人教版八年级数学上册 分式综合应用(习题及答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式综合应用(习题)
例题示范
例1:已知关于x 的方程
223242
ax x x x +=--+无解,求a 的值. 【思路分析】
分式方程无解包括两部分:第一,分式方程化为整式方程,整式方程的解是原分式方程的增根;第二,分式方程化为整式方程,整式方程无解.
【过程书写】
2(2)3(2)
2436(1)10x ax x x ax x a x ++=-++=--=-解: (1)当a -1≠0,即a ≠1时
101
x a =-- ∵原分式方程无解 ∴101x a =-
-是原分式方程的增根 ∴10102211
a a -=-=---或 ∴a =-4或a =6
(2)当a-1=0,即a=1时0=-10,不成立
此时原分式方程无解
综上,a的值为1,-4或6
巩固练习
1.化简下列分式.
1(3)(6)x x ++++…
221156712a a a a +++-+-+
2. 下列关于x 的分式方程无解,求m 的值.
132x x -+=--;
(2)
33m x x
=-;
(3)2213m x x x +-=-.
3.若11
3
x y
-=,则
232
2
x xy y
x xy y
+-
=
--
_________.
4.若2310
x x
-+=,则
2
421
x
x x
++
的值为_________.
5.若a为正实数,且
1
5
a
a
-=,则2
2
1
a
a
-=_________.
6. 若53m n =,则222m m n m n m n m n
+-=+--_________. 【思路分析】
①观察已知和所求,发现已知条件为连比的形式,考虑_____________. ②设________________,
∴m =____________,n =____________
, ∴原式=
7. 分式2243
21x x -++的最大值是_________
. 【思路分析】
①由已知条件求分式最大值,考虑_____________.
②原式=
③取值说理:
因为______________,所以___________的最小值是______;
所以___________的最大值是______;所以分式
2
2
43 21
x
x
-+
+
的
最大值是_________.
8.若分式
223
2
x x
x
++
+
的值为整数,则整数x的值为_________.
【思路分析】
①由已知条件求分式的值为整数,考虑_____________.
②原式=
③取值说理:
∵分式223
2x x x +++的值为整数,且x 为整数,
∴x +2能整除_______,
∴x +2=____________,
∴x =_________________.
思考小结
类比
学习分式时,我们注意将分式与分数进行类比,
通过回忆分数的有关知识来探
索、发现、建立分式的新知识.
鲁班由小茅草割破手发明了锯,维也纳医生奥恩布鲁格由父亲敲击酒桶判断酒的多少发明了扣诊法,仿生学利用生物的结构和功能原理来研制机械或各种新技术.这些平凡而伟大的创意都源自类比.
什么是类比呢?数学家、数学教育家波利亚说过:“类比就是一种相似.”具体地说,类比是一种推理形式,当已经建立两个对象在某些性质上的类似之处以后,可能(并非必定)推出它们在其他某些性质上的类似.
这种推理形式的结构可以表示如下:
对象A有性质P,Q,R,…,X
对象B有性质P,Q,R,…
推测(猜想):B可能也有性质X
就拿分数和分式来说吧.从表示形式和意义来看,分数的形式是a
b
(a,b是整
数,b≠0),它表示两个整数的商;分式的形式是A
B
(A,B是整式,B≠
0),它表示两个整式的商.
从基本性质来看,分数的分子、分母同乘以一个不等于零的数,分数的大小不变,它是分数约分和通分的依据;分式也有类似的基本性质,它是分式约分和通分的依据.
其他方面,从约分、通分到运算,甚至是最简分式与最简分数(既约分数)的概念,分式与分数都十分相似!
类比是我们学习数学的一种有效方法,我们还可以举出许多例子.如学习整式时,常常可以和整数类比.两个整数的和、差、积都是整数,但两个整数的商却未必是整数,从而需要引进分数;类似地,两个整式的和、差、积都是整式,但两个整式的商未必是整式,从而需要引进分式.整式的因式分解可以与整数的因数分解类比,等等.
类比能揭示自然界的奥秘,它是数学发现的重要方法.但类比不具有证明的力量.由类比得到的结论可能成立,也可能不成立,需要进一步研究,加以证明或反驳.
科学家将火星与地球作了类比,发现火星有很多与地球类似之处:火星是行星,绕太阳运行,绕轴自转;火星上有大气层,空气成分很类似,一年中有四季的变更;火星上有水,大部分时间的温度适合地球上某些生物的生存.地球上有生命存在,科学家推测:火星上也可能有生命存在!但事实究竟怎样,需要进一步的科学考证.
在数学学习时理解这一点也很重要.例如,学习一元一次不等式,它的解法、步骤与解一元一次方程非常相似.不等式与等式的性质也有类似的地方,但是不能全盘照搬,特别是不等式的两边同乘以一个负数时,不等号的方向要改变,在