RF高功率线性PA原理介绍(数字预失真))-LPA-P2原理介绍

合集下载

RF高功率线性PA原理介绍(数字预失真)) LPA-P2原理介绍

RF高功率线性PA原理介绍(数字预失真)) LPA-P2原理介绍

数字接收自适应控制技术原理
RF
ADC
PLL
Vac Vpc
图3 数字接收自适应控制技术原理框图
DAC
M C U
DAC
数字接收自适应控制技术原理
• 数字接收自适应控制技术是通过中频滤 波接收检测信号对消效果,并结合高速 数字信号处理实现精确、及时的环路控 制的信号处理技术,这种技术主要用于 误差环的自适应控制过程 。
DTU(检测单元)
主环对消检测模块 RF6 AD8362 Vmc
正向输出信号和交调信号检测模块 10dB RF8 RFsa
AD8362
-10dB
10dB
-25dB -7dB 13dB
-11dB
-3dB~-20dB -3dB~-20dB -11dB 24dB 32dB 13dB AD8307
Vec
LO PLL
前馈技术原理
• 自适应控制器则参照载波抵消器输出取样信号闭环调 整主功率放大通道的增益和相移,保证载波信号的良 好对消,得到代表主功放失真特性的误差信号;误差 信号经过自适应控制器的幅度、相位调整和误差放大 器的功率放大后,耦合引入主功放输出通道,反相抵 消主功放输出信号中的失真分量,实现前馈线性化过 程,自适应控制器同样通过闭环取样检测误差信号的 对消结果,控制误差放大通道的增益和相移量,动态 保证失真信号的良好对消效果。
MPAU(主功放单元)
• 本单元是线性功放的关键部分,负责将信号 放大到要求的功率,同时要求很高的线性度。 来自ISU单元中的功率信号经主功率放大单元 放大后进入DFU,并由PU单元供给主功率放大 单元+12V电源和+28V电源,同时取出温度取 样电压给CU,接受CU的控制信号Voc控制误差 导频输出。 •

pa输出等效电路

pa输出等效电路

pa输出等效电路功率放大器(PA)是射频系统中的一个重要组成部分,其主要作用是将输入的射频信号放大到所需的输出功率。

PA的输出等效电路可以用来描述PA在特定工作状态下的电压和电流关系。

本文将对PA的输出等效电路进行详细介绍。

首先,我们需要了解PA的基本工作原理。

当射频信号输入到PA时,PA会将信号中的功率转化为热能,从而实现信号的放大。

在这个过程中,PA的输入阻抗、输出阻抗和增益等参数都会发生变化。

因此,为了描述PA在不同工作状态下的性能,我们需要建立一个等效电路模型。

PA的输出等效电路通常包括以下几个部分:1. 负载阻抗(ZL):负载阻抗是指PA输出端连接的负载所呈现的阻抗。

负载阻抗的大小和性质会影响PA的输出功率和效率。

在实际应用中,负载阻抗可能是一个固定的值,也可能是一个随频率变化的函数。

2. 输出电阻(Ro):输出电阻是指PA输出端对地的电阻。

输出电阻的大小反映了PA输出端的电流能力。

在理想情况下,PA的输出电阻应该非常小,以便将尽可能多的功率传输到负载。

然而,在实际的PA设计中,输出电阻往往不能做到非常小,这会导致一定的功率损失。

3. 反馈电容(Cf):反馈电容是指PA输出端与输入端之间的耦合电容。

反馈电容的存在会导致PA的工作不稳定,甚至产生自激振荡。

因此,在设计PA时,需要尽量减小反馈电容的影响。

4. 有源器件:有源器件是指构成PA的核心部分,如晶体管、场效应管等。

有源器件的特性决定了PA的增益、线性度、效率等性能指标。

在实际应用中,有源器件的选择和匹配是非常重要的。

5. 无源器件:无源器件是指与有源器件一起构成PA的其他元件,如电感、电容、电阻等。

无源器件的作用是实现对有源器件的控制和调节,以优化PA的性能。

根据上述内容,我们可以得出一个简单的PA输出等效电路模型:Vout = ZL * (Iin - Io) + Ro * Io其中,Vout表示PA输出端的电压;ZL表示负载阻抗;Iin 表示PA输入端的电流;Io表示流过PA输出电阻的电流;Ro表示输出电阻。

pa放大器原理

pa放大器原理

PA放大器( 功率放大器)是一种电子设备,用于将输入信号的功率放大到更高的水平。

它主要由放大器电路和电源电路组成。

PA放大器的工作原理如下:
1. 输入信号:PA放大器的输入信号可以是来自音频、射频或其他类型的信号源。

输入信号经过预处理电路,如滤波器、放大器等,以确保输入信号的质量和适应性。

2. 放大器电路:输入信号进入放大器电路,其中包含一个或多个放大器级别。

每个级别都由晶体管、真空管或其他放大器元件组成。

这些元件将输入信号的功率放大到更高的水平。

3. 负载匹配:为了确保最大功率传输和防止反射损耗,PA放大器需要与负载 通常是天线)进行匹配。

负载匹配电路通常包括匹配网络和调谐电路。

4. 电源电路:PA放大器需要稳定的电源供电。

电源电路通常包括整流器、滤波器和稳压器等组件,以确保输出功率的稳定性和可靠性。

5. 输出信号:经过放大的信号从PA放大器的输出端口传输到负载(如天线)或其他设备中。

总的来说,PA放大器的原理是通过放大器电路将输入信号的功率放大到更高的水平,并通过负载匹配和电源电路来确保输出信号的稳定性和适应性。

1。

RF高功率线性PA原理介绍(数字预失真) LPAP2原理介绍PPT课件

RF高功率线性PA原理介绍(数字预失真) LPAP2原理介绍PPT课件
9
硬件总体框图
RFin
输入分路单元 (ISU)
RF1
主功率放大 单元
(MPAU)
RF3
延时滤波器单元 (DFU)
RFout
Vpc1 Vac1
RF7 RF4
RF8 RF9 RF6
+28V +12V +5V
Voc
后面板 接口
-48V
电源单元 (PU)
RF2
Vip S12
Ev S28
载波抵消单元 (CCU)
2
前馈技术原理

RFout
RFin

自适应控制器
前馈技术原理框图
3
前馈技术原理
• RFin经过同相等分后,一路通过自适应控制 器控制的幅度和相位调整和主功率放大器放 大输出,并由定向耦合器取样得到主功放输 出取样信号送入载波抵消器参加信号对消;
• 另一路输入分路信号经过延时补偿处理(补 偿主功率放大通道的延时)后也进入载波抵 消器参加信号对消;
• 功率检测采用AD公司的功率检测芯片AD8362。 该芯片检测的动态范围大,输出电压按dB线 性输出,控制方便。
14
CCU(载波对消单元)
RF6 RF4
ERA-5
RF5
+12V
10dB 10dB
RF2
• CCB是主环对消的实现部件,它应该完成主环的载波信号抵消 及误差信号初级放大和取样等功能
15
11
输入分路单元(ISU)
RFin AD8362
RF1 +12V
Vip +5V +12V
RF2
Vpc1
Vac1
ISU原理框图
12

RF原理及电路解析

RF原理及电路解析

RF原理及电路解析RF(Radio Frequency)通常被翻译为射频或者无线电频率,是指在300 kHz到300 GHz之间的电磁波频率范围。

RF原理:在RF技术中,电流通过导线或者电子器件(例如晶体管、二极管等)来产生高频的振荡信号,并通过天线辐射出去。

接收端则通过天线接收到这些波,然后解调恢复原始信号。

RF频率的特点是在电磁波频谱中处于高频段,具有较大的传播能力和穿透力。

相比之下,低频信号在传播过程中会受到电缆损耗和其他干扰的影响较大。

RF电路解析:RF电路设计需要考虑到信号的特点和要求,因此与普通电路设计存在一些不同之处,主要有以下几点:1.选择合适的元器件:在RF电路中,选择合适的元器件是非常重要的。

元器件的参数如导通电阻、电容、电感等应满足高频特性要求。

例如高频电容需要具有低阻抗和低失真特性,而高频电感则需要具有较低的等效串联电阻和互感。

2.高频电路布局:在RF电路中,电路板的布局对信号的传输和抗干扰能力有很大影响。

为了避免干扰,需要保持良好的地线和电源线分布,以减小信号回路间的互联电感和互联电容。

此外还需要避免天线和其他高频元器件之间的相互干扰。

3.高频仿真与调试:在设计RF电路时,需要进行高频仿真以验证电路的参数和性能是否满足要求。

常用的电磁仿真软件如ADS、HFSS等可以帮助设计者进行电路的仿真与优化。

同时,通过观察功率谱、频谱分析、S参数等指标,可以进行电路的调试和优化。

4.阻抗匹配:RF电路中,为了提高功率传输效率,需要进行阻抗匹配。

通过使用阻抗变换器、匹配线和滤波器等元器件,将信号源、负载和传输线的阻抗调整为匹配的阻抗,从而实现最大功率传输。

总结起来,RF原理涉及到电磁波的传播和信号处理,而RF电路设计则需要关注元器件选型和参数、高频布局、仿真与调试以及阻抗匹配等因素。

对于RF设备的性能和应用来说,合理的RF电路设计是非常重要的。

射频功率放大器

射频功率放大器

射频功率放大器射频功率放大器(RF PA)是各种无线发射机的重要组成部分。

在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。

为了获得足够大的射频输出功率,必须采用射频功率放大器。

目录一、什么是射频功率放大器二、射频功率放大器技术指标三、射频功率放大器功能介绍四、射频功率放大器的工作原理五、射频放大器的芯片六、射频功率放大器的技术参数七、射频放大器的功率参数八、射频功率放大器组成结构九、射频功率放大器的种类正文一、什么是射频功率放大器射频功率放大器是发送设备的重要组成部分。

射频功率放大器的主要技术指标是输出功率与效率。

除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。

射频功率放大器是对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题作综合考虑的电子电路。

在发射系统中,射频功率放大器输出功率的范围可以小至mW,大至数kW,但是这是指末级功率放大器的输出功率。

为了实现大功率输出,末前级就必须要有足够高的激励功率电平。

射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。

而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。

为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。

二、射频功率放大器技术指标1、工作频率范围一般来讲,是指放大器的线性工作频率范围。

如果频率从DC开始,则认为放大器是直流放大器。

2、增益工作增益是衡量放大器放大能力的主要指标。

增益的定义是放大器输出端口传送到负载的功率与信号源实际传送到放大器输入端口的功率之比。

增益平坦度,是指在一定温度下,整个工作频带范围内放大器增益的变化范围,也是放大器的一个主要指标。

3、输出功率和1dB压缩点(P1dB)当输入功率超过一定量值后,晶体管的增益开始下降,最终结果是输出功率达到饱和。

线性功率放大器介绍

线性功率放大器介绍

2019/9/11
第9页
2.3 多载频线性功率放大器技术发展的一些想法
1) 对于已基本掌握的前馈技术,做好以下几方面的工作:
a、现在已开发出公司3G系统需要的800M和2100MHz多载频线性功 率放大器,那么解决好现有项目本身的自我完善,主要指的是 文档的不断完善,产品质量本身的不断完善;
b、要解决好现有产品可生产问题; c、项目改进:如由于WCDMA系统升级带来项目需求的变化,引起
提高前馈技术实现的30瓦两载波2100M线性功率放大器效率的办法, 就是首先提高主功率放大器的效率,后续的可以采用新技术进一步提高 其效率(如Doherty技术等);还有就是在前馈技术的主环路中给主功率 放大器加模拟预失真,以提高主功率放大器的线性,从而提高线性功率 放大器的整体效率,该两种方法准备在2100M 30瓦两载波的线性功率放 大器V3.0版本上采用。
项目要求重新设计; d、系列化多载频线性功率放大器(现在正在研制CDMA2000-1X系
统所需的1900M和2100M线性功率放大器)。
2019/9/11
第 10 页
2) LPA新技术的研究 : 实现多载频线性功率放大器现在在国际主要是采用的
是前馈技术,其主要优点是实现的带比较宽、改善量比较 大,缺点是效率还比较低。依据以上情况国外的一些公司 前几年就提出了为提高效率实现多载频线性功率放大器的 其他技术,如基带预失真技术等;
6. 3G线性功率放大器现状和近期规划
6.1 LPA-P2(800M40瓦4载波线性功率放大器) 6.2 LPA-L1(1900M40瓦4载波线性功率放大器) 6.3 LPA-S1(2100M30瓦2载波线性功率放大器)
2019/9/11
第 20 页

射频功率放大器设计与优化

射频功率放大器设计与优化

射频功率放大器设计与优化射频功率放大器(Radio Frequency Power Amplifier,简称RFPA)是无线通信系统中的重要组成部分,其主要功能是将输入的低功率信号放大至较高的功率水平,以满足系统的传输要求。

设计和优化一个高效、线性且稳定的RFPA对于提高通信系统的性能至关重要。

本文将介绍RFPA的基本原理、设计要点和优化方法,并重点讨论功率增益、效率和线性度等关键性能参数的优化技术。

一、RFPA的基本原理RFPA的基本原理是利用功率管(例如晶体管)的非线性特性,将输入的低功率信号经过放大电路放大至较高的功率水平。

主要包括输入匹配、功率放大和输出匹配三个部分。

1. 输入匹配:输入匹配电路的作用是将信号源的输出阻抗与功率管的输入阻抗匹配,以实现最大功率传输。

常用的输入匹配网络包括L 型匹配网络和PI型匹配网络。

2. 功率放大:功率放大器的核心是功率管,其输入端接收到匹配网络输出的信号,并通过引入直流偏置电压,使功率管工作在合适的工作点上,以实现较高的线性度和功率增益。

3. 输出匹配:输出匹配电路的作用是将功率管的输出阻抗与负载的输入阻抗匹配,以实现最大功率传输。

常用的输出匹配网络包括π型匹配网络和T型匹配网络。

二、RFPA的设计要点为了实现高效、线性和稳定的RFPA设计,需要考虑以下几个关键要点。

1. 功率增益:功率增益是衡量RFPA放大效果的重要指标。

在设计过程中,需要权衡信号增益和功率增益之间的关系,并选择合适的放大器结构和电路参数。

通常情况下,可以选择分级放大的结构,通过级联不同功率管实现较高的功率增益。

2. 效率:RFPA的效率指的是输入电能和输出射频功率之间的转换效率。

高效率的设计可以提高系统的能源利用率,并减少功耗。

为了提高效率,可以采用最大功率追踪技术、动态功率调整技术和功率补偿技术等方法。

3. 线性度:RFPA的线性度决定了其输出信号的失真程度。

在设计中,需要考虑非线性失真的抑制和动态范围的优化。

射频功率放大器(RF PA)概述

射频功率放大器(RF PA)概述

基本概念射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。

在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。

为了获得足够大的射频输出功率,必须采用射频功率放大器。

在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。

放大器的功能,即将输入的内容加以放大并输出。

输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。

对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。

如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。

如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。

射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。

通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。

除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。

分类根据工作状态的不同,功率放大器分类如下:传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。

射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。

甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。

乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。

射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。

rf功放原理

rf功放原理

rf功放原理
射频(RF)功放是一种用于将低功率射频信号放大到较高功率的设备。

它在无线通信、广播、雷达和其他射频系统中起着重要的作用。

下面是RF功放的基本工作原理的详细描述:
1. 输入信号:RF功放的输入是一个低功率射频信号,通常从射频源(如信号发生器)或前级放大器中提供。

2. 放大器级别:RF功放通常由多个放大器级别组成。

每个级别都负责对输入信号进行一定程度的放大。

放大器级别的数量取决于所需的总增益。

3. 功率放大:每个放大器级别通过使用放大元件(例如晶体管、真空管或势能器件)将输入信号的幅度增加到更高的水平来实现功率放大。

这些放大元件的选择取决于应用的特定要求。

4. 直流供电:RF功放通常需要稳定的直流电源来提供所需的电力。

这可以通过电池、开关电源或线性电源等方式实现。

5. 冷却系统:由于功率放大会产生大量热量,因此RF功放通常需要配备适当的冷却系统来保持温度在可接受范围内。

这可以是风扇、散热器或液冷系统等。

6. 输出信号:经过多个级别的放大后,RF功放将输入信号放大到所需的输出功率水平,并输出到负载(例如天线)以进行传输。

值得注意的是,RF功放的性能和特性受到许多因素的影响,包括频率范围、功率增益、效率、线性度和失真等。

设计和选择适当的RF功放对于确保射频系统的正常运行至关重要。

1。

射频电路中pa电路

射频电路中pa电路

射频电路中pa电路1.引言1.1 概述射频电路中的功率放大器(PA)电路在无线通信系统中起着至关重要的作用。

射频电路是一种特殊的电路,用于处理无线通信中的高频信号。

PA电路作为射频电路中的关键组成部分,主要负责将输入信号的功率放大到足够的水平,以便保证信号能够被传输或发送给接收端。

在无线通信系统中,信号往往需要经过一定的传输距离,因此信号在传输过程中会衰减。

为了弥补信号衰减带来的损失,需要使用功率放大器来增加信号的功率。

PA电路的主要功能就是将输入信号的能量转化为输出信号的能量,并向输出负载传递足够的功率。

基于不同的应用需求和技术约束,PA电路有多种不同的设计方案。

根据功率放大器的工作方式,可以将其分为线性功率放大器和非线性功率放大器。

线性功率放大器在保持信号波形完整性和减小失真方面具有较好的性能,因此在无线通信系统中得到广泛应用。

而非线性功率放大器则在功率转换效率方面具有较高的优势,适用于一些功率要求较高的应用场景。

PA电路的设计和优化是射频电路设计的重要内容,涉及到多个参数的选择和调整。

通过选择合适的功率放大器类型、匹配网络和功率传输线等组成部分,并进行适当的调试和测试,可以实现对信号的高效放大和传输。

本文将详细介绍PA电路的基本原理和工作方式,以及其在无线通信系统中的重要性。

同时,还将探讨PA电路未来的发展方向和挑战。

最后,通过对PA电路的研究和应用,将为无线通信技术的发展做出积极的贡献。

1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构是指文章的整体框架和组织方式,它将整个文章划分为不同的部分,使读者能够清晰地理解和掌握文章的内容。

本文将按照如下结构展开:第一部分为引言部分,主要介绍本文的主题和背景,包括射频电路中PA电路的基本概念和作用,以及文章的目的和意义。

通过引言部分,读者能够初步了解PA电路在射频电路中的重要性,并对本文的内容产生兴趣和需求。

第二部分为正文部分,主要分为两个小节。

一种峰值功率控制的带限数字预失真算法

一种峰值功率控制的带限数字预失真算法

现代电子技术Modern Electronics Technique2018年3月1日第41卷第5期Mar.2018Vol.41No.5DOI :10.16652/j.issn.1004⁃373x.2018.05.0020引言随着用户对数据传输速率需求的不断提升,现代无线通信系统的带宽变得越来越宽,例如第四代(Fourth ⁃Generation ,4G )长期演进(Long ⁃Term Evolution ,LTE )系统,信号带宽[1]已经达到了100MHz 。

信号带宽的增大,对用于提升系统中功率放大器(Power Amplifier ,PA )线性度的数字预失真(Digital Predistortion ,DPD )技术提出了严峻挑战[2]。

DPD 技术是在数字中频级联一个与PA 非线性特性相逆的预失真器,从而改善系统的线性度,以其编程灵活、性能成本适中的优点成为主流的PA 线性化技术[3⁃4]。

为了建立与PA 非线性特性相逆的预失真器模型,需要运用(Analog to Digital Converter ,ADC )采集包含PA 非线性失真信息的输出信号。

由于PA 的非线性会对信号频谱展宽,所需ADC 的采样带宽[5]将会是输入信号的5~7倍。

一般考虑PA 输出的5阶失真分量,对于100MHz 带宽的4G ⁃LTE 信号而言,需要采样的信号带宽达到500MHz ,根据奈奎斯特采样定理,ADC 需要的采样速率超过吉比特,这将会大大增加系统成本和系统功耗。

此外,功放的非线性主要表现为在输入信号功率过大时,功放增益压缩,DPD 为了补偿功放的压缩增益,一种峰值功率控制的带限数字预失真算法陈中森,巩稼民,张博(西安邮电大学电子工程学院,陕西西安710061)摘要:针对宽带无线通信系统中数字预失真技术反馈回路存在模数转换器ADC 的采样速率高、预失真后信号峰均比(PAPR )增大的问题,提出一种结合峰值功率控制的带限数字预失真算法。

RF PA介绍

RF PA介绍

RF PA介绍LOREM IPSUM DOLOR LOREMCONTENTS 半导体功率器件放大器类型介绍RF PA调试QA RF PA应用RF PA特性参数PA:独立于主芯片的射频器件射频功率放大器(Power Amplifier, 简称 PA)是化合物半导体应用的主要器件,也是无线通信设备射频前端核心的组成部分。

射频前端(RF Front End)是用以实现射频信号发射与接收功能的芯片组,与基带芯片协同工作,共同实现无线通讯功能。

射频前端包括功率放大器(Power Amplifier)、开关(Switch)、滤波器(Filter)、双工器(Duplexer)、低噪声放大器(Low Noise Amplifier)等功能构件,其中核心器件是决定发射信号能力的射频功率放大器芯片。

PA 芯片的性能直接决定了手机等无线终端的通讯距离、信号质量和待机时间,是整个通讯系统芯片组中除基带主芯片之外最重要的组成部分。

根据晶体管的静态工作点的位置不同可分以下几类。

(1) A 类放大电路u CEi CQ Ai C1I CQ ωt2θ=2π 02ππ集电极电流波形静态工作点位置特点a.静态功耗大b.能量转换效率低c.高线性度功率放大器分类CQCEQ C I U P =u CEi CQ Aωti C2π 2 π2θ = π3 π静态工作点位置集电极电流波形特点a. 静态功耗CQ CEQ C ≈=I U P b. 能量转换效率高c. 输出失真大(2) B 类放大电路B类放大电路图示分析-U CC+U CCR 1R 2R Lu oVD 1VD 2u iV 1V 2u i wt+U CCu i+-V 1R Lu oV 2R Lu ou i-U CCu owt 0u owt0u owt 0改善B类放大器交越失真u CEi CQ Ai C3π2π3πI CQπ <2 < 2π静态工作点位置集电极电流波形特点a. 静态功耗较小b. 能量转换效率较高c. 输出失真比甲类大(3) AB 类放大电路功率放大器特性总结Linearity class MaximumefficiencyA50%GoodB78.5%ModerateAB50-78.5%betterC100%poor半导体功率器件晶体管工艺Class ProcessHigh power PA HBTLow/Mid power PA SiGeLNA+Switch HEMT/pHEMT/SOI/SiGeHigh power FEM HBT+HEMT/pHEMT,BiHEMT FEM(Low/Mid power)HBT/SiGeRF PA应用802.11 wifi802.15 Bluetooth/Zigbee GSM/CDMA/LTE-A通信类电子射频前端ISM Band Application射频前端架构图PA内部架构图PA与LNA区别●LNA:工作在小信号状态,提供放大的信号电流和电压,功率通常很小,NF低;●PA:工作在大信号状态,提供较大的功率输出,其晶体管有足够的电流驱动能力和较高的击穿电压;●PA:输出有很大的动态范围,其输出阻抗随电压和电流而改变,是非线性阻抗,因此阻抗匹配是难点;●LNA:电压增益;●PA:电压增益+功率增益。

LPAP功放RFA-PA部分初步设计方案word参考模板

LPAP功放RFA-PA部分初步设计方案word参考模板

LPAP功放RF(A-PA部分)初步设计方案拟制:胡杰审核:批准:发布日期:本文中的所有信息均为武汉正维电子技术有限公司信息,务请妥善保管,未经公司明确作出的书面许可,不得为任何目的、以任何形式或手段(包括电子、机械、复印、录音或其它形式)对本文档的任何部分进行复制、储存、引入检索系统或者传播。

目录1总体框图 (4)1.1功能描述41.2PA射频指标要求及设计指标4 2PA方案设计 (5)2.1射频PA通路原理图设计62.1.1射频PA部分原理图 (6)2.1.2PA射频部分设计分析 (6)2.2指标容差分析82.3射频可靠性分析9 3EMC设计 (10)4结论 (10)5附件 (10)1总体框图1.1功能描述本文件介绍了一款TD-SCDMA多载波功放中的功放放部分(下行部分)的设计过程。

此功放将上下行放大功能合为一体,工作频段是1880MHz~1920MHz ,下行输出的额定功率为>=42.5dBm (12载波信号)PAR=7.0dB,44.5dBm (12载波信号)PAR=6.0dB。

此款功放被命名为LPAP TD-SCDMA 多载波功放模块,以下简称为LPAP。

功能描述见表1:表1, LPAP 多载波高功放基本功能需求功能实现原理如图1示;该功放必须与DPD系统配合,除了常规的上下行一体化外,反向功率检测端口还要用于DPD的反馈链路。

功能实现原理如图1示;环行器图1,LPAP多载波高功放模块的原理图1.2PA射频指标要求及设计指标PA部分射频指标要求及设计指标如表2示;表2 ,LPAP功放PA射频指标要求及设计指标2PA方案设计如图1示,PA部分链路:射频信号经介质滤波器后,第1级预推动放大,然后进行温补,再预推动级,最后主功放放大后经输出功率耦合器,环形器输出。

PA链路与LNA链路的切换控制通过系统提供的RXVON、TXVON信号处理后来实现。

2.1射频PA通路原理图设计射频PA通路采用四级放大来实现对射频信号的放大,下面是具体的分析和设计过程。

RF原理及电路解析

RF原理及电路解析

RF原理及电路解析RF(Radio Frequency)是指射频领域,在无线通信、广播电视、雷达等领域中起着重要作用。

RF原理涉及电磁波传播、天线设计、射频电路等方面,下面将对RF原理及电路进行解析。

RF原理:1. 电磁波传播:RF信号属于电磁波,以电磁场的形式在空间中传播。

电磁波的特点包括频率、波长、振幅和相位。

RF信号的频率一般处于1MHz到300GHz之间,对应的波长范围约为1mm到1000m。

电磁波传播时存在衰减、散射、反射等现象。

2.天线设计:天线是接收和发射RF信号的装置,用于将电磁波转换为电流或电压(接收模式)或将电流或电压转换为电磁波(发射模式)。

天线的种类多样,常见的有偶极天线、单极天线、矩形天线等。

天线的设计需考虑天线的增益、辐射方向性、阻抗匹配等因素。

3.射频电路:射频电路是指用于处理RF信号的电路,包括放大器、滤波器、混频器、发射器、接收器等。

主要特点是对高频信号具有较好的增益、低噪声和较强的抗干扰能力。

RF电路解析:1.放大器:RF放大器用于放大射频信号的幅度,提高信号的功率。

常见的RF放大器有共源放大器、共栅放大器、共基放大器等。

放大器的特点是输入和输出均为交流信号,需要考虑放大器的增益、带宽、线性度和功率等指标。

2.滤波器:射频信号经过传输或处理后,通常会引入一些干扰或噪声。

滤波器用于去除不需要的频率分量,保留感兴趣的频率范围。

滤波器可以是低通滤波器、高通滤波器、带通滤波器等。

滤波器的特点是对信号的频率响应和幅度响应进行调整。

3.混频器:混频器用于将两个不同频率的信号相互叠加,得到新的信号。

常见的混频器有单、双、三、四象限等类型。

混频器的特点是对输入信号进行非线性处理,生成新的频率成分。

4.发射器:发射器用于将射频信号转换为电磁波进行传输。

发射器通常由射频发生器、调制器、功率放大器等组成。

射频发生器产生特定频率的射频信号,调制器将信号调制为所需格式,功率放大器将信号放大到足够的功率。

功率放大器(PA)介绍

功率放大器(PA)介绍

上海市共进通信技术有限公司
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
主要技术指标—三阶交调
三阶交调交截点 右图中基波信号输出功率特性延长 线与三阶交调特性延长线的交点称为 三阶交调交截点,用符号IP3表示, 对应的输出功率是P1,它也反映了微 波功率放大器的非线性,当输出功率 一定时,三阶交调交截点输出功率P1 越大,微波功率放大器的线性就越好 在实际PA Spec中常用OIP3表示,对应 的输入就为IIP3.
1.饱和输出功率 当功率放大器的输入功率加大到某一 值后,再加大输入功率并不会改变输 出功率的大小,该输出功率称为功率 放大器的饱和输出功率。 2.1dB压缩点输出功率P1dB 功率放大器增益压缩 1dB 所对应的输 出功率称为 1dB 压缩点输出功率,记 作P1dB。
上海市共进通信技术有限公司
add
射频输出功率 射频输入功率 直流输入功率
add 称为功率放大器的功率附加效率, 它既反映了直流功率转换成射频功率的能力, 又反映了放大射频功率的能力。很明显,用功率附加效率add 衡量功率放大器的功 率效率是比较合理的。
上海市共进通信技术有限公司
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
主要技术指标— 工作频带
工作频带是指放大器应满足全部性能指标的连续频率范围。 硅双极型晶体管功率放大器和硅金属氧化物场效应管功率放 大器的工作频率是从300MHz到4GHz. 砷化镓场效应管功率放大器的工作频率是从1GHz到几十G Hz,通常分为S、L、C、X、Ku、Ka波段等等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Vgc DATA CLK LE LD
Vfp
输出反射功率检测模块 RF9 AD8362 Vrp
主环对消检测模块
• 将CCU送来的主环对消取样信号RF6通过功率检测得到 相应的直流检测电压Vmc • 主环对消检测模块是对载波抵消后的信号进行功率检 测,采用AD公司的AD8362,这是1个宽带RMS均方 根检波器; • 前面的π 型网络用来调整板间一致性,并可适当地将 信号动态移动到合适的位置; • 声表滤波器是主要是为了抑制系统输入信号中工作频 带外存在的、远端的杂散信号(譬如收发信机中的本 振泄漏)对主环对消结果检测的干扰,采用了一般通 用的前向通道射频带通滤波器SAWTEK公司的855728。
CCU(载波对消单元)
RF5 +12V
10dB
RF6
ERA-5
RF4
• CCB是主环对消的实现部件,它应该完成主环的载波信号抵消 及误差信号初级放大和取样等功能
10dB
RF2
CCU(载波对消单元)
• CCB单板的原理较为简单,设计实现容 易。定向耦合器选用Anaren公司的10dB 定向耦合1D1304-10,射频放大器选用 Mini-circuits公司的ERA-5SM,射频端 口参见硬件总体框图 ,RF2所经过的延 时线由一节外加工部件长度约为4m电缆 实现,安装在CCU内部。
延时滤波器单元(DFU)
• DFU将采用一个外协订做的一体化整件,实现主功放 输出信号的取样、延时以及误差信号的注入和系统输 出口的正向传输与反向驻波反射功率的取样等功能。 电路原理如图所示。
RF3
RFout
RF4
RF7
RF8
RF9
PU(电源单元)
• 电源单元从基站系统接受-48V电源,通过3个DC-DC模块输出 +28V、+12V,+5V电源,为线性功放系统提供工作电压,并监 视+28V工作电压,配合CU实现LPA-P2线性功率放大器的电源 告警(过压和欠压)保护功能;同时可以接收CU提供的控制信 号,开/关+28V和+12V输出
前馈技术原理
• 自适应控制器则参照载波抵消器输出取样信号闭环调 整主功率放大通道的增益和相移,保证载波信号的良 好对消,得到代表主功放失真特性的误差信号;误差 信号经过自适应控制器的幅度、相位调整和误差放大 器的功率放大后,耦合引入主功放输出通道,反相抵 消主功放输出信号中的失真分量,实现前馈线性化过 程,自适应控制器同样通过闭环取样检测误差信号的 对消结果,控制误差放大通道的增益和相移量,动态 保证失真信号的良好对消效果。
输入分路单元(ISU)
• 电调衰减器选用ALPHA公司生产的线性电调 衰减器AV104 ,该衰减器具有封装尺寸小、功 耗低、动态范围大等特点 • 移相器是由3dB/90度耦合器1D1304-3和变容 二极管SMV1249构成的反射式移相器,为了使 手调移相器的移相量达到360度,采用了3级 移相器串联的方法,这样既保证了移相量, 又不至于使群时延特性变坏。 • 功率检测采用AD公司的功率检测芯片AD8362。 该芯片检测的动态范围大,输出电压按dB线 性输出,控制方便。
正向输出信号和交调信号检测模块
• 系统输出正向功率检测:将延时滤波器送来 的系统输出正向功率取样信号RF8通过功率检 测得到相应的直流检测电压Vfp; • 系统输出取样信号Rfsa为RF8输入,通过一个 10dB耦合器取样输出。 • 交调信号检测采用接收机原理, 利用下变频 到中频利于交调信号提取检测的实现。
数字接收自适应控制技术原理
RF
ADC
PLL
Vac Vpc
图3 数字接收自适应控制技术原理框图
DAC DAC
M C U
数字接收自适应控制技术原理
• 数字接收自适应控制技术是通过中频滤 波接收检测信号对消效果,并结合高速 数字信号处理实现精确、及时的环路控 制的信号处理技术,这种技术主要用于 误差环的自适应控制过程 。
DTU(检测单元)
主环对消检测模块 RF6 AD8362 Vmc
正向输出信号和交调信号检测模块 10dB RF8 RFsa
AD8362
-10dB
10dB
-25dB -7dB 13dB
-11dB
-3dB~-20dB -3dB~-20dB -11dB 24dB 32dB 13dB AD8307
Vec
LO PLL
数字接收自适应控制技术原理
• 采用中频滤波波信号的幅度远大于对消剩余的 失真信号,所以要检测失真信号的对消效果,必须首先足够地 抑制掉取样信号中的载波信号成分,而这种抑制在射频领域是 非常难以实现的 ,因此采用中频滤波的接收机技术检测处于大 信号干扰下的互调失真信号抵消效果。 取样来自RF信号经过一定衰减后,与PLL输出的LO信号混 频降到中频频率,再通过中频SAW滤波器带通滤除载频信号功 率(为保证足够的带外抑制性能,中频滤波将采用两级SAW滤 波器级联实现),并通过检波和ADC提供数字量的互调对消剩 余信息给MCU。
输入分路单元(ISU)
RFin
RF1
+12V AD8362
Vip
+5V +12V
RF2
Vpc1
Vac1
ISU原理框图
输入分路单元(ISU)
• 该单板的功能是将输入的信号功率取样检测 (直流电平)给 CU,并对输入信号放大进行 功分,一路去 CCB 作为载频抵消的输入基准 信号,另一路通过手动和电调控制的移相、 衰减调整后送给MPAU,作为主功率放大的输 入信号。 • ISB既是系统输入信号的同相等分功能实现部 件,也是主环的移相和增益调整功能实现部 件,其关键技术就是电调移相和电调衰减电 路的实现技术。
MPAU(主功放单元)
RF1 RF3
VCO Voc 温度传感器 Vt
MPAU(主功放单元)
• 考虑到既要满足主功放输出 47.4dBm 的功率和 ACPR 的要求,又要达到16.37℅的输出效率,对于目前的微 波功率管来说单管无法实现。所以,主功放中采用了 推挽放大的功率合成技术。由于MRF9210是对管推挽 工作,输出要有平衡非平转换,本方案所用器件 3A425对二次谐波有很大拟制作用,对达到指标有保 证。 • 末级用两个 MOTOROLA 的 MRF9210 合成,这种方案 的回退量比较小,约8.2dB,因此效率应该比较高 , 采用 BGF802-20 做末前级放大器;用两级 FIACO 公司 的A类射频放大器AH1做推动级放大器 。
EAU(误差放大单元)
EAU(误差放大单元)
• 如图所示,来自于载波抵消单元的载波抵消 信号 RF5 经 π 型衰减器、电调移相器、电 / 手 调衰减器、 EAR-5SM、手调移相器,最后再经 MHL9236 及 MRF9085 放大后由隔离器输出。输 入端口的 π 型衰减器用改善输入端的驻波比。 为了增加电调移相器和衰减器的调节范围, 一个由运算放大器实现的电平转换器将来自 于监控单元的 0V~2.5V的移相和衰减控制信号 Vpc2和Vac2的电压转换成0V~5V。
正向输出信号和交调信号检测模块
• 中频滤波指标要求-75dBc@1.845MHz,选择Epcos公司的LJ64C 声表滤波器,中心频率141MHz; • 功率检测器件选用了AD公司的AD8307,它的工作带宽从 DC~500MHz,可以满足我们的要求,很大的输入动态范围, 90dB左右(-75dBm~+17dBm),检测斜率和起点可调; • 选择了振荡频率为19.2Mhz,频率稳定度为6ppm的温补晶振,及 锁相环LM2316TMX实现30KHz的数字步进和10ppm的频率稳定 度 ,压控振荡器采用MVCO780; • 采用压控衰减器AF002N2-32实现中频AGC功能。
LPA-P2介绍
• 系统原理 • 主要技术 • 单板原理
系统原理
• 由于 CDMA2000 系统的宽带调制和 MC 运行特点,作为 BTS 下行发射通道的功 率驱动装置 ——射频功率放大器,必需 采用具有超线性功率放大性能的 LPA。 本产品正是专门为满足此应用进行设计 的。 • 在本产品设计中主要采用了前馈技术和 数字接收自适应控制技术。
DTU(检测单元)
• DU负责完成系统主环对消取样信号RF6、正向输出取样信号RF8、 反向输出取样信号RF9的功率检测,以及利用中频滤波接收机方 案配合CU实现系统的频道搜索和互调功率检测等功能,包括主 环对消检测模块 ,输出反射功率检测模块,正向输出信号和交 调信号检测模块 。 • 检测单元(DU)是系统的状态检测核心,接受延时滤波器单元 (DFU)来的正向输出取样信号RF8和输出反向信号RF9以及误差 放大单元(EAU)馈入的误差取样信号RF6;并将 正向输出功 率检测电压Vfp、输出反射功率检测电压Vrp、主环对消检测电 压Vmc、误差环对消检测电压Vec以及频率合成器失锁指示信号 LD送给控制单元(CU);同时,CU还提供控制DU数字合成频率 输出的SPI串行数据总线(包括数据线DATA、时钟线CLK和片选 线LE)和用于调谐DU中频检测通道增益的中频增益控制电压Vgc, 另外DU内部电路使用的+12V电源是由控制单元(CU)提供的。
硬件总体框图
RFin 主功率放大 RF3 输入分路单元 RF1 单元 (ISU) (MPAU)
Voc Vpc1 Vac1
延时滤波器单元 (DFU) RF7 RF8 RF6 RF9
RFout
RF4
后面板 接口 -48V
RF2
误差放大 载波抵消单元 RF5 单元 (CCU) (EAU) 5 Vt Vac2 控制单元 (CU) Vpc2
前馈技术原理
A Ф RFin A Ф RFout
自适应控制器
前馈技术原理框图
前馈技术原理
• RFin经过同相等分后,一路通过自适应控制 器控制的幅度和相位调整和主功率放大器放 大输出,并由定向耦合器取样得到主功放输 出取样信号送入载波抵消器参加信号对消; • 另一路输入分路信号经过延时补偿处理(补 偿主功率放大通道的延时)后也进入载波抵 消器参加信号对消;
相关文档
最新文档