Controller”子系统,打开LQR控制器框图如下:图4 LQR控制器框图运行图2中的仿真框图,则基于Bang-Bang控制和LQR控制算法的直线一级倒立摆自动起摆控制效果如图5所示。

(完整word版)一级倒立摆的Simulink仿真

(完整word版)一级倒立摆的Simulink仿真

单级倒立摆稳定控制直线-级倒立摆系统在忽略了空'(阻力及各种摩擦Z后,町抽象成小车和匀质摆杆组成的系统,如图1所示。

图2控制系统结构假设小车质量M=0.5kg,匀质摆朴质量m=0.2kg,摆朴长度21 =0.6m, x(t)为小车的水半位移,〃为摆杆的角位移,g = 9.8m/s2o控制的目标是通过外力u⑴使得摆直立向上(即&(t) = 0) o该系统的非线性模型为:(J +inl‘)典(nilcos^)&= niglsin^ (ml cos。

)翼(M其中J二一ml+ m)&= (mlsin0)6^ + u一、非线性模型线性化及建立状态空间模型因为在工作点附近(& = 0.必0)对系统进行线竹:•化,所以可以做如下线性化处理: 03 Q1sin0« 0 --------- 、COS&Q 1-----------------3! 2!当e很小时,由COS0V sine的幕级数展开式可知,忽略高次项后, 可得cos0~l, sin0=0, 0Z 2=0:因此模型线性化后如下:(J+nil A2)0r z +mlx z z =mgl0 (a)取系统的状态变量为% = x,x2 =仪X3 = x4=灰输出y = [x OF包扌舌小车位移和摆杆的角位移.由线性化后运动方程组得故空间状态方程如下:■010 0 ■「xT■ ■x2*00-2.6727 0x21 1.8182 x3f =000 1x3+0_x4J|_x40031.1818 0-4.5455uml0f r + (M+m) x''二u (b) 其中J = -ml3■ ■ xl ■ ■Xx2x1 x30 x4&Y=xlx3X1/二x'=x2—沁—册4(M + m) 一3m44(M + m) - 3m u3(M +m)g4(M + m)l 一3ni-34(M + m)l 一311119 1 00 ''xlM00 -3mg0am xl x2‘ _4(M + m) 一3m x2 x3* ~00 01x3x4J00 3(M + m)g0[_x44(M + m)l - 3ml 044(M + m) - 3m 0一34(M + m)l - 3nil二. 通过Matlab 仿真判断系统的可控与可观性,并说明其物理意义。

一级倒立摆系统仿真及分析

一级倒立摆系统仿真及分析

一级倒立摆系统仿真及分析1.摘要本次课程设计,我们小组选择一级倒立摆系统作为物理模型,首先通过物理分析建立数学模型,得到系统的传递函数,通过对传递函数的极点,根轨迹,单位阶跃响应来分析系统稳定性。

建立状态空间模型,利用matlab进行能控能观性分析,输入阶跃信号,分析系统输出响应。

通过设定初始条件,查看系统稳定性,利用simulink绘制系统状态图。

再对系统进行极点配置,进行状态反馈,使得系统在初始状态下处于稳定状态,并绘制系统状态图。

2.课程设计目的倒立摆系统是一个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。

倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。

因此研究倒立摆系统具有重要的实践意义。

3.课程设计题目描述和要求本次课程设计我们小组选择环节项目三:系统状态响应、输出响应的测量。

环节目的:1.利用MATLAB分析线性定常系统。

2.利用SIMULINK进行系统状态空间控制模型仿真,求取系统的状态响应及输出响应。

环节内容、方法:1.给定系统状态空间方程,对系统进行可控性、可观性分析。

并利用SIMULINK 绘制系统的状态图,求取给定系统输入信号和初始状态时的状态响应及输出响应。

2.给定两个系统的状态空间模型,分别求两个系统的特征值;将两个系统的系统矩阵化为标准型;求出给定系统初始状态时,状态的零输入响应;求两个系统的传递函数并分析仿真结果。

4.课程设计报告内容4.1 数学模型的建立及分析对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。

但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。

下面我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。

在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示图l 直线一级倒立摆系统我们不妨做以下假设:M小车质量、m摆杆质量、b小车摩擦系数、l摆杆转动轴心到杆质心的长度、I 摆杆惯、F加在小车上的力、x 小车位置、φ摆杆与垂直向上方向的夹角、θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)。

基于MATLAB的一级倒立摆控制系统仿真与设计

基于MATLAB的一级倒立摆控制系统仿真与设计

基于MATLAB的一级倒立摆控制系统仿真与设计一级倒立摆是一个经典的控制系统问题,它由一根杆子和一个在杆子顶端平衡的质点组成。

杆子通过一个固定的轴连接到一个电机,电机可以通过施加力来控制杆子的平衡。

设计一个控制系统来实现对一级倒立摆的稳定控制是一个重要的研究课题。

在这篇文章中,我们将介绍基于MATLAB的一级倒立摆控制系统仿真与设计。

我们将首先介绍一级倒立摆的数学模型,并根据模型设计一个反馈控制器。

然后,我们将使用MATLAB来进行仿真,评估控制系统的性能。

一级倒立摆的数学模型可以通过牛顿第二定律得到。

假设杆子是一个质点,其运动方程可以表示为:ml²θ''(t) = mgl sin(θ(t)) - T(t)其中m是质点的质量,l是杆子的长度,g是重力加速度,θ(t)是杆子相对于竖直方向的偏角,T(t)是电机施加的瞬时力。

为了设计一个稳定的控制系统,我们可以使用PID控制器,其控制输入可以表示为:T(t) = Kp(θd(t) - θ(t)) + Ki∫(θd(t) - θ(t))dt +Kd(θd'(t) - θ'(t))其中Kp,Ki和Kd分别是比例,积分和微分增益,θd(t)是我们期望的杆子偏角,θ'(t)是杆子的角速度。

在MATLAB中,我们可以使用Simulink来建模和仿真一级倒立摆的控制系统。

我们可以进行以下步骤来进行仿真:1. 建立一级倒立摆的模型。

在Simulink中,我们可以使用Mass-Spring-Damper模块来建立质点的运动模型,并使用Rotational Motion 库提供的Block来建立杆子的旋转模型。

2. 设计反馈控制器。

我们可以使用PID Controller模块来设计PID 控制器,并调整增益参数以实现系统的稳定性和性能要求。

3. 对控制系统进行仿真。

通过在MATLAB中运行Simulink模型,我们可以观察控制系统的响应,并评估系统的稳定性和性能。

一阶直线倒立摆双闭环PID控制仿真报告

一阶直线倒立摆双闭环PID控制仿真报告

目录摘要 (2)一、一阶倒立摆系统建模 (3)1、对象模型 (3)2、电动机、驱动器及机械传动装置的模型 (4)二、双闭环PID控制器设计 (5)1、仿真验证 (6)2、内环控制器的设计 (9)3、系统外环控制器设计 (12)三、仿真实验 (15)1、绘图子程序 (15)2、仿真结果 (16)四、结论 (18)摘要本报告旨在借助Matlab 仿真软件,设计基于双闭环PID 控制的一阶倒立摆控制系统。

在如图0.1所示的“一阶倒立摆控制系统”中,通过检测小车的位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC )完成。

图0.1 一阶倒立摆控制系统分析工作原理,可以得出一阶倒立摆系统原理方框图:图0.2 一阶倒立摆控制系统动态结构图本报告将借助于“Simulink 封装技术——子系统”,在模型验证的基础上,采用双闭环PID 控制方案,实现倒立摆位置伺服控制的数字仿真实验。

一、一阶倒立摆系统建模1、对象模型如图1.1所示,设小车的质量为m 0,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向的力为F ,O 1为摆角质心。

θxyOFF xF x F yF yllxO 1图1.1 一阶倒立摆的物理模型根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其中心的转动方程为θθθcos sin y l F l F J x-= (1-1) 2)摆杆重心的水平运动可描述为)sin (22x θl x dtd m F += (1-2)3)摆杆重心在垂直方向上的运动可描述为)cos (22y θl dtd m mg F =- (1-3)4)小车水平方向上的运动可描述为220dtxd m F F x =- (1-4)由式(1-2)和式(1-4)得F ml x m m =⋅-⋅++)sin (cos )(20θθθθ (1-5) 由式(1-1)、(式1-2)和式(1-3)得θθθsin g cos 2ml x ml ml J =⋅++ )( (1-6) 整理式(1-5)和式(1-6),得⎪⎪⎩⎪⎪⎨⎧++-+-⋅+⋅=-++-⋅+++=))((cos sin )(cos sin cos cos ))((cos sin sin )()(x 2022202222220222222m l J m m l m m l m m l m F m l l m m m m l J g l m m l J lm F m l J θθθθθθθθθθθθ(1-7) 以上式1-7为一阶倒立摆精确模型。

一级倒立摆的Simulink仿真

一级倒立摆的Simulink仿真

一级倒立摆的Simulink仿真第一篇:一级倒立摆的Simulink仿真单级倒立摆稳定控制直线一级倒立摆系统在忽略了空气阻力及各种摩擦之后,可抽象成小车和匀质摆杆组成的系统,如图1所示。

杆长为2λmguθ图1 直线一级倒立摆系统图2 控制系统结构假设小车质量M =0.5kg,匀质摆杆质量m=0.2kg,摆杆长度2l =0.6m,x(t)为小车的水平位移,θ为摆杆的角位移,g=9.8m/s2。

控制的目标是通过外力u(t)使得摆直立向上(即θ(t)=0)。

该系统的非线性模型为:&&+(mlcosθ)&12&=mglsinθ(J+ml2)θxJ=ml。

,其中2&&&3&=(mlsinθ)θ+u(mlcosθ)θ+(M+m)&x解:一、非线性模型线性化及建立状态空间模型&=0)对系统进行线性化,所以因为在工作点附近(θ=0,θsinθ≈θ-θ33!可以做如下线性化处理:,cosθ≈1-θ22!当θ很小时,由cosθ、sinθ的幂级数展开式可知,忽略高次项后,可得cosθ≈1,sinθ≈θ,θ’^2≈0;因此模型线性化后如下:(J+ml^2)θ’’+mlx’’=mglθ(a)mlθ’’+(M+m)x’’=u(b)其中J=ml13&,输出y=[x&,x3=θ,x4=θ取系统的状态变量为x1=x,x2=x的角位移.θ]T包括小车位移和摆杆⎡x1⎤⎡x⎤⎢x2⎥⎢x'⎥⎡x⎤⎡x1⎤即X=⎢⎥=⎢⎥ Y=⎢⎥=⎢⎥⎢x3⎥⎢θ⎥⎣θ⎦⎣x3⎦⎢⎥⎢⎥⎣x4⎦⎣θ'⎦由线性化后运动方程组得-3mg4X1’=x’=x2 x2’=x’’=x3+u4(M+m)-3m4(M+m)-3m3(M+m)g-3X3’ =θ’=x4 x4’=θ’’=x3+u4(M+m)l-3ml4(M+m)l-3ml故空间状态方程如下:⎡0⎢⎡x1'⎤⎢0⎢x2'⎥⎢X’=⎢⎥=⎢⎢x3'⎥⎢0⎢⎥⎢⎣x4'⎦⎢0⎣100⎤⎡0⎤⎥⎢⎥-3mgx14⎡⎤⎢⎥00⎥⎢⎥4(M+m)-3m⎥x2⎢4(M+m)-3m⎥⎢⎥+ ⎢⎥001⎥0⎥⎢x3⎥⎢⎥⎢⎥⎥x4⎢⎥3(M+m)g-300⎥⎣⎦⎢⎥4(M+m)l-3ml⎦⎣4(M+m)l-3ml ⎦u⎡x1'⎤⎡0⎢x2'⎥⎢0⎢⎥⎢X’=⎢x3'⎥=⎢⎥⎢0⎣x4'⎦⎢⎣0100⎤0⎡⎤x1⎡⎤⎢1.8182⎥⎢x2⎥0-2.67270⎥⎥⎢⎥ + ⎢⎥ ux3⎥001⎥⎢⎢0⎥⎢⎥⎥⎣x4⎦⎢⎥031.18180⎦⎣-4.5455⎦⎡x1⎤⎢⎥⎡x1⎤⎡1000⎤⎢x2⎥Y= ⎢⎥=⎢⎥⎢⎥⎣x3⎦⎣0010⎦x3⎢⎥⎣x4⎦二、通过Matlab仿真判断系统的可控与可观性,并说明其物理意义。

基于MATLAB的一级倒立摆控制系统仿真与设计

基于MATLAB的一级倒立摆控制系统仿真与设计

《控制系统分析与综合》任务书题目:基于MATLAB的一级倒立摆控制系统仿真分析与设计要求:对给定直线倒立摆系统模型,首先利用matlab对系统进行根轨迹、bode 图或能控性分析,然后根据控制系统设计指标进行相应控制器设计,在matlab 仿真环境下得到控制器参数,再将其写入实际倒立摆控制系统中,观察实际控制效果,进行控制参数的适当调整。

任务:1、超前校正控制器设计设计指标:调整时间t s=0.5s (2%) ;最大超调量δp≤10%设计步骤:先对传递函数模型进行根轨迹分析,讨论原系统的稳定性等,然后利用sisotool设计超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

2、滞后超前校正控制器设计设计指标:系统的静态位置误差常数为10,相位裕量为500,增益裕量等于或大于10 分贝。

设计步骤:先对传递函数模型进行bode图分析,讨论原系统的稳定性等,然后利用sisotool设计滞后超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

3、PID控制设计指标:调整时间t s尽量小;最大超调量δp≤10%设计步骤:先在matlab/simulink下构建PID仿真控制系统,依照PID参数整定原则进行系统校正,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

4、状态空间极点配置控制设计指标:要求系统具有较短的调整时间(约3秒)和合适的阻尼(阻尼比ζ= 0.5-0.7)。

设计步骤:先对系统进行能控性分析,然后根据设计要求选择期望极点(考虑主导极点),编程求出反馈矩阵K,进行系统仿真。

仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

设计报告要求:报告提供如下内容1 封面2 目录3 正文(1)任务书(2)分别对四个设计任务按照系统分析、控制器仿真设计、实际系统运行分析形成报告4 收获、体会5 参考文献格式要求:题目小三,宋体加粗目录、正文、小标题均为小四宋体,其中标题加粗。

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现一阶倒立摆是一种常见的控制系统模型,它由一个垂直的支柱和一个质量为m 的物体组成,物体通过支柱与地面相连。

在控制系统中,我们需要设计一个控制器来控制物体的位置和速度,使其保持在垂直位置上。

本文将介绍一阶倒立摆控制设计与实现的相关内容。

一、一阶倒立摆模型一阶倒立摆模型可以用以下方程描述:m*d^2y/dt^2 = -mg*sin(y) + u其中,y是物体的位置,u是控制器的输出,m是物体的质量,g是重力加速度,t是时间。

该方程可以通过拉普拉斯变换转换为传递函数:G(s) = Y(s)/U(s) = 1/(ms^2 + mg)二、控制器设计为了控制一阶倒立摆,我们需要设计一个控制器来产生控制信号u。

常见的控制器包括比例控制器、积分控制器和微分控制器,它们可以组合成PID控制器。

在本文中,我们将使用比例控制器来控制一阶倒立摆。

比例控制器的输出与误差成正比,误差越大,输出越大。

比例控制器的传递函数为:Gc(s) = Kp其中,Kp是比例增益。

三、闭环控制系统将控制器和一阶倒立摆模型组合起来,得到闭环控制系统的传递函数:G(s) = Y(s)/R(s) = Kp/(ms^2 + mg + Kp)其中,R(s)是参考信号,表示我们期望物体保持的位置。

四、控制系统实现在实现控制系统之前,我们需要对一阶倒立摆进行建模和仿真。

我们可以使用MATLAB等工具进行建模和仿真。

在MATLAB中,我们可以使用Simulink模块来建立一阶倒立摆模型和控制器模型。

在建立模型之后,我们可以进行仿真,观察系统的响应和稳定性。

在实现控制系统时,我们需要选择合适的硬件平台和控制器。

常见的硬件平台包括Arduino和Raspberry Pi等,常见的控制器包括PID控制器和模糊控制器等。

在实现控制系统之后,我们需要进行调试和优化,以达到最佳控制效果。

五、总结本文介绍了一阶倒立摆控制设计与实现的相关内容,包括一阶倒立摆模型、控制器设计、闭环控制系统和控制系统实现。

基于Simulink的单级倒立摆仿真对比

基于Simulink的单级倒立摆仿真对比

关键词 :非线性系统 ;单级倒立摆 ;极点配置 ; T2S模糊控制模型 ; Simulink仿真
中图分类号 : TP273. 4
文献标识码 : A
An S im ula tion Study of S ingle Inverted Pendulum Ba sed on T2S Fuzzy Con trol M odel L I Guo2hui
4,故系统可控 , 可任意配置极点. 然后进行稳定性检查 : 由 MA TLAB 中 的 e ig ( A ) 求 得 特 征 值
70
大连交通大学学报
第 29卷
[ 0 0 4. 949 7 - 4. 949 7 ],故系统不稳定. 采用状态反馈方法使系统稳定并配置极点. 设期望的闭环 极点位置为 S1, 2 = - 3 ±j4. 457, S3, 4 = - 2,由 MATLAB求得反馈增益矩阵 K = [ - 160. 970 1 - 108. 151 3 - 485. 944 7 - 102. 075 6 ]. 2. 3 仿真研究与结果分析
M j ( x) ; A =
μ i
(
x)
Ai;
B
=
μ i
( x)
B i;
j=1
i =1
i =1
l
l
n
∑ ∑ ∏ C =
μ i
(
x)
Ci;
D
=
μ i
(
x)
D i;
Mi
( x)
=
M
i j
( x)
i =1
i =1
j =1
l
∑ 假设 : M i ( x) ≥ 0, M j ( x) > 0, M i ( x) 表示 x属于 M i 的隶属度函数 ,同时它也表示第 i条模糊规则的

倒立摆控制系统的Simulink仿真

倒立摆控制系统的Simulink仿真

倒立摆控制系统的Simulink 仿真本文针对一个倒立摆系统进行了系统的建模、求解、控制系统的设计,并且使用Simulink 对控制算法进行了仿真。

一、模型的描述倒立摆系统如图(1),设有一个倒立摆装在只能沿x 轴方向移动的小车上,图中1m 为小车的质量,2m 为摆球的质量,g 为重力加速度,l 为摆长,J 为摆的转动惯量。

当小车受到外力()f t 的作用时,小车产生位移()x t ,且摆产生角位移()t θ。

二、模型的建立下面针对该倒立摆系统进行建模求解。

当小车1m 在外力作用下产生位移()x t 时,摆球受力情况如图(2)所示。

图中2m g 为摆球2m 所受重力,222()d x t m dt 为x 方向的惯性力,2sin ()m g t θ为垂直于摆杆方向的重力分量。

在x 方向上,小车的惯性力矩为212()d x t m dt ,摆球产生的位移量为()sin ()x t l t θ+;在垂直于摆杆的方向上,摆球的转动惯性力为22()d t J dt θ;222()d x t m dt的分力为222()cos ()d x t m t dt θ。

图(1)装有倒立摆的小车 图(2)倒立摆受力图根据牛顿运动定律,按照力的平衡原理,可以分别列出该系统在x 方向上和垂直于摆杆方向上的的运动方程222122222()()[sin ()]()d x t d x t d l t m m m f t dt dt dt θ++=(1) 222222()()cos ()sin ()d t d x t J m l t m lg t dt dtθθθ+= (2) 三、模型的求解3.1微分方程组的求解联立式(1)、(2),经过方程组的恒等变形得2222222122222()()2[()cos ()]sin 2()2sin ()()2()d x t d t m m J m l t m l g t Jm l t dt dtJf t θθθθ+-=-++ (3) 2222222212221222()()[cos ()()]sin ()cos ()()()sin ()()d t d t m l t m m J m l t t dt dtm m m lg t m lf t θθθθθθ-+=-++ (4) 由式(3)、(4)令''121343()(),(),()(),()()x t t x x t x t x t x t x t θ====,可建立如下的微分方程组进行求解'12'2222221222222122'34'222422222122()()1()()(sin ()cos ()()()sin ()cos ()()())()()1()()(sin 2()2sin ()()2())2[()cos ()]x t x t d t x t x m l t t m m m lg t m l t m m J dt m lf t x t x t d t x t m l g t Jm l t Jf t m m J m l t dt θθθθθθθθθ⎧=⎪⎪=-+⎪-+⎪+⎨==-+++-⎪⎪⎪⎪⎩3.2控制系统的分析与设计在该模型中,对该倒立摆系统实施角度环、速度换的控制,并假设小车在运行过程中受到空气阻力,阻力大小与小车的速度成正比。

直线一级倒立摆系统的建模及仿真

直线一级倒立摆系统的建模及仿真

计算机控制技术课程设计实验:直线一级倒立摆系统的建模及仿真一、已知条件:图1倒立摆简化模型摆杆角度为输出,小车的位移为输入。

导轨中点为坐标轴的中心即零点,右向为坐标值增加的方向,杆偏移其瞬时平衡位置右侧的角度为正值。

二、任务要求:总体任务通过调节PID参数,设计PID控制器实现摆杆在受到干扰的情况下,依然能恢复平衡。

具体包括以下几部分:1. 理论推导包括倒立摆系统的动力学模型,传递函数,离散传递函数,状态空间或差分方程,稳定性分析,PID控制器设计2. 程序实现实现内容:倒立摆系统模型,控制器以及仿真结果的显示。

开发语言和工具:Matlab m 文件或C/C++ (工具:VC++或其它)3. PID控制参数设定及仿真结果。

分别列出不同杆长的仿真结果(例如:L=0.25 和L=0.5)。

4. 将理论推导、程序实现、仿真结果写成实验报告。

具体求解过程如下:一,倒立摆系统动力学模型的建立图1 摆杆的受力分析图以摆杆为研究对象,对其进行受力分析,如图1所示。

根据质点系的达朗贝尔原理得IC I 0F CP mg CP M →→⨯+⨯-= (1)式中,IC F 为杆的惯性力,表达式为()IC C P CP CP IP ICP ICP t n t nF ma m a a a F F F ==++=++,m 为杆的质量,g 为重力加速度,I M 为杆的惯性力偶。

惯性力及惯性力偶的大小分别为2222IP P ICP I c 2221,,3t d x d d F ma m F m m M J mL dt dt dt θθαα======(2)式中,α为杆的角加速度,P a 为小车的加速度,2L 为杆的长度,θ为杆偏离中心位置的角度,x 偏离轨道中心的位移。

对(2)式代入(1)式,并整理可得22224sin cos 3d d x L g dt dt θθθ-=-(3) 当摆动较小时,可以进行近似处理sin ,cos 1θθθ≈≈。

倒立摆控制系统的Simulink仿真

倒立摆控制系统的Simulink仿真

倒立摆控制系统的Simulink 仿真本文针对一个倒立摆系统进行了系统的建模、求解、控制系统的设计,并且使用Simulink 对控制算法进行了仿真。

一、模型的描述倒立摆系统如图(1),设有一个倒立摆装在只能沿x 轴方向移动的小车上,图中1m 为小车的质量,2m 为摆球的质量,g 为重力加速度,l 为摆长,J 为摆的转动惯量。

当小车受到外力()f t 的作用时,小车产生位移()x t ,且摆产生角位移()t θ。

二、模型的建立下面针对该倒立摆系统进行建模求解。

当小车1m 在外力作用下产生位移()x t 时,摆球受力情况如图(2)所示。

图中2m g 为摆球2m 所受重力,222()d x t m dt 为x 方向的惯性力,2sin ()m g t θ为垂直于摆杆方向的重力分量。

在x 方向上,小车的惯性力矩为212()d x t m dt ,摆球产生的位移量为()sin ()x t l t θ+;在垂直于摆杆的方向上,摆球的转动惯性力为22()d t J dt θ;222()d x t m dt的分力为222()cos ()d x t m t dt θ。

图(1)装有倒立摆的小车 图(2)倒立摆受力图根据牛顿运动定律,按照力的平衡原理,可以分别列出该系统在x 方向上和垂直于摆杆方向上的的运动方程222122222()()[sin ()]()d x t d x t d l t m m m f t dt dt dt θ++=(1) 222222()()cos ()sin ()d t d x t J m l t m lg t dt dtθθθ+= (2) 三、模型的求解3.1微分方程组的求解联立式(1)、(2),经过方程组的恒等变形得2222222122222()()2[()cos ()]sin 2()2sin ()()2()d x t d t m m J m l t m l g t Jm l t dt dtJf t θθθθ+-=-++ (3) 2222222212221222()()[cos ()()]sin ()cos ()()()sin ()()d t d t m l t m m J m l t t dt dtm m m lg t m lf t θθθθθθ-+=-++ (4) 由式(3)、(4)令''121343()(),(),()(),()()x t t x x t x t x t x t x t θ====,可建立如下的微分方程组进行求解'12'2222221222222122'34'222422222122()()1()()(sin ()cos ()()()sin ()cos ()()())()()1()()(sin 2()2sin ()()2())2[()cos ()]x t x t d t x t x m l t t m m m lg t m l t m m J dt m lf t x t x t d t x t m l g t Jm l t Jf t m m J m l t dt θθθθθθθθθ⎧=⎪⎪=-+⎪-+⎪+⎨==-+++-⎪⎪⎪⎪⎩3.2控制系统的分析与设计在该模型中,对该倒立摆系统实施角度环、速度换的控制,并假设小车在运行过程中受到空气阻力,阻力大小与小车的速度成正比。

(完整word版)一级倒立摆控制系统设计

(完整word版)一级倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。

设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统.二、设计要求倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度.当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。

三、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。

计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡.四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:分析工作原理,可以得出一阶倒立摆系统原理方框图:一阶倒立摆控制系统动态结构图下面的工作是根据结构框图,分析和解决各个环节的传递函数!1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M:小车质量m:为摆杆质量J :为摆杆惯量 F:加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知:(1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得(3)小车水平方向上的运动为22..........(4)x d xF F M d t -=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩式中J 为摆杆的转动惯量:32m l J =sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 若取小车质量M=2kg,摆杆质量m=1kg,摆杆长度2 l =1m ,重力加速度取g=2/10s m ,则可以得一阶倒立摆简化模型:....0.44 3.330.412x F F θθθ⎧=-⎪⎨⎪=-+⎩ 拉氏变换即 G 1(s )= ; G 2(s)=一阶倒立摆环节问题解决!2.电动机驱动器选用日本松下电工MSMA021型小惯量交流伺服电动机,其有关参数如下: 驱动电压:U=0~100V 额定功率:PN=200W 额定转速:n=3000r/min 转动惯量:J=3×10-6kg 。

倒立摆特性测试实验

倒立摆特性测试实验

倒立摆特性测试实验
直线一级倒立摆
1、simulink仿真图
根据老师给出的传递函数,可得:
2、分析
有老师指导可知,最佳参数为P=100,I=4,D=15,此时,如图:
之后,采用控制变量法,分别改变三个变量,观察效果。

P=200,I=4,D=15时,如下
P=100,I=50,D=15时,如下图,
P=100,I=4,D=50时,如下图:
倒立摆顺摆
1、simulink仿真图
2、分析
有老师给出的数据可知,最佳参数为P=60,I=100,D=8,如下图:
同样采用控制变量法P=120,I=100,D=8时,如下图:
P=100,I=200,D=8时,如下图
P=100,I=100,D=16时,如下图:
综合分析:
比较不同P参数值下系统阶跃响应曲线可知,随着K的增大,超调量增大,衰减率减小,振荡频率增大。

当减少Ti时,超调量增加,进入动态稳定的时间变长。

增大微分环节,可以减少超调量,同时,减少调节时间,在图中并未发现有什么不好之处,通过查资料发现,增加微分环节对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。

心得体会:通过本次实验,我们了解了关于倒立摆和顺摆的一些基本知识,同时,又对之前学过的PID调节进行了系统复习,更加清楚了这三个参数的各自意义。

同时,倒立摆的神奇令我们感到非常惊奇,虽然并不十分了解其工作原理,但是,我们还是感到很有意思。

尤其是最后的起振实验,更是令我们赞叹不已,总之,通过这次实验,我们都收获了很多东西,也为我们后来的学习打下了一个坚实的基础!。

倒立摆仿真及实验报告

倒立摆仿真及实验报告

最优控制实验报告二零一五年一月目录第1章一级倒立摆实验 (3)1.1 一级倒立摆动力学建模 (3)1.1.1 一级倒立摆非线性模型建立 (3)1.1.2 一级倒立摆线性模型建立 (5)1.2 一级倒立摆t∞状态调节器仿真 (5)1.3 一级倒立摆t∞状态调节器实验 (10)1.4 一级倒立摆t∞输出调节器仿真 (12)1.5 一级倒立摆t∞输出调节器实验 (14)1.6 一级倒立摆非零给定调节器仿真 (16)1.7 一级倒立摆非零给定调节器实验 (17)第2章二级倒立摆实验 (18)2.1 二级倒立摆动力学模型 (18)2.1.1 二级倒立摆非线性模型建立 (18)2.1.2 二级倒立摆线性模型建立 (19)2.2 二级倒立摆t∞状态调节器仿真 (20)2.3 二级倒立摆t∞状态调节器实验 (23)2.4 二级倒立摆t∞输出调节器仿真 (24)2.5 二级倒立摆t∞输出调节器实验 (24)2.6 二级倒立摆非零给定调节器仿真 (25)2.7 二级倒立摆非零给定调节器实验 (26)第1章一级倒立摆实验1.1一级倒立摆动力学建模在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图所示图1-1 直线一级倒立摆模型M小车质量1.096 kg;m 摆杆质量0.109 kg;b 小车摩擦系数0 .1N/m/sec;l 摆杆转动轴心到杆质心的长度0.25m;I 摆杆惯量0.0034 kg·m2;φ摆杆与垂直向上方向的夹角,规定角度逆时针方向为正;x 小车运动位移,规定向右为正。

1.1.1一级倒立摆非线性模型建立采用拉格朗日方法,系统的拉格朗日方程为:()()()&&&(1.1)=-L q q T q q V q q,,,其中,L 为拉格朗日算子,q 为系统的广义坐标,T 为系统的动能,V 为系统的势能。

拉格朗日方程由广义坐标i q 和L 表示为:i i id L Lf dt q q ∂∂-=∂∂& (1.2)i f 为系统沿该广义坐标方向上的外力,在本系统中,系统的两个广义坐标分别为φ和x 。

开题报告基于Simulink对单级倒立摆的控制和仿真。

开题报告基于Simulink对单级倒立摆的控制和仿真。

开题报告基于Simulink对单级倒立摆的控制和仿真。

南京师范大学毕业设计(论文)开题报告姓名: 赵汉枫学号: 21060429学院: 电气与自动化工程学院专业电气工程及其自动化专业方向: 工业自动化题目: 基于Simulink对单级倒立摆的控制和仿真指导教师: 曹弋2011 年 3 月 8 日开题报告填写要求1(开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。

此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及院、系审查后生效;2(开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网址上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;3(有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。

如“2005年4月26日”或“2005-04-26”。

毕业设计(论文)开题报告1(本课题的目的及研究意义倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,通过以单级倒立摆为被控对象,运用Simulink来掌握控制系统模型的建立和仿真的使用。

作为MATLAB的重要组成部分,Simulink具有相对独立的功能和使用方法,确切地说它是对基于信号流图的动态系统进行仿真、建模和分析的软件包,它不但支持连续、线性系统仿真,而且也支持离散、非线性系统仿真。

本课题的目的是运用Simulink来创建倒立摆模型,并进行仿真以达到实现控制的目的。

2(本课题的国内外的研究现状倒立摆系统是一个典型非线性多变量不稳定系统 ,在航空航天和机电一体化等领域如火箭箭身的姿态稳定控制及机器人多自由度运动稳定设计中得到了广泛的应用 ,因此对其进行工程化应用研究和更深程度理论基础研究意义重大.文献 2 基于极点配置方法成功地设计倒立摆系统控制器.近年来智能控制技术得到了飞速发展 ,以倒立摆作为研究对象 ,用各种智能控制技术解决非线性系统的稳定控制问题 ,成为许多学者不断用来研究、验证的手段. 倒立摆控制系统虽然作为热门研究课题之一,但见于资料的大多采用现代控制方法。

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究一阶倒立摆系统是一种典型的非线性控制系统,具有多种状态和复杂的运动特性。

在实际生活中,倒立摆被广泛应用于许多领域,如机器人平衡控制、航空航天、制造业等。

因此,对一阶倒立摆系统进行建模与仿真研究具有重要的理论价值和实际意义。

ml''(t) + b*l'(t) + k*l(t) = F(t)其中,m为质量,b为阻尼系数,k为弹簧常数,l(t)为摆杆的位移,l'(t)为摆杆的加速度,l''(t)为摆杆的角加速度,F(t)为外界作用力。

在仿真过程中,需要设定摆杆的初始位置和速度。

一般而言,初始位置设为0,初始速度设为0。

边界条件则根据具体实验需求进行设定,如限制摆杆的最大位移、最大速度等。

利用MATLAB/Simulink等仿真软件进行建模和实验,可以方便地通过改变输入信号的参数(如力F)或系统参数(如质量m、阻尼系数b、弹簧常数k)来探究一阶倒立摆系统的性能和反应。

通过仿真实验,我们可以观察到一阶倒立摆系统在受到不同输入信号的作用下,会呈现出不同的运动规律。

在适当的输入信号作用下,摆杆能够达到稳定状态;而在某些特定的输入信号作用下,摆杆可能会出现共振现象。

在仿真过程中,我们可以发现一阶倒立摆系统具有一定的鲁棒性。

在一定范围内,即使输入信号发生变化或系统参数产生偏差,摆杆也能够保持稳定状态。

然而,当输入信号或系统参数超过一定范围时,摆杆可能会出现共振现象,导致系统失稳。

因此,在实际应用中,需要对输入信号和系统参数进行合理控制,以保证系统的稳定性。

为了避免共振现象的发生,可以通过优化系统参数或采用其他控制策略来实现。

例如,适当增加阻尼系数b能够减小系统的振荡幅度,有利于系统尽快达到稳定状态。

可以采用反馈控制策略,根据摆杆的实时运动状态调整输入信号,以抑制系统的共振响应。

本文对一阶倒立摆系统进行了建模与仿真研究,通过观察不同参数设置下的系统性能和反应,对其运动规律、鲁棒性及稳定性进行了分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单级倒立摆稳定控制
直线一级倒立摆系统在忽略了空气阻力及各种摩擦之后,可抽象成小车和匀质摆杆组成的系统,如图1所示。

mg θ
杆长为
2u
图1 直线一级倒立摆系统
图2 控制系统结构
假设小车质量M =0.5kg ,匀质摆杆质量m=0.2kg ,摆杆长度2l =0.6m ,x (t )为小车的水平位移,θ为摆杆的角位移,2
/8.9s m g =。

控制的目标是通过外力u (t)使得摆直立向上(即0)(=t θ)。

该系统的非线性模型为:
u ml x
m M ml mgl x
ml ml J +=++=++22)sin ()()cos (sin )cos ()(θθθθθθθ ,其中
231ml J =。

解:
一、 非线性模型线性化及建立状态空间模型
因为在工作点附近(0,0==θ
θ )对系统进行线性化,所以 可以做如下线性化处理:
3
2
sin ,cos 13!
2!θθθθθ≈-
≈-
当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’^2≈0;
因此模型线性化后如下:
(J+ml^2)θ’’+mlx ’’=mgl θ (a)
ml θ’’+(M+m) x ’’=u (b) 其中
23
1ml J = 取系统的状态变量为,,,,4321θθ ====x x x
x x x 输出T x y ][θ=包括小车位移和摆杆的角位移.
即X=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x =⎥⎥⎥⎥
⎦⎤
⎢⎢⎢⎢⎣⎡''θθx x Y=⎥⎦⎤⎢⎣⎡θx =⎥⎦⎤⎢⎣⎡31x x
由线性化后运动方程组得 X1’=x ’=x2 x2’=x ’’=
m m M mg 3)(43-+-x3+m
m M 3)(44
-+u
X3’ =θ’=x4 x4’=θ’’=ml l m M g m M 3)(4)(3-++x3+ml
l m M 3)(43
-+-u
故空间状态方程如下:
X ’=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'4'3'2'1x x x x =⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢
⎢⎢⎢⎣
⎡-++-+-03)(4)(300
100003)(4300001
ml l m M g m M m m M mg ⎥⎥⎥⎥
⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + ⎥⎥⎥⎥⎥
⎥⎥⎦

⎢⎢⎢⎢⎢⎢⎢⎣⎡-+--+ml l m M m m M 3)(43
03)(440 u
X ’=
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'4'3'2'1x x x x =⎥⎥⎥⎥⎦⎤⎢
⎢⎢⎢⎣⎡-01818.3100
100006727.20000
1
⎥⎥⎥⎥⎦⎤
⎢⎢⎢⎢⎣⎡4321x x x x + ⎥
⎥⎥⎥⎦

⎢⎢⎢⎢⎣⎡-5455.408182.10 u
Y= ⎥⎦⎤⎢⎣⎡31x x =⎥
⎦⎤⎢⎣⎡01000001 ⎥⎥
⎥⎥

⎤⎢⎢⎢⎢⎣⎡4321x x x x 二、通过Matlab 仿真判断系统的可控与可观性,并说明其物理意义。

(1)判断可控性 代码:
A=[0 1 0 0;
0 0 -2.627 0; 0 0 0 1; 0 0 31.1818 0];
B=[0;1.8182;0;-4.5455];
P=ctrb(A,B); n=rank(P); 运行了得n= 4
所以P 为满秩,系统能控
(2)判断可观性 代码:
A=[0 1 0 0;
0 0 -2.627 0; 0 0 0 1; 0 0 31.1818 0];
B=[0;1.8182;0;-4.5455]; C=[1 0 0 0;
0 0 1 0]; P=obsv(A,C); n=rank(P); 运行了得n= 4
所以P 为满秩,系统能观。

三、能否通过状态反馈任意配置系统的极点?若能,通过Matlab 仿真确定反馈控制规律K (如图2),使得闭环极点配置在
j ±-=-=-=1,2,14.321λλλ上。

并给出系统在施加一个单位脉冲输入时
状态响应曲线;
答: 因为系统完全能控,所以能通过状态反馈任意配置系统的极点。

要将闭环极点配置在j ±-=-=-=1,2,14.321λλλ上,所以期望特征方程为 |λI —(A-BK)|=(λ+1)*(λ+2)*((λ+1)^2+1)
=λ^4+5λ^3+10λ^2+10λ+4
Matlab求解K如下:
A=[0 1 0 0;
0 0 -2.627 0;
0 0 0 1;
0 0 31.1818 0];
B=[0;1.8182;0;-4.5455];
J=[-1 -2 -1+i -1-i];
K=place(A,B,J);
运行得:
K=[ -0.089378 -0.22345 -9.0957 -1.1894];
未加入极点配置。

仿真图:
未进行极点配置仿真电路图(1)X的响应图:
Θ的响应图:
配置后:
加入极点配置仿真图(2)X的响应图:
Θ的响应图:
四、用MatLab中的lqr函数,可以得到最优控制器对应的K。

要求用LQR控制算法控制倒立摆摆动至竖直状态,并可以控制倒立摆左移和右移;
欲对系统进行最优状态反馈设计,及小化性能指标为:
J=1
2∫[X T QX+U T RU]

dt
编写matalab程序如下:A=[0 1 0 0;
0 0 -2.627 0;
0 0 0 1;
0 0 31.1818 0];
B=[0;1.8182;0;-4.5455];
C=[1 0 0 0;
0 0 1 0];
D=[0;0]
x=1;
y=1;
Q=[x 0 0 0;
0 0 0 0;
0 0 y 0;
0 0 0 0];
R=1;
G=lqr(A,B,Q,R);
A1=[(A-B*G)];
B1=[B];
C1=[C];
D1=[D];
t=0:0.01:5;
U=zeros(size(t));
x0=[0.1 0 0.1 0];
[Y,X]=lsim(A1,B1,C1,D1,U,t,x0); plot(t,Y);
legend('小车','倒立摆');
运行可得:
G=[-1 -1.5495 -18.68 -3.4559]
由图分析可得调节时间很长,所以增加Q的比重,将上程序中的x,y改为x=150,y=150.运行可得:
G=[-12.247 -9.3413 -41.934 -7.7732]
比较可得,控制效果明显改善。

但反馈增益变大,意味着控制作用变强,消耗能量变大。

将G放入系统中,进行simulink仿真可得:
仿真电路图:
仿真结果:
X的响应图:
Θ的响应图:
五、写出本次仿真实验的心得体会。

本实验,从数学建模到仿真系统的搭建,再到加进控制环节进行实时控制,最后得出结果的过程中,参考了大量的资料,通过对比整合,设计出了适合自己的一套实验方法:倒立摆数学模型推导部分:首先用线性化数学模型,接着用动态系统空间状态方程法导出状态方程系数矩阵,然后用MATLAB对系统进行可控可观判断及进行几点配置,加入配置后在Simulink软件上进行系统仿真。

最后通过matlab求解线性二次型最优控制的G矩阵,然后加入形同进行Simulink 仿真。

通过本实验,掌握了倒立摆仿真的整个过程,熟悉了MATLAB的仿真软件Simulink的使用,也对系统控制有了较好的理解。

通过仿真,再次认识到了自动控制在改善系统性能方面的重要性,并激发了良好的关于系统控制方面的学习兴趣。

除此之外,通过本次大作业,让我学会了很多word的操作,在此基础上,相信在以后的学习将会有较大帮助。

相关文档
最新文档