高三数学一轮复习 5.4数列求和
高三数学一轮总复习 第五章 数列 5.4 数列求和课件.ppt
12
n
4.一个数列{an},当 n 是奇数时,an=5n+1;当 n 为偶数时,an=22 ,则这 个数列的前 2m 项的和是__________。
解析:当 n 为奇数时,{an}是以 6 为首项,以 10 为公差的等差数列;当 n 为偶 数时,{an}是以 2 为首项,以 2 为公比的等比数列。所以,S2m=S 奇+S 偶=ma1+mm2-1 ×10+a211--22m
7
2 种思路——解决非等差、等比数列求和问题的两种思路 (1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往 通过通项分解或错位相减来完成。 (2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和。
8
3 个注意点——应用“裂项相消法”和“错位相减法”应注意的问题 (1)裂项相消法,分裂通项是否恰好等于相应的两项之差。 (2)在正负项抵消后,是否只剩下第一项和最后一项,或有时前面剩下两项,后 面也剩下两项,未消去的项有前后对称的特点。 (3)在应用错位相减法求和时,若等比数列的公比含有参数,应分 q=1 和 q≠1 两种情况求解。
=6m+5m(m-1)+2(2m-1) =6m+5m2-5m+2m+1-2 =2m+1+5m2+m-2。 答案:2m+1+5m2+m-2
13
5.已知数列{an}的前 n 项和为 Sn 且 an=n·2n,则 Sn=__________。
解析:∵an=n·2n, ∴Sn=1·21+2·22+3·23+…+n·2n。① ∴2Sn=1·22+2·23+…+(n-1)·2n+n·2n+1。② ①-②,得-Sn=2+22+23+…+2n-n·2n+1 =211--22n-n·2n+1=2n+1-2-n·2n+1 =(1-n)2n+1-2。 ∴Sn=(n-1)2n+1+2。 答案:(n-1)2n+1+2
专题5.4 数列求和及数列的综合应用-2020届高考数学一轮复习学霸提分秘籍(原卷版)
第五篇 数列及其应用专题5.04 数列求和及数列的综合应用【考试要求】1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法;3.了解数列是一种特殊的函数;4.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.【知识梳理】1.特殊数列的求和公式(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n 与a n +1(或者相邻三项等)之间的递推关系,或者S n 与S n +1(或者相邻三项等)之间的递推关系.【微点提醒】1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6. 3.裂项求和常用的三种变形(1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. (3)1n +n +1=n +1-n .【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( )【教材衍化】2.(必修5P47B4改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n 为( ) A.2 018B.2 019C.2 020D.2 0213.(必修5P56例1改编)等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6=________.【真题体验】4.(2018·东北三省四校二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A.9B.15C.18D.305.(2019·北京朝阳区质检)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2,则2T n =________________.6.(2019·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝⎛⎭⎫1n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.【考点聚焦】考点一 分组转化法求和【例1】 (2019·济南质检)已知在等比数列{a n }中,a 1=1,且a 1,a 2,a 3-1成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),数列{b n }的前n 项和为S n ,试比较S n 与n 2+2n 的大小.【规律方法】 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .考点二 裂项相消法求和【例2】 (2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和T n .【规律方法】1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3.(1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和T n .考点三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .【规律方法】 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.【训练3】已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后成等比数列,a n+2log2b n=-1.(1)分别求数列{a n},{b n}的通项公式;(2)求数列{a n·b n}的前n项和T n.考点四数列的综合应用【例4】某同学利用暑假时间到一家商场勤工俭学.该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍).他应该选择哪种方式领取报酬呢?【规律方法】数列的综合应用常考查以下几个方面:(1)数列在实际问题中的应用;(2)数列与不等式的综合应用;(3)数列与函数的综合应用.解答数列综合题和应用题既要有坚实的基础知识,又要有良好的逻辑思维能力和分析、解决问题的能力.解答应用性问题,应充分运用观察、归纳、猜想的手段建立出有关等差(比)数列、递推数列模型,再结合其他相关知识来解决问题.【训练4】已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{a n}的前n项和为S n,点(n,S n)(n∈N*)均在函数y=f(x)的图象上.(1)求数列{a n}的通项公式;(2)设b n=3a n a n+1,试求数列{b n}的前n项和T n.【反思与感悟】1.非等差、等比数列的一般数列求和,主要有两种思想(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求的是什么.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到实际问题中.【易错防范】1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,要注意观察未合并项的正负号.3.解等差数列、等比数列应用题时,审题至关重要,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差数列、等比数列问题,使关系明朗化、标准化,然后用等差数列、等比数列知识求解.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A.-24B.-3C.3D.82.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-4003.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( )A.9B.99C.10D.1004.(2019·德州调研)已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为() A.1 026 B.1 025 C.1 024 D.1 0235.(2019·厦门质检)已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( )A.250B.200C.150D.100二、填空题6.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________.7.(2019·武汉质检)设数列{(n 2+n )a n }是等比数列,且a 1=16,a 2=154,则数列{3n a n }的前15项和为________.8.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为________.三、解答题9.求和S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2(x ≠0).10.设数列{a n }的前n 项和为S n ,a 1=2,a n +1=2+S n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1+log 2(a n )2,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <16.【能力提升题组】(建议用时:20分钟)11.(2019·广州模拟)已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则() A.a n ≥2n +1 B.S n ≥n 2C.a n ≥2n -1D.S n ≥2n -112.某厂2019年投资和利润逐月增加,投入资金逐月增长的百分率相同,利润逐月增加值相同.已知1月份的投资额与利润值相等,12月份投资额与利润值相等,则全年的总利润ω与总投资N 的大小关系是( )A.ω>NB.ω<NC.ω=ND.不确定13.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.14.(2019·潍坊调研)已知数列{a n }的前n 项和为S n ,a 1=5,nS n +1-(n +1)S n =n 2+n .(1)求证:数列⎩⎨⎧⎭⎬⎫S n n 为等差数列; (2)令b n =2n a n ,求数列{b n }的前n 项和T n .【新高考创新预测】15.(多填题)已知公差不为零的等差数列{a n}中,a1=1,且a2,a5,a14成等比数列,{a n}的前n项和为S n,b n=(-1)n S n,则a n=________,数列{b n}的前n项和T n=________.。
高考数学一轮复习 第五章 数列 5.4 数列求和课件.pptx
{an}的前 n 项和. 2.通项公式为 an=cbnn,,nn为为偶奇数数, 的数列,其中数列{bn},{cn}是等比 数列或等差数列,可采用分组求和法求和. 提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,
Sn=na12+an=_n_a_1_+__n_n_-2__1__d___.
(2)等比数列的前 n 项和公式: Sn=naa11-1-,aqqnq==1_a,_11_1-_-_q_q_n_,__q_≠__1_._ 2.倒序相加法 如果一个数列{an}的前 n 项中首末两端等“距离”的两项的和相等或等于同 一个常数,那么求这个数列的前 n 项和即可用倒序相加法,如等差数列的前 n 项 和公式即是用此法推导的.
1.必会结论 常用求和公式
前 n 个正整数之和 前 n 个正奇数之和
前 n 个正整数的平方和
前 n 个正整数的立方和
1+2+…+n=nn2+1 1+3+5+…+(2n-1)=n2
nn+12n+1 12+22+…+n2=________6_______
13+23+…+n3=nn+2 12
2.必知联系 (1)直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数 (字母)时,应对其公比是否为 1 进行讨论. (2)在应用错位相减法时,注意观察未合并项的正负号;结论中形如 an,an+1 的式子应进行合并. (3)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后 剩多少项.
(2)由(1)可得 bn=2n+n, 所以 b1+b2+b3+…+b10 =(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =211--2210+1+102×10 =(211-2)+55=211+53=2 101.
高考数学一轮复习 第五章 数列 5.4 数列求和与数列的综合应用课件 理 高三全册数学课件
2021/12/8
第二十三页,共五十七页。
解析:(1)令数列{an}的前 n 项和为 Sn,则 S20=a1+a2+a3 +…+a20=2(1+2+3+…+20)-12+212+213+…+2120=420- 1-2120=419+2120.
(2)an=2+22+23+…+2n=2-1-2n2+1=2n+1-2, 所以 Sn=(22+23+24+…+2n+1)-(2+2+2+…+2)= 221--22n+2-2n=2n+2-4-2n.
2021/12/8
第十八页,共五十七页。
课堂探究·深度剖析
课堂升华 强技提能
2021/12/8
第十九页,共五十七页。
考向一 分组求和法
【例 1】 (1)若数列{an}的通项公式为 an=2n+2n-1,则数列{an}
的前 n 项和为( C )
A.2n+n2-1
B.2n+1+n2-1
C.2n+1+n2-2 D.2n+n-2
2021/12/8
第十三页,共五十七页。
4.(2019·武汉市调研考试)对任一实数序列 A=(a1,a2,a3,…), 定义新序列 ΔA=(a2-a1,a3-a2,a4-a3,…),它的第 n 项为 an+1-an.
假定序列 Δ(ΔA)的所有项都是 1,且 a12=a22=0,则 a2= 100 .
第五章
数列(shùliè)
2021/12/8
第一页,共五十七页。
第四节 数列求和(qiúhé)与数列的综合应用
2021/12/8
第二页,共五十七页。
2021/12/8
第三页,共五十七页。
知识(zhī shi)梳理·自主学
习
课堂(kètáng)探究·深度剖 析
高考理科第一轮复习练习(5.4数列的求和)
课时提升作业(三十三)一、选择题1.(2013·南昌模拟)已知等比数列{a n}公比为q,其前n项和为S n,若S3,S9,S6成等差数列,则q3等于( )(A)-错误!未找到引用源。
(B)1(C)-错误!未找到引用源。
或1 (D)-1或错误!未找到引用源。
2.(2013·长春模拟)在等差数列{a n}中,a9=错误!未找到引用源。
a12+6,则数列{a n}的前11项和S11等于( )(A)24 (B)48 (C)66 (D)1323.已知数列{a n}的通项公式是a n=2n-3(错误!未找到引用源。
)n,则其前20项和为( )(A)380-错误!未找到引用源。
(1-错误!未找到引用源。
) (B)400-错误!未找到引用源。
(1-错误!未找到引用源。
)(C)420-错误!未找到引用源。
(1-错误!未找到引用源。
) (D)440-错误!未找到引用源。
(1-错误!未找到引用源。
)4.(2013·阜阳模拟)已知直线(3m+1)x+(1-m)y-4=0所过定点的横、纵坐标分别是等差数列{a n}的第一项与第二项,若b n=错误!未找到引用源。
,数列{b n}的前n项和为T n,则T10=( ) (A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
5.(2013·太原模拟)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则错误!未找到引用源。
= ( )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
6.数列{a n}的前n项和S n=3n+b(b是常数),若这个数列是等比数列,那么b为( )(A)3 (B)0 (C)-1 (D)17.等差数列{a n}的前n项和为S n,已知a m-1+a m+1-错误!未找到引用源。
=0,S2m-1=38,则m= ( )(A)38 (B)20 (C)10 (D)98.(能力挑战题)数列{a n}的前n项和S n=2n-1,则错误!未找到引用源。
苏教版高三数学复习课件5.4 数列的求和
答案: 答案:
5. (2010·南京市第九中学调研测试 已知数列 n}满足:an= . 南京市第九中学调研测试)已知数列 满足: 南京市第九中学调研测试 已知数列{a 满足 则数列{a 的前 的前100项的和是 项的和是________. 则数列 n}的前 项的和是 . 解析: 解析:an=
∴a1+a2+…+a100=
6.常见的拆项公式有: .常见的拆项公式有:
(1)
(2)
(3) 思考:用裂项相消法求数列前 项和的前提是什么 项和的前提是什么? 思考:用裂项相消法求数列前n项和的前提是什么? 提示:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提. 提示:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提.
第4课时 数列的求和
掌握数列求和的几种常见方法. 掌握数列求和的几种常见方法. 【命题预测】 命题预测】 数列的求和在近几年高考中,填空题与解答题都有出现 , 重点以容易题和中档 数列的求和在近几年高考中 , 填空题与解答题都有出现, 题为主,基本知识以客观题出现,综合知识则多以解答题体现, 题为主 , 基本知识以客观题出现 , 综合知识则多以解答题体现 , 主要是探索型 和综合型题目.复习时,要具有针对性地训练,并以“注重数学思想方法、 和综合型题目 . 复习时 , 要具有针对性地训练 , 并以 “ 注重数学思想方法 、 强 化运算能力、重点知识重点训练”的角度做好充分准备. 化运算能力、重点知识重点训练”的角度做好充分准备.
1. 数列 . 数列0.9,0.99,0.999,…, ,
项和为________. …的前n项和为 的前 项和为 .
解析:数列的通项公式为 其前n项和 解析:数列的通项公式为an=1-0.1n,其前 项和 -
数列求和 课件-2023届高三数学一轮复习
1
1
1
n+1
n+1
1-
,故 Tn=2 -2+1-
=2 -
-1.
n+1
n+1
n+1
选②,设{an}的公差为 d,由 a3+a5=16,S3+S5=42,
a =2,
1
解得
所以 an=2n,Sn=n2+n.所以 a1=2,a2=4,
d=2,
a1a2
设{bn}的公比为 q,则 b1=a1=2,b2= 2 =4,
高三一轮复习
5.4 数列求和
公式法
错位相
倒序相
加法
减法
数列
求和
并项求
和法
裂项相
消法
分组转
化法
一.公式法
知识点 数列前 n 项和的求法:公式法
(1)等差数列的前 n 项和公式
n(a1+an)
n(n-1)
na1+
d .
2
Sn=___________
=___________________
2
(2)等比数列的前 n 项和公式
所以 q=2,所以 bn=2n,
2-2n+1
1
n+1
=2 -2,因为S
n
1
所以数列{bn}的前 n 项和为
= 2
1-2
n +n
1
1
1
1
1
1
=
=n -
,所以数列S 的前 n 项和为 1-2 +2 -
n
n(n+1)
n+1
故 Tn=2
1
1
n+1
-2+1-
=2 -
-1.
n+1
n+1
2021年高考数学一轮总复习 5.4数列求和练习
2021年高考数学一轮总复习 5.4数列求和练习一、选择题1.已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧2a nn 为奇数,a n +1 n 为偶数,则其前6项之和是( )A .16B .20C .33D .120解析 ∵a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,∴S 6=1+2+3+6+7+14=33.答案 C2.数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1D .n +2+2n解析 由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.答案 C3.若数列{a n }的通项为a n =4n -1,b n =a 1+a 2+…+a nn,n ∈N *,则数列{b n }的前n 项和是( )A .n 2B .n (n +1)C .n (n +2)D .n (2n +1)解析 a 1+a 2+…+a n =(4×1-1)+(4×2-1)+…+(4n -1)=4(1+2+…+n )-n =2n (n +1)-n =2n 2+n ,∴b n =2n +1,b 1+b 2+…+b n =(2×1+1)+(2×2+1)+…+(2n +1) =n 2+2n =n (n +2). 答案 C4.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝⎛⎭⎪⎫1-14nD.23⎝⎛⎭⎪⎫1-12n解析 a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+b 3+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=23⎝ ⎛⎭⎪⎫1-14n .答案 C5.已知数列{a n }的通项公式为a n =n 2cos n π(n ∈N *),S n 为它的前n 项和,则S 2 0122 013等于( )A .1 005B .1 006C .2 011D .2 012解析 注意到cos n π=(-1)n (n ∈N *),故a n =(-1)n n 2.因此有S 2 012=(-12+22)+(-32+42)+…+(-2 0112+2 0122)=1+2+3+…+2 011+2 012=2 012×1+2 0122=1 006×2 013,所以S 2 0122 013=1 006.答案 B6.已知函数f (x )=x 2+bx 的图象在点A (1,f (1))处的切线l 与直线3x -y+2=0平行,若数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1fn(n ∈N *)的前n 项和为S n ,则S 2 012的值为( )A.2 0092 010 B.2 0102 011 C.2 0112 012D.2 0122 013解析 由于f ′(x )=2x +b ,据题意则有f ′(1)=2+b =3,故b =1,即f (x )=x 2+x ,从而1f n=1nn +1=1n -1n +1,其前n 项和S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,故S 2 012=2 0122 013. 答案 D 二、填空题7.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=19,a 5+b 3=9,则数列{a n b n }的前n 项和S n =__________.解析 由条件易求出a n =n ,b n =2n -1(n ∈N *). ∴S n =1×1+2×21+3×22+…+n ×2n -1,① 2S n =1×2+2×22+…+(n -1)×2n -1+n ×2n .② 由①-②,得-S n =1+21+22+…+2n -1-n ×2n , ∴S n =(n -1)·2n+1. 答案 (n -1)·2n +18.在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n a n +1,则数列{b n }的前n 项和为__________.解析 ∵a n =n n +12n +1=n2, ∴b n =8nn +1=8⎝ ⎛⎭⎪⎫1n -1n +1. ∴b 1+b 2+…+b n=8⎝⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=8n n +1.答案8nn +19.数列{a n }的前n 项和为S n ,a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),则S 100=________.解析由a n+2-a n=1+(-1)n,知a2k+2-a2k=2,a2k+1-a2k-1=0,∴a1=a3=a5=…=a2n-1=1,数列{a2k}是等差数列,a2k=2k.∴S100=(a1+a3+a5+…+a99)+(a2+a4+a6+…+a100)=50+(2+4+6+…+100)=50+100+2×502=2 600.答案 2 600三、解答题10.(xx·山东卷)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(1)求数列{a n}的通项公式;(2)设b n=a n n+12,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.解(1)由题意知(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2,所以数列{a n}的通项公式为a n=2n.(2)由题意知b n=a n n+12=n(n+1),所以T n=-1×2+2×3-3×4+…+(-1)n n·(n+1).因为b n+1-b n=2(n+1),可得当n为偶数时,Tn=(-b1+b2)+(-b3+b4)+…+(-b n-1+b n)=4+8+12+…+2n =n24+2n 2=n n +22,当n 为奇数时,T n =T n -1+(-b n )=n -1n +12-n (n +1)=-n +122.所以T n=⎩⎪⎨⎪⎧-n +122,n 为奇数,n n +22,n 为偶数.11.已知数列{a n }的各项排成如图所示的三角形数阵,数阵中每一行的第一个数a 1,a 2,a 4,a 7,…构成等差数列{b n },S n 是{b n }的前n 项和,且b 1=a 1=1,S 5=15.a 1a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10…(1)若数阵中从第3行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知a 9=16,求a 50的值;(2)设T n =1S n +1+1S n +2+…+1S 2n,求T n .解 (1)设等差数列{b n }的公差为d .∵b 1=1,S 5=15,∴S 5=5+10d =15,d =1, ∴b n =1+(n -1)×1=n .设从第3行起,每行的公比都是q ,且q >0,则a 9=b 4q 2,即4q 2=16,q =2, 又1+2+3+…+9=45,故a 50是数阵中第10行的第5个数,a 50=b 10q 4=10×24=160.(2)∵S n =1+2+…+n =n n +12,∴T n =1S n +1+1S n +2+…+1S 2n=2n +1n +2+2n +2n +3+…+22n2n +1=2⎝⎛⎭⎪⎫1n +1-1n +2+1n +2-1n +3+…+12n -12n +1 =2⎝⎛⎭⎪⎫1n +1-12n +1=2nn +12n +1.培 优 演 练1.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845D .1 830解析 当n =2k 时,a 2k +1+a 2k =4k -1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)=30×3+1192=30×61=1 830.答案D2.(xx·湖北三校联考改编)已知等比数列的各项都为正数,且当n≥3时,a4a2n-4=102n,则数列lg a1,2lg a2,22lg a3,23lg a4,…,2n-1lg a n,…的前n项和S n等于( )A.n·2n B.(n-1)·2n-1-1C.(n-1)·2n+1 D.2n+1解析∵等比数列{a n}的各项都为正数,且当n≥3时,a4a2n-4=102n,∴a2n=102n,即a n=10n,∴2n-1lg a n=2n-1lg10n=n·2n-1,∴S n=1+2×2+3×22+…+n·2n-1,①2S n=1×2+2×22+3×23+…+n·2n,②∴①-②得-S n=1+2+22+…+2n-1-n·2n=2n-1-n·2n=(1-n)·2n-1,∴S n=(n-1)·2n+1.答案 C3.数列{a n }的前n 项和为S n ,已知a 1=15,且对任意正整数m ,n ,都有a m +n=a m a n ,若S n <t 恒成立,则实数t 的最小值为________.解析 令m =1,则a n +1a n=a 1, ∴{a n }是以a 1为首项,15为公比的等比数列.∴a n =⎝ ⎛⎭⎪⎫15n,∴S n =15-⎝ ⎛⎭⎪⎫15n +11-15=14⎝ ⎛⎭⎪⎫1-15n=14-14·5n <14.由S n <t 恒成立, ∴t >S n 的最大值,可知t 的最小值为14.答案144.(xx·四川资阳高考模拟)已知数列{a n }的前n 项和为S n 满足:S n =32a n +n-3.(1)求证:数列{a n -1}是等比数列.(2)令c n =log 3(a 1-1)+log 3(a 2-1)+…+log 3(a n -1),对任意n ∈N *,是否存在正整数m ,使1c 1+1c 2+…+1c n ≥m3都成立?若存在,求出m 的值;若不存在,请说明理由.解 (1)证明:当n =1时,S 1=a 1=32a 1-2,解得a 1=4.当n ≥2时,由S n =32a n +n -3得S n -1=32a n -1+n -4,两式相减,得S n -S n -1=32a n -32a n -1+1,即a n =3a n -1-2,则a n -1=3(a n -1-1),故数列{a n -1}是以a 1-1=3为首项,3为公比的等比数列. (2)由(1)知a n -1=3n ,c n =log 3(a 1-1)+log 3(a 2-1)+…+log 3(a n -1)=1+2+…+n =n n +12,所以1c n =2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1, 则1c 1+1c 2+…+1c n=2⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =2⎝ ⎛⎭⎪⎫1-1n +1, 由1c 1+1c 2+…+1c n ≥m 3对任意n ∈N *都成立,得2⎝ ⎛⎭⎪⎫1-1n +1≥m 3,即m ≤6⎝ ⎛⎭⎪⎫1-1n +1对任意n ∈N *都成立,又m ∈N *,所以m 的值为1,2,3.36334 8DEE 跮^39013 9865顥33933 848D 蒍!d22408 5788 垈39291 997B 饻W35888 8C30 谰 s33571 8323 茣E精品文档实用文档。
高考数学(文)一轮复习 5-4数列求和
6
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(文)
考点 4 错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前 n 项 和即可用此法来求,如等比数列的前 n 项和公式就是用此法推导的.
7
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(文)
1 n+
n+1,若前
n
ห้องสมุดไป่ตู้
项和为
10,则项数
n
为(
)
A.120
B.99
C.11
D.121
[解析]
an=
n+1- n n+1+ n n+1-
= n
n+1-
n,所以 a1+a2+…+an=(
2-1)+(
3-
2)+…
+( n+1- n)= n+1-1=10.即 n+1=11,所以 n+1=121,n=120.
解 (1)当 n=1 时,a1=S1=1; 当 n≥2 时,an=Sn-Sn-1=n2+2 n-n-12+2 n-1=n. 故数列{an}的通项公式为 an=n. (2)由(1)知,bn=2n+(-1)nn,记数列{bn}的前 2n 项和为 T2n,则 T2n=(21+22+…+22n)+(-1+2-3 +4-…+2n). 记 A=21+22+…+22n,B=-1+2-3+4-…+2n,则 A=211--222n=22n+1-2, B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n. 故数列{bn}的前 2n 项和 T2n=A+B=22n+1+n-2.
19
板块一
板块二
板块三
高考数学一轮复习第五章数列5.4数列求和理
答 2 案(1 : 1 2 1 2 1 3 1 3 1 4 1 1 0 1 1 1 ) 1 2 1 0 .
20
11
考向一 裂项相消法求和
【典例1】(2015·全国卷Ⅰ)Sn为数列{an}的前n项和. 已知an>0,an2+2an=4Sn+3. (1)求{an}的通项公式. (2)设bn= ,求数列{bn}的前n项和.
Sn,若an=
,则S5等于 ( )
1
n n 1
A .1 B .5 C .1 D .1 6 6 3 0
【解析】选B. annn11n nn1 1nn 1n1 1,
所以S5=a1+a2+a3+a4+a5
1 1 1 1 1 1 223 56
5. 6
2.(必修5P61习题2.5A组T4(3)改编)1+2x+3x2+…+nxn-1
A.n(n1) C. n(n1)
2
B.n(n1) D.n(n1)
2
【解析】选A.因为d=2,a2,a4,a8成等比数列,所以 a42=a2a8,即(a2+2d)2=a2(a2+6d),解得a2=4,所以 a1=2. 所以利用等差数列的求和公式可求得Sn=n(n+1).
4.(2016·唐山模拟)(2-3×5-1)+(4-3×5-2)+…+(2n-
2 (2)1+3+5+7+…+2n-1=__.
n2 (3)2+4+6+8+…+2n=____.
(4)12+22+…+n2= n2+n
.
高三数学一轮复习 5.4数列求和部分 重点、考点知识、高考真题讲解及练习
6
;
13
23
33
n3
n(n 1) 2 2
.
2.倒序相加法
如果一个数列an ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个
数列的前 n 项和即可用倒序相加法,如等差数列的前 n 项和即是用此法推导的.
3.错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个
8.(2014•芙蓉区校级模拟) t
t
t t t=( )
A.0.1 B.0.3 C.0.6 D.0.9
【解答】解: t t
(
t)=1﹣ t=0.9
故选:D.
t t t=(1﹣ )+(
)+(
)+…
9.(2014•海淀区校级模拟){an}和{bn},其前 n 项和分别为 Sn,Tn,且 则 t t等于( )
ntn n
=
+
n =
n
t
n+2n+1﹣2.
19.(2018•荆州区校级二模)已知数列{an}是递增的等差数列,a2=3,若 a1,a3
﹣a1,a8+a1 成等比数列.
(1)求数列{an}的通项公式;
(2)若 bn=
,数列{bn}的前 n 项和 Sn,求 Sn.
t
【解答】解:(1)设{an}的公差为 d,d>0,
) t
故答案为: t
14.(2017•金凤区校级模拟)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前 8
项和等于 4 . 【解答】解:∵等比数列{an}中 a4=2,a5=5, ∴a4•a5=2×5=10, ∴数列{lgan}的前 8 项和 S=lga1+lga2+…+lga8 =lg(a1•a2…a8)=lg(a4•a5)4 =4lg(a4•a5)=4lg10=4 故答案为:4.
高三数学(理)一轮复习课件:5.4 数列求和
an a1 (n 1)d 19 (n 1) (2)
21 2n
n(a1 an ) n(19 21 2n) n 2 20 n Sn 2 2
的等差数列,S n为数列an 的前n项和 ( 1 )求 : an 及S n
1 1 1 1 1 2 2 n 1 n 2
3 2n 3 4 2n 1n 2
拓展训练: 已知等差数列an 的前项n和Sn满足S3 0, S5 5 (1)求an 的通项公式; 1 (2)求数列 的前项和. a2 n1a2 n1
(2010 重庆, 17)已知数列an 是首项为1 9,公差为- 2
(2)设数列bn an 是首项为1,公比为3 的等比数列, 求 : b n 及前n项和T n
( 2) 解 : 由 题 意 知
: bn an 1 3n1, 即 bn 3n1 21 2n
Tn b1 b2 b3 bn
P90 变式训练2
例 4:
an 中前n项和为Sn,前6项和为36, 已知: 等差数列
最后6项的和为 180 (n 6),求Sn 解:由题意知 :
a1 a2 a3 a4 a5 a6 36
n
①
an an1 an2 an3 an4 an5 180
2 1 2 2 n 3 n 5n 2 8
的等差数列,S n为数列an 的前n项和 ( 1 )求 : an 及S n
(2010 重庆, 17)已知数列an 是首项为1 9,公差为- 2
拓展训练:
(2)设数列bn an 是首项为1,公比为3 的等比数列, 求 : b n 及前n项和T n
高三理科数学第一轮复习§5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
解析
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
解析
第五章:数列 §5.4:数列求和
解析
第五章:数列 §5.4:数列求和
解析
第五章:数列 §5.4:数列求和
解析
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
解析
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
解析
第五章:数列 §5.4:数列求和
解析
第五章:数列 §5.4:数列求和
解析
第五章:数列 §5.4:数列求和
解析
第五章:数列 §Βιβλιοθήκη .4:数列求和第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
第五章:数列 §5.4:数列求和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)方法:设Sn=a1b1+a2b2+…+anbn①, 则qSn=a1b2+a2b3+…+an-1bn+anbn+1②, ①-②得:(1-q)Sn=a1b1+d(b2+b3+…+bn)-anbn+1,就转化为根据公 式可求的和.
精品课件
4.其他求和方法
名称 分解法
分组法
倒序 相加法
含义 分解为基本数列 求和 分为若干组整体 求和
{
Sn n
}
数列的前10项的和为( )
A.120
B.100
C.75
D.70
【解析】选C.因为等差数列{an}的通项公式为an=2n+1,
所以Sn=
n a1 an =n(n+2),所以 S n
2
n
=n+2.
故 S1 S2 S10
12
10
=3+4+5+…+12= 10 3 12 =75.
2
精品课件
2.数列{an}的前n项和为Sn,若
an
n
1,
n 1
则S5等于(
)
A .1 B .5 C .1 D .1
6
6
3 0
【解析】选B.因为an=
1
nn1
1 1 , n n1
所以S5=a1+a2+…+a5
1111 15. 223 6 6
精品课件
3.等差数列{an}的通项公式为an=2n+1,其前n项的和为Sn,则
4.数列 11 2 , 31 4 , 51 8 , 71 1 6 , , 2 n 1 2 1 n, 的前n项和Sn的值等于
()
A.n2 121n
B.2n2 n121n
C.n2 121n1
D.n2 n121n
【解析】选A.该数列的通项公式为an=(2n-1)+
1 2n
,
则Sn=[1+3+5+…+(2n-1)]+ (1 22 1 2 2 1 n)n212 1 n.
其中正确的是( )
A.①②③
B.②③④⑤
C.①②③⑤
D.①④⑤
精品课件
【解析】选C.①正确.根据等差数列求和公式以及运算的合理 性可知. ②正确.根据等比数列的求和公式可知. ③正确.直接验证可知正确. ④错误.需要分a=0,a=1,以及a≠0且a≠1三种情况求和. ⑤正确.根据周期性可得.
精品课件
1 ,则a1a2+a2a3+…+anan+1等于( )
4
A.16(1-4-n)
B.16(1-2-n)
C. 3 2 (1-4-n)
3
D. 3 2 (1-2-n)
3
精品课件
(2)(2013·重庆高考)设数列{an}满足:a1=1,an+1=3an,n∈N*. ①求{an}的通项公式及前n项和Sn; ②已知{bn}是等差数列,Tn为其前n项和,且b1=a2,b3=a1+a2+a3,求 T20.
所以an=2×2n-1=2n,所以
1 an2
(1 )n, 4
即数列 { 1 } 是首项为 1 ,公比为 1 的等比数列,
a n2
4
4
所以
1 a12
a122
a1n2 14(11141n)13(141n).
4
答案:2
1 3
(1
1 4n
)
精品课件
考点1 公式法求和
【典例1】(1)(2014·舟山模拟)已知{an}是等比数列,a2=2,a5=
n a1 an
2
较为合理;
②如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=
a 1 a n1 ; 1 q
③当n≥2时, n2111 2(n11n11);
精品课件
④求Sn=a+2a2+3a3+…+nan之和时只要把上式等号两边同时乘以 a即可根据错位相减法求得;
⑤如果数列{an}是周期为k的周期数列,那么Skm=mSk(m,k为大于 1的正整数).
精品课件
【解题视点】(1)先利用等比数列的通项公式求出an,再证明数 列{anan+1}成等比数列,最后利用等比数列的前n项和公式求解. (2)①先证明数列{an}成等比数列,再利用通项公式及前n项和 公式; ②先解出等差数列{bn}的首项与公差,再利用前n项和公式求T20.
精品课件
【规范解答】(1)选C.设数列{an}的公比为q,
因为a2=2,a5=a2·q3= 1 ,
4
所以q= 1
2
,所以a1=4,
所以an= 4(1)n1 (1)n3,
22
所以an·an+1= (1)2n5 8(1)n1,
第四节 数列求和
精品课件
精品课件
【知识梳理】
1.公式法
(1)使用已知求和公式求和的方法.
(2)数列求和常用公式:
等差数列前 n项和公式
Sn=_n_a_1___n_n_2__1__d_=__n__a_12__a_n__
等比数列前 n项和公式
a 1 1 q n
Sn= ____1___q____a11aqnq,q1
把求和式倒序后 两和式相加
简单示例
an=2n+(2n-1),求Sn
an=(-1)nn,求S2n 函数f(x)图象关于点(1,1)对 称,求f(-1)+f(0)+f(1)+f(2) +f(3)
精品课件
【考点自测】
1.(思考)给出下列命题:
①如果已知等差数列的通项公式,则在求其前n项和时使用公式
Sn=
精品课件
5. 123
248
2nn 等于(
)
2n n1 A. 2n
C. 2n
n1 2n
2n1 n2 B. 2n
D.2n1
n2 2n
精品课件
【解析】选B.方法一:令 Sn1 2222233 2nn, ①
则
1 1 2 n 1 n 2S n2 22 32 n 2 n 1,
②
①-②得,
1 2Sn1 22 122 13 2 1n2n n11 2[1 1 (1 1 2)n]2n n1,
2
所以
Sn
2n1
n 2n
2.
方法二:取n=1时, n
2n
1, 2
代入各选项验证可知选B.
精品课件
6.已知{an}是公比为2的等比数列,若a3-a1=6,则a1=
;
1 a12
a122
a1n2
=
.
精品课件
【解析】因为{an}是公比为2的等比数列,且a3-a1=6,
所以22a1-a1=6,解得a1=2,
精_n _品a _1课,q件1
前n个 正整数之和
前n个 正奇数之和
前n个正整 数平方和
前n个正整 数立方和
n n 1
1+2+…+n=_____2 ____ 1+3+5+…+(2n-1)=_n_2
12+22+…+n2= nn12n1
6
13+23+…+n3= [ n n 1 ]2
2
精品课件
2.裂项相消法 把数列的通项拆分为两项之差,使之在求和时产生前后相互抵 消的项的求和方法. 3.错位相减法 (1)适用的数列:{anbn},其中数列{an}是公差为d的等差数 列,{bn}是公比为q≠1的等比数列.