构造等差数列或等比数列公开课
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造等差数列或等比数列
由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.
,对于任意正整数n,都例1设各项均为正数的数列的前n项和为S
n
有等式:成立,求的通项a n.
解:,∴
,∵,∴.
即是以2为公差的等差数列,且.
∴
例2数列中前n项的和,求数列的通项公式.
解:∵
当n≥2时,
令,则,且
是以为公比的等比数列,
∴.
2、构造差式与和式
解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法
就可求得这一数列的通项公式.
例3设是首项为1的正项数列,且,(n∈
N*),求数列的通项公式a n.
解:由题设得.
∵,,∴.
∴
.
例4数列中,,且,(n∈
N*),求通项公式a n.
解:∵
∴(n
∈N*)
3、构造商式与积式
构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法.
例5数列中,,前n项的和,求.
解:
,
∴
∴
4、构造对数式或倒数式
有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题
得以解决.
例6设正项数列满足,(n≥2).求数列的通项
公式.
解:两边取对数得:,,设
,则
是以2为公比的等比数列,.
,,,
∴
例7已知数列中,,n≥2时,求通项公式.
解:∵,两边取倒数得.
可化为等差数列关系式.
∴
求数列通项公式的十种方法
一、公式法
例1 已知数列{}n a 满足1232n
n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n
n n a a +=+⨯两边除以12n +,得
113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2
n
n
a 是以1222
a 1
1==为首项,以23
为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222
n
n a n =-。
评注:本题解题的关键是把递推关系式1232n
n n a a +=+⨯转化为
11
3
222
n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22
n n a n =+-,进而求出数列{}n a 的通项公式。
二、累加法
例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则
11232211
2
()()()()[2(1)1][2(2)1](221)(211)1
2[(1)(2)21](1)1
(1)2(1)1
2
(1)(1)1n n n n n a a a a a a a a a a n n n n n n n
n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2
n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+
+-+-+,即得数列{}n a 的通项公式。
例3 已知数列{}n a 满足112313n
n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:由1231n n n a a +=+⨯+得1231n
n n a a +-=⨯+则
11232211122112211()()()()(231)(231)(231)(231)3
2(3333)(1)3
3(13)2(1)3
13
331331
n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-
所以3 1.n
n a n =+-
评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231n
n n a a +-=⨯+,
进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,即得数列{}n a 的通
项公式。
例4 已知数列{}n a 满足1132313n
n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:13231n n n a a +=+⨯+两边除以1
3n +,得
11
121
3333
n n n n n a a +++=++, 则
111
21
3333n n n n n a a +++-=+
,故 11223
211
223
2111122122()()()(
)33333333
212121213
()()()()3333333332(1)11111()1
333333
n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++
因此11
(13)2(1)211
3133133223
n n n n n
a n n ---=++=+--⨯, 则211
33.322
n n n a n =
⨯⨯+⨯- 评注:本题解题的关键是把递推关系式13231n
n n a a +=+⨯+转化为
111
21
3333n n n n n a a +++-=+,