高中数学解三角形(有答案)

合集下载

高考数学(理)总复习:解三角形(解析版)

高考数学(理)总复习:解三角形(解析版)

高考数学(理)总复习:解三角形题型一 利用正、余弦定理解三角形 【题型要点解析】关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【例1】△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2,(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π,sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B )=36-2×172×⎪⎭⎫ ⎝⎛+17151 =4.所以b =2.题组训练一 利用正、余弦定理解三角形1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为( )A.3B.322 C .2 2D .2 3【解析】 ∵在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3①,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴(b +c )2=a 2+2bc (1+cos A )=4+6×⎪⎭⎫⎝⎛+311=12, ∴b +c =23②.由①②得b =c =3,故选A. 【答案】 A2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.【解析】 ∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B . 由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35. 【答案】 353.已知△ABC 是斜三角形,内角A ,B ,C 所对的边的长分别为a ,b ,c .若c sin A =3a cos C .(1)求角C ;(2)若c =21,且sin C +sin(B -A )=5sin 2A ,求△ABC 的面积.【解析】 (1)根据a sin A =c sin C,可得c sin A =a sin C , 又∵c sin A =3a cos C ,∴a sin C =3a cos C , ∴sin C =3cos C ,∴tan C =sin Ccos C =3,∵C ∈(0,π),∴C =π3.(2)∵sin C +sin(B -A )=5sin 2A ,sin C =sin (A +B ), ∴sin (A +B )+sin (B -A )=5sin 2A , ∴2sin B cos A =2×5sin A cos A . ∵△ABC 为斜三角形, ∴cos A ≠0,∴sin B =5sin A . 由正弦定理可知b =5a ,① ∵c 2=a 2+b 2-2ab cos C ,∴21=a 2+b 2-2ab ×12=a 2+b 2-ab ,②由①②解得a =1,b =5,∴S △ABC =12ab sin C =12×1×5×32=534.题型二 正、余弦定理的实际应用 【题型要点解析】应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【例2】某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE .为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值.【解析】 (1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中, BE =BD 2+DE 2=335(km). 故道路BE 的长度为335km.(2)设∠ABE =α,∵∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE =335sinπ3=65,∴AB =65sin ⎪⎭⎫⎝⎛-απ32,AE =65sin α.∴S △ABE =12AB ·AE sin π3=9325sin ⎪⎭⎫⎝⎛-απ32·sin α =9325⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-4162sin 21πα≤9325⎪⎭⎫ ⎝⎛+4121 =273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE面积的最大值为273100km 2题组训练二 正、余弦定理的实际应用1.如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.【解析】设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2×3h ×h 3×⎪⎭⎫⎝⎛-21,解得h =1039,故塔的高度为1039 m.【答案】 10392.如图,在第一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值;(2)求P 到海防警戒线AC 的距离. 【解析】 (1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20, cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .∵cos ∠P AB =cos ∠P AC , ∴3x +325x =25x,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米. 题型三 三角函数与解三角形问题 【题型要点】解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【例3】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sin A -sin C b =sin A -sin Ba +c .(Ⅰ)求C ;(Ⅱ)若cos A =17,求cos(2A -C )的值.【解析】 (Ⅰ)由sin A -sin C b =sin A -sin B a +c 及正弦定理得a -c b =a -ba +c ,∴a 2-c 2=ab -b 2,整理得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又0<C <π,所以C =π3.(Ⅱ)由cos A =17知A 为锐角,又sin 2A +cos 2A =1,所以sin A =1-cos 2A =437,故cos2A=2cos 2A -1=-4749,sin2A =2sin A cos A =2×437×17=8349,所以cos(2A -C )=cos ⎪⎭⎫ ⎝⎛-32πA =cos2A cos π3+sin2A sin π3=-4749×12+8349×32=-2398.题组训练三 三角函数与解三角形问题已知函数f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边为a ,b ,c ,已知f (A )=32,a =2,B =π3,求△ABC 的面积.【解析】 (1)f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x =sin 2x cos π6+cos 2x sin π6+cos 2x=32sin 2x +32cos 2x =3⎪⎪⎭⎫ ⎝⎛+x x 2cos 232sin 21 =3sin ⎪⎭⎫⎝⎛+32πx . 令-π2+2k π≤2x +π3≤π2+2k π⇒-5π12+k π≤x +π3≤π12+k π,k ∈Z .f (x )的单调递增区间为:⎥⎦⎤⎢⎣⎡++-ππππk k 12,125,k ∈Z .(2)由f (A )=32,sin ⎪⎭⎫ ⎝⎛+32πA =12, 又0<A <2π3,π3<2A +π3<5π3,因为2A +π3=5π6,解得:A =π4.由正弦定理a sin A =bsin B ,得b =6,又由A =π4,B =π3可得:sin C =6+24.故S △ABC =12ab sin C =3+32.题型四 转化与化归思想在解三角形中的应用 【题型要点】利用正弦、余弦定理解三角形的模型示意图如下:【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积. 【解析】 (1)证明:a cos 2C 2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b ,即a (1+cos C )+c (1+cos A )=3b . ①由正弦定理得:sin A +sin A cos C +sin C +cos A sin C =3sin B , ② 即sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C =2sinB.由正弦定理得,a +c =2b , ③ 故a ,b ,c 成等差数列.(2)由∠B =60°,b =4及余弦定理得: 42=a 2+c 2-2ac cos 60°,∴(a +c )2-3ac =16, 又由(1)知a +c =2b ,代入上式得4b 2-3ac =16. 又b =4,所以ac =16, ④∴△ABC 的面积S =12ac sin B =12ac sin 60°=4 3.题组训练四 转化与化归思想在解三角形中的应用 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.【解析】 (1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =7+1-427=277. (2)设∠BAC =α,则α=∠BAD -∠CAD . 因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =217,sin ∠BAD =1-cos 2∠BAD =32114. 于是sin ∠BAC =sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD ·sin ∠CAD =32114×277-⎪⎪⎭⎫ ⎝⎛-1417×217=32. 在△ABC 中,由正弦定理得,BC =AC ·sin ∠BACsin ∠CBA=7×32216=3. 【专题训练】 一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b 2=a 2+bc ,A =π6,则内角C 等于( )A.π6 B.π4 C.3π4D.π4或3π4【解析】 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,即a 2-b 2=c 2-2bc cos A ,由已知,得a 2-b 2=-bc ,则c 2-2bc cos π6=-bc ,即c =(3-1)b ,由正弦定理,得sin C=(3-1)sin B =(3-1)sin ⎪⎭⎫⎝⎛-C 65π, 化简,得sin C -cos C =0,解得C =π4,故选B.【答案】 B2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4 D .2【解析】 法一 由余弦定理可得(22)2=22+a 2-2×2×a cos π4,即a 2-22a -4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.【答案】 A3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43C .-43D .-34【解析】 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.【答案】 C4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223B.24 C.64D.63【解析】 依题意得:BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中, BC sin ∠BDC =BD sin C ,则4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64,选C.【答案】 C5.如图所示,为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+303) mB .(30+153) mC .(15+303) mD .(15+153) m【解析】 设建筑物高度为h ,则h tan 30°-h tan 45°=60,即(3-1)h =60,所以建筑物的高度为h =(30+303)m.【答案】 A6.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则三角形ABC 中最小角的正弦值等于( )A.45B.34C.35D.74【解析】 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0.∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴三角形ABC 中最小角为角A , ∴cos A =b 2+c 2-a22bc =169a 2+259a 2-a 22×43×53a 2=45,∴sin A =35,故选C. 【答案】 C 二、填空题7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________.【解析】 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sinC =32,由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34. 【答案】348.已知△ABC 中,AB =1,sin A +sin B =2sin C ,S △ABC =316sin C ,则cos C =________. 【解析】 ∵sin A +sin B =2sin C ,由正弦定理可得a +b =2c .∵S △ABC =316sin C ,∴12ab sin C =316sin C ,sin C ≠0,化为ab =38.由余弦定理可得c 2=a 2+b 2-2ab cos C =(a +b )2-2ab-2ab cos C ,∴1=(2)2-2×38(1+cos C ),解得cos C =13.【答案】139.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________.【解析】 由正弦定理得(2+b )(a -b )=(c -b )c , 即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3. 【答案】310.如图,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是________.【解析】 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DCsin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎪⎪⎭⎫ ⎝⎛+θθcos 23sin 23=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.【答案】 (6,43] 三、解答题11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. (1)求b 和sin A 的值;(2)求sin ⎪⎭⎫⎝⎛+42πA 的值. 【解析】 (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎪⎭⎫⎝⎛+42πA =sin 2A cos π4+cos 2A sin π4=7226. 12.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.【解析】(1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD=7×27732=433.。

数学-解三角形大题解析版

数学-解三角形大题解析版

解三角形大题(1)证明:sinsin BD ABDC ACαβ⋅=⋅;(2)若D为靠近B的三等分点,在ABC 中,由余弦定理得:2222b a c =+-a b c h AE +=+≥ ,即(c h +41123h c ∴<+≤1413tan2C ∴<≤,3tan 42C ∴≤222sincos 2tan22sin sin cos 1tan 22C C C C C ==++设tan2C t =,3,14t ⎡⎫∈⎪⎢⎣⎭,1t t +1252,12t t ⎛⎤∴+∈ ⎥⎝⎦,即1tan tan 2C +24sin 125C ∴≤<9.在ABC 中,3,AB AC ==(1)若3BC =,求CD 与AD ;因为AD 平分BAC ∠,所以因此32BD CD =,又3BC =,所以在ABC 中,3,AB BC AC ==在ACD 中,由余弦定理可得(2)如下图所示:因为AD 平分BAC ∠,DAC ∠所以60,120B C θθ=︒-=︒-()()sin 120sin 60AB ACθθ=︒-︒-展开并整理得333cos sin 22θ-10.ABC 中,,D E 是边BC (1)若3BC =,求ABC 面积的最大值;则()()0,0,3,0B C ,设(),A x y ,则2222(3)3x y x y -+=⨯+,整理得到:即点A 的轨迹是以3,02⎛⎫- ⎪⎝⎭圆心,故ABC 的BC 边上的高的最大值为在APC △中,由正弦定理可得故133cos 22α⎛- ⎝因为α为锐角,故故P 存在且sin ABP ∠法二:如图,设∠同理30PCA ∠=︒-而3sin sin CPAPC α=∠在PBC 中,由余弦定理可得:整理得到:4cos =所以24cos 4sin α+整理得到:38tan =但α为锐角,故tan 故P 存在且sin ABP ∠11.在ABC 中,内角(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos ∠【答案】(1)5sin 5C =;(2)tan DAC ∠【分析】(1)方法一:利用余弦定理求得(2)[方法一]:两角和的正弦公式法由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以所以()sin sin DAC DAC π∠=-∠(sin ADC =∠在(1)的方法二中可得1,2,AE CE AC ==由4cos 5ADC ∠=-,可得4cos ,sin 5ADE ∠=∠在Rt ADE △中,5,sin 3AE AD DE ADE ===∠由(1)知5sin 5C =,所以在Rt CDG △中,11515AG AC CG =-=.[方法4]:坐标法以D 为坐标原点,DC 为设BDC α∠=,则(5cos B 从而2(05cos )AB α=-+cos sin 1cos ADB α∠==-(2)[方法1]:【通性通法】余弦定理在BCD △,由(1)得,225(22)2522=+-⨯⨯[方法2]:【最优解】利用平面几何知识作BF DC ⊥,垂足为F ,易求,【整体点评】(1)方法一:根据题目条件已知两边和一边对角,利用正弦定理和平方关系解三角形,属于通性通法;方法二:根据题目条件已知两边和一边对角,利用余弦定理解三角形,也属于通性通法;方法三:根据题意利用几何知识,解直角三角形,简单易算.方法四:建立坐标系,通过两点间的距离公式,将几何问题转化为代数问题,这是解析思想的体现.(2)方法一:已知两边及夹角,利用余弦定理解三角形,是通性通法.方法二:利用几何知识,解直角三角形,简单易算.19.在锐角△ABC 中,角(I )求角B 的大小;(II )求cos A +cos B +cos C 【答案】(I )3B π=;(II )【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角(1)求cos C及线段BC的长;(2)求ADEV的面积.【答案】(1)1cos4C=,BC(2)3158【分析】(1)利用二倍角正弦公式结合正弦定理推出(2)求出15sin4C=,即可求出【详解】(1)由题意在ABC【整体点评】(1)方法一:正弦定理是解三角形的核心定理,与三角形内角和相结合是常用的方法;方法二:方程思想是解题的关键,解三角形的问题可以利用余弦值确定角度值;方法三:由正弦定理结合角度关系可得内角的比例关系,从而确定角的大小(2)方法一:由题意结合角度的范围求解面积的范围是常规的做法;方法二:将面积问题转化为边长的问题,然后求解边长的范围可得面积的范围;方法三:极限思想和数形结合体现了思维的灵活性,要求学生对几何有深刻的认识和灵活的应用25.ABC中,sin2A-sin(1)求A;(2)若BC=3,求ABC【答案】(1)23π;(2)3【分析】(1)利用正弦定理角化边,配凑出(2)方法一:利用余弦定理可得到而2b ac =,即sin sin ADB ∠=故有ADB ABC ∠=∠,从而∠由2b ac =,即b c a b =,即CA CB 故AD AB AB AC =,即23b c c b=,又2b ac =,所以23c a =,则2227cos c a b ABC +-==∠由2AD DC =,得,3c DE EC =在BED 中,2(3cos BED =∠在ABC 中2cos 2a BC c A +=∠因为cos cos ABC BED ∠=-∠所以22222()(332223a c a c b a ac ++-=-⋅由(1)知,3BD b AC ===设()(),33B x y x -<<,则2x 由2b ac =知,BA BC AC ⋅=即222(2)(1)x y x y ++⋅-+联立⑤⑥解得74x =-或72x =代入⑥式得36||,2a BC c ==由余弦定理得cos a ABC ∠=则11sin 122ADC S AD DC ADC =⋅∠=⨯ 在ABD △中,2π3ADB ∠=,由余弦定理得35.记ABC 的内角,,A B C (1)求bc ;(2)若cos cos 1cos cos a B b A b a B b A c--=+,求【答案】(1)1(2)34【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出【详解】(1)因为22a b =+37.如图,在锐角ABC 中,角(1)求ABC 面积的最大值;(2)若AB 边上的点D 满足2AD DB =,求线段【答案】(1)934(2)3+1【分析】(1)利用余弦定理结合基本不等式求出(2)根据2AD DB =得到13CD CA = 求出222222442||1⎛⎫+ ⎪++⎝⎭==+-⎛⎫+ ⎪⎝⎭b a b ab a CD a b ab b a 角形,得到311,32⎛⎫=+=+∈ ⎪⎝⎭b m t a ,从而利用基本不等式,求出线段【详解】(1)由余弦定理得:cos 60︒所以222212992+-⋅=⇒=+a b ab a b ∴9ab ≤,当且仅当3a b ==时取“=”∴1393sin 244==≤△ABC S ab C ab ,∴ABC 面积的最大值为934.(2)由2AD DB =,可得:23AD AB =(1)求角A ;(2)若D 为线段BC 延长线上一点,且∠【答案】(1)3A π=(2)963--【分析】(1)运用正弦定理以及诱导公式求解;(2)根据条件运用正弦定理求解.【详解】(1)由条件及正弦定理可得:()sin sin cos sin cos sin cos B C A A B A C +--即sin cos cos sin sin cos cos B A B A C A -+-故()()sin sin 0B A C A -+-=,则有sin 又()(),,,B A C A ππππ-∈--∈-,故有。

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。

高中数学经典题型--解三角形(含详细答案)

高中数学经典题型--解三角形(含详细答案)

高中数学经典题型解三角形【编著】黄勇权【第1题】在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c , 且sinC bsinBasinA = 3a32 sinB + c求:角C 的大小【第1题】答案:已知:sinCbsinB asinA += 3a 32 sinB + c等号左边:因为分子、分母每一项含有sin ,故用正弦定理,将sin 替换成边即:cb *b a *a += 3a 32 sinB +c 特别提示: 等号右边的sinB 不能换成边b , 这是因为sinB=R 2b ,这样就会多出R 21,等号两边同时乘以ca 2+b 2 = 3ac 32 sinB +c 2将c 2移到等号左边,a 2+b 2- c 2 = 3ac 32 sinB由于等号左边是a 2+b 2-c 2,只能构建cosC ,故等号两边同时除以2ab ,这一步非常重要。

2a b c b a 222-+ = b 3c 3 sinBc osC = b 3c 3 sinB等号右边,左边分子含c ,分母含b ,故用正弦定理把c 、b 换成sinC ,sinB 这一步非常重要,很多同学想不到,因此就解不出来。

c osC = B sin 3sinC 3 sinBc osC =33 sinCtanC= 3 即C=60°经典技巧:对于正弦定理,很多同学都不知道什么时候能用,什么时候不能用,其实,在运用正弦定理将sin与对应边换时,一定要遵循能够消除2R为原则。

例如1:acosB+bcosA=2c 【能用】由正弦定理:a=2RsinA,b=2RsinB,c=2RsinC代入上式,2RsinA*cosB+2RsinB*cosA=2*2RsinC因为每一项都有2R,故能消除2R,化简:sinA*cosB+sinB*cosA=2sinC所以能用正弦定理。

例如2:bcosA+sinB=3c 【不能用】由正弦定理:b=2RsinB,c=2RsinC代入上式,得:2RsinB*cosA+sinB=2RsinC*3因为第二项不含2R,无法消除2R, 所以不能用正弦定理例如3:sin2A+sin2B=2sinBsinC 【能用】a b c(R 2a )2 + (R 2b )2 = 2 *R 2b *R 2c因为每一项都有(R 21)2,故能消除2R ,化简得:a 2 +b 2=2bc 所以能用正弦定理 例如4:acosB+bcosA=4bc 【能用】由正弦定理:a=2RsinA ,b=2RsinB ,c=2RsinC 代入上式,2RsinA*cosB+2RsinB*cosA=4b*2RsinC因为要消除2R ,所以只能代入一项,要么是b 或c 而等号右边化简后sinA*cosB+sinB*cosA=sin (A+B )=sinC所以我们只把c 换为sinC ,而b 不动。

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。

高三数学解三角形试题答案及解析

高三数学解三角形试题答案及解析

高三数学解三角形试题答案及解析1.已知的内角,面积满足所对的边,则下列不等式一定成立的是A.B.C.D.【答案】A【解析】由题设得:(1)由三角形面积公式及正弦定理得:所以又因为,所以所以恒成立,所以故选A.【考点】1、两角和与差的三角函数;2、正弦定理;3、三角形的面积公式.2.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶,假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.=10,此时v==30【答案】(1)当t=时,Smin(2)航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.【解析】解:(1)设相遇时小艇航行的距离为S海里,则S===.=10,此时v==30.故当t=时,Smin答:小艇以30海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B处相遇,如图,则v2t2=400+900t2-2·20·30t·cos(90°-30°),故v2=900-+.∵0<v≤30,∴900-+≤900,即-≤0,解得t≥.又t=时,v=30.故v=30时,t取最小值,且最小值等于.此时,在△OAB中,有OA=OB=AB=20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.3.(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB (p∈R).且ac=b2.(1)当p=,b=1时,求a,c的值;(2)若角B为锐角,求p的取值范围.【答案】(1)a=1,c=或a=,c=1 (2)<p<【解析】(1)解:由题设并利用正弦定理得故可知a,c为方程x2﹣x+=0的两根,进而求得a=1,c=或a=,c=1(2)解:由余弦定理得b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2accosB=p2b2﹣b2cosB﹣,即p2=+cosB,因为0<cosB<1,所以p2∈(,2),由题设知p∈R,所以<p<或﹣<p<﹣又由sinA+sinC=psinB知,p是正数故<p<即为所求4.E,F是等腰直角斜边AB上的三等分点,则tan ECF=( )A.B.C.D.【答案】D【解析】作CD⊥AB于D,则D为EF的中点.令CB=CA=3,则AB=6,CD=3,∴ED=FD=1∴tan ECF=∴tan ECF==5.已知点是的重心,且,则实数的值为( )A.B.C.D.【答案】B【解析】由已知得,,延长分别交于点,由重心的性质,设,,则,,,代入得,【考点】1、重心的性质;2、勾股定理;3、正弦定理和余弦定理.6.在△ABC中,若0<tan A·tan B<1,那么△ABC一定是( )A.锐角三角形B.钝角三角形C.直角三角形D.形状不确定【答案】B【解析】由0<tan A·tan B<1,可知tan A>0,tan B>0,即A,B为锐角,tan(A+B)=>0,即tan(π-C)=-tan C>0,所以tan C<0,所以C为钝角,所以△ABC为钝角三角形.故选B7.线段AB外有一点C,∠ABC=60°,AB=200km,汽车以80km/h的速度由A向B行驶,同时摩托车以50km/h的速度由B向C行驶,则运动开始几小时后,两车的距离最小()A.B.1C.D.2【答案】C【解析】如图所示,设过xh后两车距离为ykm,则BD=200-80x,BE=50x,∴y2=(200-80x)2+(50x)2-2×(200-80x)·50x·cos 60°,整理得y2=12900x2-42000x+40000(0≤x≤2.5),∴当x=时y2最小,即y最小.8.若△ABC的三个内角满足sin A∶sin B∶sin C=4∶5∶7,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形【答案】C【解析】由正弦定理可设a=4k,b=5k,c=7k,则cos C=<0,因此三角形为钝角三角形.9.某旅游景点有一处山峰,游客需从景点入口A处向下沿坡角为α的一条小路行进a百米后到达山脚B处,然后沿坡角为β的山路向上行进b百米后到达山腰C处,这时回头望向景点入口A处俯角为θ,由于山势变陡到达山峰D坡角为γ,然后继续向上行进c百米终于到达山峰D处,游览风景后,此游客打算乘坐由山峰D直达入口A的缆车下山结束行程,如图所示,假设A,B,C,D四个点在同一竖直平面.(1)求B,D两点的海拔落差h;(2)求AD的长【答案】(1)b sin β+c sin γ(2)【解析】(1)h=b sin β+c sin γ.(2)方法一:联结AC.在△ABC中,由余弦定理得AC2=a2+b2+2ab cos(α+β),在△ACD中,由余弦定理得AD2=AC2+c2-2cAC cos(π-γ+θ),所以AD=.方法二:联结AC.在△ABC中,由正弦定理得,所以AC=,以下同方法一.10.在△中,所对边分别为、、.若,则.【答案】【解析】三角形中问题在解决时要注意边角的互化,本题求角,可能把边化为角比较方便,同时把正切化为正弦余弦,由正弦定理可得,,所以有,即,在三角形中,于是有,,.【考点】解三角形.11.在△ABC中,边角,过作,且,则.【答案】【解析】依题意,,由余弦定理得,,由三角形的面积公式得,即,,又,,,即,又点、、三点共线,则,解方程组,解得,.【考点】余弦定理,三角形的面积公式,向量的数量积.12.设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.(Ⅰ)求B;(Ⅱ)若sinAsinC=,求C.【答案】(I);(II)或.【解析】(I)已知等式右边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出,将关系式代入求出的值,由为三角形的内角,利用特殊角的三角函数值即可求出的度数;(II)由(I)得的度数,;利用利用两角和与差的余弦函数公式化简,变形后将及的值代入求出的值,利用特殊三角函数的值求出的值,与的值联立即可求出的度数.试题解析:(I)为三角形的内角(II)由(I)得:或或【考点】1.余弦定理;2.两角的和差公式.13.在中,,.(Ⅰ)求的值;(Ⅱ)求的值.【答案】(Ⅰ).(Ⅱ).【解析】(Ⅰ)根据已知条件,建立的方程组即可得解.(Ⅱ)应用余弦定理可首先.进一步应用正弦定理即得.试题解析:(Ⅰ)由和可得, 2分所以, 3分又所以. 5分(Ⅱ)因为,,由余弦定理可得 7分,即. 9分由正弦定理可得 11分, 12分所以. 13分【考点】正弦定理、余弦定理的应用,三角形面积.14.在中,已知(1)求;(2)若,的面积是,求.【答案】(1);(2)2.【解析】(1)用三角形三内角和定理及特殊角的三角函数值求解;(2)利用余弦定理与三角形的面积公式,得到关于、的方程组,解出即得.(1)在中,,,,.(2)由余弦定理,则,又的面积是,则,即,,即,.【考点】三角形三内角和定理,余弦定理,三角形的面积.15.在中,角的对边分别为,且满足(1)求证:;(2)若的面积,,的值.【答案】(1)详见解析,(2)【解析】(1)转化三角形问题中的边角关系式,首先要选择定理.由正弦定理,将等式中的边化为对应角的正弦,由内角和定理,得,再利用诱导公式、两角和差的正弦公式得,在三角形中即证;(2)解三角形问题应灵活应用边角的计算公式.在(1)的条件下,;由三角形的面积公式及余弦定理可求.试题解析:(1)由,根据正弦定理,得: 2分又在△ABC中,,则,所以即 4分所以,即又为三角形内角,所以。

高三数学解三角形练习题及答案解析

高三数学解三角形练习题及答案解析

高三数学解三角形练习题及答案解析一、选择题1.在△ABC中,sinA=sinB,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形答案D2.在△ABC中,若acosA=bcosB=ccosC,则△ABC是()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形答案B解析由正弦定理知:sinAcosA=sinBcosB=sinCcosC,there4;tanA=tanB=tanC, there4;A=B=C.3.在△ABC中,sinA=34,a=10,则边长c的取值范围是()A.152,+ infin;B.(10,+ infin;)C.(0,10)D.0,403答案D解析∵csinC=asinA=403, there4;c=403sinC.there4;04.在△ABC中,a=2bcosC,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案A解析由a=2bcosC得,sinA=2sinBcosC,there4;sin(B+C)=2sinBcosC,there4;sinBcosC+cosBsinC=2sinBcosC,there4;sin(B-C)=0, there4;B=C.5.在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则sinA∶sinB∶sinC等于()A.6∶5∶4B.7∶5∶3C.3∶5∶7D.4∶5∶6答案B解析∵(b+c)∶(c+a)∶(a+b)=4∶5∶6,there4;b+c4=c+a5=a+b6.令b+c4=c+a5=a+b6=k(k>0),则b+c=4kc+a=5ka+b=6k,解得a=72kb=52kc=32k.there4;s inA∶sinB∶sinC=a∶b∶c=7∶5∶3.6.已知三角形面积为14,外接圆面积为 pi;,则这个三角形的三边之积为()A.1B.2C.12D.4答案A解析设三角形外接圆半径为R,则由 pi;R2= pi;,得R=1,由S△=12absinC=abc4R=abc4=14,there4;abc=1.二、填空题7.在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.答案23解析∵cosC=13, there4;sinC=223,there4;12absinC=43, there4;b=23.8.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60 deg;,a=3,b=1,则c=________.答案2解析由正弦定理asinA=bsinB,得3sin60 deg;=1sinB,there4;sinB=12,故B=30 deg;或150 deg;.由a>b,得A>B, there4;B=30 deg;,故C=90 deg;,由勾股定理得c=2.9.在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA+b2sinB+2csinC=________.答案7解析∵△ABC的外接圆直径为2R=2,there4;asinA=bsinB=csinC=2R=2,there4;asinA+b2sinB+2csinC=2+1+4=7.10.在△ABC中,A=60 deg;,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.答案126解析a+b+csinA+sinB+sinC=asinA=6332=12.∵S△ABC=12absinC=12x63x12sinC=183,there4;sinC=12, there4;csinC=asinA=12,there4;c=6.三、解答题11.在△ABC中,求证:a-ccosBb-ccosA=sinBsinA.证明因为在△ABC中,asinA=bsinB=csinC=2R,所以左边=2RsinA-2RsinCcosB2RsinB-2RsinCcosA=sin(B+C)-sinCcosBsin(A+C)-sinCcosA=sinBcosCsinAcosC=sinBsinA=右边.所以等式成立,即a-ccosBb-ccosA=sinBsinA.12.在△ABC中,已知a2tanB=b2tanA,试判断△ABC的形状.解设三角形外接圆半径为R,则a2tanB=b2tanAhArr;a2sinBcosB=b2sinAcosAhArr;4R2sin2AsinBcosB=4R2sin2BsinAcosAhArr;sinAcosA=sinBcosBhArr;sin2A=sin2BhArr;2A=2B或2A+2B= pi;hArr;A=B或A+B= pi;2.there4;△ABC为等腰三角形或直角三角形.能力提升13.在△ABC中,B=60 deg;,边与最小边之比为(3+1)∶2,则角为()A.45 deg;B.60 deg;C.75 deg;D.90 deg;答案C解析设C为角,则A为最小角,则A+C=120 deg;,there4;sinCsinA=sin120 deg;-AsinA=sin120 deg;cosA-cos120 deg;sinAsinA=32tanA+12=3+12=32+12,there4;tanA=1,A=45 deg;,C=75 deg;.14.在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C= pi;4,cosB2=255,求△ABC的面积S.解cosB=2cos2B2-1=35,故B为锐角,sinB=45.所以sinA=sin( pi;-B-C)=sin3 pi;4-B=7210.由正弦定理得c=asinCsinA=107,所以S△ABC=12acsinB=12x2x107x45=87.1.在△ABC中,有以下结论:(1)A+B+C= pi;;(2)sin(A+B)=sinC,cos(A+B)=-cosC;(3)A+B2+C2= pi;2;(4)sinA+B2=cosC2,cosA+B2=sinC2,tanA+B2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.。

高中解三角形练习题及答案

高中解三角形练习题及答案

高中解三角形练习题及答案一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为. A.90°B.120°C.135°D.150°2.在△ABC中,下列等式正确的是. A.a∶b=∠A∶∠B C.a∶b=sin B∶sin AB.a∶b=sin A∶sin B D.asin A=bsin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为. A.1∶2∶ C.1∶4∶9B.1∶3∶D.1∶2∶34.在△ABC中,a=5,b=,∠A=30°,则c等于. A.25 B.5C.2或D.或55.已知△ABC中,∠A=60°,a=6,b=4,那么满足条件的△ABC的形状大小.A.有一种情形 C.不可求出B.有两种情形 D.有三种以上情形6.在△ABC中,若a2+b2-c2<0,则△ABC是. A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定7.在△ABC中,若b=3,c=3,∠B=30°,则a=. A. B.23C.或2D.28.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为 A.1?323,那么b=.C.2?32B.1+D.2+9.某人朝正东方向走了x km后,向左转150°,然后朝此方向走了km,结果他离出发点恰好km,那么x的值是.A. B.2C.或 D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为.A.603米二、填空题11.在△ABC中,∠A=45°,∠B=60°,a=10,b =. 12.在△ABC中,∠A=105°,∠B=45°,c=2,则b=. 13.在△ABC中,∠A=60°,a=3,则B.60米C.60米或60米 D.30米a?b?c=.sinA?sinB?sinC,则∠C=.14.在△ABC中,若a2+b2<c2,且sin C=15.平行四边形ABCD中,AB=46,AC=43,∠BAC=45°,那么AD= 16.在△ABC中,若sin A∶sin B∶sin C =2∶3∶4,则最大角的余弦值=三、解答题17.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.18.在△ABC中,已知b=,c=1,∠B=60°,求a 和∠A,∠C.19.根据所给条件,判断△ABC的形状. acos A=bcos B;20.△ABC中,己知∠A>∠B>∠C,且∠A=2∠C,b =4,a+c=8,求a,c的长.cab==. cosAcosBcosC第一章解三角形参考答案一、选择题 1.B解析:设三边分别为5k,7k,8k,中间角为 ?,5k2+64k2-49k21由cos ?==,得 ?=60°,25k8k2∴最大角和最小角之和为180°-60°=120°..B.B.C.C.C.C.Ba+c=2ba+c=2b?31解析:依题可得:?acsin30?= ??ac=622??22b=-2ac3ac222b=a+c-2accos30?代入后消去a,c,得b2=4+2,∴b=3+1,故选B..C10.A 二、填空题 11.56. 12.2. 13.2.解析:设 bca+b+ca3a===k,则=k===sinAsinAsin60?sin A+sin B +sin CsinBsinC2.14.2?.15.4. 16.-1.三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C=∵csin A=6³266sin5°=²=.2222=3,a=2,c=,<2<6,∴本题有二解,即∠C=60°或∠C=120°,∠B=180°-60°-45°=75°或∠B=180°-120°-45°=15°.故b=asin B,所以b=3+1或b=-1, sinA∴b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°.解法2:由余弦定理得b2+2-2bco s5°=4,∴b2-2b+2=0,解得b=±1.又2=b2+22-2³2bcos C,得cos C=±所以∠B=75°或∠B=15°.∴b=+1,∠C=60°,∠B=75°或b=3-1,∠C =120°,∠B=15°. 18.解析:已知两边及其中一边的对角,可利用正弦定理求解.1,∠C=60°或∠C=120°,bc=, sinBsinCc?sinB1?sin60?1∴sin C===.2b解:∵∵b>c,∠B=60°,∴∠C<∠B,∠C=30°,∴∠A =90°.由勾股定理a=b2+c2=2,即a=2,∠A=90°,∠C=30°.解三角形广州市第四中学刘运科一、选择题.本大题共10小题.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.△ABC的内角A,B,C的对边分别为a,b,c,若c?b?B?120等于 AB.2CD,则a2.在△ABC中,角A、B、C的对边分别为a、b、c,已知A? A. 1B.2C13,a?b?1,则c?D3. 已知△ABC中,a?A.135b?B?60?,那么角A等于B.90C.45D.304. 在三角形ABC中,AB?5,AC?3,BC?7,则?BAC的大小为2?5?3??B. C. D.6435.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c?2a,则cosB?A.13A.4B.4C.D.36. △ABC中,已知tanA?A.13511,tanB?,则角C等于2B.120C.45D.07. 在?ABC中,AB=3,AC=2,BC=,则AB?AC?2332B.? C. D.32238. 若△ABC的内角A、B、C的对边分别为a、b、c,且acosA?bcosB,则 A.△ABC为等腰三角形 B.△ABC为直角三角形 C.△ABC为等腰直角三角形 D.△ABC为等腰三角形或直角三角形. 若tanAtanB>1,则△ABCA.?A. 一定是锐角三角形 C. 一定是等腰三角形22B. 可能是钝角三角形 D. 可能是直角三角形10. △ABC的面积为S?a?,则tanA.1B.1A=1C.4D.1二、填空题:本大题共4小题.11. 在△ABC中,三个角A,B,C的对边边长分别为a?3,b?4,c?6,则bccosA?cacosB?abcosC的值为1?12.在△ABC中,若tanA?,C?150,BC?1,则AB? . 313. 在△ABC中,角A、B、C所对的边分别为a、b、c ,若3b?ccosA?acosC,则cosA?_________________。

高中数学解三角形精选题目(附答案)

高中数学解三角形精选题目(附答案)

高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析1..【答案】【解析】故答案为:.【考点】两角和与差的三角公式.2.若函数在区间上单调递增,则的最小值是()A.B.C.D.【答案】D【解析】依题意,,令,在区间上,,单调递增,,所以;【考点】1.导数与单调性;2.化归的思想;3.函数在内是()A.增函数B.减函数C.有增有减D.不能确定【答案】A【解析】函数,可得,所以函数在内是增函数.故选:A.【考点】利用导数研究函数的单调性.4.(12分).已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若,求sinA·sinC的值.【答案】(1);(2)【解析】(Ⅰ)已知等式左边利用同角三角函数间的基本关系化简,整理后根据sinC不为0求出cosB的值,即可确定出B的度数;(Ⅱ)已知等式去分母整理后得到关系式,利用余弦定理列出关系式,把得出关系式及cosB的值代入,并利用正弦定理化简,即可求出sinAsinC的值试题解析:(Ⅰ)已知等式变形得:sinAcosA+sinBcosB=2sinCcosA,去分母得:sinAcosB+sinBcosA=2sinCcosB,即sin(A+B)=2sinCcosB=sinC,∵sinC≠0,∴cosB=12,则B=60°;(Ⅱ)由,整理得:,∵cosB=12,∴,由正弦定理得:sin2B=2sinA·sinC=,则sinA·sinC=【考点】1.同角间三角函数关系;2.正弦定理5.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.B.C.D.【答案】D【解析】将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图像,再将所得图象向左平移个单位,则所得函数图象对应的解析式为.故选D.【考点】三角函数图像变换:周期变换、左右平移.6.已知在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且,则tanC等于()A.B.C.D.【答案】C【解析】【考点】1.余弦定理解三角形;2.同角间三角函数关系7.已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若+=3,求sin Asin C的值.【答案】(1);(2)【解析】(1)由题意切化弦,同分可得,整理可得,即可求得;(2)根据已知式子同分可得,由余弦定理得到,再结合正弦定理即可得到试题解析:(1)由题意可得:因为,所以,又因为,所以(2)有题意可得:即由余弦定理可得:,得到有正弦定理:【考点】1.正余弦定理;2.化简求值8.(本题满分11分)若的内角所对的边分别为,且满足(1)求;(2)当时,求的面积.【答案】(1);(2).【解析】(1)因为正弦定理,所以化为,因为三角形内角有,所以即,所以;(2)由余弦定理,得,而,,得,即,因为三角形的边,所以,则.试题解析:(1)因为由正弦定理,得,又,从而,由于所以(2)解法一:由余弦定理,得,而,,得,即因为,所以,故面积为.解法二:由正弦定理,得从而又由知,所以故,所以面积为.【考点】1.正弦定理与余弦定理;2.三角形的面积公式.9.在中,已知,,则的长为____________________.【答案】【解析】由正弦定理可得【考点】正弦定理解三角形10.(本小题满分10分)在△ABC中,是方程的一个根,(1)求;(2)当时,求△ABC周长的最小值.【答案】(1)(2)【解析】(1)解一元二次方程得到方程的根,结合三角函数有界性得到的值,从而求得大小;(2)由三角形余弦定理结合,可将转化为的表达式,从而求得其最小值,得到周长的最小值试题解析:(1)又是方程的一个根(2)由余弦定理可得:则:当时,c最小且,此时△ABC周长的最小值为.【考点】1.余弦定理解三角形;2.一元二次方程的根11.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-c)cosA=acosC,则cosA=_____【答案】【解析】由正弦定理可将已知条件转化为【考点】正弦定理与三角函数基本公式12.在△ABC中,cosA=,sinB=,则cosC的值为.【答案】【解析】由cosA=,sinB=得【考点】三角函数基本公式13.在△ABC中,如果,且为锐角,试判断此三角形的形状.【答案】等腰直角三角形.【解析】判定三角形的形状由三角形的三边长或三个角来确定.由可确定.根据正弦定理,可确定角,从而确定三角形的形状.试题解析:因为,所以,又为锐角,所以.,.由正弦定理得:,即展开得:,即,则,所以△ABC是等腰直角三角形.【考点】1.三角形形状;2.正弦定理;14.在△中,分别为角所对的边,若,则此三角形一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【答案】C【解析】,三角形为等腰三角形【考点】1.正弦定理解三角形;2.三角函数基本公式15.在中,、、分别是三内角A、B、C的对应的三边,已知(1)求角C的大小;(2)满足的是否存在?若存在,求角A的大小.【答案】(1);(2)不存在【解析】(1)由正弦定理将变形可得到关于角C的关系式,进而求得角C的大小;(2)结合角C的大小将变形求解A角,若A角存在则三角形存在试题解析:(1)由正弦定理,得因为由则(2)由(1)知,于是=这样的三角形不存在。

高三数学解三角形试题答案及解析

高三数学解三角形试题答案及解析

高三数学解三角形试题答案及解析1.(2011•山东)在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值;(2)若cosB=,△ABC的周长为5,求b的长.【答案】(1)2 (2)2【解析】(1)因为所以即:cosAsinB﹣2sinBcosC=2sinCcosB﹣cosBsinA所以sin(A+B)=2sin(B+C),即sinC=2sinA所以=2(2)由(1)可知c=2a…①a+b+c=5…②b2=a2+c2﹣2accosB…③cosB=…④解①②③④可得a=1,b=c=2;所以b=22.已知向量m=(sin ,1),n=(cos ,cos2).记f(x)=m·n.(1)若f(α)=,求cos(-α)的值;(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cos B=bcos C,若f(A)=,试判断△ABC的形状.【答案】(1)1 (2)等边三角形【解析】f(x)=sin cos +cos2=sin+cos+=sin(+)+.(1)由已知f(α)=得sin(+)+=,于是+=2kπ+,k∈Z,即α=4kπ+,k∈Z,∴cos(-α)=cos(-4kπ-)=1.(2)根据正弦定理知:(2a-c)cos B=bcos C⇒(2sin A-sin C)cos B=sin Bcos C⇒2sin Acos B=sin(B+C)=sinA⇒cos B=⇒B=,∵f(A)=,∴sin(+)+=⇒+=或⇒A=或π,而0<A<,所以A=,因此△ABC为等边三角形.3.在中,角所对的边分别为,已知,,(1)求角;(2)若,,求的面积。

【答案】(1)(2)【解析】(1),,,,又,为锐角,。

(2)由(1)知:,,,得(舍去),,4.已知点是的重心,且,则实数的值为( )A.B.C.D.【答案】B【解析】由已知得,,延长分别交于点,由重心的性质,设,,则,,,代入得,【考点】1、重心的性质;2、勾股定理;3、正弦定理和余弦定理.5.线段AB外有一点C,∠ABC=60°,AB=200km,汽车以80km/h的速度由A向B行驶,同时摩托车以50km/h的速度由B向C行驶,则运动开始几小时后,两车的距离最小()A.B.1C.D.2【答案】C【解析】如图所示,设过xh后两车距离为ykm,则BD=200-80x,BE=50x,∴y2=(200-80x)2+(50x)2-2×(200-80x)·50x·cos 60°,整理得y2=12900x2-42000x+40000(0≤x≤2.5),∴当x=时y2最小,即y最小.6.在△ABC中,若b=2asinB,则A等于()A.30°或60°B.45°或60°C.120°或60°D.30°或150°【答案】D【解析】由已知得sinB=2sinAsinB,又∵A,B为△ABC的内角,故sinB≠0,故sinA=,∴A=30°或150°.7.已知△ABC中,三个内角A,B,C所对的边分别为a,b,c,若△ABC的面积为S,且2S =(a+b)2-c2,则tan C等于()A.B.C.-D.-【答案】C【解析】由2S=(a+b)2-c2得2S=a2+b2+2ab-c2,即2×absin C=a2+b2+2ab-c2,则absin C-2ab=a2+b2-c2,又因为cos C=-1,所以cos C+1=,即2cos2=sin cos ,所以tan =2,即tan C===-8.已知△ABC的内角A,B,C所对的边分别是a,b,c,设向量m=(a,b),n=(sin B,sinA),p=(b-2,a-2).(1)若m∥n,求证:△ABC为等腰三角形;(2)若m⊥p,边长c=2,C=,求△ABC的面积.【答案】(1)见解析(2)【解析】(1)因为m∥n,所以a sin A=b sin B,即a·=b· (其中R是△ABC外接圆的半径),所以a=b.所以△ABC为等腰三角形.(2)由题意,可知m·p=0,即a(b-2)+b(a-2)=0,所以a+b=ab,由余弦定理,知4=c2=a2+b2-2ab cos=(a+b)2-3ab,即(ab)2-3ab-4=0,所以ab=4或ab=-1(舍去).所以S=ab sin C=×4×sin =.△ABC9.在△ABC中,内角A,B,C的对边分别是,b,c.若,,则角=【答案】【解析】本题求三角形的角,由题设条件,可用余弦定理,因此首先把角的关系转化为边的关系,这只要利用正弦定理,可得,因此,故.【考点】正弦定理与余弦定理.10.设的内角所对的边长分别为,且,,则的最小值是()A.2B.3C.4D.5【答案】C.【解析】由题意根据正弦定理得,再由余弦定理得,即的最小值为4.【考点】解三角形.11.如图,游客在景点处下山至处有两条路径.一条是从沿直道步行到,另一条是先从沿索道乘缆车到,然后从沿直道步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,索道长为,经测量,.(1)求山路的长;(2)假设乙先到,为使乙在处等待甲的时间不超过分钟,乙步行的速度应控制在什么范围内?【答案】(1)米;(2)乙步行的速度应控制在内.【解析】(1)利用同角三角函数的基本关系先求出和,再利用内角和定理以及诱导公式、两角和的正弦公式求出的值,最终利用正弦定理求出的长度;(2)利用正弦定理先求出的长度,然后计算甲步行至处所需的时间以及乙从乘缆车到所需的时间,并设乙步行的速度为,根据题中条件列有关的不等式,求出即可.试题解析:(1)∵,,∴、,∴,,∴,根据得,所以山路的长为米;(2)由正弦定理得(),甲共用时间:,乙索道所用时间:,设乙的步行速度为,由题意得,整理得,,∴为使乙在处等待甲的时间不超过分钟,乙步行的速度应控制在内.【考点】1.同角三角函数的基本关系;2.内角和定理;3.两角和的正弦公式;4.正弦定理12.已知中的内角、、所对的边分别为、、,若,,且.(Ⅰ)求角的大小;(Ⅱ)求函数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由得:,这个等式中有边有角,一般地,有两种考虑.一是用正弦定理将边换成正弦,等式中只留角;一种是用余弦定理将余弦换掉,只留边.(Ⅱ)由于已经求出角,所以,所以可将中的一个角换掉,只留一个角,然后利用三角函数求出其取值范围.试题解析:(Ⅰ)法一、法二、,由余弦定理得:,整理化简得,所以.(Ⅱ)方法一:因为,所以,.方法二:因为,所以,下同方法一.【考点】1、向量;2、正弦定理和余弦定理;3、三角恒等变换.13.在中,角、、所对的边分别为、、,若,,则()A.B.C.D.【答案】B【解析】,所以,由余弦定理得,,,故选B.【考点】1.边角互化;2.余弦定理14.在中,已知(1)求;(2)若,的面积是,求.【答案】(1);(2)2.【解析】(1)用三角形三内角和定理及特殊角的三角函数值求解;(2)利用余弦定理与三角形的面积公式,得到关于、的方程组,解出即得.(1)在中,,,,.(2)由余弦定理,则,又的面积是,则,即,,即,.【考点】三角形三内角和定理,余弦定理,三角形的面积.15.在△ABC中,角,,所对的边分别为,,c.已知.(1)求角的大小;(2)设,求T的取值范围.【答案】(1)(2)【解析】解:(1)在△ABC中,, 3分因为,所以,所以, 5分因为,所以,因为,所以. 7分(2)11分因为,所以,故,因此,所以. 14分【考点】解三角形点评:主要是考查了解三角形中正弦定理和余弦定理的运用,属于中档题。

高中数学解三角形(有答案)

高中数学解三角形(有答案)

高中数学解三角形(有答案)高中数学解三角形在高中数学中,解三角形是一个重要的概念和技巧。

掌握解三角形的方法对于理解和解决几何问题至关重要。

本文将介绍几种常见的解三角形的方法,并附上相应的答案,帮助读者巩固和拓展数学知识。

一、解决直角三角形直角三角形是指其中一个角为90度的三角形。

解决直角三角形的方法主要有三种:勾股定理、正弦定理和余弦定理。

勾股定理适用于已知两条边求第三边的情况,其公式为:c² = a² + b²,其中c为斜边的长度,a和b分别为两个直角边的长度。

正弦定理适用于已知一个角和两条角边的情况,其公式为:sinA/a = sinB/b = sinC/c,其中A、B、C分别为三角形的三个内角,a、b、c 分别为对应的边长。

余弦定理适用于已知三条边求角度的情况,其公式为:cosA = (b² + c² - a²) / (2bc),其中A为夹在b和c之间的角,a为对应的边长。

二、解决等腰三角形等腰三角形是指两边长度相等的三角形。

解决等腰三角形的方法主要有两种:勾股定理和正弦定理。

勾股定理适用于已知两条等腰边求底边的情况,其公式与直角三角形相同。

正弦定理适用于已知一个角和两条等腰边的情况,其公式与直角三角形相同,只是此时的两条边为等腰边。

三、解决一般三角形一般三角形是指三个角和三个边都不相等的三角形。

解决一般三角形的方法主要有两种:正弦定理和余弦定理。

正弦定理适用于已知一个角和两条边的情况,公式同上。

余弦定理适用于已知三条边求角度的情况,公式同上。

答案示例:1. 已知直角三角形的两个直角边分别为3cm和4cm,请计算斜边的长度。

解法:根据勾股定理,斜边的长度c² = 3² + 4² = 9 + 16 = 25,所以斜边的长度c = √25 = 5cm。

2. 已知一等腰三角形的底边长度为5cm,两条等腰边的长度分别为4cm,请计算顶角的度数。

专题17 解三角形-2020年高考数学(理)(全国Ⅱ专版)(原卷版)

专题17 解三角形-2020年高考数学(理)(全国Ⅱ专版)(原卷版)

专题17解三角形【母题来源一】【2020年高考全国Ⅱ卷理数】ABC △中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.【答案】(1)23π;(2)3+【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴△周长3L AC AB BC =++≤+ABC ∴△周长的最大值为3+【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.【母题来源二】【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==113sin 222ABC S ac B ==⨯=△【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【母题来源三】【2018年高考全国Ⅱ理数】在ABC △中,5cos 25C =,1BC =,5AC =,则AB =A .BC .D .【答案】A【解析】因为2253cos 2cos 121,255C C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则,故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.【命题意图】三角函数主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题,常与同角三角函数的关系、诱导公式、和差角公式,甚至三角函数的图象和性质等交汇命题,多以选择、填空、解答题的形式出现,属解答题中的低档题.预测今后的高考仍将以正弦定理、余弦定理,尤其是两个定理的综合应用为主要考点,可能与三角函数的图象和性质等交汇命题,重点考查计算能力以及应用数学知识分析和解决问题的能力.【命题规律】本考点一直是高考的热点,尤其是已知边角求其他边角,判断三角形的形状,求三角形的面积考查比较频繁,既有直接考查两个定理应用的选择题或填空题,也有考查两个定理与和差公式、倍角公式及三角形面积公式综合应用的解答题,解题时要掌握正、余弦定理及灵活运用,注意函数与方程思想、转化与化归思想在解题中的应用.【应试技巧】在ABC △中,若角A ,B ,C 所对的边分别是a ,b ,c ,则1.正弦定理:sin sin sin a b c==A B C.2.常见变形sin sin sin 1,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B b a B b A a C c A b C c B B b A a C c ======()2;sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b c A B C A B A C B C A B C+++++======+++++()3::sin :sin :sin ;a b c A B C =()3.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,4.余弦定理的推论从余弦定理,可以得到它的推论222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===5.三角形面积公式(1)三角形的高的公式:h A =b sin C =c sin B ,h B =c sin A =a sin C ,h C =a sin B =b sin A .(2)三角形的面积公式:S =21ab sin C ,S =21bc sin A ,S =21ca sin B.6.正弦定理可以用来解决两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角;(2)已知两边和其中一边的对角,求其他的边和角.4==.sin sin sin a b cR R ABC A B C()正弦定理的推广:,其中为△外接圆的半径7.三角形解的个数的探究(以已知a b ,和A 解三角形为例)(1)从代数角度来看:①若sin sin 1b AB=a>,则满足条件的三角形的个数为0,即无解;②若sin sin 1b A B=a =,则满足条件的三角形的个数为1;③若sin sin 1b A B=a<,则满足条件的三角形的个数为1或2.注:对于(3),由sin 0sin 1b AB=a<<可知B 可能为锐角,也可能为钝角,此时应由“大边对大角”“三角形内角和等于180°”等进行讨论.(2)从几何角度来看:①当A 为锐角时,一解一解两解无解②当A 为钝角或直角时,一解一解无解无解8.利用余弦定理解三角形的步骤【解题经验分享】1.对三角形中的不等式,要注意利用正弦、余弦的有界性进行适当“放缩”.2.在解实际问题时,需注意的两个问题(1)要注意仰角、俯角、方位角等名词,并能准确地找出这些角;(2)要注意将平面几何中的性质、定理与正、余弦定理结合起来,发现题目中的隐含条件,才能顺利解决.3.利用正弦定理与余弦定理解题时,经常用到转化思想一个是把边转化为角,另一个是把角转化为边,,具体情况应根据题目给定的表达式进行确定,不管哪个途径,最终转化为角的统一或边的统一,也是我们利用正弦定理与余弦定理化简式子的最终目标,对于两个定理都能用的题目,应优先考虑利用正弦定理,会给计算带来相对的简便,根据已知条件中边的大小来确定角的大小,此时利用正弦定理去计算较小边所对的角,可避免分类讨论,利用余弦定理的推论,可根据角的余弦值的正负直接确定所求角是有锐角还是钝角,但计算麻烦.1.(2020·河北新乐市第一中学高三)已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若222a b c bc =+-,4bc =,则ABC 的面积A .12B .1C .D .22.(2020·安徽省高三三模)在ABC 中,若3,120AB BC C ==∠= ,则AC =A .1B .2C .3D .43.(2020·横峰中学高三)在ABC 中,已知45A ∠=︒,AB =,且AB 边上的高为则sin C =A .1010BC .5D .54.(2020·广西壮族自治区高三)已知ABC 中,BC 边上的中线3AD =,4BC =,60BAC ∠=︒,则ABC ∆的周长为A 4+B .4+C .4+D .45.(2020·山东省高三)在ABC 中,cos cos A B +=,AB =当sin sin A B +取最大值时,ABC 内切圆的半径为A .3B .2C .13D .26.(2020·陕西省洛南中学高三)在ABC 中,若7a =,8b =,1cos 7B =-,则A ∠的大小为A .6πB .4πC .3πD .2π7.(2020·广东省深圳外国语学校高三月考)海伦公式是利用三角形的三条边的边长,,a b c 直接求三角形面积S 的公式,表达式为:+c2a b S p +==;它的特点是形式漂亮,便于记忆.中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它与海伦公式完全等价,因此海伦公式又译作海伦-秦九韶公式.现在有周长为的△ABC 满足sin :sin :sin 2:A B C =,则用以上给出的公式求得△ABC 的面积为A .B .C .D .128.(2020·广东省深圳外国语学校高三月考)ABC 的内角,,A B C 的对边分别为,,a b c ,已知3b a cosC sinC 3⎛⎫=+ ⎪ ⎪⎝⎭,a 2=,c 3=,则角C =A .π3B .π6C .3π4D .π49.(2020·麻城市实验高级中学高三)锐角ABC ∆中,角,,A B C ,所对的边分别为,,a b c ,若()sin 04A B C π⎛⎫+++= ⎪⎝⎭,1b c ==,则角C 的大小为A .12πB .6πC .3πD .512π10.(2020·麻城市实验高级中学高三)《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为10m ,阴阳太极图的半径为4m ,则每块八卦田的面积约为A .2114mB .257mC .254m D .248m 11.(2020·福建省高三)设ABC 内角A ,B ,C 所对应的边分别为a ,b ,c .已知()4cos cos a c B b C -=,则cos B =______.12.(2020·青海省高三)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =4b =,120A =︒,则ABC 的面积为______.13.(2020·重庆市凤鸣山中学高三月考)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,3A π=,6a =,b =,则C =_______.14.(2020·四川省阆中中学高三二模)在ABC 中,若()22235a c b+=,则cos B 的最小值为______.15.(2020·全国高三月考)设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()2cos cos 0a c B b C ++=,且4ac =,则ABC 的面积为______.16.(2020·内蒙古自治区高三二模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sinsin 2B Cb a B +⋅=⋅,且2c =,则锐角ABC 面积的取值范围是______.17.(2020·赣榆智贤中学高三)在ABC 中角A ,B ,C 的对边分別为a ,b ,c ,且352115cos cos cos bc A ac B ab C==,则cos C 的值为______.18.(2020·河南省高三月考)设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且满足()222cos cos b a a B b A -=+,ABC ∆的周长为)51,则ABC ∆面积的最大值为______.19.(2020·福建省厦门外国语学校高三)如图所示,三个全等的三角形ABF 、BCD 、CAE V 拼成一个等边三角形ABC ,且DEF 为等边三角形,2EF AE =,设ACE θ∠=,则sin 2θ=______.20.(2020·江苏省高三)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其接圆半径为R .已知1c =,且△ABC 的面积()()22sin sin S R B A B A =-+,则a 的最小值为______.21.(2020·山东省高三二模)在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .若sin sin b A a C =,1c =,则b =______,ABC ∆面积的最大值为______.22.(2020·西藏自治区高三二模)在ABC 中,4a =,5b =,6c =,则cos A =________,ABC 的面积为________.23.(2020·浙江省杭州高级中学高三)在平面四边形ABCD 中,BC CD ⊥,135o B ∠=,AB =,AC =,5CD =,则sin ACB ∠=________,AD =________.24.(2020·广东省高三月考)已知锐角ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且sin cos cos b A A C =2cos A,则tan A =______;若2a =,则b c +的取值范围为______.25.(2020·浙江省高三)已知在ABC 中,1cos3B =,AB =,8AC =,延长BC 至D ,使2CD =,则AD =______,sin CAD ∠=______.26.(2020·山东省高三三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c )cos sin a b C c B -=.(Ⅰ)求角B ;(Ⅱ)若b =,sin 3sin A C =,求BC 边上的高.27.(2020·天津高三二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a 2+c 2=b 2105+ac .(1)求cosB 及tan 2B 的值;(2)若b =3,A 4π=,求c 的值.28.(2020·定远县育才学校高三)ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知()2cos c a B -=.(1)求角A ;(2)若2a =,求ABC 面积的取值范围.29.(2020·黑龙江省哈尔滨市第六中学校高三三模)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知()cos 2cos a C b c A =-.(1)求角A 的大小;(2)若a =,2b =,求ABC ∆的面积.30.(2020·全国高三月考)已知ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,且57b c =,4cos 5A =,ABC 的面积21S =.(1)求边b 和c ;(2)求角B .31.(2020·广东省高三)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且满足22sin 1cos22A B C +=-.(1)求出角C 的大小;(2)若ABC ,求ABC 的周长的最小值.32.(2020·湖北省高三)已知ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,其面积S 2224b c a +-=.(1)若a =b =cos B .(2)求sin (A +B )+sin B cos B +cos (B ﹣A )的最大值.33.(2020·四川省泸县五中高三二模)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且22212cos 2B C a b c +⎛⎫+=- ⎪⎝⎭.(1)求角C ;(2)若c =,求ABC ∆周长的最大值.34.(2020·六盘山高级中学高三)已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ;(2)若24a S =,求c bb c +的最大值.35.(2020·宜宾市叙州区第一中学校高三二模)在ABC ∆中,角A ,B 、C 的对边分别为a ,b ,c ,且3cos sin b A B=.(1)求A ;(2)若2a =,且()cos 2sin sin cos B C B C C -=-,求ABC ∆的面积.36.(2020·定西市第一中学高三)在锐角ABC 中,a =,________,(1)求角A ;(2)求ABC 的周长l 的范围.注:在①(cos ,sin ),(cos ,sin )2222A A A A m n =-= ,且12m n ⋅=- ,②cos (2)cos A b c a C -=,③11()cos cos(,()344f x x x f A π=--=这三个条件中任选一个,补充在上面问题中并对其进行求解.37.(2020·天津耀华中学高三一模)在ABC △中,,,a b c 分别是三个内角,,A B C 的对边,若3,4,2b c C B ===,且a b ¹.(Ⅰ)求cos B 及a 的值;(Ⅱ)求cos 23B π⎛⎫+ ⎪⎝⎭的值.38.(2020·山东省高三)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin sin cos cos cos A B C A B C+=+(1)若ABC 还同时满足下列四个条件中的三个:①7a =,②10b =,③8c =,④ABC 的面积S =(2)若3a =,求ABC 周长L 的取值范围.39.(2020·广东省金山中学高三三模)已知ABC 内接于单位圆,且()()112tanA tanB ++=,()1求角C()2求ABC 面积的最大值.40.(2020·梅河口市第五中学高三)已知a ,b ,c 分别是ABC 的内角A ,B ,C 的对边,()sin sin sin sin a A C b B c C -=-,点D 在边AB 上,1BD =,且DA =.(1)求角B 的大小;(2)若BCD 的面积为2,求b 的值.41.(2020·江苏省高三三模)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若5(sin C sin B)5sin A 8sin B a b c--=+.(1)求cosC 的值;(2)若A =C ,求sinB 的值.42.(2020·湖南省高三三模)已知,,a b c 分别是ABC 内角,,A B C 的对边,()cos (cos cos )b a C c A B -=-,22b ac =.(1)求cos C ;(2)若ABC c .43.(2020·云南省云南师大附中高三)设ABC 的内角A 、B 、C 的对边分别是a 、b 、c ,且三个内角A 、B 、C 依次成等差数列.(1)若2sin sin sin B A C =,求角A ;(2)若ABC 为钝角三角形,且a c >,求21cos cos 2222A A C -+的取值范围.44.(2020·巩义市教育科研培训中心高三)已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,120C =︒.(1)若2a b =,求tan A 的值;(2)若ACB ∠的平分线交AB 于点D ,且1CD =,求ABC 的面积的最小值.45.(2020·甘肃省静宁县第一中学高三)在锐角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos c B b C =,BC 边上的高12AD =,4sin 5BAC ∠=.(1)求BC 的长:(2)过点A 作AE AB ⊥,垂足为A ,且CAE ∠为锐角,AE =sin ACE ∠.46.(2020·甘肃省民乐县第一中学高三)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin c b A b -=.(1)证明:2A B =.(2)若3cos 4B =,求sinC 的值.47.(2020·甘肃省高三)如图所示,ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且s 3c in os 3b C C a-=.(1)求A ;(2)若点P 是线段CA 延长线上一点,且3PA =,2AC =,6C π=,求PB .48.(2020·黑龙江省哈师大附中高三)在锐角ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,且直线x C =为函数()22cos sin cos f x x x x x =--图象的一条对称轴.(Ⅰ)求C ;(Ⅱ)若kc a b ≥+恒成立,求实数k 的最小值.49.(2020·甘肃省西北师大附中高三)在ABC ∆中,角、、A B C 的对边分别为a b c 、、,且)()2cos cos b A C π--=.(Ⅰ)求A 的值;(Ⅱ)若角,6B BC π=边上的中线AM =,求ABC ∆的面积.50.(2020·福建省厦门一中高三)如图,在梯形ABCD 中,AB ∥CD ,33CD AB ==.(1)若CA CD =,且tan ABC ∠=ABC 的面积S ;(2)若2cos 4DAC ∠=,3cos 4ACD ∠=,求BD 的长.51.(2020·全国高三三模)已知△ABC 的内角A ,B ,C 的对边长分别等于a ,b ,c ,列举如下五个条件:①sin sin 2B C a B b +=;sin A A +=;③cos A +cos2A =0;④a =4;⑤△ABC 的面积等于.(1)请在五个条件中选择一个(只需选择一个)能够确定角A 大小的条件来求角A ;(2)在(1)的结论的基础上,再在所给条件中选择一个(只需选择一个),求△ABC 周长的取值范围52.(2020·山东省高三二模)在①222b ac a c +=+,②cos sin B b A =cos 2B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,_________,4A π=,b =(1)求角B ;(2)求ABC 的面积.。

高二数学解三角形试题答案及解析

高二数学解三角形试题答案及解析

高二数学解三角形试题答案及解析1.在中,,AB=2,且的面积为,则BC的长为( )A.B.3C.D.7【答案】C【解析】因为在中,,AB=2,且的面积为,所以可得.所以求得.由余弦定理可得.故选C.本小题主要考查余弦定理的使用.【考点】1.三角形的面积公式.2.余弦定理.3.解方程的能力.2.在△ABC中,若,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【答案】D【解析】在处理含有边和角的等式时,一般是使用正、余弦定理把边转化为角或把角转化为边,如果都化为角的形式,则问题会转化为三角形内的三角恒等变换;若果都化为边的形式,则问题会转化为代数变形:通分、分解因式等.方法一:边化角:由正弦定理得:,代入得:,再由倍角公式得:.,或即或,所以△ABC为等腰或直角三角形.方法二:角化边:由余弦定理,原式可化为:,整理得,即,或,所以△ABC为等腰或直角三角形.【考点】1.正弦定理和余弦定理;2.三角恒等变换;3.解简单的三角方程.3.在中,角A,B,C所对边分别为a,b,c,且,面积,则等于A.B.5C.D.25【答案】B【解析】根据题意,由于角A,B,C所对边分别为a,b,c,且,面积,,所以,故选B.【考点】解三角形点评:主要是考查了解三角形中正弦定理的运用,属于基础题。

4.△ABC中,若,则△ABC的形状为()A.直角三角形B.等腰三角形C.等边三角形D.锐角三角形【答案】B【解析】因为,△ABC中,,所以由余弦定理得,,三角形为等腰三角形,故选B。

【考点】正弦定理、余弦定理的应用。

点评:简单题,判定三角形的形状,一般有两种思路,一是转化成角的关系,二是转化成边的关系。

5.在中,,则三角形的形状为()A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形【答案】C【解析】,,三角形是等腰三角形【考点】正余弦定理解三角形点评:要判定三角形形状,一般转化出三边的长度关系或找到三个内角的大小关系,常借助于正余弦定理实现边与角的互相转化6.在中,内角,,所对的边分别是,已知,,则()A.B.C.D.【答案】A【解析】,由正弦定理得【考点】解三角形及三角函数基本公式的考查点评:本题中用到了正弦定理实现三角形中边与角的互化与同角间的三角函数关系及倍角公式,如,,这要求学生对基本公式要熟练掌握7.在中,分别为内角的对边,且,(Ⅰ)求的大小;(Ⅱ)若,试判断的形状。

高中数学 解三角形练习题及答案

高中数学 解三角形练习题及答案

高中数学解三角形练习题及答案解三角形1.最大角与最小角的和为180°,因此答案为D.150°。

2.根据正弦定理,a/XXX,因此a∶b=sinA∶sinB,答案为B.3.根据正弦定理,a/XXX,因此边长之比为sin1∶sin2∶sin3,答案为B.4.根据余弦定理,c²=a²+b²-2abcosC,代入已知数值,可得cosC=1/2,因此∠C=60°,c=√(a²+b²-2abcosC)=5.5.根据正弦定理,a/sinA=2R,代入已知数值可得R=3,因此△ABC的形状大小是唯一的。

6.根据余弦定理,若a²+b²-c²<0,则△ABC是锐角三角形。

7.根据正弦定理,a/sinA=2R,代入已知数值可得R=3/√3,因此a=3√3.8.根据余弦定理,a²=b²+c²-2bccosA,代入已知数值可得cosA=1/4,因此A=75°,B=45°,C=60°,b=2a/√3=2√3.9.由题意可列方程x+3cos150°=3,解得x=3.10.由题意可列方程AB/AC=tan45°=1,XXX√3,解得AB=60米,BC=60√3米,因此电视塔的高度为AB/tan45°=60米。

11.根据正弦定理,b=10sin60°/sin45°=10√3.12.根据余弦定理,b²=a²+c²-2accosB,代入已知数值可得cosB=1/2,因此B=60°,b=2sinB=2√3-2.13.根据正弦定理,sinC=3sin60°/10=√3/5,代入反正弦函数可得∠C=60°。

14.根据正弦定理,sinC=c/2R,代入已知数值可得R=√(a²+b²-c²)/2sinC=√(20)/√3,因此△ABC的形状大小是唯一的。

高二数学解三角形试题答案及解析

高二数学解三角形试题答案及解析

高二数学解三角形试题答案及解析1.在△ABC中,sin A sin C>cos A cos C,则△ABC一定是( ).A.锐角三角形B.直角三角形C.钝角三角形D.不确定【答案】D【解析】由sin A sin C>cos A cos C,可得cos (A+C)<0,∴cos B>0.但A、C不能判断.2.的内角的对边分别为,若,则=______.【答案】【解析】先利用正弦定理化简sinC=2sinB,得到c与b的关系式,代入a2−b2=bc中得到a2与b2的关系式,然后利用余弦定理表示出cosA,把表示出的关系式分别代入即可求出cosA的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.【考点】解三角形.3.若的内角满足,则()A.B.C.D.【答案】D【解析】根据正弦定理可将等式转化为,不妨设,则,在内,由余弦定理可得,解出,故选D.【考点】1.正弦定理;2.余弦定理.4.在中,角所对的边分别为,且,.(1)求的值;(2)若,,求三角形ABC的面积.【答案】(1);(2).【解析】(1)先用正弦定理将条件中的所有边换成角得到,然后再利用两角和的正弦公式、三角形的内角和定理进行化简可得的值;(2)利用(1)中求得的结果,结合及余弦定理,可计算出的值,然后由(1)中的值,利用同角三角函数的基本关系式求出,最后利用三角形的面积计算公式即可算出三角形的面积.试题解析:(1)由已知及正弦定理可得 2分由两角和的正弦公式得 4分由三角形的内角和可得 5分因为,所以 6分(2)由余弦定理得:9分由(1)知 10分所以 12分.【考点】1.正弦定理与余弦定理;2.两角和的正弦公式;3.三角形的面积计算公式.5.如图,从高为米的气球上测量铁桥()的长,如果测得桥头的俯角是,桥头的俯角是,则桥长为米.【答案】【解析】如下图,设于点,则依题意有,则有即,由,得,所以.【考点】解斜三角形.6.在△ABC中,sinA+cosA=,AC=2,AB=3,求tgA的值和△ABC的面积.【答案】tgA=-2-,S= (+)ABC【解析】根据题意,由于在△ABC中,sinA+cosA=,AC=2,AB=3,则可知tanA=-2-,而对于,。

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析1.(本小题满分12分)已知函数.(1)化简;(2)已知常数,若函数在区间上是增函数,求的取值范围;(3)若方程有解,求实数a的取值范围.【答案】(1)f(x)(2)(3)【解析】(1)························· 4分(2) ∵由∴的递增区间为∵在上是增函数∴当k = 0时,有∴解得∴的取值范围是····················· 8分(3) 解一:方程即为从而问题转化为方程有解,只需a在函数的值域范围内∵当;当∴实数a的取值范围为················ 12分解二:原方程可化为令,则问题转化为方程在[– 1,1]内有一解或两解,设,若方程在[– 1,1]内有一个解,则解得若方程在[– 1,1]内有两个解,则解得∴实数a的取值范围是[– 2,]2.已知函数(1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.【答案】(1),单调增区间;(2)【解析】(1)首先借助于基本三角函数公式将函数式化简为的最简形式,周期由的系数求解,求增区间需令,解得的范围得到单调区间;(2)中由的值求得角,借助于三角形余弦定理可得到关于两边的关系式,进而结合不等式性质得到关于的不等式,求得范围试题解析:(1),所以函数的最小正周期为.由得所以函数的单调递增区间为.(2)由可得,又,所以。

高一数学解三角形试题答案及解析

高一数学解三角形试题答案及解析

高一数学解三角形试题答案及解析1.地面上有两座塔AB、CD,相距120米,一人分别在两塔底部测得一塔顶仰角为另一塔顶仰角的2倍,在两塔底连线的中点O测得两塔顶的仰角互为余角,求两座塔的高度。

【答案】40米,90米.【解析】绘出几何示意图,寻找角关系,并建关系式.其中,且,建立方程(1);又因为,且由题可知,建立方程(2)试题解析:连结BO、OD、 AD、 BC,设两塔AB、CD的高分别为x,y米,则在中,则在中,由得, ( 1 ) 5分又在中,在中,.而,所以,即(2) 10分由(1)(2)式解得: x = 40(米), y = 90(米)答:两座塔的高分别为40米、90米. 14分【考点】正切函数应用.2.设甲、乙两楼相距20m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是()A.B.C.D.【答案】A【解析】试题分析:由图可知,在中,,则;在中,,则,;即甲、乙两楼的高分别是.【考点】解直角三角形.3.△ABC的内角、、的所对的边、、成等比数列,且公比为,则的取值范围为()A.B.C.D.【答案】B.【解析】∵,,成等比数列,∴,,再由正弦定理可得,又∵,根据二次函数的相关知识,可知的取值范围是.【考点】三角形与二次函数一元二次不等式综合.4.已知的三个内角满足:,则的形状为A.正三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】B【解析】由,,从而有:,再注意到,又,故知是以角C为直角的直角三角形,所以选B.【考点】三角公式.5.在中,内角、、所对的边分别为、、,给出下列命题:①若,则;②若,则;③若,则有两解;④必存在、、,使成立.其中,正确命题的编号为.(写出所有正确命题的编号)【答案】②③【解析】①根据大边对大角可知,如果是钝角,则此时,显然错误.②当三角形是锐角三角形时,根据正弦函数性质可知;当三角形是钝角三角形时,有,则,因为,所以,此时有,正弦函数性质可知,即.正确.③因为,即,所以必有两解.正确.④根据正切和角公式,可得.则有根据诱导公式有代入上式,则上式若是锐角,则;此时.若是钝角,则;此时.错误.【考点】三角形中边角关系;三角函数性质;三角函数和角,诱导公式的使用.6.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,如果a、b、c成等差数列,∠B=30°,△ABC的面积为,那么b=A. B. C. D.【答案】B【解析】由题意知,,,解得.【考点】解三角形.7.在中,内角所对的边分别为,给出下列结论:①若,则;②若,则为等边三角形;③必存在,使成立;④若,则必有两解.其中,结论正确的编号为(写出所有正确结论的编号).【答案】①④【解析】对于①,在中,当时,有,又由正弦定理,则,,,由有>>,所以有成立,故①正确;对于②,由正弦定理,且因为,所以且,则,且角B,C为锐角,所以,故②不正确;对于③,=,故③不正确;对于④,如图:因为,且,所以必有两解,故④正确.【考点】正弦定理,三角形边角关系,化归与转化的数学思想.8.中,若,则的面积为().A.B.C.1D.【答案】A【解析】根据三角形面积公式可得面积为.【考点】三角形面积公式的选择和计算.9.如图,从高为的气球上测量铁桥的长,如果测得桥头的俯角是,桥头的俯角是,则该桥的长可表示为A.B.C.D.【答案】A【解析】过A作垂线AD交CB于D,则在Rt△ADB中,∠ABD=α,AB=.又在中,∠C=β,∠BAC=α-β,由正弦定理,得∴BC=即桥梁BC的长度为,故选A.【考点】解三角形的实际应用.10.两地相距,且地在地的正东方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18 B.19 C.16 D.172.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.183.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B的大小()A.30°B.60°C.120°D.150°4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=()A.﹣1 B..C..D..27.(2013•天津模拟)在钝角△ABC中,已知AB=,AC=1,∠B=30°,则△ABC的面积是()A.B.C.D.8.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.3C.D.79.(2013•浦东新区三模)已知△ABC中,AC=2,BC=2,则角A的取值范围是()A.B.C.D.10.(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.11.(2012•天河区三模)在△ABC中,若A=60°,BC=4,AC=4,则角B的大小为()A.30°B.45°C.135°D.45°或135°12.(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.13.△ABC的内角A、B、C对边的长a、b、c成等比数列,则的取值范围是()A.(0,+∞)B.(0,2+)C.(1,+∞)D.(1,2+)14.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1D.15.(2014•重庆三模)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°16.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.17.(2014•南平模拟)在△ABC中,如果,B=30°,那么角A等于()A.30°B.45°C.60°D.120°18.(2014•广西模拟)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠A:∠B=1:2,且a:b=1:,则cos2B的值是()A.﹣B.C.﹣D.19.(2014•鄂尔多斯模拟)在△ABC中,∠A=60°,b=1,△ABC的面积为,则边a的值为()A.B.C.D.320.(2014•文登市二模)△ABC的内角A,B,C的对边分别为a,b,c,且asinA+csinC+asinC=bsinB,则∠B ()A.B.C.D.二.解答题(共10小题)21.(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.22.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.23.(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA ﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.24.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.25.(2014•兴安盟一模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)若b=7,a+c=13求此三角形的面积;(Ⅱ)求sinA+sin(C﹣)的取值范围.26.(2014•福建模拟)设△ABC中的内角A,B,C所对的边长分别为a,b,c,且,b=2.(Ⅰ)当时,求角A的度数;(Ⅱ)求△ABC面积的最大值.27.(2014•江西模拟)三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A ﹣C)=2sin2C.(1)求内角B的余弦值;(2)若b=,求△ABC的面积.28.(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.29.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.30.(2014•启东市模拟)在△ABC中,A,B,C为三个内角a,b,c为三条边,,且.(Ⅰ)判断△ABC的形状;(Ⅱ)若,求的取值范围.参考答案与试题解析一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18 B.19 C.16 D.17考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,把a,c,cosB的值代入求出b的值,即可确定出三角形ABC周长.解答:解:∵△ABC中,a=3,c=8,B=60°,∴b2=a2+c2﹣2accosB=9+64﹣24=49,即b=7,则△ABC周长为3+8+7=18,故选:A.点评:此题考查了余弦定理,熟练掌握余弦定理是解本题的关键.2.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.18考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,将a,b及cosB的值代入,得到关于c的方程,求出方程的解即可得到c的值.解答:解:∵a=3,c=9,B=60°,∴由余弦定理b2=a2+c2﹣2accosB,即:b2=9+64﹣24,即b=7,则a+b+c=18故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.3.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B的大小()A.30°B.60°C.120°D.150°考点:余弦定理.专题:解三角形.分析:利用余弦定理表示出cosB,把已知等式变形后代入计算求出cosB的值,即可确定出B的度数.解答:解:∵在△ABC中,b2﹣a2﹣c2=ac,即a2+c2﹣b2=﹣ac,∴cosB==﹣,则∠B=150°,故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得sinBcosC+sinCcosB=sinAsinA,再由两角和的正弦公式、诱导公式求得sinA=1,可得A=,由此可得△ABC的形状.解答:解:△ABC的内角A,B,C所对的边分别为a,b,c,∵bcosC+ccosB=asinA,则由正弦定理可得sinBcosC+sinCcosB=sinAsinA,即sin(B+C)=sinAsinA,可得sinA=1,故A=,故三角形为直角三角形,故选B.点评:本题主要考查正弦定理以及两角和的正弦公式、诱导公式的应用,根据三角函数的值求角,属于中档题.5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.考点:正弦定理.专题:计算题;解三角形.分析:利用正弦定理可求得sinA,结合题意可求得角A.解答:解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选D.点评:本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=()A.﹣1 B..C..D..2考点:正弦定理.专题:解三角形.分析:由已知可先求C,然后结合正弦定理可求解答:解:∵A=30°,B=105°,∴C=45°∵a=1.由正弦定理可得,则c===故选B点评:本题主要考查了正弦定理在求解三角形中的简单应用,属于基础试题7.(2013•天津模拟)在钝角△ABC中,已知AB=,AC=1,∠B=30°,则△ABC的面积是()A.B.C.D.考点:正弦定理.专题:解三角形.分析:利用余弦定理列出关系式,把c,b,以及cosB的值代入求出a的值,利用三角形面积公式即可求出三角形ABC面积.解答:解:∵在钝角△ABC中,已知AB=c=,AC=b=1,∠B=30°,∴由余弦定理得:b2=a2+c2﹣2accosB,即1=a2+3﹣3a,解得:a=1或a=2,当a=1时,a=b,即∠A=∠B=30°,此时∠C=120°,满足题意,△ABC的面积S=acsinB=;当a=2时,满足a2=c2+b2,即△ABC为直角三角形,不合题意,舍去,则△ABC面积是.故选:B.点评:此题考查了正弦定理,余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.8.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.3C.D.7考点:余弦定理.专题:解三角形.分析:由△ABC的面积S△ABC=,求出AC=1,由余弦定理可得BC,计算可得答案.解答:解:∵S△ABC==×AB×ACsin60°=×2×AC×,∴AC=1,△ABC中,由余弦定理可得BC==,故选A.点评:本题考查三角形的面积公式,余弦定理的应用,求出AC,是解题的关键.9.(2013•浦东新区三模)已知△ABC中,AC=2,BC=2,则角A的取值范围是()A.B.C.D.考点:余弦定理.专题:解三角形.分析:知道两边求角的范围,余弦定理得到角和第三边的关系,而第三边根据三角形的构成条件是有范围的,这样转化到角的范围.解答:解:利用余弦定理得:4=c2+8﹣4ccosA,即c2﹣4cosAc+4=0,∴△=32cos2A﹣16≥0,∵A为锐角∴A∈(0,],故选:C.点评:此题属于解三角形题型,解题思路为:利用余弦定理解答三角形有解问题,知道两边求角的范围,余弦定理得到角和第三边的关系,而第三边根据三角形的构成条件是有范围的,这样转化到角的范围,有一定难度.10.(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.考点:正弦定理.专题:计算题.分析:结合已知,根据正弦定理,可求AC解答:解:根据正弦定理,,则故选B点评:本题主要考查了正弦定理在解三角形中的应用,属于基础试题11.(2012•天河区三模)在△ABC中,若A=60°,BC=4,AC=4,则角B的大小为()A.30°B.45°C.135°D.45°或135°考点:正弦定理的应用.专题:计算题.分析:先根据正弦定理将题中所给数值代入求出sinB的值,进而求出B,再由角B的范围确定最终答案.解答:解:由正弦定理得,∴B=45°或135°∵AC<BC,∴B=45°,故选B.点评:本题主要考查了正弦定理的应用.属基础题.正弦定理在解三角形中有着广泛的应用,要熟练掌握.12.(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.考点:正弦定理.分析:根据正弦定理先求出sinB的值,再由三角形的边角关系确定∠B的范围,进而利用sin2B+cos2B=1求解.解答:解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选D.点评:正弦定理可把边的关系转化为角的关系,进一步可以利用三角函数的变换,注意利用三角形的边角关系确定所求角的范围.13.△ABC的内角A、B、C对边的长a、b、c成等比数列,则的取值范围是()A.(0,+∞)B.(0,2+)C.(1,+∞)D.(1,2+)考点:正弦定理;等比数列的通项公式.专题:解三角形.分析:设==q,则由任意两边之和大于第三边求得q的范围,可得的取值范围解答:解:设==q,则==q+q2,则由,求得<q<,∴<q2<,∴1<q+q2<2+,故选:D.点评:本题考查数列与三角函数的综合应用,是基础题.解题时要认真审题,仔细解答,注意三角形三边关系的灵活运用14.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()B.C.1D.A.﹣考点:余弦定理;正弦定理.专题:解三角形.分析:根据正弦定理,将条件进行化简即可得到结论.解答:解:∵3a=2b,∴b=,根据正弦定理可得===,故选:D.点评:本题主要考查正弦定理的应用,比较基础.15.(2014•重庆三模)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°考点:正弦定理.专题:计算题.分析:根据所给的等式和正弦定理,得到要求角的正弦和余弦相等,由根据这是一个三角形的内角得到角的度数只能是45°.解答:解:∵,又由正弦定理知,∴sinB=cosB,∵B是三角形的一个内角,∴B=45°,故选B.点评:本题考查正弦定理,是一个基础题,解题时注意当两个角的正弦值和余弦值相等时,一定要说清楚这个角的范围,这样好确定角度.16.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.考点:正弦定理;函数的值域.专题:计算题.分析:由正弦定理得,再根据△ABC是锐角三角形,求出B,cosB的取值范围即可.解答:解:由正弦定理得,∵△ABC是锐角三角形,∴三个内角均为锐角,即有,0<π﹣C﹣B=π﹣3B<解得,又余弦函数在此范围内是减函数.故<cosB<.∴<<故选A点评:本题考查了二倍角公式、正弦定理的应用、三角函数的性质.易错点是B角的范围确定不准确.17.(2014•南平模拟)在△ABC中,如果,B=30°,那么角A等于()A.30°B.45°C.60°D.120°考点:正弦定理;余弦定理.分析:本题考查的知识点是正弦定理和余弦定理,由在△ABC中,如果,我们根据正弦定理边角互化可以得到a=c,又由B=30°,结合余弦定理,我们易求出b与c的关系,进而得到B与C的关系,然后根据三角形内角和为180°,即可求出A角的大小.解答:解:∵在△ABC中,如果∴a= c又∵B=30°由余弦定理,可得:cosB=cos30°===解得:b=c则B=C=30°A=120°.故选D.点评:余弦定理:a2=b2+c2﹣2bccosA,b2=a2+c2﹣2accosB,c2=a2+b2﹣2abcosC.余弦定理可以变形为:cosA=(b2+c2﹣a2)÷2bc,cosB=(a2+c2﹣b2)÷2ac,cosC=(a2+b2﹣c2)÷2ab18.(2014•广西模拟)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠A:∠B=1:2,且a:b=1:,则cos2B的值是()A.﹣B.C.﹣D.考点:正弦定理;二倍角的余弦.分析:根据正弦定理得到sinA:sinB,因为∠A:∠B=1:2,利用二倍角的三角函数公式得到A和B的角度,代入求出cos2B即可.解答:解:依题意,因为a:b=1:,所以sinA:sinB=1:,又∠A:∠B=1:2,则cosA=,所以A=30°,B=60°,cos2B=﹣故选A点评:考查学生灵活运用正弦定理解决数学问题的能力,以及灵活运用二倍角的三角函数公式化简求值的能力.19.(2014•鄂尔多斯模拟)在△ABC中,∠A=60°,b=1,△ABC的面积为,则边a的值为()A.B.C.D.3考点:正弦定理.专题:解三角形.分析:根据正弦定理的面积公式,结合题中数据算出边c=4,再由余弦定理a2=b2+c2﹣2bccosA的式子算出a2=13,即可算出边a的长度.解答:解:∵△ABC中,∠A=60°,b=1,∴可得△ABC的面积为S=bcsinA=×1×c×sin60°=解之得c=4根据余弦定理,得a2=b2+c2﹣2bccosA=1+16﹣2×1×4×cos60°=13,所以a=(舍负)故选C点评:本题给出三角形一边、一角和面积,求边a的长度.着重考查了正弦定理的面积公式和利用余弦定理解三角形等知识,属于基础题.20.(2014•文登市二模)△ABC的内角A,B,C的对边分别为a,b,c,且asinA+csinC+asinC=bsinB,则∠B ()A.B.C.D.考点:正弦定理.专题:计算题;解三角形.分析:由已知结合正弦定理可得,,然后利用余弦定理可得,cosB==﹣,可求B解答:解:∵asinA+csinC+asinC=bsinB,∴由正弦定理可得,由余弦定理可得,cosB==﹣∵0<B<π∴B=.故选:D.点评:本题主要考查了正弦定理、余弦定理在求解三角形中的应用,属于基础题.二.解答题(共10小题)21.(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.考点:正弦定理.专题:解三角形.分析:(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.解答:解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.点评:本题主要考查了正弦定理的应用.解题过程中结合了同角三角函数关系,三角函数恒等变换的应用,注重了基础知识的综合运用.22.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.考点:正弦定理;两角和与差的正切函数.分析:本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.解答:解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.点评:在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.23.(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA ﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.考点:正弦定理;二倍角的正弦;二倍角的余弦.专题:解三角形.分析:(Ⅰ)△ABC中,由条件利用二倍角公式化简可得﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).求得tan(A+B)的值,可得A+B的值,从而求得C的值.(Ⅱ)由sinA=求得cosA的值.再由正弦定理求得a,再求得sinB=sin[(A+B)﹣A]的值,从而求得△ABC的面积为的值.解答:解:(Ⅰ)∵△ABC中,a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB,∴﹣=sin2A﹣sin2B,即cos2A﹣cos2B=sin2A﹣sin2B,即﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).∵a≠b,∴A≠B,sin(A﹣B)≠0,∴tan(A+B)=﹣,∴A+B=,∴C=.(Ⅱ)∵sinA=<,C=,∴A<,或A>(舍去),∴cosA==.由正弦定理可得,=,即=,∴a=.∴sinB=sin[(A+B)﹣A]=sin(A+B)cosA﹣cos(A+B)sinA=﹣(﹣)×=,∴△ABC的面积为=×=.点评:本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题.24.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.考点:正弦定理;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.25.(2014•兴安盟一模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)若b=7,a+c=13求此三角形的面积;(Ⅱ)求sinA+sin(C﹣)的取值范围.考点:正弦定理;同角三角函数基本关系的运用.专题:计算题.分析:利用正弦定理化简已知条件,根据三角形的内角和定理及诱导公式化简,由sinC不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可得到B的度数,(Ⅰ)根据余弦定理,由b,cosB和a+c的值,求出ac的值,然后利用三角形的面积公式,由ac的值和sinB的值即可求出三角形ABC的面积;(Ⅱ)由求出的B的度数,根据三角形的内角和定理得到A+C的度数,用A表示出C,代入已知的等式,利用诱导公式及两角和的正弦函数公式化为一个角的正弦函数,根据A的范围求出这个角的范围,由正弦函数的值域即可得到所求式子的取值范围.解答:解:由已知及正弦定理得:(2sinC﹣sinA)cosB﹣sinBcosA=0,即2sinCcosB﹣sin(A+B)=0,在△ABC中,由sin(A+B)=sinC故sinC(2cosB﹣1)=0,∵C∈(0,π),∴sinC≠0,∴2cosB﹣1=0,所以B=60°(3分)(Ⅰ)由b2=a2+c2﹣2accos60°=(a+c)2﹣3ac,即72=132﹣3ac,得ac=40(5分)所以△ABC的面积;(6分)(Ⅱ)因为==,(10分)又A∈(0,),∴,则sinA+sin(C﹣)=2sin(A+)∈(1,2].点评:此题考查学生灵活运用正弦定理及诱导公式化简求值,灵活运用三角形的面积公式及两角和的正弦函数公式化简求值,掌握正弦函数的值域,是一道中档题.26.(2014•福建模拟)设△ABC中的内角A,B,C所对的边长分别为a,b,c,且,b=2.(Ⅰ)当时,求角A的度数;(Ⅱ)求△ABC面积的最大值.考点:正弦定理.专题:计算题.分析:(I)由可求sinB=且B为锐角,由b=2,a=考虑利用正弦定理可求sinA,结合三角形的大边对大角且a<b可知A<B,从而可求A,(II)由,b=2利用余弦定理可得,b2=a2+c2﹣2accosB,把已知代入,结合a2+c2≥2ac可求ac的范围,在代入三角形的面积公式可求△ABC面积的最大值.解答:解:∵∴sinB=且B为锐角(I)∵b=2,a=由正弦定理可得,∴∵a<b∴A<B∴A=30°(II)由,b=2利用余弦定理可得,b2=a2+c2﹣2accosB∴从而有ac≤10∴∴△ABC面积的最大值为3点评:本题(I)主要考查了利用正弦定理及三角形的大边对大角解三角形(II)利用余弦定理及基本不等式、三角形的面积公式综合求解三角形的面积.考查的是对知识综合运用.27.(2014•江西模拟)三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A ﹣C)=2sin2C.(1)求内角B的余弦值;(2)若b=,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(Ⅰ)三角形ABC中,由条件化简可得sinA=2sinC,故有a=2c.再由b2=ac=2c2,求得cosB=的值.(Ⅱ)根据b=,b2=ac=2c2,求得c和a的值,求得sinB=的值,再根据△ABC的面积S=ac•sinB,计算求得结果.解答:解:(Ⅰ)三角形ABC中,∵sinB+sin(A﹣C)=2sin2C,∴sin(A+C)+sin(A﹣C)=4sinCcosC,sinA=2sinC,∴a=2c.又因为b2=ac=2c2,∴cosB==.(Ⅱ)∵b=,b2=ac=2c2,∴c=,∴a=.又∵sinB==∴△ABC的面积S=ac•sinB=.点评:本题主要考查两角和差的三角公式、正弦定理、余弦定理的应用,属于中档题.28.(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.解答:解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.点评:此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.29.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值.解答:解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.30.(2014•启东市模拟)在△ABC中,A,B,C为三个内角a,b,c为三条边,,且.(Ⅰ)判断△ABC的形状;(Ⅱ)若,求的取值范围.考点:正弦定理;余弦定理.专题:计算题;解三角形.分析:(1)先利用正弦定理把题设等式中的边转化成角的正弦,利用二倍角公式和两角和公式整理求得sinB=sin2C,进而根据B,C的范围,求得B+2C=π,判断出A=C,即三角形为等腰三角形.(2)利用平面向量的性质,依据已知条件求得a2+c2+2ac•cosB=4,根据a的值求得cosB的值.解答:解:(1)由及正弦定理,得,即sinBsinA﹣sinBsin2C=sinAsin2C﹣sinBsin2C,即sinBsinA=sinAsin2C,因为A是三角形内角,所以sinA≠0,可得sinB=sin2C,∵,∴,∴B+2C=π,∵A+B+C=π,∴A=C,△ABC为等腰三角形.(2)∵∴B∈(0,),∴cosB∈(,1)由(1)可知a=c,由,得a2+c2+2ac•cosB=4,∴a2=,∴=cosB=a2•cosB==2﹣∈(,1)(12分).点评:本题主要考查了正弦定理的应用.解题的关键是利用正弦定理进行了边角问题的转化.。

相关文档
最新文档