2019北京四中新高一分班考试数学真题(一)

合集下载

北京四中新高一分班考试数学试卷及答案

北京四中新高一分班考试数学试卷及答案
4 (Ⅰ)求抛物线 y 1 x2 1 x 1 的焦点的坐标;
4 24 (Ⅱ)设点 P 是焦点为 F 的抛物线 y ax2 ( a 0 )上的点,求证:以线段 PF 为直径的圆与 x 轴相切; (Ⅲ)设抛物线 y x2 2ax b 与 x 轴相交于点 A 、 B 两点,且其顶点总在以线段 AB 为直径的圆内,求 a, b 满足的关系.
数学试卷(1)
(试卷满分 120 分,考试时间 90 分钟)
姓名
班级
成绩____________
一、选择题(每小题 4 分,共 24 分)
1.已知 x、y 满足 x2 y 2 5 2x y ,则代数式 xy 的值为(

4
x y
2
A.
3
3
B.
2
1
C.
3
D.无法确定
2.若 2x 32 ,我们记 x log2 32 5 ,那么以下说法错误的是( )
17. (舍掉 x=2),x=22.
18. a=-1,-2.
19. MSR NTR . 1
20. a , N (2 3 1,1) 3
21. 答案:(3) − 1 < < .
22.解:(1)| | = | (0)| ≤ 1.
(2)记 = , = − + , = + + ,则| | ≤ 1,| | ≤ 1,| | ≤ 1.
7
22.(本小题满分 10 分)
已知: a, b, c 是实数,当 1 x 1时,不等式| ax2 bx c | 1 恒成立. (Ⅰ)求证:| c | 1; (Ⅱ)求证:当 1 x 1时,| ax b | 2 ; (Ⅲ)设 a 0 ,当 1 x 1时, ax b 的最大值为 2,求 a b c 的值.

2019北京四中高一(上)期中数学

2019北京四中高一(上)期中数学

2019北京四中高一(上)期中数 学试卷分为两卷,卷(I )100分,卷(II )50分,满分共计150分考试时间:120分钟卷(I )一.选择题:本大题共10小题,每小题4分,共40分1.已知全集U ={1,2,3,4,5},集合A ={1,3},B ={3,4,5},则集合A ∩B =()A.{2,3,4,5}B.{3}C.{1,4,5}D.{1,3,4,5}2.函数f (x )=√x−1x−2的定义域是( )A.RB.{x x ⁄>2}C.{x x ⁄≥1}D.{x x ⁄≥1且x ≠2}3.若a >b ,则下列各式中正确的是( )A.ac >bcB.ac 2>bc 2C.a +c 2>b +c 2D.1a <1b4.下列函数中,在区间(0,+∞)上为减函数的是( )A.y =x 2−2xB.y =|x |C.y =2x +1D.y =−√x5.命题“∀x ∈R ,x 3−x 2+1≤0”的否定是( )A.∃x ∉R ,x 3−x 2+1>0B.∃x ∈R ,x 3−x 2+1>0C.∃x ∈R ,x 3−x 2+1≥0D.∀x ∈R ,x 3−x 2+1>06.下列函数中:① y =2x ② y =1(x+1)2 ③ y =x 2+1 ④ f (x )={x +1,x <01−x ,x >0偶函数的个数是( )A.0B.1C.2D.37.“x >1”是“x 2−x >0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.函数f (x )=x 3−2x −3一定存在零点的区间是( )A.(2,+∞)B.(1,2)C.(0,1)D.(−1,0)9.下列函数中,满足f (2x )=2f(x)的是( )A.f (x )=(x +2)2B.f (x )=x +1C.f (x )=4xD.f (x )=x −|x | 10.函数f (x )=ax+b (x+c )2的图像如图所示,则下列结论成立的是( ) A.a >0,b >0,c <0B.a <0,b >0,c >0C.a <0,b >0,c <0D.a <0,b <0,c <0二.填空题:本大题共6小题,每小题5分,共30分11.设全集U =R ,集合A ={x 0⁄<x <2},B ={−3,−1,1,3},则集合(C U A )∩B =12.已知f (x )={2x −1,x ≥03x 2,x <0,则f(f (−1))的值为 13.函数y =x 3+3x −1,x ∈[−2,3]的值域是14.若x >0,则f (x )=4x +19x 的最小值为15.若二次函数f (x )的图像关于x =2对称,且f (a )≤f (0)<f(1),则实数a 的取值范围是16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:① 男学生人数多于女学生人数; ② 女学生人数多于教师人数;③ 教师人数的两倍多于男学生人数.(1)若教师人数为4,则女学生人数的最大值为; (2)该小组人数的最小值为.三.解答题:本大题共3小题,共30分17.(10分)设集合A ={x x 2⁄−2x −3>0},B ={x x 2⁄+4x +3<0},C ={x 2k ⁄−1<x <2k +3}.(1)求A ∪B ;(2)若C ⊆A ∪B ,求实数k 的取值范围.18.(8分)已知:a ,b >0,求证:a 3+b 3≥a 2b +ab 2.19.(12分)已知函数f (x )=2x −1a ,g (x )=2x −1a (a ∈R ,a ≠0).(1)当a =1时,解关于x 的不等式f (x )>0;(2)若f (x )+g(x)≥0在(0,+∞)上恒成立,求a 的取值范围.卷(II )一.过程性评价(考生不必作答),共10分二.填空题:本大题共5小题,每小题4分,共20分1.已知集合M ={0,1,2,3},N ={x x ⁄=2a ,a ∈M},则集合M ∩N =2.不等式|x −1|+|x +2|≤5的解集为3.已知x >y >z ,x +y +z =0,则 ① xz <yz ② xy >yz ③ xy >xz④ x |y |>z |y |四个式子中正确的是 (只填写序号)4.设f (x )={(x −a )2,x ≤0x +1x ,x >0(1)当a =12时,f (x )的最小值是 ;(2)若f(0)是f (x )的最小值,则a 的取值范围是 .5.已知集合M={x∈N∕1≤x≤15},集合A1,A2,A3满足①每个集合都恰有5个元素;②A1∪A2∪A3=M,集合A i中元素的最大值与最小值之和称为集合A i的特征数,记为X i(i=1,2,3),则X1+X2+X3的最大值与最小值的和为 .三.解答题:本大题共2小题,共20分6.(10分)已知函数f(x)=x2+a|x−1|.(1)当a=2时,解方程f(x)=2;(2)若f(x)在[0,+∞)上单调递增,求实数a的取值范围.7.(10分)设a,b,c,d不全为0,给定函数f(x)=bx2+cx+d,g(x)=ax5+bx2+cx+d.若f(x),g(x)满足①f(x)有零点;②f(x)的零点均为g(f(x))的零点;③g(f(x))的零点均为f(x)的零点. 则称f(x),g(x)为一对“K函数”.(1)当a=c=d=1,b=0时,验证f(x),g(x)是否为一对“K函数”,并说明理由;(2)若f(x),g(x)为任意一对“K函数”,求d的值;(3)若a=1,f(1)=0,且f(x),g(x)为一对“K函数”,求c的取值范围.word下载地址。

2019年北大附中新高一分班考试数学试题-真题-含详细解析

2019年北大附中新高一分班考试数学试题-真题-含详细解析

2019年北大附中新高一分班考试数学试题-真题一、选择题(本大题共8小题,共24分)1.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A. 200tan70°米B. 200tan70∘米 C. 200sin 70°米 D. 200sin70∘米2.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A. abc>0B. 4ac−b2<0C. 3a+c>0D. 关于x的方程ax2+bx+c=n+1无实数根3.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A. 1个B. 2个C. 3个D. 4个4.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 485.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A. √5B. 3√5 C. 2√5 D. 4√526.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的函数图象大致为图中的()A. B.C. D.7.在平面直角坐标系中,点O为坐标原点,抛物线y=x2−2x−3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()D. y=x+2A. y=xB. y=x+1C. y=x+128.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2−2ax上的点,下列命题正确的是()A. 若|x1−1|>|x2−1|,则y1>y2B. 若|x1−1|>|x2−1|,则y1<y2C. 若|x1−1|=|x2−1|,则y1=y2D. 若y1=y2,则x1=x2二、填空题(本大题共8小题,共24分)9.如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.DE的同样长为半径作弧,两弧交于点F.②分别以点D、E为圆心,大于12③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为______.10.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为______.得DF=1411.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=−4;②若点C(−5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a−b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是______(填写序号).12.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是______.第12题图第13题图13.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=⏜的长为π,则图中阴影部分的面积为______.120°,AB+AC=16,MN14.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.第14题图第15题图15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=______度.16.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共6分)17.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?四、解答题(本大题共12小题,共46分)18. 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下: 李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.19. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题: 已知实数x 、y 满足3x −y =5①,2x +3y =7②,求x −4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①−②可得x −4y =−2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组{2x +y =7,x +2y =8,则x −y =______,x +y =______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:x ∗y =ax +by +c ,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3∗5=15,4∗7=28,那么1∗1=______.20.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=kx(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.21.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.22.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.23.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).24.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有______种不同的结果.25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)26.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…−2−1012…y…m0−3n−3…(1)根据以上信息,可知抛物线开口向______,对称轴为______;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>−2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系______.27.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.28.已知直线l1:y=−2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=−2时,l2//l1;(3)E为线段BC上不与端点重合的点,直线l3:y=−2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.答案和解析1.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQPT,∴PT=PQtan70∘=200tan70∘,即河宽200tan70∘米,故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.2.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B 进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE =612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.4.【答案】A【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.5.【答案】C【解析】解:∵矩形ABCD,∴AD//BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,在Rt△ABC中,AC=√42+82=4√5,∴OA =OC =2√5,故选:C .由矩形的性质,折叠轴对称的性质,可求出AF =FC =AE =5,由勾股定理求出AB ,AC ,进而求出OA 即可. 本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提. 6.【答案】B【解析】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.故选:B .根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度ℎ(cm)与注水时间t(min)的函数图象.本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.【答案】B【解析】解:如图,∵抛物线y =x 2−2x −3与y 轴交于点A ,与x 轴正半轴交于点B ,令y =0,解得x =−1或3,令x =0,求得y =−3,∴A(3,0),B(0,−3),∵抛物线y =x 2−2x −3的对称轴为直线x =−−22×1=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n +3),∵点B′落在抛物线上,∴n +3=16−8−3,解得n =2,∴A′(1,2),B′(4,5),设直线A′B′的表达式为y =kx +b ,∴{k +b =24k +b =5, 解得{k =1b =1∴直线A′B′的表达式为y =x +1,故选:B.求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.8.【答案】C【解析】解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;故选:C.根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】27【解析】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴1×AB×GM=18,2∴4GM=18,∴GM=9,2∴△CBG的面积为:12×BC×GN=12×12×92=27.故答案为:27.过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.本题考查了作图−基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.10.【答案】9√3【解析】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF//CG,∴△EOD∽△GOC,∴EOGO =DOOC=EDGC,∵DF=14DE,∴DEEF =45,∴EDGC =45,∴EOGO =45,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】①③【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;该抛物线的对称轴为直线x=2+(−4)2=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有at2+bt+c≤a−b+c,即对于任意实数t,总有at2+bt≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】14t2−14t+1【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t24+1,∴DE=t24+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=AMAD =t2=FG1,∴FG=t2,∵CG=DE=t24+1,∴CF=t24−t2+1,∴S四边形CDEF =12(CF+DE)×1=14t2−14t+1.故答案为:14t2−14t+1.连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.13.【答案】3(8−√3−π)【解析】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵MN⏜的长为π,∴60πr180=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=√3,∴AM=AN=√3,∴BM+CN=AB+AC−(AM+AN)=16−2√3,∴S阴影=S△OBM+S△OCN−(S扇形MOE+S扇形NOF)=12×3×(BM+CN)−(120π×32360)=32(16−2√3)−3π=24−3√3−3π=3(8−√3−π).故答案为:3(8−√3−π).连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据MN⏜的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=√3,进而可求图中阴影部分的面积.本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.14.【答案】4√33厘米或4√3厘米或8−4√3【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√33;②当∠AEB=30°时,AE=ABtan30∘=4√33=4√3;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=xsin60∘=2√3x3,∵AF=AE+EF=ABtan30°=4√33,∴x+2√3x3=4√33,∴x=8−4√3,∴AE=8−4√3.故答案为:4√33厘米或4√3厘米或8−4√3厘米.根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.15.【答案】30=120°,【解析】解:正六边形的每个内角的度数为:(6−2)⋅180°6所以∠ABC=120°−90°=30°,故答案为:30.由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10]=−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,∴100+20(650−n)10≤160,解得n≥620,∵−2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.【解析】(1)根据图形和直角坐标系可得点D和点E的坐标,代入y=kx2+m,即可求解;(2)根据M和N的横坐标相等,求出N点坐标,再求出矩形FGMN的面积,即可求解;(3)根据题意得到w关于n的二次函数,根据二次函数的性质即可求解.本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.18.【答案】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:7200(1+50%)x −3200x=40,解得:x =40,经检验,x =40是原方程的解,且符合题意,∴(1+50%)x =60,3200x =80,7200(1+50%)x =120. 答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.【解析】设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x 的分式方程,解之经检验后即可得出x 的值,再将其分别代入(1+50%)x ,3200x ,7200(1+50%)x 中即可得出结论. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】−1 5 −11【解析】解:(1){2x +y =7 ①x +2y =8 ②. 由①−②可得:x −y =−1,由13(①+②)可得:x +y =5.故答案为:−1;5.(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,依题意,得:{20m +3n +2p =32 ①39m +5n +3p =58 ②, 由2×①−②可得m +n +p =6,∴5m +5n +5p =5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:{3a +5b +c =15 ①4a +7b +c =28 ②, 由3×①−2×②可得:a +b +c =−11,即1∗1=−11.故答案为:−11.(1)利用①−②可得出x −y 的值,利用13(①+②)可得出x +y 的值;(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①−②可得除m +n +p 的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a +b +c 的值,即1∗1的值.。

高一新生分班考试数学试卷含答案

高一新生分班考试数学试卷含答案

CB高一新生分班考试数学试卷(含答案)(满分150分,考试时间120分钟)一、选择题(每题5分,共40分) 1.化简=-2aa ( )A .aB .a -C .aD .2a2.分式1||22---x x x 的值为0,则x 的值为 ( )A .21或-B .2C .1-D .2-3.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点。

若EF =2,BC =5,CD =3, 则tan C 等于 ( )A .43 B .35 C .34 D .45 4.如图,P A 、PB 是⊙O 切线,A 、B 为切点,AC 是直径,∠P = 40°,则∠BAC =( )A .040 B .080 C .020 D .0105.在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是 ( )A .21 B .165 C .167 D .436.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A . 6B.4C .5D . 37.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动B CD CB A 路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是 ( )8.若直角坐标系内两点P 、Q 满足条件①P 、Q 都在函数y 的图象上②P 、Q 关于原点对称,则称点对(P ,Q )是函数y 的一个“友好点对”(点对(P ,Q )与(Q ,P )看作同一个“友好点对”)。

已知函数⎪⎩⎪⎨⎧>≤++=02101422x xx x x y ,,,则函数y 的“友好点对”有( )个A .0 B.1 C. 2 D.3注意:请将选择题的答案填入表格中。

北京市第四中学2019_2020学年高一数学上学期期中试题(含解析)

北京市第四中学2019_2020学年高一数学上学期期中试题(含解析)

北京市第四中学2019-2020学年高一数学上学期期中试题(含解析)卷(I)一.选择题:本大题共10小题,每小题5分,共50分1.已知全集U ={1,2,3,4,5},集合A ={1,3},B ={3,4,5},则集合A ∩B =( ) A. {2,3,4,5} B. {3}C. {1,4,5}D. {1,3,4,5} 【答案】B 【解析】 【分析】直接利用交集的定义求解.【详解】因为集合A ={1,3},B ={3,4,5}, 所以A ∩B ={3}. 故选:B【点睛】本题主要考查交集的计算,意在考查学生对这些知识的理解掌握水平.2.函数()f x =的定义域是( ) A. RB. {x |x >2}C. {x |x ≥1}D.{x |x ≥1且x ≠2} 【答案】D 【解析】 【分析】由题得1020x x -≥⎧⎨-≠⎩,解不等式即得解.【详解】由题得1020x x -≥⎧⎨-≠⎩,解之得1x ≥且2x ≠,所以函数的定义域为{x |x ≥1且x ≠2}. 故选:D【点睛】本题主要考查求具体函数的定义域,意在考查学生对这些知识的理解掌握水平.3.若a >b ,则下列各式中正确的是( ) A. ac >bc B. ac 2>bc 2C. a +c 2>b +c 2D. 11a b<【答案】C 【解析】 【分析】A. 0c ≤时显然不成立;B.0c =时,显然不成立C.利用不等式的加法法则可以证明是正确的;D.利用作差法证明是错误的.【详解】A. ac >bc ,0c ≤时显然不成立;B.ac 2>bc 2,0c =时,不成立;C. a +c 2>b +c 2,利用不等式的加法法则可以证明是正确的;D.11b a a b ab-=-,符号不能确定,是错误的. 故选:C【点睛】本题主要考查不等式的性质和作差法比较大小,意在考查学生对这些知识的理解掌握水平.4.下列函数中,在区间(0,+∞)上为减函数的是( ) A. y =x 2﹣2xB. y =|x |C. y =2x +1D.y =【答案】D 【解析】 【分析】求出每一个选项的函数的单调减区间即得解.【详解】A. y =x 2﹣2x ,函数的减区间为(,1)-∞,所以选项A 不符; B. y =|x |,函数的减区间为(,0)-∞,所以选项B 不符;C.y =2x +1,函数是增函数,没有减区间,所以选项C 不符;D. y =0,+∞),所以选项D 符合. 故选:D【点睛】本题主要考查函数的单调区间的判定方法,意在考查学生对这些知识的理解掌握水平.5.命题“∀x ∈R ,x 3﹣x 2+1≤0”的否定是( ) A. ∃x ∈R ,x 3﹣x 2+1≥0 B. ∃x ∈R ,x 3﹣x 2+1>0 C. ∃x ∈R ,x 3﹣x 2+1≤0 D. ∀x ∈R ,x 3﹣x 2+1>0【答案】B 【解析】 【分析】直接利用全称命题的否定解答即可.【详解】命题“∀x ∈R ,x 3﹣x 2+1≤0”的否定是“∃x ∈R ,x 3﹣x 2+1>0. 故选:B【点睛】本题主要考查全称命题的否定,意在考查学生对这些知识的理解掌握水平.6.下列函数中:①2y x =②()211y x =+③y =x 2+1④()1010x x f x x x +⎧=⎨-⎩,<,>偶函数的个数是( ) A. 0 B. 1C. 2D. 3【答案】C 【解析】 【分析】利用函数奇偶性的判断方法对每一函数进行判断得解. 【详解】①2y x=,定义域是{|0}x x ≠,满足()()f x f x -=-,所以函数是奇函数,所以与题不符; ②()211y x =+,定义域是{|1}x x ≠-,定义域不关于原点对称,所以函数是非奇非偶函数,与题不符;③y =x 2+1,定义域是R ,满足()()f x f x -=,所以函数是偶函数,所以与题相符;④()1010x x f x x x +⎧=⎨-⎩,<,>,定义域是{|0}x x ≠,满足()()f x f x -=,所以函数是偶函数,所以与题相符. 故选:C【点睛】本题主要考查函数的奇偶性的判断,意在考查学生对这些知识的理解掌握水平. 7.“1x >”是“20x x ->”的 ( ) A. 充分而不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】试题分析:20,10x x x x ->∴><Q 或,所以“1x >”是“20x x ->”的充分而不必要条件.考点:必要条件、充分条件与充要条件的判断.8.函数f (x )=x 3﹣2x ﹣3一定存在零点的区间是( ) A. (2,+∞) B. (1,2)C. (0,1)D. (﹣1,0) 【答案】B 【解析】 【分析】求出(1)(2)0f f <,即得解.【详解】由题得(1)1234,(2)8431f f =--=-=--=, 所以(1)(2)0f f <, 因为函数是R 上的连续函数, 故选:B【点睛】本题主要考查零点存在性定理,意在考查学生对这些知识的理解掌握水平. 9.下列函数中,满足f (2x )=2f (x )的是( ) A. f (x )=(x +2)2 B. f (x )=x +1 C. ()4f x x= D. f (x )=x ﹣|x |【答案】D 【解析】 【分析】对每一个选项的函数逐一验证即得解.【详解】A. f (x )=(x +2)2,所以222(2)(22)484,2()288f x x x x f x x x =+=++=++,所以不满足满足f (2x )=2f (x );B. f (x )=x +1,所以(2)21,2()22,(2)2()f x x f x x f x f x =+=+∴≠;C. ()4f x x =,所以428(2),2(),(2)2()2f x f x f x f x x x x===∴≠; D. f (x )=x ﹣|x |,所以(2)22||,2()22||f x x x f x x x =-=-,满足f (2x )=2f (x ). 故选:D【点睛】本题主要考查求函数值,意在考查学生对这些知识的理解掌握水平. 10.函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A. 0a >,0b >,0c <B. 0a <,0b >,0c >C. 0a <,0b >,0c <D. 0a <,0b <,0c < 【答案】C 【解析】试题分析:函数在P 处无意义,由图像看P 在y 轴右侧,所以0,0c c -><,()200,0b f b c =>∴>,由()0,0,f x ax b =∴+=即bx a=-,即函数的零点000.0,0bx a a b c a=->∴<∴<,故选C . 考点:函数的图像【此处有视频,请去附件查看】二.填空题:本大题共6小题,每小题5分,共30分11.设全集U =R ,集合A ={x |0<x <2},B ={﹣3,﹣1,1,3},则集合(∁U A )∩B =_____. 【答案】{﹣3,﹣1,3} 【解析】 【分析】先求出∁U A ,再求(∁U A )∩B 得解.【详解】全集U =R ,集合A ={x |0<x <2},B ={﹣3,﹣1,1,3}, 则集合∁U A ={x |x ≤0或x ≥2}, 所以集合(∁U A )∩B ={﹣3,﹣1,3}. 故答案为:{﹣3,﹣1,3}【点睛】本题主要考查集合的补集和交集运算,意在考查学生对这些知识的理解掌握水平. 12.已知()221030x x f x x x -≥⎧=⎨⎩,,<,则f (f (﹣1))的值为_____. 【答案】5 【解析】 【分析】先求(1)f -的值,再求f (f (﹣1))的值.【详解】根据题意,()221030x x f x x x -≥⎧=⎨⎩,,<,则f (﹣1)=3×(﹣1)2=3, 则f (f (﹣1))=f (3)=2×3﹣1=5. 故答案为:5【点睛】本题主要考查分段函数求值,意在考查学生对这些知识理解掌握水平. 13.函数y =x 2+3x ﹣1,x ∈[﹣2,3]的值域是_____. 【答案】[134-,17] 【解析】 【分析】直接利用二次函数的图象和性质求解.【详解】因为y =x 2+3x ﹣1,所以函数对称轴为32x =-, 因为x ∈[﹣2,3],所以当x 32=-时,y 的值最小为23313()31224⎛⎫-+⨯--=- ⎪⎝⎭,当x =3时,y 的值最大为32+9﹣1=17, 所以函数的值域为[134-,17]. 故答案为:[134-,17] 【点睛】本题主要考查二次函数在区间上的值域的求法,意在考查学生对这些知识的理解掌握水平.14.若x >0,则()149f x x x=+的最小值为_____. 【答案】43【解析】 【分析】直接利用基本不等式求函数的最小值. 【详解】∵x >0,∴4x 19x +≥43=(当且仅当4x 19x =即x 16=时,取“=”号), ∴当x 16=时,f (x )最小值为43.故答案为:43【点睛】本题主要考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平. 15.若二次函数f (x )的图象关于x =2对称,且f (a )≤f (0)<f (1),则实数a 的取值范围是_____. 【答案】a ≤0或a ≥4 【解析】 【分析】分析得到二次函数f (x )开口向下,在(﹣∞,2)上单调递增,在(2,+∞)上单调递减.再对a 分类讨论得解.【详解】由题意可知二次函数f (x )的对称轴为x =2,因为f (0)<f (1),所以f (x )在(﹣∞,2)上单调递增,所以二次函数f (x )开口向下,在(﹣∞,2)上单调递增,在(2,+∞)上单调递减. ①当a ∈∞(-,2)时:2a a ⎧⎨≤⎩<,解得a ≤0.②当a ∈(2,+∞)时:因为f (4)=f (0),所以24a a ⎧⎨≥⎩>,解得a ≥4.综上所求:a ≤0或a ≥4. 故答案为:a ≤0或a ≥4.【点睛】本题主要考查二次函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数; (ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________. 【答案】 (1). 6 (2). 12 【解析】试题分析:设男生人数、女生人数、教师人数分别为a b c 、、,则*2,,,c a b c a b c N >>>∈. ①max 846a b b >>>⇒=,②min 3,635,412.c a b a b a b c =>>>⇒==⇒++=【名师点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断,本题主要考查考生分析问题、解决问题的能力,同时注意不等式关系以及正整数这个条件.三.解答题:本大题共3小题,共30分17.设集合A ={x |x 2﹣2x ﹣3>0},B ={x |x 2+4x +3<0},C ={x |2k ﹣1<x <2k +3}. (1)求A ∪B ;(2)若C ⊆A ∪B ,求实数k 的取值范围.【答案】(1) A ∪B ={x |x <﹣1或x >3};(2) k ≤﹣2或k ≥2. 【解析】 【分析】(1)先化简集合A 和B,再求A ∪B ;(2)由题得2k -1≥3或2k +3≤-1,解不等式得解. 【详解】(1)集合A ={x |x 2﹣2x ﹣3>0}={x |x <﹣1或x >3},B ={x |x 2+4x +3<0}={x |﹣3<x <﹣1},则A ∪B ={x |x <﹣1或x >3};(2)由C ={x |2k ﹣1<x <2k +3},且C ⊆A ∪B , 令2k -1≥3或2k +3≤-1,解得k ≥2或k ≤-2, 所以实数k 的取值范围是k ≤-2或k ≥2.【点睛】本题主要考查集合的并集运算和集合关系,意在考查学生对这些知识的理解掌握水平.18.已知a ,b >0,证明:a 3+b 3≥a 2b +ab 2. 【答案】证明见解析 【解析】 【分析】利用作差比较法证明不等式.【详解】证明:(a 3+b 3)-(a 2b +ab 2)=a 2(a ﹣b )+b 2(b ﹣a ) =(a ﹣b )(a 2﹣b 2)=(a ﹣b )2(a +b ) ∵a >0,b >0,∴a +b >0,(a ﹣b )2≥0, ∴(a ﹣b )2(a +b )≥0, 则有a 3+b 3≥a 2b +b 2a .【点睛】本题主要考查比较法证明不等式,意在考查学生对这些知识的理解掌握水平. 19.已知函数f (x )()2112g x x x a a=-=-,(a ∈R ,a ≠0). (1)当a =1时,解关于x不等式f (x )>0;(2)若f (x )+g (x )≥0在(0,+∞)上恒成立,求a 的取值范围. 【答案】(1) {x |0<x <2};(2) (﹣∞,0)∪[12,+∞). 【解析】【分析】(1)等价于不等式210x->,解之即得解;(2)等价于222xa x≤+在(0,+∞)上恒成立,再利用基本不等式求函数的最小值即得解.【详解】(1)当a=1时,f(x)21 x=-.∵f(x)>0,∴210x->,∴0<x<2,∴不等式的解集为{x|0<x<2};(2)f(x)+g(x)2112222x xx a a x a =-+-=+-,∵f(x)+g(x)≥0在(0,+∞)上恒成立,∴222xa x≤+在(0,+∞)上恒成立,∴只需22(2)minxa x≤+.∵当x>0时,224xx+≥=,当且仅当x=1时取等号,∴2(2)4minxx+=,∴24a≤,∴a<0或a12≥,∴a的取值范围为(﹣∞,0)∪[12,+∞).【点睛】本题主要考查分式不等式的解法,考查基本不等式求最值和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.卷(II)二.填空题:本大题共5小题,每小题4分,共20分20.已知集合M={0,1,2,3},N={x|x=2a,a∈M},则集合M∩N=_____.【答案】{0,2}【解析】【分析】先求出集合N,再求M∩N.【详解】∵M={0,1,2,3},N={0,2,4,6},∴M∩N={0,2}.故答案为:{0,2}【点睛】本题主要考查集合的交集运算,意在考查学生对这些知识的理解掌握水平.21.不等式125x x -++≤的解集为【答案】【解析】略22.已知x >y >z ,x +y +z =0,则①xz <yz ②xy >yz ③xy >xz ④x |y |>z |y |四个式子中正确的是_____.(只填写序号)【答案】①③【解析】【分析】由题得,,x y z 有三种可能(1)x >0,y >0,z <0,(2)x >0,y <0,z <0,(3)x +z =0,y =0.再判断得解.【详解】已知x >y >z ,x +y +z =0,则,,x y z 有三种可能(1)x >0,y >0,z <0,(2)x >0,y <0,z <0,(3)x +z =0,y =0.所以①xz <yz 正确.②xy >yz 不正确.③xy >xz 正确.④x |y |>z |y |不正确. 故答案为:①③【点睛】本题主要考查不等式的性质,意在考查学生对这些知识的理解掌握水平. 23.设()()2010x a x f x x x x ⎧-≤⎪=⎨+⎪⎩,,>. (1)当12a =时,f (x )的最小值是_____; (2)若f (0)是f (x )最小值,则a 的取值范围是_____. 【答案】 (1).14 (2). [02] 【解析】【分析】(1)先求出分段函数的每一段的最小值,再求函数的最小值;(2)对a 分两种情况讨论,若a <0,不满足条件.若a ≥0,f (0)=a 2≤2,即0≤a 2≤. 【详解】(1)当12a =时,当x ≤0时,f (x )=(x 12-)2≥(12-)214=,当x >0时,f (x )=x 1x +≥=2,当且仅当x =1时取等号, 则函数的最小值为14, (2)由(1)知,当x >0时,函数f (x )≥2,此时的最小值为2,若a <0,则当x =a 时,函数f (x )的最小值为f (a )=0,此时f (0)不是最小值,不满足条件.若a ≥0,则当x ≤0时,函数f (x )=(x ﹣a )2为减函数,则当x ≤0时,函数f (x )的最小值为f (0)=a 2,要使f (0)是f (x )的最小值,则f (0)=a 2≤2,即0≤a ≤即实数a 的取值范围是[0]【点睛】本题主要考查分段函数的最值的求法,考查分段函数的图象和性质,意在考查学生对这些知识的理解掌握水平.24.已知集合M ={x ∈N |1≤x ≤15},集合A 1,A 2,A 3满足①每个集合都恰有5个元素; ②A 1∪A 2∪A 3=M .集合A i 中元素的最大值与最小值之和称为集合A i 的特征数,记为X i (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为_____.【答案】96【解析】【分析】对123,,A A A 分三种情况讨论,求出X 1+X 2+X 3取最小值39,X 1+X 2+X 3取最大57,即得解.【详解】由题意集合M ={x ∈N *|1≤x ≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},当A 1={1,4,5,6,7},A 2={3,12,13,14,15},A 3={2,8,9,10,11}时, X 1+X 2+X 3取最小值:X 1+X 2+X 3=8+18+13=39,当A 1={1,4,5,6,15},A 2={2,7,8,9,14},A 3={3,10,11,12,13}时, X 1+X 2+X 3=16+16+16=48,当A 1={1,2,3,4,15},A 2={5,6,7,8,14},A 3={9,10,11,12,13}时, X 1+X 2+X 3取最大值:X 1+X 2+X 3=16+19+22=57,∴X 1+X 2+X 3的最大值与最小值的和为:39+57=96.【点睛】本题主要考查集合新定义的理解和应用,意在考查学生对这些知识的理解掌握水平.三.解答题:本大题共2小题,共20分25.已知函数f (x )=x 2+a |x ﹣1|.(1)当a =2时,解方程f (x )=2;(2)若f (x )在[0,+∞)上单调递增,求实数a 的取值范围.【答案】(1) x =0或1x =.(2) [﹣2,0]. 【解析】【分析】(1)即解方程x 2+2|x ﹣1|=2.对x 分类讨论即得方程的解;(2)对x 分x ≥1和0≤x <1两种情况讨论得解.【详解】(1)当a =2时,f (x )=x 2+2|x ﹣1|=2.当x <1时,x 2+2(1﹣x )=2,x 2﹣2x =0,得x =0;当x ≥1时,x 2+2(x ﹣1)=2,x 2+2x ﹣4=0,得1x =.综上,方程f (x )=2的解为x =0或1x =. (2)x ≥1时,f (x )=x 2+a (x ﹣1)=x 2+ax ﹣a 在[1,+∞)上单调递增, 则12a x =-≤,故a ≥﹣2; 0≤x <1时,f (x )=x 2﹣ax +a ,02a x =≤,故a ≤0. 且1﹣a +a ≤1+a ﹣a 恒成立. 综上,实数a 的取值范围是[﹣2,0].【点睛】本题主要考查绝对值方程的解法,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.26.设a ,b ,c ,d 不全为0,给定函数f (x )=bx 2+cx +d ,g (x )=ax 3+bx 2+cx +d .若f (x ),g (x )满足①f (x )有零点;②f (x )的零点均为g (f (x ))的零点;③g (f (x ))的零点均为f (x )的零点.则称f (x ),g (x )为一对“K 函数”.(1)当a =c =d =1,b =0时,验证f (x ),g (x )是否为一对“K 函数”,并说明理由;(2)若f (x ),g (x )为任意一对“K 函数”,求d 的值;(3)若a =1,f (1)=0,且f (x ),g (x )为一对“K 函数”,求c 的取值范围.【答案】(1) 不是一对“K 函数”,理由见解析;(2) d =0 (3) c ∈[0,163) 【解析】【分析】 (1)检验得此时不满足②,所以不是一对“K 函数”;(2)利用“K 函数”的定义求出;(3)换元法,设t =﹣cx (x ﹣1),根据t 的范围,对g (f (x ))讨论,求出c 的范围.【详解】(1)若f (x ),g (x )为任意一对“K 函数”,由f (x )=x +1=0,得x =﹣1, 所以g (f (﹣1))=g (0)=1,故x =﹣1不是g (f (x ))的零点,故不满足②,所以不是一对“K 函数”,(2)设r 为方程的一个根,即f (r )=0,则由题设得g (f (r ))=0.于是,g (0)=g (f (r ))=0,即g (0)=d =0.所以d =0,反之g (f (x ))=f (x )[f 4(x )+bf (x )+cf (x ))=0,则f (x )=0成立,故d =0;(3)因为d =0,由a =1,f (1)=0得b =﹣c ,所以f (x )=bx 2+cx =﹣cx (x ﹣1),g (f (x ))=f (x )[f 2(x )﹣cf (x )+c ], 由f (x )=0得x =0,1,可以推得g (f (x ))=0,根据题意,g (f (x ))的零点均为f (x )的零点,故f 2(x )﹣cf (x )+c =0必然无实数根设t =﹣cx (x ﹣1),则t 2﹣ct +c =0无实数根, 当c >0时,t =﹣c (x 12-)244c c +≤,h (t )=t 2﹣ct +c =(t 2c -)2+c 24c -, 所以h (t )min =h (4c )>0,即220164c c c -+>,解得c ∈(0,163), 当c <0时,t =﹣c (x 12-)244c c +≥,h (t )=t 2﹣ct +c =(t 2c -)2+c 24c -, 所以h (t )min =h (2c)>0,即c 204c ->,解得c ∈(0,4),因为c <0,显然不成立, 当c =0时,b =0,此时f (x )=0在R 上恒成立,g (f (x ))=c =0也恒成立, 综上:c ∈[0,163). 【点睛】本题主要考查函数的新定义,考查求参数的值和范围,考查了二次函数的最值的求法和二次不等式的解法,考查了分类讨论的思想,难度较大.。

2019年北京四中新高一入学分班考试数学试题-真题-含详细解析2019.8

2019年北京四中新高一入学分班考试数学试题-真题-含详细解析2019.8

⏜ ⏜2019 年北京四中新高一入学分班考试数学试题 -真题2019.8姓名学校 成绩一、选择题(本大题共 10 小题,共 20 分)1.如图,坐标平面上有一顶点为 A 的抛物线,此抛物线与方程式y = 2的图形交于 B 、C 两点,△ ABC为正三角形.若 A 点坐标为(−3,0),则此抛物线与 y 轴的交点坐标为何?()A. (0, 9)B. (0, 27)C. (0,9)D. (0,19)22第 1 题图第 2 题图2.已知锐角∠AOB ,如图,(1)在射线 OA 上取一点 C ,以点 O 为圆心,OC 长为半径作PQ ,交射线 OB 于点 D ,连接 CD ;(2)分别以点 C ,D 为圆心,CD 长为半径作弧,交PQ 于点 M ,N ;(3)连接 OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是()A. ∠COM = ∠CODC. MN//CDB. 若OM = MN.则∠AOB = 20°D. MN = 3CD3.如图,直线m ⊥ n ,在某平面直角坐标系中,x 轴//m ,y 轴//n ,点 A 的坐标为(−4,2),点 B 的坐标为(2, −4),则坐标原点为( )A. O 1 C. O 3B. O 2 D. O 4C. D.4.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y = ax 2 + bx + c(a ≠ 0).如图记录了某运动员起跳后的 x 与 y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )A. 10mB. 15mC. 20mD. 22.5m第 4 题图第 5 题图5.如图,坐标平面上,二次函数y = −x 2 + 4x − k 的图形与 x 轴交于 A 、B 两点,与 y 轴交于 C 点,其顶点为 D ,且k > 0.△若ABC △与 ABD 的面积比为 1:4,则 k 值为何?( )A. 1B.1 4 42 3 56.小苏和小林在如图 1 所示的跑道上进行4 × 50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t (单位:s)的对应关系如图 2 所示.下列叙述正确的是()A. 两人从起跑线同时出发,同时到达终点B. 小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前 15s 跑过的路程大于小林前 15s 跑过的路程D. 小林在跑最后 100m 的过程中,与小苏相遇 2 次7.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型A类B类C类办卡费用(元)50200400每次游泳收费(元)252015例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元.若一年内在该游泳馆游泳的次数介于45∼55次之间,则最省钱的方式为()A.购买A类会员年卡C.购买C类会员年卡B.购买B类会员年卡D.不购买会员年卡8.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→BB.B→A→CC.B→O→CD.C→B→O9.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?()参观方式去程及回程均搭乘缆车单程搭乘缆车,单程步行缆车费用300元200元A.16B.19C.22D.2510.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分时间t人数学生类型男性别0≤t<1010≤t<2020≤t<3030≤t<40t≥4073125304女初中8292526363244811学段高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5~25.5之间②这200名学生参加公益劳动时间的中位数在20~30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本大题共8小题,共24分)11.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______.12.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为____元.13.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2①在直线l上任取两点A,B;②分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;③作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.14.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(−y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(3,1),则点A3的坐标为______,点A2014的坐标为______;若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为______.15.在平面直角坐标系xO y中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是;当点B的横坐标为4n(n为正整数)时,m=________(用含n的代数式表示.)116.在下表中,我们把第i行第j列的数记为ai,j(其中i,j都是不大于5的正整数),对于表中的每个数a i,j 规定如下:当i≥j时,a i,j=1;当i<j时,a i,j=0.例如:当i=2,j=1时,a i,j=a2,=1.按此规定,a 1,3=______;表中的25个数中,共有_____个1;计算a 1,1·ai,1+a 1,2·ai,2+a 1,3·ai,3+a 1,4·ai,4+a1,5·ai,5的值为________.a1,1a2,1a3,1a4,1a5,1a1,2a2,2a3,2a4,2a5,2a1,3a2,3a3,3a4,3a5,3a1,4a2,4a3,4a4,4a5,4a1,5a2,5a3,5a4,5a5,517.阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm.现有一动点P按下列方式在矩形内运动:它从A点出发,沿着与AB边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着与BC边夹角为45°的方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45°的方向作直线运动……如图1所示.问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路径的总长是多少.小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折叠,得到矩形A 1B 1CD.由轴对称的知识,发现P 2P 3=P 2E,P 1A=P 1E.请你参考小贝的思路解决下列问题:(1)P点第一次与D点重合前与边相碰________次;P点从A 点出发到第一次与D点重合时所经过的路径的总长是________cm;(2)进一步探究:改变矩形ABCD中AD,AB的长,且满足AD>AB.动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形A BCD相邻的两边上.若P点第一次与B点重合前与边相碰7次,则AB∶AD的值为________.三、解答题(本大题共10小题,共56分)18.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7、62.4、63.6、65.9、66.4、68.5、69.1、69.3、69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成”小康社会的奋斗日标,进一步提高人均国内生产总值.19.小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.20.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.21.在平面直角坐标系xOy中,函数y=k(x>0)的图象G经过点A(4,1),直线l:y=1x+b与图象Gx4交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=−1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.22.阅读下面材料:小腾遇到这样一个问题:如图1△,在ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE//AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为______,AC的长为______.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长..23. 在平面直角坐标系 xOy 中,抛物线y = x 2 − 4x + 3与 x 轴交于点 A 、B(点 A 在点 B 的左侧),与 y 轴交于点 C .(1)求直线 BC 的表达式;(2)垂直于 y 轴的直线 l 与抛物线交于点P(x 1, y 1 ),Q(x 2, y 2),与直线 BC 交于点N(x 3, y 3),若x 1 <x 2 < x 3,结合函数的图象,求x 1 + x 2 + x 3的取值范围.24. 有这样一个问题:探究函数y = 1 x 2 + 1的图象与性质.2x小东根据学习函数的经验,对函数y = 1 x 2 + 1的图象与性质进行了探究.2x下面是小东的探究过程,请补充完整:(1)函数y = 1 x 2 + 1的自变量 x 的取值范围是;2x(2)下表是 y 与 x 的几组对应值.x 1 1 1… −3 −2 −1 − −2 3 3 1 2123…y…2563 1 15 53 55 17− − −2 2 8 18 18 83 25 2m…求 m 的值;(3)如下图,在平面直角坐标系 xOy 中,描出了以上表中各对对应值为坐标的点 根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1, 3) .结合函数的图象,写出该函数的其他性质(一条即可):.2′25.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是,则点A′表示的数是_________;若点B′表示的数是2,则点B表示的数是_________;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是_________;(2)如图2,在平面直角坐标系xO y中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.26.已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.27.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(−2,6),B(−2,−2),C(6,−2).(1)求d(点O△,ABC);(2)记函数y=kx(−1≤x≤1,k≠0)的图象为图形G.△若d(G,ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.28.2019年北京四中新初一分班考试数学试题-真题答案和解析1.【答案】B【解析】解:设B(−3−m,2),C(−3+m,2),(m>0)∵A点坐标为(−3,0),∴BC=2m,∵△ABC为正三角形,∴AC=2m,∠DAO=60°,∴m=2√3 32∴C(−3+√3,2)3设抛物线解析式y=a(x+3)2,a(−3+2√3+3)2=2,3∴a=3,2∴y=3(x+3)2,2当x=0时,y=27;2故选:B.设B(−3−m,2),C(−3+m,2),(m>0),可知BC=2m,再由等边三角形的性质可知C(−3+2√3,2),3设抛物线解析式y=a(x+3)2,将点C代入解析式即可求a,进而求解;本题考查二次函数的图象及性质,等边三角形的性质;结合函数图象将等边三角形的边长转化为点的坐标是解题的关键.2.【答案】D【解析】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;连接ON,∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=1∠MON=20°,故B选项正确;3记MN与OA,OB交点为E,F,∵OM=ON,∴∠OME=∠ONF,又∵∠COM=∠DON,∴△MOE△≌NOF,∴OE=OF,∴∠OEF=1×(180°−∠EOF)=1×(180°−∠COD)=∠OCD.22∴MN//CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.由作图知CM=CD=DN,再根据选项逐一判断可得.本题主要考查作图−复杂作图,解题的关键是掌握全等三角形的判定与性质,圆心角,弧,弦的关系等知识点.3.【答案】A【解析】解:如图所示,在平面直角坐标系中,画出点A(−4,2),点B(2,−4),点A,B关于直线y=x对称,则原点在线段AB的垂直平分线上(在线段AB的右侧),如图所示,连接AB,作AB的垂直平分线,则线段AB上方的点O1为坐标原点.故选:A.先根据点A、B的坐标求得直线AB在坐标平面内的位置,即可得出原点的位置.本题主要考查了坐标与图形性质,解决问题的关键是掌握关于直线y=x对称的点的坐标特征:点(a,b)关于直线y=x对称的点的坐标为(b,a).4.【答案】B【解析】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),c=54.0则{1600a+40b+c=46.2400a+20b+c=57.9a=−0.0195解得{b=0.585,c=54.0所以x=−b0.585故选:B.将点(0,54.0)、(40,46.2)、(20,57.9)分别代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.5.【答案】D【解析】解:∵y=−x2+4x−k=−(x−2)2+4−k,∴顶点D(2,4−k),C(0,−k),∴OC=k,∵△ABC的面积=1AB⋅OC=1AB⋅k△,ABD的面积=1AB(4−k)△,ABC△与ABD的面积比为1:4,222∴k=1(4−k),4解得:k=4.5故选:D.求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.6.【答案】D【解析】【分析】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=路程,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前时间15s跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.【解答】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=路程,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;时间小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.7.【答案】C【解析】【分析】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,属中档题.设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得到y1=30x,y A=50+25x,y B =200+20x,yC=400+15x,当x=45和x=55时,确定x的值,再根据函数的增减性即可解答.【解答】解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:当不购买会员年卡时,y1=30x,当购买A类会员年卡时,y A=50+25x,当购买B类会员年卡时,y B=200+20x,当购买C类会员年卡时,y C=400+15x,当x=45时,y1=1350,yA=1175,yB=1100,yC=1075,此时yC最小,当x=55时,y1=1650,yA=1425,yB=1300,yC=1225,此时yC最小,∵y1,yA,yB,yC均随x的增大而增大,∴购买C类会员年卡最省钱.故选C.8.【答案】C【解析】【分析】本题考查了函数图象的实际应用,解决本题的关键是将题目中行进路线与定位仪器之间的距离有机结合,从而寻找出合理的行进路线.属中等难度题.【解答】解:由于表示y与x的函数关系的图象是轴对称图形,那么行走路线相对于M来说也是对称的,从而排除A选项和D选项.B选项,B→A过程中,寻宝者与定位仪器之间的距离先减小,然后增大,但增大的时间比减小的时间要{ 200x + 300y = 4100解得,{ , 长,所以 B 选项错误.故选项 C 符合题意.故选 C .9.【答案】A【解析】解:设此旅行团有 x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有 y 人,根据题意得,(15 − y) + (10 − y) = x , x = 7 y = 9则总人数为7 + 9 = 16(人)故选:A .设此旅行团有 x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有 y 人,根据题意列出二元一次方程,求出其解.本题是二元一次方程组的应用,主要考查了列二元一次方程组解应用题,关键是读懂题意,找出等量关系,列出方程组.10.【答案】C【解析】【分析】本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这 200 名学生参加公益劳动时间的平均数:①(24.5 × 97 + 25.5 × 103) ÷ 200 = 25.015,一定在24.5~25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为 15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0 ≤ t < 10的人数在大于等于 0 小于等于 15 之间,当人数为 0 时中位数在20~30之间;当人数为 15 时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为大于等于 0 小于等于 15,35,15,18,1,当0 ≤间,故④错误.故选:C.11.【答案】①②③【解析】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,易得OM=OP,OQ=ON,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,∠MQP=90°,易证∠AMQ=∠DQP,则△AMQ△≌DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.12.【答案】380【解析】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,∴租船费用150×2+90=390元当租1艘四人船,1艘六人船,1艘八人船,100+130+150=380元∵810>490>390>380,∴当租1艘四人船,1艘六人船,1艘八人船费用最低是380元,故答案为:380.分四类情况,分别计算即可得出结论.此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.13.【答案】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上)【解析】【分析】本题考查作图−基本作图,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上,属于中考常考题型.【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵PA=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB,故答案为:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上. ,{ ).14.【答案】到线段两个端点距离相等的点在这条线段的垂直平分线上,两点确定一条直线【解析】【分析】本题考查了作线段的垂直平分线的依据,需要学生对相关的定理非常熟悉,题目不难,但对于学生而言题目非常新颖,同时提醒教师在平时授课中要重视尺规作图 属基础题.【解答】解:由小芸的作法可知,AC = BC ,AD = BD ,所以由“到线段两个端点距离相等的点在这条线段的垂直平分线上”可知点 C 、D 在线段 AB 的垂直平分线上,再由“两点确定一条直线”可知直线 CD 就是所求作的垂直平分线.故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上,两点确定一条直线.15.【答案】(−3,1);(0,4);−1 < a < 1且0 < b < 2【解析】解:∵ A 1的坐标为(3,1),∴ A 2(0,4),A 3(−3,1),A 4(0, −2),A 5(3,1),…,依此类推,每 4 个点为一个循环组依次循环,∵ 2014 ÷ 4 = 503余 2,∴点A 2014 的坐标与A 2的坐标相同,为(0,4);∵点A 1的坐标为(a, b),∴ A 2(−b + 1, a + 1),A 3(−a, −b + 2),A 4(b − 1, −a + 1),A 5(a, b),…,依此类推,每 4 个点为一个循环组依次循环,∵对于任意的正整数 n ,点A n 均在 x 轴上方,∴{ a + 1 > 0 −b + 2 > 0 , −a + 1 > 0 b > 0解得−1 < a < 1,0 < b < 2.故答案为:(−3,1),(0,4);−1 < a < 1且0 < b < 2.根据“伴随点”的定义依次求出各点,不难发现,每 4 个点为一个循环组依次循环,用 2014 除以 4,根据商和余数的情况确定点A 2014 的坐标即可;再写出点A 1(a, b)的“伴随点”,然后根据 x 轴上方的点的纵坐标本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.16.【答案】3,46n−3【解析】本题考查作图并且能根据所作图形探索、发现规律的能力,难度较大.当m=3时,考生可通过尝试作出图形,找出符合条件的两个点(3,0),(4,0).当点B的横坐标是4n(n是正整数)时,考生可作出图形并得到当n=1时,m=3=6×1−3;当n=2时,m=9=6×2−3;当n=3时,m=15=6×3−3;当n=4时,m=21=6×4−3;…,从而找出规律m=6n−3.17.【答案】0151【解析】本题属阅读理解题,难度较大.当i≥j时,a i,j=1,当i<j时,a i,j=0,所以a1,1=1,而i≥1,所以ai,1=1;a1,2=0,所以a1,2·ai,2=0;...,所以a1,1·ai,1+a 1,2·ai,2+a 1,3·ai,3+a 1,4·ai,4+a 1,5·ai,5=1+0+0+0+0=1.18.【答案】解:(1)5,解题思路示意图:.(2)4∶5.【解析】略19.【答案】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元;故答案为:2.7;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.【解析】本题考查了频数分布直方图、统计图、近似数等知识;读懂频数分布直方图和统计图是解题的关键.(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.20.【答案】解:(1)第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4。

2019年重点高中高一新生分班考试数学卷含答案

2019年重点高中高一新生分班考试数学卷含答案

2019年重点高中高一新生分班考试数学卷含答案(共23页)-本页仅作为预览文档封面,使用时请删除本页-2019年重点高中高一新生分班考试数学卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个数的倒数的绝对值是3,这个数是()A.3 B. C.3或﹣3 D.或﹣2.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60° D.30°3.的值是()A.±16 B.±4 C.16 D.−164.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为( )A.35°B.45°C.55°D.65°5.已知等边三角形的边长为,则它面积与边长之间的关系用图象大致可表示为()A.B.C.D.6.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()A.2cm B.3cm C.5cm D.7cm 7.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是()A.1-3x-4y B.-1-3x-4y C.1+3x-4y D.-1-3x+4y8.函数y=与y=x+1的图象的交点坐标为(a,b),则a2+b2的值为()A.1 B.11 C.25 D.无法求解9.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10 B.20 C.10π D.20π10.如图,在菱形纸片ABCD中,,P为AB中点折叠该纸片使点C落在点处且点P在上,折痕为DE,则的大小为A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.已知是整数,则n是自然数的值是_____.12.用反证法证明∠A>60°时,应先假设_____.13.如果不等式组有解,那么m的范围是______.14.已知点,轴,且,则点N的坐标为______.15.如图,矩形的顶点在坐标原点,,分别在轴,轴的正半轴上,点的坐标为,点的坐标为,当此矩形绕点旋转到如图位置时的坐标为________.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.三、解答题(本大题共8小题,共66分)17.(本题8分)解方程组和分式方程:(1)解方程组(2)解分式方程.18.(本题8分)平面上有3个点的坐标:,,在A,B,C三个点中任取一个点,这个点既在直线上又在抛物线上上的概率是多少?从A,B,C三个点中任取两个点,求两点都落在抛物线上的概率.19.(本题10分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?20.(本题8分)周末,小亮一家人去水库游玩,他在大坝上的点A处看到一棵大树的影子刚好落在坝底的BE处点A与大树及其影子在同一平面内,此时太阳光与地面夹角为,在A处测得树顶D的仰角为如图所示,已知背水坡AB的坡度:3,AB的长为10米,请你帮助小亮算一算这颗大树的高度结果精确到米,参考数据:,注:坡度是指坡面的铅直高度与水平宽度的比21.(本题10分)据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.22.(本题10分)已知:如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于点C,该抛物线的顶点为M.(1)求点A、B、C的坐标.(2)求直线BM的函数解析式.(3)试说明:∠CBM+∠CMB=90°.(4)在抛物线上是否存在点P,使直线CP把△BCM分成面积相等的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.23.(本题12分)如图1,正方形ABCD中,F为AB中点,连接DF,CE⊥DF于E,连接BE.(1)作出△ADF关于F成中心对称的图形,并探究BE和BC数量关系;(2)如图2,BM平分∠ABE交CE延长线于M,连接MD,试探究DM、CM、BM线段关系并给出证明;(3)若点F在线段AB上运动(不与端点重合),AB=4,写出BE长度的取值范围.答案分析一、选择题(本大题共10小题,每小题3分,共30分。

2018-2019学年度北京四中新高一新生入学分班考试数学试卷-含解析

2018-2019学年度北京四中新高一新生入学分班考试数学试卷-含解析

2018-2019学年北京四中新高一入学分班考试数学试题一、选择题(每题2分,共30分)1.如图2是图1长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=()A. a2+aB. 2a2C. a2+2a+1D. 2a2+a第1题图第2题图2.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A. 85°B. 75°C. 65°D. 60°3.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()DE的长A. a,b均无限制B. a>0,b>12DE的长C. a有最小限制,b无限制D. a≥0,b<12=8×10×12,则k=()4.若(92−1)(112−1)kA. 12B. 10C. 8D. 65. 如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是( )A. 1,4,5B. 2,3,5C. 3,4,5D. 2,2,4第5题图 第6题图6. 如图,现要在抛物线y =x(4−x)上找点P(a,b),针对b 的不同取值,所找点P 的个数,三人的说法如下,甲:若b =5,则点P 的个数为0;乙:若b =4,则点P 的个数为1;丙:若b =3,则点P 的个数为1. 下列判断正确的是( )A. 乙错,丙对B. 甲和乙都错C. 乙对,丙错D. 甲错,丙对7. 已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y =ax 2−2ax 上的点,下列命题正确的是( )A. 若|x 1−1|>|x 2−1|,则y 1>y 2B. 若|x 1−1|>|x 2−1|,则y 1<y 2C. 若|x 1−1|=|x 2−1|,则y 1=y 2D. 若y 1=y 2,则x 1=x 28. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0,正确的有( )A. 4个B. 3个C. 2个D. 1个9. 如图,根据图中的信息,可得正确的方程是( )A. π×(82)2x =π×(62)2×(x −5)B. π×(82)2x =π×(62)2×(x +5) C. π×82x =π×62×(x +5) D. π×82x =π×62×510.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=12.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<−12.其中,正确结论的个数是()A. 0B. 1C. 2D. 311.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A. 1013√13 B. 913√13 C. 813√13 D. 713√13第11题图第12题图第13题图12.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A. B. C. D.13.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=kx(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A. 6B. 12C. 18D. 2414.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A. 2√5B. 5C. 4√5D. 1015.如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为BC⏜上任意一点.则∠CED的大小可能是()A. 10°B. 20°C. 30°D. 40°二、填空题(每题2分,共28分)16.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为______.17.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为______.18.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则EF⏜的长为______(结果保留π).19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整(x<0)的图象为曲线L.数).函数y=kx(1)若L过点T1,则k=______;(2)若L过点T4,则它必定还过另一点T m,则m=______;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有______个.第19题图第20题图20.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.21.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)22.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=______度.第22题图第23题图23.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.24.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=5.3(Ⅰ)线段AC的长等于______.(Ⅱ)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明)______.25.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BC⏜于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为______.第25题图第26题图26.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R 处.请完成下列探究:(1)∠PAQ的大小为______°;(2)当四边形APCD是平行四边形时,AB的值为______.QR27.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的2,则摆摊的营业额将达到75,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份月份总营业额的720总营业额之比是______.28.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为______.第28题图第29题图29.我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为______.三、解答题(本大题共8小题,共42分)30.已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线心,以12BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.31.如图(1)放置两个全等的含有30°角的直角三角板ABC与DEF(∠B=∠E=30°),若将三角板ABC向右以每秒1个单位长度的速度移动(点C与点E重合时移动终止),移动过程中始终保持点B、F、C、E在同一条直线上,如图(2),AB与DF、DE分别交于点P、M,AC与DE交于点Q,其中AC=DF=√3,设三角板ABC移动时间为x秒.(1)在移动过程中,试用含x的代数式表示△AMQ的面积;(2)计算x等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?32.如图,甲、乙两人(看成点)分别在数轴−3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.33.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).34.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.35.如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.36.已知抛物线y=ax2−2ax−3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.37.如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?答案和解析1.【答案】A【解析】解:∵S主=a2=a⋅a,S左=a2+a=a(a+1),∴俯视图的长为a+1,宽为a,=a⋅(a+1)=a2+a,∴S俯故选:A.由主视图和左视图的宽为a,结合两者的面积得出俯视图的长和宽,即可得出结论.本题考查了几何体的三视图,熟练掌握三视图与几何体的长、宽、高的关系,进而求得俯视图的长和宽是解答的关键.2.【答案】B【解析】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD−∠BCA=60°−45°=15°,∠α=180°−∠D−∠ACD=180°−90°−15°=75°,故选:B.先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.【答案】B【解析】解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于1DE,否则没有交点,2故选:B.根据角平分线的画法判断即可.本题考查作图−基本作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.4.【答案】B【解析】解:方程两边都乘以k,得(92−1)(112−1)=8×10×12k,∴(9+1)(9−1)(11+1)(11−1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B.根据平方差公式和分式方程的解法,即可得到k的值.此题考查了平方差公式和解分式方程,熟练掌握平方差公式和解分式方程的方法是解本题的关键.5.【答案】B【解析】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是√1×√42=√42,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是√2×√32=√62;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是√2×√22=√42,∵√62>√42,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.根据题意可知,三块三角形的面积中,两个较小的面积之和等于最大的面积,再根据三角形的面积,分别计算出各个选项中围成的直角三角形的面积,比较大小,即可解答本题.本题考查勾股定理的逆定理,解答本题的关键是明确题意,利用勾股定理的逆定理解答.6.【答案】C【解析】解:y=x(4−x)=−x2+4x=−(x−2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.7.【答案】C【解析】解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;故选:C.根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.8.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.9.【答案】B【解析】解:依题意,得:π×(82)2x =π×(62)2×(x +5).故选:B .根据圆柱体的体积计算公式结合水的体积不变,即可得出关于x 的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 10.【答案】C【解析】解:∵抛物线的对称轴为直线x =12,而点(2,0)关于直线x =12的对称点的坐标为(−1,0),∵c >1,∵抛物线开口向下,∴a <0,∵抛物线对称轴为直线x =12,∴−b 2a =12,∴b =−a >0,∴abc <0,故①错误;∵抛物线开口向下,与x 轴有两个交点,∴顶点在x 轴的上方,∵a <0,∴抛物线与直线y =a 有两个交点,∴关于x 的方程ax 2+bx +c =a 有两个不等的实数根;故②正确;∵抛物线y =ax 2+bx +c 经过点(2,0),∴4a +2b +c =0,∵b =−a ,∴4a −2a +c =0,即2a +c =0,∴−2a =c ,∵c >1,∴−2a>1,∴a<−12,故③正确,故选:C.由题意得到抛物线的开口向下,对称轴−b2a =12,b=−a,判断a,b与0的关系,得到abc<0,即可判断①;根据题意得到抛物线开口向下,顶点在x轴上方,即可判断②;根据抛物线y=ax2+bx+c经过点(2,0)以及b=−a,得到4a−2a+c=0,即可判断③.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x 轴没有交点.11.【答案】D【解析】解:由勾股定理得:AC=√22+32=√13,∵S△ABC=3×3−12×1×2−12×1×3−12×2×3=3.5,∴12AC⋅BD=72,∴√13⋅BD=7,∴BD=7√1313,故选:D.根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.12.【答案】A【解析】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=√32EJ=√32x,∴y=12EJ⋅GH=√34x2.当x=2时,y=√3,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=12FJ⋅GH=√34(4−x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.13.【答案】B【解析】解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN//FM,AF=FE,∴MN=ME,∴FM=12AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=k2,∴12⋅ON⋅AN=12⋅OM⋅FM,∴ON=12OM,∴ON=MN=EM,∴ME=13OE,∴S△FME=13S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE//BD,∴S△ABE=S△AOE,∴S△AOE=18,∵AF=EF,∴S△EOF=12S△AOE=9,∴S△FME=13S△EOF=3,∴S△FOM=S△FOE−S△FME=9−3=6=k2,∴k=12.故选:B.如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.证明BD//AE,推出S△ABE=S△AOE=18,推出S△EOF=12S△AOE=9,可得S△FME=13S△EOF=3,由此即可解决问题.本题考查反比例函数的性质,矩形的性质,平行线的判断和性质,等高模型等知识,解题的关键是证明BD//AE,利用等高模型解决问题,属于中考选择题中的压轴题.14.【答案】A【解析】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE//BC,∴AE=CE,∴DE=12BC,∵DF⊥BC,∴DF//AH,DF⊥DE,∴BF=HF,∴DF=12AH,∵△DFE的面积为1,∴12DE⋅DF=1,∴DE⋅DF=2,∴BC⋅AH=2DE⋅2DF=4×2=8,∴AB⋅AC=8,∵AB=CE,∴AB=AE=CE=12AC,∴AB⋅2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC=√AB2+AC2=2√5.故选:A.过A作AH⊥BC于H,根据已知条件得到AE=CE,求得DE=12BC,求得DF=12AH,根据三角形的面积公式得到DE⋅DF=2,得到AB⋅AC=8,求得AB=2(负值舍去),根据勾股定理即可得到结论.本题考查了三角形中位线定理,三角形的面积的计算,勾股定理,平行线的判定和性质,正确的识别图形是解题的关键.15.【答案】C【解析】解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°−x,∠DOE=100°−x+40°,∵OC=OE,∠COE=100°−x,∴∠OEC=∠OCE=40°+12x,∵OD<OE,∠DOE=100°−x+40°=140°−x,∴∠OED<20°+12x,∴∠CED=∠OEC−∠OED=(40°+12x)−(20°+12x)>20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.连接OD、OE,设∠BOE=x,则∠COE=100°−x,∠DOE=100°−x+40°,根据等腰三角形的性质和三角形内角和定理求出∠DEO和∠CEO,即可求出答案.本题考查了圆心角、弧、弦之间的关系,圆周角定理,等腰三角形的性质等知识点,能求出∠OEC和∠OED的度数是解此题的关键.16.【答案】6【解析】解:设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:{a>bb>4 a<8,∵a,b均为整数∴4<b<7,∴b最大可以取6.故答案为:6.设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),根据给定的三个条件,即可得出关于a,b的二元一次不等式组,结合a,b均为整数即可得出b的取值范围,再取其中最大的整数值即可得出结论.本题考查二元一次不等式组的应用,根据各数量之间的关系,正确列出二元一次不等式组是解题的关键.17.【答案】27【解析】解:由题意可得在图1中:a2+b2=15,(b−a)2=3,图2中大正方形的面积为:(a+b)2,∵(b−a)2=3a2−2ab+b2=3,∴15−2ab=32ab=12,∴(a+b)2=a2+2ab+b2=15+12=27,故答案为:27.根据题意得出a2+b2=15,(b−a)2=3,图2中大正方形的面积为:(a+b)2,然后利用完全平方公式的变形求出(a+b)2即可.本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.18.【答案】12π【解析】解:在△ABD与△CBD中,{AB=CB AD=CD BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°−30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=12CD=12,∴OB=BD−OD=2−12=32,∴EF⏜的长为:60π⋅3 2180=12π,故答案为12π.利用SSS证明△ABD≌△CBD,根据全等三角形的对应角相等即可得出∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,即可求得∠ABC=60°,根据等腰三角形三线合一的性质得出BD⊥AC,且AO=CO,进一步求得∠ACB=60°,即可求得∠BCD=90°,根据含30°角的直角三角形的性质即可求得OB,然后根据弧长公式求得即可.本题考查了三角形全等的判定和性质,等腰三角形的性质,直角三角形的判定和性质,含30°角的直角三角形的性质,弧长的计算等,熟练掌握性质定理是解题的关键.19.【答案】−16 5 7【解析】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(−16,1),T2(−14,2),T3(−12,3),T4(−10,4),T5(−8,5),T6(−6,6),T7(−4,7),T8(−2,8),∵L过点T1,∴k=−16×1=−16,故答案为:−16;(2)∵L过点T4,∴k=−10×4=−40,∴反比例函数解析式为:y=−40x,当x=−8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(−16,1),T8(−2,8)时,k=−16,若曲线L过点T2(−14,2),T7(−4,7)时,k=−14×2=−28,若曲线L过点T3(−12,3),T5(−8,5)时,k=−12×3=−36,若曲线L过点T4(−10,4),T5(−8,5)时,k=−40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴−36<k<−28,∴整数k=−35,−34,−33,−32,−31,−30,−29共7个,∴答案为:7.(1)由题意可求T1~T8这些点的坐标,将点T1的坐标代入解析式可求解;(2)将点T4的坐标代入解析式可求k的值,将点T5代入,可求解;(3)由曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,可得T1,T2,T7,T8与T3,T4,T5,T6在曲线L的两侧,即可求解.本题考查了反比例函数的应用,求出各点的坐标是本题的关键.20.【答案】4√33厘米或4√3厘米或8−4√3【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√33;②当∠AEB=30°时,AE=ABtan30∘=√33=4√3;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=xsin60∘=2√3x3,∵AF=AE+EF=ABtan30°=4√33,∴x+2√3x3=4√33,∴x=8−4√3,∴AE=8−4√3.故答案为:4√33厘米或4√3厘米或8−4√3厘米.根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.21.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】30=120°,【解析】解:正六边形的每个内角的度数为:(6−2)⋅180°6所以∠ABC=120°−90°=30°,故答案为:30.由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.23.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,MN=2,∴BE=12∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】√13取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求【解析】解:(Ⅰ)线段AC的长等于√32+22=√13;(Ⅱ)如图,取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求.(Ⅰ)利用网格根据勾股定理即可求出线段AC的长;(Ⅱ)取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,即可得点P,Q.本题考查了作图−复杂作图、勾股定理、圆周角定理、轴对称−最短路线问题,解决本题的关键是掌握轴对称性质.25.【答案】6√2+π3【解析】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′=√OC2+OD′2=√22+22=2√2,CD⏜的长l=30π×2180=π3,∴阴影部分周长的最小值为2√2+π3=6√2+π3.故答案为:6√2+π3.利用轴对称的性质,得出当点E移动到点E′时,阴影部分的周长最小,此时的最小值为弧CD的长与CD′的长度和,分别进行计算即可.本题考查与圆有关的计算,掌握轴对称的性质,弧长的计算方法是正确计算的前提,理解轴对称解决路程最短问题是关键.26.【答案】30 √3【解析】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD//BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,AP,∴QR=12∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=√3PB,∴PB=QR,=√3,∴ABQR故答案为:√3.(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD//BC,由平行线的性质可得∠DAB= 90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB=2QR,AB=√3PB,即可求解.。

北京第四中学19年-20年学年高一上学期期中考试数学试卷 Word版含解析

北京第四中学19年-20年学年高一上学期期中考试数学试卷 Word版含解析

北京四中高中一年级期中考试数学试卷卷(I)一、单项选择题:(本大题共8小题,每小题6分,共48分)1.的值为()A. B. C. 1 D.【答案】D【解析】【分析】根据对数的运算法则及性质即可求解.【详解】因为,故选D.【点睛】本题主要考查了对数的性质和运算法则,属于容易题.2.集合,则下列关系正确的是()A. B. C. D.【答案】A【解析】【分析】根据元素与集合的关系即可判断.【详解】因为,所以,故选A.【点睛】本题主要考查了元素与集合的关系,属于容易题.3.函数的定义域是()A. B.C. D.【答案】C【解析】【分析】函数要有意义,则需解析式有意义,分式的分母不为0即可.【详解】要是函数有意义,则需,解得,所以函数的定义域为,故选C.【点睛】本题主要考查了函数的定义域,属于中档题.4.若,则()A. 1B.C. 0D.【答案】A【解析】【分析】根据函数解析式,只需把代入即可求出函数值.【详解】因为,所以当时,,故选A.【点睛】本题主要考查了根据函数解析式求函数值,属于中档题.5.下列函数中,在区间上为增函数的是()A. B.C. D.【答案】B【解析】【分析】根据基本初等函数的单调性,逐项分析即可.【详解】A选项中是一次函数,,所以在R上是减函数,错误;B选项是幂函数,幂指数,在区间上为增函数,故正确;C选项是二次函数,对称轴为,在区间上无单调性,错误;D选项是指数函数,,在R上是减函数,错误.故选B.【点睛】本题主要考查了函数的单调性,属于中档题.6.下列函数中,值域是的是()A. B.C. D.【答案】B【解析】【分析】根据函数性质,逐项分析各选项即可.【详解】A中的值域为R,错误,B中的值域为,正确;C中,值域为,错误;D中的值域为R,错误.故选B.【点睛】本题主要考查了基本初等函数的值域,属于中档题.7.函数的零点所在的一个区间是()A. B. C. D.【答案】C【解析】【分析】根据题意可知函数是R上的减函数,只需根据即可判断零点所在区间. 【详解】因为是R上的减函数,所以是R上的减函数,又,可知零点在区间上,故选C.【点睛】本题主要考查了函数零点的存在性,函数的单调性,属于中档题.8.若,则()A. B. C. D.【答案】B【解析】【分析】根据指数及对数的性质可分析出范围,从而得到结果.【详解】因为,所以,因为,所以,所以选B.【点睛】本题主要考查了指数的性质,对数的性质,属于容易题.二、填空题:(本大题共4小题,每小题5分,共20分)9.计算:________;________.【答案】(1). 1(2). 4【解析】【分析】分别根据对数的运算法则及指数的运算法则计算即可求解.【详解】;故填(1). 1 (2). 4【点睛】本题主要考查了对数及指数运算法则,属于中档题.10.若函数的定义域为,则函数的定义域为________.【答案】【解析】【分析】根据的定义域为知,要有意义则需,即可求出的定义域.【详解】因为的定义域为,则要有意义则需,解得,所以的定义域为.故填.【点睛】本题主要考查了抽象函数的定义域,属于中档题.11.函数,则其图象的对称轴方程为________;的增区间是________.【答案】(1). 2(2).【解析】【分析】根据二次函数的性质知,对称轴方程为,当时,增区间为,据此可写出答案.【详解】因为函数,所以对称轴方程为,的增区间是.故填:(1). 2(2).【点睛】本题主要考查了二次函数的对称轴和单调区间,属于容易题.12.已知函数,若函数有3个零点,则实数的取值范围是________.【答案】【解析】【分析】函数有3个零点,即方程有3个根,因此在同一坐标系内做出的图象与直线,观察它们公共点的个数即可得到答案.【详解】因为有3个零点,所以的图象与直线有3个公共点在同一坐标系内作出它们的图象,如下:根据图象可知,当时,有三个交点.故则实数的取值范围是.【点睛】本题主要考查了分段函数,函数的零点,函数零点与方程的根,数形结合思想,属于中档题.三、解答题(本大题共3小题,每小题10分,共30分)13.设集合.(I)用列举法写出集合;(II)求和.【答案】(I);(II),.【解析】【分析】(I)根据集合的描述法写出集合中的元素即可列举法表示(II)根据交集和并集的运算即可求解.【详解】(I)因为x,所以,所以.(II)因为,所以,.【点睛】本题主要考查了集合的描述法,列举法,交集,并集,属于中档题.14.已知函数.(I)当时,判断的奇偶性,并证明你的结论;(II)当时,求的值域.【答案】(I)证明见解析;(II).【解析】【分析】(I)当时,,,为偶函数,可根据定义证明(II)当时,,配方可写出值域.【详解】(I)当时,,,为偶函数,证明:由知,,,.即函数为偶函数.(II)当时,即函数的值域为.【点睛】本题主要考查了函数的奇偶性,二次函数的值域,属于中档题.15.设函数.(I)利用单调性定义证明:在区间上是单调递减函数;(II)当时,求在区间上的最大值.【答案】(I)证明见解析;(II).【解析】【分析】(I)根据函数单调性的定义证明即可(II)先证明函数在区间[2,+∞)上是单调递增函数,再结合(I)的结论且,对分类讨论写出函数最大值.【详解】(I)任取,∈(0,2],设<,则∵,∴∵,∴∴所以,故在区间(0,2]上是单调递减函数.(II)由(I)可知,在区间(0,2]上是单调递减函数;当,设<,易知总有<,所以在区间[2,+∞)上是单调递增函数,又,所以在区间上最大值为.【点睛】本题主要考查了函数单调性的定义证明,分类讨论的思想,属于中档题.卷(II)一、选填题:(本大题共5小题,每小题6分,共30分)16.不等式的解集是A. B. C. D.【答案】C【解析】【分析】根据指数函数的增减性可转化为,即可求解.【详解】,即.所以不等式的解集为.故选C.【点睛】本题主要考查了指数函数的增减性,属于中档题.17.如果是定义在上的奇函数,那么下列函数中,一定是偶函数的是A. B.C. D.【答案】B【解析】试题分析:由题意得,因为函数是定义在上的奇函数,所以,设,则,所以函数为偶函数,故选B.考点:函数奇偶性的判定.18.某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:第天 1 2 3 4 5被感染的计算机数量(台)10 20 39 81 160则下列函数模型中,能较好地反映计算机在第天被感染的数量与之间的关系的是A. B.C. D.【答案】D【解析】【分析】根据选项中的函数,依次代入x值求出y的值,通过y的值与表格中所给出的y的值进行比较,误差越小则拟合度越高,误差越大则拟合度越小,计算即可求解.【详解】对于A选项,当时,对应的y值分别为,对于B选项,当时,对应的y值分别为,对于C选项,当时,对应的y值分别为,对于D选项,当时,对应的y值分别为,而表中所给的数据为,,当时,对应的y值分别为,通过比较,即可发现选项D中y的值误差最小,即能更好的反映与之间的关系. 故选D.【点睛】本题主要考查了选择合适函数模型来拟合实际问题,属于中档题.19.设全集,集合,则_______;_______.【答案】(1). (2).【解析】【分析】根据集合的补集的运算及交集的运算即可求解.【详解】因为全集,集合,所以,.【点睛】本题主要考查了集合的交集、补集运算,属于中档题.20.如图,函数的图象是折线段,其中的坐标分别为, ,则_________;的解集为________.【答案】(1). 2(2).【解析】【分析】根据函数的图象,观察即可得出答案.【详解】根据图象知,所以,根据图象知,所以,当时,由图象可知,即的解集为.【点睛】本题主要考查了函数的图象,属于中档题.二、解答题:(本大题共2小题,共22分)21.(12分)设函数.(I)若,求的取值范围;(II)记的反函数为,若在上恒成立,求的最小值.【答案】(I)或;(II).【解析】【分析】(I)根据对数函数的增减性转化为,并注意真数大于零即可求解(II)由题意知,原不等式可转化为在区间[2,)上恒成立即可求解.【详解】(I)由已知log a(x2-x)>log a2,因为0<a<1,所以0<x2-x<2,解,得-1<x<2,解,得x>1或x<0,所以x的取值范围是{x|-1<x<0或1<x<2).(II)为的反函数,所以,由已知在区间[2,)上恒成立,因为,所以在区间[2,)上恒成立,即大于等于的最大值,因为0<a<1,所以>1,又x-2∈[0,),所以()的最小值为1,-()的最大值为-1,所以k≥-1,所以k的最小值为-1.【点睛】本题主要考查了对数函数的增减性,反函数,指数函数,恒成立问题,属于中档题.22.(10分)给定数集,若对于任意,有,且,则称集合为闭集合. (I)判断集合是否为闭集合,并给出证明;(II)若集合为闭集合,则是否一定为闭集合?请说明理由;(III)若集合为闭集合,且,证明:.【答案】(I)证明见解析;(II)不一定,证明见解析;(III)证明见解析.【解析】【分析】(I)根据特值,但是4+4=8A,判断A不为闭集合,设,可证出,,B为闭集合(II)取特例A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},集合为闭集合,但不为闭集合即可(III)用反正正法,若A B=R,存在a∈R且a A,故a∈B,同理,因为B R,存在b∈R且b B,故b∈A,若,则由A为闭集合,,与a A矛盾,同理可知若,,与b B矛盾,即可证明.【详解】(I)因为,但是4+4=8A,所以,A不为闭集合;任取,设,则且所以,同理,,故B为闭集合.(II)结论:不一定.令A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则由(I)可知,A,B为闭集合,但2,3∈A B,2+3=5A B,因此,A B不为闭集合.(III)证明:(反证)若A B=R,则因为A R,存在a∈R且a A,故a∈B,同理,因为B R,存在b∈R且b B,故b∈A,因为a+b∈R=A B,所以,a+b∈A或a+b∈B,若,则由A为闭集合,,与a A矛盾,若,则由B为闭集合,,与b B矛盾,综上,存在c∈R,使得c(A B).【点睛】本题主要考查了集合子集、真子集,反证法,考查了学生分析推理能力,属于难题.。

北京市第四中学2018_2019学年高一数学下学期期中试题(含解析)

北京市第四中学2018_2019学年高一数学下学期期中试题(含解析)
数依次为 x1 和 x2 ,标准差依次为 s1 和 s2 ,那么( )
A. x1 < x2 , s1 < s2
B. x1 < x2 , s1 > s2
C. x1 > x2 , s1 > s2
D. x1 > x2 , s1 < s2
【答案】A
【解析】
【分析】
分别计算出两组数据的平均数和标准差,由此得出正确选项.
【答案】100 【解析】 【分析】
根据 X 和 aX b 的方程对应公式,计算得出结果. 【详解】设原数据为 X ,新的数据为 5X ,故新的方差为 52 4 100 . 【点睛】本小题主要考查线性运算后的数据方差和原数据方差的对应关系,即原数据 X 的 方差为 S 2 ,则 aX b 对应的方差为 a2S 2 .属于基础题.
【分析】
分别计算出平均数、中位数和众数,由此得出正确选项.
【 详 解 】 依 题 意 , a 10 12 14 14 15 15 16 17 17 17 14.7 . 中 位 数 10
为 b 15 ,众数为 c=17 ,故 c b a ,故选 D.
【点睛】本小题主要考查样本平均数、中位数和众数的计算,属于基础题.
2
2,1
3
,所以这两数之和等于
4
的概率
p
2 6
1 3
,故选
B.
9.在平面直角坐标系中,△ABC 的顶点 B,C 坐标为(-2,0),(2,0),中线 AD 的长度是 3,
则顶点 A 的轨迹方程是( )
A. x2 y2 3
B. x2 y2 4
C. x2 y2 9 (y≠0)
D. x2 y2 9 (x≠0)

2019-2020学年北京四中高一(上)期中数学试卷 (含答案解析)

2019-2020学年北京四中高一(上)期中数学试卷 (含答案解析)

2019-2020学年北京四中高一(上)期中数学试卷一、选择题(本大题共13小题,共65.0分) 1. log 223+log 26等于( ).A. 1B. 2C. 5D. 6 2. 已知集合M ={x|x 2−x −6=0},则下列正确的是( )A. {−2}∈MB. 2∈MC. −3∈MD. 3∈M3. 函数y =log 2(x 2−2x −3)的定义域为( )A. (−∞,−1)∪(3,+∞)B. [−1,3]C. (−∞,−1]∪[3,+∞)D. (−1,3)4. 已知f(x)={x −6,(x ≥6)f(x +2),(x <6),则f(3)为( )A. 1B. 2C. 4D. 55. 下列函数中,在区间(0,+∞)上为增函数的是( )A. y =√x +1B. y =(x −1)2C. y =2−xD. y =log 0.5(x +1)6. 函数y =x 2−2x 定义域为{0,1,2,3},则值域为( )A. {−1,0,3}B. {0,1,2,3}C. [−1,3]D. [0,3] 7. 函数f (x )=−|x −5|+2x−1的零点所在的区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)8. 设a =log 123.b =ln4,c =(13)0.2,则( ) A. a <b <c B. a <c <b C. c <a <b D. b <c <a 9. 若函数f (x )=(x +1)(x −a )为偶函数,则a =( )A. −2B. −1C. 1D. 210. 已知函数f (x )=a ⋅2x −1与函数g (x )=x 3+ax 2+1(a ∈R ),下列选项中不可能是函数f (x )与g (x )图象的是( )A.B.C.D.11. 不等式23x−5>(12)2x+3的解集为 ( )A. (−∞,25) B. (25,+∞)C. (−∞,8)D. (8,+∞)12. 下列函数中,f(x)是偶函数的是( )A. f(x)=2|x|−1B. f(x)=x 2,x ∈[−2,2)C. f(x)=x 2+xD. f(x)=x 313. 某种豆类生长枝数随时间增长,前6月数据如下:第x 月 1 2 3 4 5 6 枝数y(枝)247163363( )A. y =2xB. y =x 2−x +2C. y =2xD. y =log 2x +2二、填空题(本大题共7小题,共35.0分)14. 计算:2log 23+lg √5+lg √20=__________________.15. 已知y =f(x)是定义在[1,4)上的函数,则函数y =f(2x +1)的定义域为__________. 16. 若函数f(x)=x 2−2x(x ∈[0,3]),则f(x)的最小值是______ .17. 已知函数f(x)=x 2+2mx +3m +4有两个零点,一个零点在(−1,1)内,另一个零点在(1,2)内,则实数m 的取值范围是________.18. 已知全集U ={1,2,3,4,5},集合A ={1,3,5},B ={3,4,5},则集合∁U (A ∩B)=______. 19. 设f(x)={2e x−1,x <2,log 3(x 2−1),x ≥2,则f(f(1))=________,不等式f(x)>2的解集为________.20. 已知−1<a +b <3且2<a −b <4,求2a +3b 的取值范围______ . 三、解答题(本大题共5小题,共50.0分)21. 已知集合A ={−1,2},B ={x|x 2−ax −4=0}.(1)若a =0,求A ∪B .(2)若a=3,求A∩B.22.已知函数f(x)=log21+x1−x.(1)判断f(x)奇偶性并证明你的结论;(2)解方程f(x)<−1.23.f(x)=−12x2+132在区间[a,b]上的最小值为2a,最大值为2b,求[a,b].24.已知函数f(x)=2x−1的反函数为y=f−1(x),记g(x)=f−1(x−1).(1)求函数y=2f−1(x)−g(x)的最小值;(2)若函数F(x)=2f−1(x+m)−g(x)在区间[1,+∞)上是单调递增函数,求实数m的取值范围.25.集合A={1,2,3},B={1,2},定义集合间的运算A+B={x|x=x1+x2,x1∈A,x2∈B},则集合A+B中元素的最大值是________.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查了对数运算性质,属于基础题.利用对数运算性质即可得出.【解答】×6)=log222=2.解:原式=log2(23故选B.2.答案:D解析:【分析】本题考查元素与集合的关系,是基础题.求出集合M,根据元素与集合间的关系即可判断.【解答】解:M={x|x2−x−6=0}={−2,3},所以−2∈M,3∈M,所以D正确,故选D.3.答案:A解析:解:要使函数有意义,则x2−2x−3>0,即x>3或x<−1,即函数的定义域为(−∞,−1)∪(3,+∞),故选:A.根据函数成立的条件即可求函数的定义域.本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.4.答案:A解析:【分析】直接利用分段函数的解析式求解函数值即可.本题考查函数的解析式的应用,函数值的求法,是基础题. 【解答】解:f(x)={x −6,(x ≥6)f(x +2),(x <6),则f(3)=f(5)=f(7)=7−6=1. 故选:A .5.答案:A解析:利用函数的单调性或函数的图像逐项验证.A.函数y =√x +1在[−1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B.函数y =(x −1)2在(−∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C.函数y =2−x =(12)x 在R 上为减函数,故错误;D.函数y =log 0.5(x +1)在(−1,+∞)上为减函数,故错误.6.答案:A解析: 【分析】本题考查了函数的值域问题,属于基础题. 根据所给定义域代入函数,解得值域. 【解答】解:∵y =x 2−2x , 又∵x ∈{0,1,2,3}, ∴y =−1,0,3. 即函数值域为{−1,0,3}. 故选A .7.答案:C解析: 【分析】本题考查函数零点存在性定理问题,属于基础题.对于连续函数只要满足两端点的函数值符号相反即可,分别代入判断符号即可. 【解答】解:因为f (0)=−92,f (1)=−3,f (2)=−1,f (3)=2,所以f(x)的零点所在的区间是(2,3),故选C.8.答案:B解析:解:∵a=log123<0,b=ln4>1,c=(13)0.2∈(0,1).∴a<c<b.故选:B.利用指数与对数函数的单调性即可得出.本题考查了指数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.9.答案:C解析:f(x)=x2+(1−a)x−a,f(x)为偶函数,∴1−a=0,a=1,故选C.10.答案:D解析:【分析】本题考查的知识点是三次函数的图象和性质,指数函数的图象和性质,分类讨论思想,难度中档.对a进行分类讨论,利用排除法,可得答案.【解答】解:a=0时,函数f(x)与g(x)图象为:故排除A;g′(x)=3x2+2ax,令g′(x)=0,则x=0,或x=−2a3,当a<0时,0为函数g(x)的极大值点,函数f(x)与g(x)图象为:故排除C ;当a >0时,0为函数g(x)的极小值点, 函数f(x)与g(x)图象为:故排除B ; 故选D .11.答案:B解析: 【分析】本题考查了指数不等式的求解,属基础题目.解题的关键是熟练掌握指数函数的单调性.可将原不等式转化为3x −5>−2x −3,解此不等式即可. 【解答】解:不等式23x−5>(12)2x+3可化为23x−5>2−2x−3,∴3x −5>−2x −3, 解得x >25,所以原不等式的解集为(25,+∞). 故选B .12.答案:A解析:【分析】本题主要考查函数奇偶性的判断,根据偶函数的定义是解决本题的关键,属于基础题.根据函数奇偶性的定义进行判断即可.解析:解:A.f(−x)=2|−x|−1=2|x|−1=f(x),x∈R,因此该函数为偶函数,B.函数f(x)的定义域不关于原点对称,函数f(x)是非奇非偶函数,C.f(−x)=x2−x≠f(x),不是偶函数,D.f(−x)=−x3=−f(x),x∈R,则f(x)是奇函数.故选A.13.答案:C解析:【分析】本题考查函数模型的选择,解题的关键是看出函数的变化趋势和所过的特殊点,属于基础题.本题要选择合适的模型,从所给数据可以看出图象大约过(1,2)和(2,4),和(4,16)和(6,63),把这四个点代入所给的四个解析式发现只有y=2x最合适.【解答】解:从所给数据可以看出图象大约过(1,2)和(2,4)和(4,16)和(6,63),把这四个点代入所给的四个解析式发现只有y=2x最合适,故选:C.14.答案:4解析:【分析】本题考查了指数恒等式、对数运算性质,考查了推理能力与计算能力,属于基础题.利用指数恒等式、对数运算性质即可得出.【解答】解:原式=3+lg(√5×√20)=3+lg10=4.故答案为4.)15.答案:[0,32解析:因为函数y =f(x)的定义域为[1,4),令1≤2x +1<4,解得0≤x <32,所以函数y =f(2x +1)的定义域为[0,32).故答案为:[0,32).16.答案:−1解析:解:函数f(x)=x 2−2x 的对称轴为:x =1∈[0,3],二次函数的开口向上, 函数的最小值为:f(1)=1−2=−1. 故答案为:−1.求出函数的对称轴,利用二次函数的性质求解函数的最小值即可.本题考查二次函数的最值的求法,求出函数的对称轴判断开口方向是解题的关键.17.答案:(−87,−1)解析: 【分析】本题考查二次函数的零点问题解法,注意运用转化思想,以及数形结合思想方法,考查运算能力,属于基础题.由二次函数f(x)的图象,结合两个零点的范围,可得f(−1)>0,f(1)<0,f(2)>0,解不等式即可得到所求范围. 【解答】解:函数f(x)=x 2+2mx +3m +4有两个零点, 一个零点在(−1,1)之间,另一个零点在(1,2)之间, 可得{f(−1)>0f(1)<0f(2)>0,即{5+m >05+5m <08+7m >0,即有{m >−5m <−1m >−87,可得−87<m <−1, 即有m 的范围是(−87,−1). 故答案为(−87,−1).18.答案:{1,2,4}解析: 【分析】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题. 由条件根据交集的定义求得A ∩B ,再根据补集的定义求得∁U (A ∩B).【解答】解:因为集合A ={1,3,5},B ={3,4,5},所以A ∩B ={3,5},又U ={1,2,3,4,5},所以∁U (A ∩B)={1,2,4},故答案为{1,2,4}.19.答案:1 (1,2)∪(√10,+∞)解析:【分析】本题考查了分段函数,指数、对数不等式问题,考查分类讨论思想,是一道中档题.根据函数的解析式求出f(1)的值是2,从而求出f(2)的值即可;不等式f(x)>2即2e x−1>2或log 3(x 2−1)>2,即e x−1>1=e 0,或x 2−1>9,解出即可.【解答】解:f (x )={2e x−1,x <2log 3(x 2−1),x ≥2, f(1)=2⋅e 1−1=2,故f(f(1))=f(2)=log 3(4−1)=1,若f(x)>2,则2e x−1>2(x <2)或log 3(x 2−1)>2(x ≥2),即e x−1>1=e 0,或x 2−1>9,解得:1<x <2或x >√10,故答案为1 (1,2)∪(√10,+∞).20.答案:−92<2a +3b <132解析:解:2a +3b =m(a +b)+n(a −b),∴{m +n =2m −n =3∴m =52,n =−12.∴2a +3b =52(a +b)−12(a −b). ∵−1<a +b <3,2<a −b <4,∴−52<52(a +b)<152,−2<−12(a −b)<−1, ∴−92<52(a +b)−12(a −b)<132即−92<2a +3b <132. 故答案为:−92<2a +3b <132.把2a +3b 设为m(a +b)+n(a −b),解出m ,n ,回代,然后利用不等式的性质,求出2a +3b 的取值范围.本题考查不等式及其不等关系,考查分析问题解决问题的能力,是基础题.21.答案:解:(1)因为a =0,所以B ={x|x 2−4=0}={2,−2},所以A ∪B ={−2,−1,2}.(2)因为a =3,所以B ={x|x 2−3x −4=0}={−1,4},所以A ∩B ={−1}.解析:本题考查了交、并集运算,熟练掌握各自的定义是解本题的关键.属于基础题.(1)求出集合B ,再利用并集运算即可求解;(2)求出集合B ,再利用交集运算即可求解.22.答案:解:(1)根据题意,f(x)为奇函数;证明:1+x 1−x >0⇒−1<x <1,所以f(x)定义为(−1,1),关于原点对称;任取x ∈(−1,1),则f(−x)+f(x)=log 21−x 1+x +log 21+x 1−x =log 2(1−x 1+x ⋅1+x 1−x )=log 21=0.则有f(−x)=−f(x),f(x)为奇函数;(2)由(1)知−1<x <1,f(x)<−1⇒log 2(1+x)(1−x)<−1,即1+x 1−x <2−1=12, 1+x 1−x−12=(2+2x)−(1−x)2(1−x)=3x+12(1−x)<0, 即3x+1x−1>0,∴x <−13或x >1,又由−1<x <1,则有−1<x <−13,综上,不等式解集为(−1,−13)解析:(1)根据题意,先求出函数的定义域,再分析f(−x)与f(x)的关系,结合奇偶性的定义分析可得结论;(2)根据题意,f(x)<−1⇒log 2(1+x)(1−x)<−1,即1+x 1−x <2−1=12,求出x 的取值范围,结合函数的定义域分析可得答案.本题考查函数的奇偶性与单调性的综合应用,涉及对数的运算性质,注意分析函数的定义域. 23.答案:解:(1)因为f(x)对称轴为x =0若0≤a <b ,则f(x)在[a,b]上单调递减,所以f(a)=2b ,f(b)=2a ,于是{2b =−12a 2+1322a =−12b 2+132, 解得[a,b]=[1,3].(2)若a <b ≤0,则f(x)在[a,b]上单调递增,所以f(a)=2a ,f(b)=2b ,于是{2a =−12a 2+1322b =−12b 2+132,方程两根异号, 故不存在满足a <b ≤0的a ,b .(3)若a <0<b ,则f(x)在[a,0]上单调递增,在[0,b]上单调递减,所以2b =132⇒b =134. 所以f(b)=−12⋅(134)2+132=1932>0, 又a <0,所以2a ≠1932,故f(x)在x =a 处取得最小值2a ,即2a =−12a 2+132,得a =−2−√17,所以[a,b]=[−2−√17,134].综上所述,[a,b]=[1,3]或[−2−√17,134].解析:求出二次函数的对称轴,通过对区间与对称轴x =0的位置关系分三类,求出二次函数f(x)的最值,列出方程组,求出a ,b 的值.解决二次函数在区间上的单调性、最值问题,应该先求出二次函数的对称轴,根据对称轴与区间的关系来解决.24.答案:解:(1)由f(x)=2x −1得x =log 2(y +1),即f −1(x)=log 2(x +1)(x >−1) g(x)=f −1(x −1)=log 2x ,(x >0)∴函数y =2f −1(x)−g(x)=2log 2(x +1)−log 2x =log 2(x+1)2x =log 2x 2+2x+1x =log 2(x +1x +2), ∵x >0,∴x +1x +2≥4,当且仅当x =1时取等号,∴函数y =2f −1(x)−g(x)的最小值为:log 24=2.(2)由f −1(x)=log 2(x +1)(x >−1)得,函数F(x)=2f −1(x +m)−g(x)=2log 2(x +m +1)−log 2x …(8分)∴F(x)=log 2(x+m+1)2x =log 2[x +(m+1)2x +2(m +1)],在区间[1,+∞)上是单调递增函数需满足:当x ≥1时,x +m +1>0,即m >−2…(10分)[|m +1|,+∞)⊆[1,+∞)…(12分),即|m +1|≤1⇔−2≤m ≤0,…(13分),∴−2<m ≤0…(14分)解析:(1)求出原函数的反函数,然后推出函数y =2f −1(x)−g(x)的表达式,即可求解其最小值;(2)利用(1)函数的解析式,通过化简表达式,利用函数F(x)=2f −1(x +m)−g(x)在区间[1,+∞)上是单调递增函数,转化不等式,然后求实数m 的取值范围.本题考查函数恒成立问题,反函数以及对数函数基本不等式以及函数单调性的应用,考查转化思想以及分析问题解决问题的能力.25.答案:5解析:【分析】本题考查集合的新定义,属于基础题型,理解题意是关键.【解答】解:∵A={1,2,3},B={1,2},定义集合间的运算A+B={x|x=x1+x2,x1∈A,x2∈B},∴A+B={2,3,4,5}故集合A+B中元素的最大值是5;故答案为5.。

2019北京四中高一(上)期末(1).doc

2019北京四中高一(上)期末(1).doc

2019北京四中高一(上)期末试卷满分为150分,考试时间为120分钟第一卷(三部分,共100分)第一部分听力理解(共三节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。

听完每段对话后, 你将有10秒钟时间来回答有关小题和阅读下一小题。

每段对话你将听一遍。

1.When will the man meet his aunt?A.At 11:55.B.At 12:05.C.At 12:15.2.What does the woman want to have?A.Ice water.B.Coffee.C.Tea.3.Who was injured in the accident?A. No one.B. A baby.4.What is the girl going to do during the weekend?A. See an opera.B. Make a plan.5.Where are the speakers?A. At a post office.B. At a bank.第二节(共10小题;每题1.5分,满分15分)听下面4段对话或独白。

每段对话或独白后有几道小题,C. Three women.C. Prepare for a test.C. At a hotel.从每小题所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有5秒钟的时间阅读每小题;听完后,每小题将给出5秒钟的作答时间。

每段对话或独白你将听两遍。

听下面一段对话,回答第6至7题。

6.When was the party held?A. In the morning.B. In the afternoon.7.Why didn't the woman go to the party?A.She didn*t feel well.B.She didn't have the time.C.She didn't get an invitation.听下面一段对话,回答第8至10题。

2019年北大附中新高一分班考试数学试题-真题-含详细解析

2019年北大附中新高一分班考试数学试题-真题-含详细解析

2019年北大附中新高一分班考试数学试题-真题一、选择题(本大题共8小题,共24分)1.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A. 200tan70°米B. 200tan70∘米 C. 200sin 70°米 D. 200sin70∘米2.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A. abc>0B. 4ac−b2<0C. 3a+c>0D. 关于x的方程ax2+bx+c=n+1无实数根3.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A. 1个B. 2个C. 3个D. 4个4.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 485.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A. √5B. 3√5 C. 2√5 D. 4√526.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的函数图象大致为图中的()A. B.C. D.7.在平面直角坐标系中,点O为坐标原点,抛物线y=x2−2x−3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()D. y=x+2A. y=xB. y=x+1C. y=x+128.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2−2ax上的点,下列命题正确的是()A. 若|x1−1|>|x2−1|,则y1>y2B. 若|x1−1|>|x2−1|,则y1<y2C. 若|x1−1|=|x2−1|,则y1=y2D. 若y1=y2,则x1=x2二、填空题(本大题共8小题,共24分)9.如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.DE的同样长为半径作弧,两弧交于点F.②分别以点D、E为圆心,大于12③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为______.10.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为______.得DF=1411.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=−4;②若点C(−5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a−b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是______(填写序号).12.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是______.第12题图第13题图13.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=⏜的长为π,则图中阴影部分的面积为______.120°,AB+AC=16,MN14.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.第14题图第15题图15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=______度.16.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共6分)17.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?四、解答题(本大题共12小题,共46分)18. 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下: 李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.19. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题: 已知实数x 、y 满足3x −y =5①,2x +3y =7②,求x −4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①−②可得x −4y =−2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组{2x +y =7,x +2y =8,则x −y =______,x +y =______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:x ∗y =ax +by +c ,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3∗5=15,4∗7=28,那么1∗1=______.20.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=kx(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.21.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.22.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.23.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).24.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有______种不同的结果.25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)26.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…−2−1012…y…m0−3n−3…(1)根据以上信息,可知抛物线开口向______,对称轴为______;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>−2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系______.27.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.28.已知直线l1:y=−2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=−2时,l2//l1;(3)E为线段BC上不与端点重合的点,直线l3:y=−2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.答案和解析1.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQPT,∴PT=PQtan70∘=200tan70∘,即河宽200tan70∘米,故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.2.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B 进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE =612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.4.【答案】A【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.5.【答案】C【解析】解:∵矩形ABCD,∴AD//BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,在Rt△ABC中,AC=√42+82=4√5,∴OA =OC =2√5,故选:C .由矩形的性质,折叠轴对称的性质,可求出AF =FC =AE =5,由勾股定理求出AB ,AC ,进而求出OA 即可. 本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提. 6.【答案】B【解析】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.故选:B .根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度ℎ(cm)与注水时间t(min)的函数图象.本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.【答案】B【解析】解:如图,∵抛物线y =x 2−2x −3与y 轴交于点A ,与x 轴正半轴交于点B ,令y =0,解得x =−1或3,令x =0,求得y =−3,∴A(3,0),B(0,−3),∵抛物线y =x 2−2x −3的对称轴为直线x =−−22×1=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n +3),∵点B′落在抛物线上,∴n +3=16−8−3,解得n =2,∴A′(1,2),B′(4,5),设直线A′B′的表达式为y =kx +b ,∴{k +b =24k +b =5, 解得{k =1b =1∴直线A′B′的表达式为y =x +1,故选:B.求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.8.【答案】C【解析】解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;故选:C.根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】27【解析】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴1×AB×GM=18,2∴4GM=18,∴GM=9,2∴△CBG的面积为:12×BC×GN=12×12×92=27.故答案为:27.过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.本题考查了作图−基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.10.【答案】9√3【解析】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF//CG,∴△EOD∽△GOC,∴EOGO =DOOC=EDGC,∵DF=14DE,∴DEEF =45,∴EDGC =45,∴EOGO =45,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】①③【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;该抛物线的对称轴为直线x=2+(−4)2=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有at2+bt+c≤a−b+c,即对于任意实数t,总有at2+bt≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】14t2−14t+1【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t24+1,∴DE=t24+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=AMAD =t2=FG1,∴FG=t2,∵CG=DE=t24+1,∴CF=t24−t2+1,∴S四边形CDEF =12(CF+DE)×1=14t2−14t+1.故答案为:14t2−14t+1.连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.13.【答案】3(8−√3−π)【解析】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵MN⏜的长为π,∴60πr180=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=√3,∴AM=AN=√3,∴BM+CN=AB+AC−(AM+AN)=16−2√3,∴S阴影=S△OBM+S△OCN−(S扇形MOE+S扇形NOF)=12×3×(BM+CN)−(120π×32360)=32(16−2√3)−3π=24−3√3−3π=3(8−√3−π).故答案为:3(8−√3−π).连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据MN⏜的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=√3,进而可求图中阴影部分的面积.本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.14.【答案】4√33厘米或4√3厘米或8−4√3【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√33;②当∠AEB=30°时,AE=ABtan30∘=4√33=4√3;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=xsin60∘=2√3x3,∵AF=AE+EF=ABtan30°=4√33,∴x+2√3x3=4√33,∴x=8−4√3,∴AE=8−4√3.故答案为:4√33厘米或4√3厘米或8−4√3厘米.根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.15.【答案】30=120°,【解析】解:正六边形的每个内角的度数为:(6−2)⋅180°6所以∠ABC=120°−90°=30°,故答案为:30.由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10]=−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,∴100+20(650−n)10≤160,解得n≥620,∵−2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.【解析】(1)根据图形和直角坐标系可得点D和点E的坐标,代入y=kx2+m,即可求解;(2)根据M和N的横坐标相等,求出N点坐标,再求出矩形FGMN的面积,即可求解;(3)根据题意得到w关于n的二次函数,根据二次函数的性质即可求解.本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.18.【答案】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:7200(1+50%)x −3200x=40,解得:x =40,经检验,x =40是原方程的解,且符合题意,∴(1+50%)x =60,3200x =80,7200(1+50%)x =120. 答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.【解析】设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x 的分式方程,解之经检验后即可得出x 的值,再将其分别代入(1+50%)x ,3200x ,7200(1+50%)x 中即可得出结论. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】−1 5 −11【解析】解:(1){2x +y =7 ①x +2y =8 ②. 由①−②可得:x −y =−1,由13(①+②)可得:x +y =5.故答案为:−1;5.(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,依题意,得:{20m +3n +2p =32 ①39m +5n +3p =58 ②, 由2×①−②可得m +n +p =6,∴5m +5n +5p =5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:{3a +5b +c =15 ①4a +7b +c =28 ②, 由3×①−2×②可得:a +b +c =−11,即1∗1=−11.故答案为:−11.(1)利用①−②可得出x −y 的值,利用13(①+②)可得出x +y 的值;(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①−②可得除m +n +p 的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a +b +c 的值,即1∗1的值.。

2019北京四中高三(上)期中数学

2019北京四中高三(上)期中数学

2019北京四中高三(上)期中数学试卷满分:150分考试时间:120分钟一.选择题:本大题共10小题,每小题4分,共40分1.已知集合A={x x2⁄−x−2≤0},集合B为整数集,则A∩B=()A. {−1,0,1,2}B. {−2,−1,0,1}C. {1,0}D. {−1,0}2.命题p:∃n∈N,n2>2n的否定是()A. ∀n∈N,n2>2nB. ∃n∈N,n2≤2nC. ∀n∈N,n2≤2nD. ∃n∈N,n2=2n3.若复数z=(1+bi)(2+i)是纯虚数(i是虚数单位),则实数b=()A. 2B. 12C. −12D. −24.若角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点p(−√2,1),则cos2α=()A. 2√23B. 13C. −13D. −2√235.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A. a=e,b=−1B. a=e,b=1C. a=e−1,b=−1D. a=e−1,b=17.已知a,b为不相等的两个正数,且lgab=0,则函数y=a x和y=b x的图象()A. 关于原点对称B. 关于y轴对称C. 关于x轴对称D. 关于直线y=x对称8.已知函数f(x)=asinx−bcosx(a,b为常数,且a≠0)的图象关于直线x=π4对称,则函数y=f(3π4−x)是()A. 偶函数且它的图象关于点(π,0)对称B. 偶函数且它的图象关于点(3π2,0)对称C. 奇函数且它的图象关于点(3π2,0)对称 D. 奇函数且它的图象关于点(π,0)对称9.某商场对顾客实行购物优惠活动,规定一次购物:(1)如不超过200元,则不予优惠;(2)如超过200元但不超过500元,则全款按9折优惠;(3)如超过500元,其中500按9折给予优惠,超过500元的部分按8折给予优惠.A. 472.8元B. 510.4元C. 522.8元D. 560.4元10.函数f(x)=11−x −1x+x,设x1,x2,x3是曲线y=f(x)与直线y=a的三个交点的横坐标,其x1<x2<x3,则下列命题错误的是()A. 存在实数a,使得x3−x2>4B. 任给实数a,都有x3−x1>4C. 存在实数a,使得x2−x1>1D. 任给实数a,都有x3−x2>1二.填空题:本大题共6小题,每小题5分,共30分11.若函数f(x)=x2−(a−2)x+1为偶函数,则log a27−log1a78=12.等比数列{a n}的前n项和为S n,若S1,2S2,3S3成等差数列,则{a n}的公比为13.函数f(x)=lnx−12x2的极大值点为14.∆ABC中,∠ABC=π2,AB=4,BC=3,点D在线段AC上,若∠BDC=45°,则BD= ,cos∠ABD=15.函数f(x)=x2−a x(a>0且a≠1),若当 x∈(−1,1)时,均有f(x)<12,则实数a的取值范围是16.数列{a n}满足:a1=2,a n=1−1a n−1.①a4=;②若{a n}有一个形如a n=Asin(ωn+φ)+B(A>0,ω>0,|φ|<π2)的通项公式,则此通项公式可以为a n= .(写出一个即可)三.解答题:本大题共3小题,共30分17.(本小题满分13分)a+b(a>0).已知:函数f(x)=asinxcosx−√3acos2x+√32(I)求函数f(x)的单调递减区间;(II)设x∈[0,π],f(x)的最小值是−2,最大值是√3,求实数a,b的值.218.(本小题满分13分)已知:等比数列{a n}中,a1=2,a4=16.(I)求数列{a n}的通项公式a n;(II)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式b n及前n项和S n.19.(本小题满分13分)近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网.安装这种供电设备的工本费(万元)与太阳能电池板的面积(平方米)成正比,比例系数约为0.5.为了保证正常用电.安装后采用太阳能和电能互补供电的模式,假设在此模式下,安装后该企业每年消耗的电费C(x≥0,k为常数).记F (万元)与安装的这种太阳能电池板的面积x(平方米)之间的函数关系是C(x)=k20x+100为该企业安装这种太阳能供电设备的费用与该企业15年消耗的总电费之和.(I)试解释C(0)的实际意义,并建立F关于x的函数关系式;(II)当x为多少平方米时,F取得最小值?最小值是多少万元?20.(本小题满分13分)已知:∆ABC中,满足2c−ba =cosBcosA.(I)求角A的大小;(II)若a=2√5,求∆ABC面积的最大值.21.(本小题满分14分)已知:函数f(x)=lnx−ax+1−ax−1(a∈R).(I)当a≤12时,讨论f(x)的单调性;(II)设g(x)=x2−2bx+4,当a=14时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b 取值范围.22.(本小题满分14分)将全体自然数填入如图所示的2行无穷列的表格,每格只填一个数字,不同格内的数字对于整数a,b,如果存在满足上述条件的一种填法,使得对于任意n∈N,都有n,n+a,n+b分别在表格的不同行,则称数对(a,b)为自然数集N的“友好数对”.(I)试判断数对(1,2)与(1,3)是否是N的“友好数对”,并说明理由;(II)若a=3,问:是否存在b,使得数对(a,b)是N的“友好数对”?若存在,给出满足条件的一个b的取值,并写出相应的表格填法,若不存在,请说明理由;(III)试给出使得数对(a,b)是N的“友好数对”的一个充分条件.(结论不要求证明)word下载地址。

2019年北大附中新高一分班考试数学试题-真题-含详细解析

2019年北大附中新高一分班考试数学试题-真题-含详细解析

t a n70∘米si n70∘米2019年北大附中新高一分班考试数学试题-真题一、选择题(本大题共8小题,共24分)1.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.200C.200sin70°米D.2002.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac−b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根3.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK△和GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个4.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()B. 若|x − 1| > |x − 1|,则y < yD. 若y = y ,则x = xA. 160B. 128C. 80D. 485.如图,将矩形 ABCD 折叠,使点 C 和点 A 重合,折痕为 EF ,EF 与 AC 交于点O.若AE = 5,BF = 3,则 AO的长为( )A. √5B. 3 √52C. 2√5D. 4√56.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t (mi n )的函数图象大致为图中的()A.B.C. D.7.在平面直角坐标系中,点 O 为坐标原点,抛物线y = x 2 − 2x − 3与 y 轴交于点 A ,与 x 轴正半轴交于点 B ,连接 AB ,将Rt △ OAB 向右上方平移,得到Rt △ O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()A. y = xB. y = x + 1C. y = x + 1D. y = x + 228.已知P 1(x 1, y 1),P 2(x 2, y 2)是抛物线y = ax 2 − 2ax 上的点,下列命题正确的是()A. 若|x 1 − 1| > |x 2 − 1|,则y 1 > y 2 C. 若|x 1 − 1| = |x 2 − 1|,则y 1 = y 21 2 1 21 2 1 2⏜二、填空题(本大题共 8 小题,共 24 分)9.如图,在△ ABC 中,按以下步骤作图:①以点 B 为圆心,任意长为半径作弧,分别交 AB 、BC 于点 D 、E .②分别以点 D 、E 为圆心,大于1 DE 的同样长为半径作弧,两弧交于点 F .2③作射线 BF 交 AC 于点 G .如果AB = 8,BC = 12△,ABG 的面积为 18△,则 CBG 的面积为______.10. 如图,在▱ABCD 中,∠B = 60°,AB = 10,BC = 8,点 E 为边 AB 上的一个动点,连接 ED 并延长至点 F ,使得DF = 1 DE ,以 EC 、EF 为邻边构造▱EFGC ,连接 EG ,则 EG 的最小值为______.411. 抛物线y = ax 2 + bx + c(a,b ,c 为常数,a < 0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax 2 + bx + c = 0的根为x 1 = 2,x 2 = −4; ②若点C(−5, y 1),D(π, y 2)在该抛物线上,则y 1 < y 2;③对于任意实数 t ,总有a t 2 + bt ≤ a − b ;④对于 a 的每一个确定值,若一元二次方程ax 2 + bx + c = p(p 为常数,p > 0)的根为整数,则 p 的值只有两个.其中正确的结论是______(填写序号).12. 如图,折叠矩形纸片 ABCD ,使点 D 落在 AB 边的点 M 处,EF 为折痕,AB = 1,AD = 2.设 AM 的长为 t ,用含有 t 的式子表示四边形 CDEF 的面积是______.第 12 题图第 13 题图13. 如图,在△ ABC 中,O 为 BC 边上的一点,以 O 为圆心的半圆分别与 AB ,AC 相切于点 M ,N.已知∠BAC =120°,AB + AC = 16,MN 的长为π,则图中阴影部分的面积为______.14.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.第14题图第15题图15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=______度.16.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共6分)17.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?(1)已知二元一次方程组{四、解答题(本大题共 12 小题,共 46 分)18. 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品甲乙进价(元/件) 数量(件) 总金额(元)72003200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多 40 件.请你求出乙商品的进价,并帮助他们补全进货单.19. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数 x 、y 满足3x − y = 5①,2x + 3y = 7②,求x − 4y 和7x + 5y 的值.本题常规思路是将①②两式联立组成方程组,解得 x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由① − ②可得x − 4y = −2,由① + ② × 2可得7x + 5y = 19.这样的解题思想就是通常所说的“整体思想”.解决问题:2x + y = 7,x + 2y = 8,则x − y =______,x + y =______;(2)某班级组织活动购买小奖品,买 20 支铅笔、3 块橡皮、2 本日记本共需 32 元,买 39 支铅笔、5 块橡皮、3本日记本共需 58 元,则购买 5 支铅笔、5 块橡皮、5 本日记本共需多少元?(3)对于实数 x 、y ,定义新运算:x ∗ y = ax + by + c ,其中 a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3 ∗ 5 = 15,4 ∗ 7 = 28,那么1 ∗ 1 =______.20.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=k(x>0)的图象经过点x P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.21.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AE=AB=2,AE=4,AB=8,将矩形AEFGAG AD3绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.22.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.23.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).24.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数2个整数之和1,231,342,35如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数2个整数之和1,231,341,452,352,463,47如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有______种不同的结果.25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)26. 已知抛物线y = ax 2 + bx + c(a,b ,c 是常数,a ≠ 0)的自变量 x 与函数值 y 的部分对应值如下表:x …−2−1 01 2… y… m−3n−3…(1)根据以上信息,可知抛物线开口向______,对称轴为______;(2)求抛物线的表达式及 m ,n 的值;(3)请在图 1 中画出所求的抛物线.设点 P 为抛物线上的动点,OP 的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y = m(m > −2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A 1,A 2,A 3,A 4,请根据图象直接写出线段A 1A 2,A 3A 4之间的数量关系______.27. 某数学课外活动小组在学习了勾股定理之后,针对图 1 中所示的“由直角三角形三边向外侧作多边形,它们的面积S 1,S 2,S 3之间的关系问题”进行了以下探究:类比探究(1)如图 2,在Rt △ ABC 中,BC 为斜边,分别以 AB ,AC ,BC 为斜边向外侧作Rt △ ABD ,Rt △ ACE ,Rt △BCF ,若∠1 = ∠2 = ∠3,则面积S 1,S 2,S 3之间的关系式为______;推广验证(2)如图 3,在Rt △ ABC 中,BC 为斜边,分别以 AB ,AC ,BC 为边向外侧作任意△ ABD △, ACE △, BCF ,满足∠1 = ∠2 = ∠3,∠D = ∠E = ∠F ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图 4,在五边形 ABCDE 中,∠A = ∠E = ∠C = 105°,∠ABC = 90°,AB = 2√3,DE = 2,点 P 在 AE上,∠ABP = 30°,PE = √2,求五边形 ABCDE 的面积.28. 已知直线l 1:y = −2x + 10交 y 轴于点 A ,交 x 轴于点 B ,二次函数的图象过 A ,B 两点,交 x 轴于另一点 C ,BC = 4,且对于该二次函数图象上的任意两点P 1(x 1, y 1 ),P 2(x 2, y 2 ),当x 1 > x 2 ≥ 5时,总有y 1 > y 2.(1)求二次函数的表达式;(2)若直线l 2:y = mx + n(n ≠ 10),求证:当m = −2时,l 2//l 1;(3)E 为线段 BC 上不与端点重合的点,直线l 3:y = −2x + q 过点 C 且交直线 AE 于点 F △,求ABE △与 CEF 面积之和的最小值.t a n70∘=t a n70∘,即河宽t a n70∘米,2a =−1,答案和解析1.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQ,PT∴PT=PQ200200故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.2.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B 进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,12=1,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=AB=BE 62∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK△和GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK△和GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.4.【答案】A【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.5.【答案】C【解析】解:∵矩形ABCD,∴AD//BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,2×1 = 1, 解得{ ∴ OA = OC = 2√5,故选:C .由矩形的性质,折叠轴对称的性质,可求出AF = FC = AE = 5,由勾股定理求出 AB ,AC ,进而求出 OA 即可.本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提.6.【答案】B【解析】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于 0,则可以判断 A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间 h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随 t 的增大而增大,当水注满小杯后,小杯内水面的高度 h 不再变化.故选:B .根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度ℎ(cm)与注水时间t (mi n )的函数图象.本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.【答案】B【解析】解:如图,∵抛物线y = x 2 − 2x − 3与 y 轴交于点 A ,与 x 轴正半轴交于点 B ,令y = 0,解得x = −1或 3,令x = 0,求得y = −3,∴ A(3,0),B(0, −3),∵抛物线y = x 2 − 2x − 3的对称轴为直线x = −∴ A′的横坐标为 1,设A ′(1, n),则B′(4, n + 3),∵点B′落在抛物线上,∴ n + 3 = 16 − 8 − 3,解得n = 2,∴ A′(1,2),B′(4,5),设直线A′B′的表达式为y = kx + b ,∴{ k + b = 2 , 4k + b = 5k = 1−2故选:B.求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.8.【答案】C【解析】解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;故选:C.根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】27【解析】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴1×AB×GM=18,2∴4GM=18,∴△CBG的面积为:1×BC×GN=1×12×9=27.222故答案为:27.过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.本题考查了作图−基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.10.【答案】9√3【解析】解:作CH⊥AB于点H,∵在ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF//CG,∴△EOD∽△GOC,∴EO=DO=ED,GO OC GC∵DF=1DE,4∴DE=4,EF5∴ED=4,GC5∴EO=4,GO5∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】①③【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;该抛物线的对称轴为直线x=2+(−4)=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有a t2+b t+c≤a−b+c,即对于任意实数t,总有at2+b t≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】1t2−1t+144【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t 2+1,4∴DE=t2+1,4∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,211⏜∴FG=t,2∵CG=DE=t2+1,4∴CF=t2−t+1,42∴S四边形CDEF=1(CF+DE)×1=4t2−4t+1.故答案为:1t2−1t+1.44连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.13.【答案】3(8−√3−π)【解析】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵MN的长为π,∴60πr=π,180∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=√3,∴AM=AN=√3,∴BM+CN=AB+AC−(AM+AN)=16−2√3,⏜②当∠AEB=30°时,AE=t a n30∘=si n60∘=2√3x,1120π×32=×3×(BM+CN)−()23603=(16−2√3)−3π2=24−3√3−3π=3(8−√3−π).故答案为:3(8−√3−π).连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据MN的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=√3,进而可求图中阴影部分的面积.本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.14.【答案】4√3厘米或4√3厘米或8−4√33【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√3;3AB4√3=4√3;3③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=x3∵AF=AE+EF=ABtan30°=4√3,3∴x+2√3x=4√3,33∴x=8−4√3,∴AE=8−4√3.故答案为:4√3厘米或4√3厘米或8−4√3厘米.3根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.15.【答案】30【解析】解:正六边形的每个内角的度数为:(62)⋅180°=120°,6所以∠ABC=120°90°=30°,故答案为:30.由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH OH=43=1,∴E(0,1),D(2,0),32依题意,得:∴该抛物线的函数表达式y = kx 2 + 1,把点D(2,0)代入,得k = − 1,4∴该抛物线的函数表达式为:y = − 1 x 2 + 1;4(2) ∵ GM = 2,∴ OM = OG = 1,∴当x = 1时,y = 3,4∴ N(1, 3),4∴ MN = 3,4矩形MNFG = MN ⋅ GM = 4 × 2 = 3,∴ S∴每个 B 型活动板房的成本是:425 + 3 × 50 = 500(元).2答:每个 B 型活动板房的成本是 500 元;(3)根据题意,得w = (n − 500)[100 +20(650 − n)10]= −2(n − 600)2 + 20000,∵每月最多能生产 160 个 B 型活动板房,∴ 100 + 20(650−n) ≤ 160,10解得n ≥ 620,∵ −2 < 0,∴ n ≥ 620时,w 随 n 的增大而减小,∴当n = 620时,w 有增大值为 19200 元.答:公司将销售单价n(元)定为 620 元时,每月销售 B 型活动板房所获利润w(元)最大,最大利润是 19200 元.【解析】(1)根据图形和直角坐标系可得点 D 和点 E 的坐标,代入y = kx 2 + m ,即可求解;(2)根据 M 和 N 的横坐标相等,求出 N 点坐标,再求出矩形 FGMN 的面积,即可求解;(3)根据题意得到 w 关于 n 的二次函数,根据二次函数的性质即可求解.本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.18.【答案】解:设乙商品的进价为 x 元/件,则甲商品的进价为(1 + 50%)x 元/件,7200(1+50%)x− 3200 = 40,x第23页,共36页∴(1+50%)x=60,3200=80,(1+50%)x=120.x ,(1+50%)x中即可得出结论.解得:x=40,经检验,x=40是原方程的解,且符合题意,7200x答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.【解析】设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其分别代入(1+50%)x,32007200本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】−15−112x+y=7 ①【解析】解:(1){.x+2y=8 ②由①−②可得:x−y=−1,由1(①+②)可得:x+y=5.3故答案为:−1;5.(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,依题意,得:{20m+3n+2p=32 ①,39m+5n+3p=58 ②由2×①−②可得m+n+p=6,∴5m+5n+5p=5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:{3a+5b+c=15 ①,4a+7b+c=28 ②由3×①−2×②可得:a+b+c=−11,即1∗1=−11.故答案为:−11.(1)利用①−②可得出x−y的值,利用1(①+②)可得出x+y的值;3(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m,n,p的三元一次方程组,由2×①−②可得除m+n+p的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a,b,c的三元一次方程组,由3×①−2×②可得出a+b+c的值,即1∗1的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一入学分班考试-数学
一、选择题:本大题共 10 小题,每小题 6 分,共 60 分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.下列运算正确的是( )
A 、 32 9
B、 42 8
C、 32 9
D、 1 4 16 2
2.函数 y 2x 与 y 18 的的图象相交于 A 、B 两点(其中 A 在第一象限),过 A 作 AC 垂直于 x 轴,垂 x
第3页共7页
20. (本小题 14 分)己知:如图,抛物线 C1 经过 A、B、C 三点,顶点为 D,且与 x 轴的 另一个交点为 E. (1)求抛物线C1 的解析式: (2)求四边形 ABDE 的面积: (3)△AOB 与△BDE 是否相似,若相似,请予以证明:若不相似,请说明理由: (4) 设抛物线 C1 的对称轴与 x 轴交于点 F,另一条抛物线 C2 经过点 E (抛物线 C2 与抛物线 C1 不重合),且 顶点为 M(a ,b) 对称轴与 x 轴交于点 G,且以 M、G、E 为顶点的三角形与以 D、E、F 为顶点的三角形全等, 求 a 、b 的值。(只须写出结果不必写出解答过程〉
数为
第2页共7页
13. 内切两圆的半径长是方程 x 2 + px+q = 0 的两根,己知两圆的圆心距是 1,其中一圆的半径是3, 则p+q=
14. 观察下列分母有理化的计算:
从计算结果中找出规律,并利用这一规律计算: 15. 随机抽取某城市 30 天的空气质量状况如下表:
其中 w≤50 时,空气质量为优;50<w≤100 时,空气质量为良;100<w≦150 时,空气质量为轻为污染.估计该城
1
③ a < 60 ;④ 0< b < -12 a ,其中正确结论的序号是

三、解答题:本大题共 4 小题,共 54 分.解答应写出文字说明,证明过程或演算步骤.
17.
(本小题
12
分)已知
x=3 是方程
10 x2
k x
1
的一个根,求
k
的值和方程其余的根.
18. (本小题 14 分)如图,在直角坐标系 xOy 中,直线 l 经过点 B(O, 3 ),且与 x 轴的正半轴交于 A 点,点 P、
市一年(以 365 天计)中空气质量达到良以上的有
天.
16. 为了备战奥运会预选赛,中国国奥队在一次训练中,前锋队员在距离球门 12 米处的挑射,正好击中了 2.4 米
1 高的球门横梁,若足球运行的路线是抛物线 y = a x2+bx+c (如图),则下列结论:① a -b+c>O; ② 60 < a <0;
Q 在线段AB 上,点 M、N 在线段 OA 上,且△POM 与△QMN 是相似比为 3:1
的两个等边三角形.
AM
试求: (1)
的值; (2)直线l 的解析式
MO
19. (本小题 14 分)梯形 ABCD 中, AB//CD ,AB=25. CD=DA=16,问对角线
BD 能否把梯形分成两个相似的三角形?若不能,给出证明:若能,求出 BC,BD 的长.
AM 1
AM
1
不妨设其为 y=kx+b,求待定系数 k、b 的值. 作 PC⊥OA 交 OA 于点 C.
即 AM 1 MO 2
∵△OPM 是等边三角形,
∴设 oc=α ,则 OM=2a,OA=3a,PC= 3 a.
∵ PC AC 3a 2 a 2
足为 C ,则△ABC 的面积等于( )
A 、18
B、9
C、12
D、6
1 a 1b 3.若 a,b 为实数,满足 1 a 1 b ,则 (1 + a +b)(2 -a-b)的值是( )
A 、-1 B、0 C、 1 D、2 4. 如图 1 所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是( )
么,小陈开始向小李逐一报数,小李报的号数是( )
A 、11
B、12
C、13 D 、 14
7. 图中不是正方形的侧面展开图的个数为( )
A 、l B、2 C、3 D、4
8. 张华同学从家里去学校,开始选匀速步行,走了一段路后,发觉照这样走下去会迟到, 于是匀速跑完余下的路
程,下面坐标系中,横轴表示该同学从家出发后的时间 t ,纵轴 表示张华离学校的路程S ,则S 与 t 之间函
第4页共7页
参考答案
一、选择题:本大题共 10 小题,每小题 6 分,共 60 分. 1、D 2、A 3、D 4、C 5、B 6、A 7、B 8、D
9、C
10、C
二、填空题:本大题共 6 小题,每小题 6 分,共 36 分.
11、4 12、80° 13、1 或 5 14、 2009 1 15、219 16、③④
5. 如图,己知直角三角形 ABC 中,斜边 AB=35 ,一个边长为 12 的正方形 CDEF 内接于△ABC,则△ABC 的周长
为( )
A 、81
B、84 C、85 D、88
6. 有 20 个同学排成一行,若从左往右隔 1 人报数,小李报 8 号,若从右往左隔 2 人报数,小陈报 6 号,那
第1页共7页
三、解答题:本大题共 4 小题,共 54 分.
17、(本小题 12 分)
解: ∵ x =3 是方程 10 k 1的一个根, x2 x

10 32
k 3
1
k
3

10 x2
3 x
1
x2
5x
6
0
x1
3或x2
2
所以方程的另一根为 2.
18、(本小题 14 分〉
解: (1) MQ ‖ PO AOP ∽ QOM AO 3 AO AM 3 1
A 、-1<x<1 B、-1≤x≤1 C、2<x<3 D、2≤x≤3 二、填空题: 本大题共 6 小题,每小题 6 分,共 36 分.把答案填在题中横线上.
11.计算: 1 3 1 2 tan 600 2 2 =

2 3
12. 如图,四边形 ABCD 的对角线相交于点 0,∠BAD=∠BCD=60°,∠CBD=55°,∠ADB=50°,则∠AOB 的度
数关系的图像大致是(

9. 令a=0.12345678910111213 ……998999 ,其中的数字是由依次写下正整数1 至999 得到的,则小数点右
边第2008 位数字是( )
A、0
B、5
C、7
D、9
10. 若不等式 ax2 + 7x -1> 2x + 5 对 1 a 1 恒成立,则 x 的取值范围是( )
相关文档
最新文档