直线、平面、简单几何体
数学高考复习名师精品教案:第74课时:第九章 直线、平面、简单几何体-直线与平面垂直(1)
数学高考复习名师精品教案第74课时:第九章 直线、平面、简单几何体——直线与平面垂直课题:直线与平面垂直 一.复习目标:1.掌握直线与平面垂直的定义、判定定理和性质定理,并能运用它们进行论证和解决有关的问题;2.会用三垂线定理及其逆定理证明线线垂直,并会规范地写出解题过程。
二.知识要点:1.直线与平面垂直的判定定理是 ;性质定理是 ; 2.三垂线定理是 ;三垂线定理的逆定理是 ; 3.证明直线和平面垂直的常用方法有:三.课前预习:1.若,,a b c 表示直线,α表示平面,下列条件中,能使a α⊥的是 ( D )()A ,,,a b a c b c αα⊥⊥⊂⊂ ()B ,//a b b α⊥ ()C ,,a b A b a b α=⊂⊥ ()D //,a b b α⊥2.已知l 与m 是两条不同的直线,若直线l ⊥平面α,①若直线m l ⊥,则//m α;②若mα⊥,则//m l ;③若m α⊂,则m l ⊥;④//m l ,则mα⊥。
上述判断正确的是 ( B )()A ①②③ ()B ②③④ ()C ①③④ ()D ②④3.在直四棱柱1111ABC D A B C D -中,当底面四边形A B C D 满足条件A CB D⊥时,有111A C B D ⊥(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况) 4.设三棱锥P A B C -的顶点P 在平面ABC 上的射影是H ,给出以下命题: ①若P A B C⊥,P B A C⊥,则H 是A B C ∆的垂心②若,,PA PB PC 两两互相垂直,则H 是A B C ∆的垂心 ③若90ABC∠=,H 是A C 的中点,则PA PB PC ==④若PA PB PC ==,则H 是A B C ∆的外心其中正确命题的命题是 ①②③④ 四.例题分析:例1.四面体A B C D 中,,,ACBD E F=分别为,AD BC 的中点,且2EFAC=,90BDC ∠=,求证:B D ⊥平面A C D证明:取C D 的中点G ,连结,EG FG ,∵,E F 分别为,AD BC 的中点, ∴E G12//A C=12//F G B D=,又,AC BD =∴12F G A C=,∴在E F G ∆中,222212E GF G A CE F+==∴E GF G⊥,∴B DA C⊥,又90BDC ∠=,即BDC D⊥,AC CD C =∴B D ⊥平面A C D例2.如图P 是A B C ∆所在平面外一点,,PA PB CB =⊥平面P A B ,M 是P C 的中点,NMPCBAM DA 1C 1B 1CBAN是AB 上的点,3A NN B=(1)求证:M N A B⊥;(2)当90APB ∠= ,24AB BC ==时,求M N 的长。
直线平面简单几何体球
一个球与底面边长为a的正四棱锥的底面
和侧面都相切.若平行于棱锥
底面且与球相切的平面截棱锥,
所得的截面是一个边长为b的正
方形,求这个球的表面积.
解:过正四棱锥相对两个侧面的斜高作截
面,如图设O为球心,O1、O2
分别为截面和底面正方形的中
心,球与侧面的一个切点为C.
*
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
*
点评:求球的表面积的关键是求球的半径.求半径时,一般是根据截面圆的圆心与球的圆心的连线段、截面圆的弦长、球的半径三者之间的关系,通过解三角形来求得.
*
如图,A、B、C是表面积为 48π的球面上三点,AB=2, BC=4,∠ABC =60°,O为 球心.求直线OA与截面ABC 所成的角的大小. 解:连结AC,设O在 截面ABC上的射影是O′, 则O′为截面三角 形ABC外接圆的圆心,
*
已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是( ) A. B. C. D. 解:因为AB=BC=CA=2, 所以△ABC的外接圆半径为r= .设球的半 径为R,则 所以 , 所以
*
第九章 直线、平面、简单几何体
第 讲
球
考点 搜索
●球面、球体的概念,球的截面性质 ●地球的经纬度,球面距离 ●球的表面积和体积高考
高考 猜想
1. 考查有关球的表面积、体积和球面距离等的计算. 2. 考查球的截面问题的分析与计算.
与定点的距离_______________的点的集合,叫做球体,简称球,定点叫做球心,定长叫做球的半径,与定点距离__________的点的集合叫做球面. 用一个平面截一个球,所得的截面是________,且球心与截面圆心的连线________截面. 设球心到截面的距离为d,球半径为R,截面圆半径为r,则三者的关系是____________.
数学高考复习名师精品教案:第78课时:第九章 直线、平面、简单几何体-直线与平面、直线与直线所成的角
数学高考复习名师精品教案第78课时:第九章 直线、平面、简单几何体——直线与平面、直线与直线所成的角课题;直线与平面、直线与直线所成的角 一.复习目标:1.掌握直线与直线、直线与平面所成的角的概念,能正确求出线与线、线与面所成的角. 二.知识要点:1.异面直线,a b 所成角的定义: . 2.直线与平面所成角θ:(1)直线与平面平行或直线在平面内,则θ= . (2)直线与平面垂直,则θ= .(3)直线是平面的斜线,则θ定义为 . 3.最小角定理: .1.正方体1111ABCD A B C D -中,O 为,AC BD 的交点, 则1C O 与1A D 所成的角 ( )D()A 60 ()B 90 ()C arccos3 ()D arccos 62.,,PA PB PC 是从P 点引出的三条射线,每两条的夹角都是60 ,则直线PC 与平面APB 所成的角的余弦是( )()A 12 ()B ()C ()D 3.如图,在底面边长为2的正三棱锥ABC V-中,E 是BC的中点,若VAE ∆的面积是41,则侧棱VA 与底面所成角的大小为 . (结果用反三角函数值表示)四.例题分析:例1.在060的二面角βα--l 中,βα∈∈B A ,,已知A 、B 到l 的距离分别是2和4,且10=AB ,A 、B 在l 的射影分别为C 、D ,求:(1)CD 的长度;(2)AB和棱l 所成的角.例2.在棱长为4的正方体1111ABCD A B C D -中,O 是正方形1111A B C D 的中心,点P 在棱1CC 上,且14CC CP =.(Ⅰ)求直线AP 与平面11BCC B 所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O 点在平面1D AP 上的射影是H ,求证:1D H AP ⊥.ABC VE· B 1PA CDA 1C 1D 1BO H·例3.在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PA ⊥底面ABCD ,AE PD ⊥,//,EF DC AM EF =.(1)证明MF 是异面直线AB 与PC 的公垂线;(2)若3PA AB =,求直线AC 与平面EAM 所成角的正弦值.五.课后作业:AMBCDF EP1.在正三棱柱111ABC A B C -中,已知1AB =,D 在1BB 上,且1BD =,若AD 与平面11AAC C 所成的角为α,则α=( )()A 13 ()B 4π ()C ()D 2.一直线和直二面角的两个面所成的角分别是,αβ,则αβ+的范围是( )()A [,)2ππ ()B [0,2π ()C (0,2π ()D [0,2π3.已知AB 是两条异面直线,AC BD 的公垂线段,1AB =,10AC BD ==,CD =则,AC BD 所成的角为 .4.如图,在三棱锥P ABC -中,ABC ∆是正三角形90PCA ∠= ,D 是PA 中点,二面角P AC B --为120,2,PC AB ==,(1)求证:AC BD ⊥; (2)求BD 与平面ABC 所成角.5.如图,已知直三棱柱111ABC A B C -中,90ACB ∠= ,侧面1AB 与侧面1AC 所成的ABCPD二面角为60 ,M 为1AA 上的点,1130A MC ∠= ,190CMC ∠= ,AB a =. (1)求BM 与侧面1AC 所成角的正切值;(2)求顶点A 到面1BMC 的距离.6.如图直四棱柱 1111ABCD A BC D -中,底面ABCD 是直角梯形,设090=∠=∠ABC BAD ,2,8BC AD ==,异面直线1AC 与D A 1互相垂直,(1)求证:D A 1⊥平面B AC 1;(2)求侧棱1AA 的长;(3)已知4AB =,求D A 1与平面11B ADC 所成的角.D 1C 1B 1A 1DCB A。
2013白蒲中学高一数学教案:直线、平面、简单几何体:24(苏教版)
二面角练习课教学目标1.使学生进一步掌握好二面角及二面角的平面角的概念;2.使学生掌握求二面角平面角的基本方法,不断提高分析问题和解决问题的能力.教学重点和难点重点:使学生能够作出二面角的平面角;难点:根据题目的条件,作出二面角的平面角.教学设计过程重温二面角的平面角的定义.(本节课设计的出发点:空间图形的位置关系是立体几何的重要内容.解决立体几何问题的关键在于做好:定性分析,定位作图,定量计算,其中定性是定位、定量的基础,而定量则是定位,定性的深化.在面面关系中,二面角是其中的重要概念之一,它的度量归结为平面上角的度量,一般说来,对其平面角的定位是问题解决的关键一步.可是学生往往把握不住其定位的基本思路而导致思维混乱,甚至错误地定位,使问题的解决徒劳无益.这正是本节课要解决的问题.)教师:二面角是怎样定义的?学生:从空间一直线出发的两个半平面所组成的图形叫二面角.教师:二面角的平面角是怎样定义的?学生:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.教师:请同学们看下图.如图1:α,β是由l出发的两个半平面,O是l上任意一点,OC α,且OC⊥l;OD β,且OD⊥l.这就是二面角的平面角的环境背景,即∠COD是二面角α-l-β的平面角.从中我们可以得到下列特征:(1)过棱上任意一点,其平面角是唯一的;(2)其平面角所在平面与其两个半平面均垂直;另外,如果在OC上任取一点A,作AB⊥OD,垂足为B,那么由特征(2)可知AB⊥β.突出l,OC,OD,AB,这便是另一特征.(3)体现出一完整的三垂线定理(或逆定理)的环境背影.教师:请同学们对以上特征进行剖析.学生:由于二面角的平面角是由一点和两条射线构成,所以二面角的定位可化归为“定点”或“定线”的问题.教师:特征(1)表明,其平面角的定位可先在棱上取一“点”.耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背影互相沟通,给计算提供方便.(上面的引入力争符合练习课教学的特点.练习是形成技能的重要途径,练习课主要是训练学生良好的数学技能,同时伴随着巩固知识,发展智能和培育情感.特别要注意做到第一,知识的激活.激活知识有两个目的,一是突出了知识中的重要因素;二是强化知识中的基本要素.第二,思维的调理.练习课成功的关键在于对学生思维激发的程度.学生跃跃欲试正是思维准备较好的体现.因此,准备阶段安排一些调理思维的习题,确保学生思维的启动和运作.请看下面两道例题.)例1 已知:如图2,四面体V-ABC中,VA=VB=VC=a,AB=BC=CA=b,VH⊥面ABC,垂足为H,求侧面与底面所成的角的大小.分析:由已知条件可知,顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,由三垂线定理可知,VO⊥AB,则∠VOC为侧面与底面所成二面角的平面角.(图2)正因为此四面体的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使得题设背影突出在面VOC上,给进一步定量创造了得天独厚的条件.特征(2)指出,如果二面角α-l-β的棱l垂直某一平面γ,那么l必垂直γ与α,β的交线,而交线所成的角就是α-l-β的平面角.(如图3)由此可见,二面角的平面角的定位可以考虑找“垂平面”.例2 矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影A′落在BC上,求二面角A-BD-C的大小的余弦值.这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后的“变”与“不变”.如果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA,OE 与BD的垂直关系不变.但OA与OE此时变成相交两线并确定一平面,此平面必与棱垂直.由特征(2)可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角.另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了可能.在Rt△AA′O中,∠AA′O=90°,通过对例2的定性分析、定位作图和定量计算,特征(2)从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角.“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量.特征(3)显示,如果二面角α-l-β的两个半平面之一,存在垂线段AB,那么过垂足B作l的垂线交l于O,连结AO,由三垂线定理可知OA⊥l;或者由A作l的垂线交l于O,连结OB,由三垂线定理的逆定理可知OB⊥l.此时,∠AOB就是二面角α-l-β的平面角.(如图6)由此可见,二面角的平面角的定位可以找“垂线段”.课堂练习1.在正方体ABCD-A1B1C1D1中,棱长为2,E为BC的中点,求面B1D1E与面BB1C1C 所成的二面角的大小的正切值.练习1的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,由特征(2)可知,这两个二面角的大小必定互补.为创造一完整的三垂线定理的环境背景,线段C1D1会让我们眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1)即得面D1B1E 与面CC1B1E所成二面角的平面角∠C1OD1,2.将棱长为a的正四面体的一个面与棱长为a的正四棱锥的一个侧面吻合,则吻合后的几何体呈现几个面?分析:这道题,考生答“7个面”的占99.9%,少数应服从多数吗?从例题中三个特征提供的思路在解决问题时各具特色,它们的目标分别是找“点”、“垂面”、“垂线段”.事实上,我们只要找到其中一个,另两个就接踵而来.掌握这种关系对提高解题技能和培养空间想象能力非常重要.本题如果能融合三个特征对思维的监控,可有效地克服、抑制思维的消极作用,培养思维的广阔性和批判性.如图9,过两个几何体的高线VP,VQ的垂足P,Q分别作BC的垂线,则垂足重合于O,且O为BC的中点.OP延长过A,OQ延长交ED于R,考虑到三垂线定理的环境背影,∠AOR为二面角A-BC-R的平面角,结合特征(1),(2),可得VAOR为平行四边形,VA ∥BE,所以V,A,B,E共面.同理V,A,C,D共面.所以这道题的正确答案应该是5个面.(这一阶段的教学主要是通过教师精心设计的一组例题与练习题,或边练边评,或由学生一鼓作气练完后再逐题讲评,达到练习的目的.其间要以学生“练”为主,教师“评”为辅)为了提高“导练”质量,教师要力求解决好三个问题:1.设计好练习.设计好练习是成功练习的前提.如何设计好练习是一门很深的学问,要注意:围绕重点,精选习题;由易到难,呈现题组;形式灵活,题型多变.2.组织好练习.组织练习是“导练”的实质,“导练”就是有指导、有组织的练习过程.要通过一题多用、一题多变、一题多解等使学生举一反三,从而提高练习的效果.有组织的练习还包括习题的临时增删、节奏的随时控制、要求的适时调整等.3.讲评好练习.讲评一般安排在练习后进行,也可以在练习前或练习时.练习前的讲评,目的是唤起学生的注意,提醒学生避免出错起到前馈控制的作用;练习时的讲评,属于即时反馈,即学生练习,教师巡视,从中发现共性问题及时指出来,以引起学生的注意;更多的是练习后的讲评,如果采用题组练习,那么最常用的办法是一组练习完毕后教师讲评,再进行下一组练习,以此类推.教师:由例1、例2和课堂练习,我们已经看到二面角的平面角有三个特征,这三个特征互相联系,客观存在,但在许多问题中却表现得含糊而冷漠,三个特征均藏而不露,在这种形势下,需认真探索.学生:应探索体现出一完整的三垂线定理的环境背景,有了“垂线段”,便可以定位.教师:请大家研究下面的例题.例3 如图10,在正方体ABCD-A1B1C1D1中,E是BC的中点,F在AA1上,且A1F∶FA=1∶2,求平面B1EF与底面A1C1所成的二面角大小的正切值.分析:在给定的平面B1EF与底面A1C1所成的二面角中,没有出现二面角的棱,我们可以设法在二面角的两个面内找出两个面的共点,则这两个公共点的连线即为二面角的棱,最后借助这条棱作出二面角的平面角.略解:如图10.在面BB1CC1内,作EH⊥B1C1于H,连结HA1,显然直线EF在底面A1C1的射影为HA1.延长EF,HA1交于G,过G,B1的直线为所求二面角的棱.在平面A1B1C1D1内,作HK⊥GB1于K,连EK,则∠HKE为所求二面角的平面角.在平面A1B1C1D1内,作B1L⊥GH于L,利用Rt△GLB1∽Rt△GKH,可求得KH.又在Rt△EKH中,设EH=a,容易得到:所求二面角大小的正切值教师:有时我们也可以不直接作出二面角的平面角,而通过等价变换或具体的计算得出其平面角的大小.例如我们可以使用平移法.由两平面平行的性质可知,若两平行平面同时与第三个平面相交,那么这两个平行平面与第三个平面所成的二面角相等或互补.因而例3中的二面角不易直接作出其平面角时,可利用此结论平移二面角的某一个面到合适的位置,以便等价地作出该二面角的平面角.略解:过F作A′B′的平行线交BB′于G,过G作B′C′的平行线交B′E 于H,连FH.显见平面FGH∥平面A′B′C′D′.则二面角B′-FH-G的平面角度数等于所求二面角的度数.过G作GM⊥HF,垂足为M,连B′M,由三垂线定理知B′M⊥HF.所以∠B′MG为二面角B′-FH-G的平面角,其大小等于所求二面角平面角的大小.(练习课的一个重要特征是概括.解题重要的不是统计做了多少题目,而是是否掌握了一类题的实质,即有无形成基本的解题模式,只有真正掌握了一类问题的解题思路,才算掌握了解答这类题目的基本规律.当学生练习到一定程度就应不失时机地引导他们总结和概括出练习的基本经验和教训,获得有意义的练习成果)例4 已知:如图12,P是正方形ABCD所在平面外一点,PA=PB=PC=PD=a,AB=a.求:平面APB与平面CPD相交所成较大的二面角的余弦值.分析:为了找到二面角及其平面角,必须依据题目的条件,找出两个平面的交线.解:因为 AB∥CD,CD 平面CPD,AB 平面CPD.所以 AB∥平面CPD.又 P∈平面APB,且P∈平面CPD,因此平面APB∩平面CPD=l,且P∈l.所以二面角B-l-C就是平面APB和平面CPD相交所得到的一个二面角.因为 AB∥平面CPD,AB 平面APB,平面CPD∩平面APB=l,所以 AB∥l.过P作PE⊥AB,PE⊥CD.因为 l∥AB∥CD,因此 PE⊥l,PF⊥l,所以∠EPF是二面角B-l-C的平面角.因为 PE是正三角形APB的一条高线,且AB=a,因为 E,F分别是AB,CD的中点,所以 EF=BC=a.在△EFP中,小结:二面角及其平面角的正确而合理的定位,要在正确理解其定义的基础上,掌握其基本特征,并灵活运用它们考察问题的背景.我们已经看到,定位是为了定量,求角的大小往往要化归到一个三角形中去解,因此寻找“垂线段”,把问题化归是十分重要的.作业1.120°二面角α-l-β内有一点P,若P到两个面α,β的距离分别为3和1,求P到l的距离.2.正方体ABCD-A1B1C1D1中,求以BD1为棱,B1BD1与C1BD1为面的二面角的度数.。
高三数学第九章直线、平面、简单几何体知识点课件
a
命题
// , a a //
// , a , b a // b
l
// , l l
§9.5平面与平面垂直 一、垂直关系的转化(说出相关定理):
面面 垂直 判定
A
D
C B
AB ,AB
b a // b
二、面面平行的判定 图形 面 面 平 行 的 判 定
命题 a b l
A
a ,b ,a b=A, a// ,b// //
l, l //
*
// , // //
三、面面平行的性质 图形 面 面 平 行 的 性 质
(2) (3) (7)
线线垂直(12)(13)
(8) (12)三垂线定理 (9) (13)三垂线逆定理
线面平行 (4) (5)
线面垂直 (10) (11)
面面平行(6)
面面垂直
9.1平面的性质
公理1
作用
公理2
如果一条直线上的两点在一个平面内, 判断直线在平 那么这条直线上所有的点都在这个平面 面内的依据 内 如果两个平面有一个公共点,那么它们 两个平面相交 还有其他公共点,且所有这些公共点的 以及它们的交 点共线的依据 集合是一条过这个公共点的直线
PA
§9.4线面平行与面面平行
一,直线与平面平行的判定和性质
线 面 平 行 判 定 线 面 平 行 性 质
a
a a//
a , b , a // b a //
直线、平面、简单几何体优质课件
2.地球表面上从A地(北纬45°,东经120°)到B地(北纬
45°,东经30°)的最短距离为(地球半径为R)
(A)R (B)
πR
3.在北纬45o的圈上有甲、乙、丙三地,甲乙、乙丙之间
πR (C) 3
( C )
(D) πR
2
的经度差都是90o,则甲丙两地的球面距离是甲乙两地球
3 面距离的 ______倍 2
1 VA-BCD= (SABC+SBCD+SCDA+SDAB)· r 3 1 = · =16r 由16r=6√7 得内切球的半径为 r 3 7 48r 3 8
能力·思维·方法
【解题回顾】正如三角形的内切圆经常与面积发生关 系一样,多面体的内切球的半径也常与体积发生联系.
能力·思维·方法
9.在球内有相距14cm 的两个平行截面,它们的面积分别是 64πcm2 和 36πcm2,求球的表面积。 解:设球半径为R, (1)当截面在球心同侧,如图(1)
基础题例题
4.球的表面积膨胀为原来的 2 倍,膨胀后的体积为原来的 ( C) A. √2倍 B.2倍 C.2√2倍 D.4倍 2 2 5.棱长为2的正四面体的体积为_____________ 3
6.设P、A、B、C是球O面上的四点,且PA、PB、PC两两 互相垂直,若PA=PB=PC=a, 则球心O到截面ABC的距离 3 a 是______________ 6
直线、平面、简单几何体
要点·疑点·考点
一、多面体 1. 概念
(1)若干个平面多边形围成的几何体,叫多面体.
(2)把多面体的任何一面伸展为平面,如果所有其他各 面都在这个平面的同侧,这样的多面体叫凸多面体. (3)每个面都是有相同边数的正多边形,且以每个顶点 为其一端都有相同数目的棱的凸多面体,叫正多面体.
高三数学单元《直线、平面及简单几何体》
高三数学单元《直线、平面及简单几何》一、选择题(本题每小题5分,共60分)1.已知平面α与平面β相交,直线α⊥m ,则( )A .β内必存在直线与m 平行,且存在直线与m 垂直B .β内不一定存在直线与m 平行,不一定存在直线与m 垂直C .β内不一定存在直线与m 平行,但必存在直线与m 垂直D .β内必存在直线与m 平行,却不一定存在直线与m 垂直 2.已知直线α平面⊥l ,直线β平面⊂m ,给出下列命题①α∥m l ⊥=β; ②l ⇒⊥βα∥m ③l ∥βα⊥⇒m ④α⇒⊥m l ∥β 其中正确命题的序号是 ( )A .①②③B .②③④C .②④D .①③3.在正方体1111ABCD A B C D -中,M 为1DD 的中点,O 为底面ABCD 的中心,P 为棱11A B 上任意一点,则直线OP 与直线AM 所成的角是 ( )A .6πB .4πC .3πD .2π 4.等边三角形ABC 和等边三角形ABD 在两个相互垂直的平面内,则cos ∠CAD=( ) A .21-B .41 C .167-D .05.已知l m ,是异面直线,给出下列四个命题:① 必存在平面α,过m 且与l 平行;② 必存在平面β,过m 且与l 垂直;③ 必存在平面γ,与l m ,都垂直;④ 必存在平面ω,与l m ,的距离相等.其中正确的结论是 ( )A .①③B .②③C .①④D .②④ 6.如果平面的一条斜线和它在这个平面上的射影的方向向量分别是a =(1,0,1),b =(0,1,1),那么这条斜线与平面所成的角是( )A .90°B .60°C .45°D .30°7.正多面体的每个面都是正n 边形,顶点数是V ,棱数是E ,面数是F ,每个顶点连的棱数是m ,则它们之间不正确...的关系是 ( ) A .mF=2E B .mV=2E C .nF=2E D .V+F=E+28.在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,P 、Q 是对角线 A 1C 上的点,若PQ=2a,则三棱锥P-BDQ 的体积为 ( )A .3633aB .3183aC .2433aD .不确定9.如图所示,在正方体ABCD —A 1B 1C 1D 1的侧面AB 1内有一动点 P 到直线A 1B 1与直线BC 的距离相等,则动点P 所在曲线的形 状为 ( )10.四面体的棱长中,有两条为32及,其余全为1时,它的体积( )A .122 B .123 C .121 D .以上全不正确11.已知铜的单晶体的外形是简单几何体,单晶铜有三角形和八边形两种晶面,如果铜的单晶体有24个顶点,每个顶点处有3条棱,那么单晶铜的三角形晶面和八边形晶面的数目分别是 ( )A .6,8B .8,6C .8,10D .10,812.如图一,在△ABC 中,AB ⊥AC 、AD ⊥BC ,D 是垂足,则BC BD AB ⋅=2(射影定理)。
直线平面简单几何体课标试题
卜人入州八九几市潮王学校直线平面简单几何体1、空间两直线m l 、在平面βα、上射影分别为1a 、1b 和2a 、2b ,假设1a ∥1b ,2a 与2b 交于一点,那么l 和m 的位置关系为〔A 〕一定异面〔B 〕一定平行〔C 〕异面或者相交〔D 〕平行或者异面2、在直二面角βα--MN 中,等腰直角三角形ABC 的斜边α⊂BC ,一直角边β⊂AC ,BC 与β所成角的正弦值为46,那么AB 与β所成的角是 〔A 〕6π〔B 〕3π〔C 〕4π〔D 〕2π 〔第2题图〕3、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,那么〔A 〕∠1+∠2=900〔B 〕∠1+∠2≥900〔C 〕∠1+∠2≤900〔D 〕∠1+∠2<9004、边长为a 的菱形ABCD ,∠A =3π,将菱形ABCD 沿对角线折成二面角θ,θ∈[3π,32π],那么两对角线间隔的最大值是〔A 〕a 23〔B 〕a 43〔C 〕a 23〔D 〕a 43 5、〔A 方案〕二面角α―AB ―β的平面角是锐角,C 是面α内的一点〔它不在棱AB 上〕,点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么 〔A 〕∠CEB =∠DEB 〔B 〕∠CEB >∠DEB〔C 〕∠CEB <∠DEB 〔D 〕∠CEB 与∠DEB 的大小关系不能确定〔B 方案〕假设点A 〔42+λ,4-μ,1+2γ〕关于y 轴的对称点是B 〔-4λ,9,7-γ〕,那么λ,μ,γ的值依次为〔A〕1,-4,9〔B〕2,-5,-8〔C〕-3,-5,8〔D〕2,5,86、用一个平面去截正方体,所得的截面不可能...是〔A〕六边形〔B〕菱形〔C〕梯形〔D〕直角三角形7、正方形ABCD,沿对角线AC将△ADC折起,设AD与平面ABC所成的角为β,当β取最大值时,二面角B―AC―D等于〔A〕1200〔B〕900〔C〕600〔D〕4508、以下各图是正方体或者正四面体,P,Q,R,S分别是所在棱的中点,这四个点中不一共面....的一个图是〔A〕〔B〕〔C〕〔D〕9、有三个平面α,β,γ〔A〕假设α,β,γ两两相交,那么有三条交线〔B〕假设α⊥β,α⊥γ,那么β∥γ〔C〕假设α⊥γ,β∩α=a,β∩γ=b,那么a⊥b〔D〕假设α∥β,β∩γ=∅,那么α∩γ=∅10、正方体ABCD-A1B1C1D1中,M为BC中点,N为D1C1的中点,那么NB1与A1M所成的角等于〔A〕300〔B〕450〔C〕600〔D〕90011、一个简单多面体的各个顶点处都有三条棱,那么顶点数V与面数F满足的关系式是〔A〕2F+V=4〔B〕2F-V=4〔C〕2F+V=2〔D〕2F-V=212、如图,面ABC⊥面BCD,AB⊥BC,BC⊥CD,且AB=BC=CD,设AD与面AB C所成角为α,AB与面ACD所成角为β,那么α与β的大小关系为〔A〕α<β〔B〕α=β〔C〕α>β〔D〕无法确定13、〔A方案〕如图,直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1和CC1上,AP=C1Q,那么四棱锥B -APQC 的体积为 〔A 〕2V 〔B 〕3V 〔C 〕4V 〔D 〕5V 〔13题方案A 图〕〔13题方案B 图〕〔B 方案〕侧棱长为2的正三棱锥,假设其底面周长为9,那么该正三棱锥的体积是 〔A 〕239〔B 〕433〔C 〕233〔D 〕439 14、〔A 方案〕如下列图,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的间隔相等,那么动点P 所在曲线的形状为 〔A 〕〔B 〕〔C 〕〔D 〕〔B 方案〕如下列图,正方体ABCD -A 1B 1C 1D 1的面A 1C 1,B 1C ,CD 1的中心分别为O 1,O 2,O 3,那么直线AO 1与直线O 2O 3所成的角为〔A 〕900〔B 〕600〔C 〕450〔D 〕300〔14题B 方案图〕〔15题A 方案图〕〔15题B 方案图〕15、〔A 方案〕在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是 〔A 〕4条〔B 〕6条〔C 〕8条〔D 〕10条〔B 方案〕正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AB ,BB 1的中点,A 1E 与C 1F 所成的角是θ,那么〔A 〕θ=600〔B 〕θ=450〔C 〕52cos =θ〔D 〕52sin =θ 16、如图,正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,平面B 1D 1E 与平面BB 1C 1C 所成角的正切值为 〔A 〕52〔B 〕25〔C 〕32〔D 〕23〔第16题图〕〔第17题B 方案图〕17、〔A 方案〕三棱锥D -ABC 的三个侧面与底面全等,且AB=AC=3,BC =2,那么以BC 为棱,以面BCD 与面BCA 为面的二面角的大小是 〔A 〕4π〔B 〕3π〔C 〕2π〔D 〕32π〔B 方案〕如图,正方体ABCD -A 1B 1C 1D 1中,M 是DD 1的中点,O 是底面正方形ABCD 的中心,P 为棱A 1B 1上任意一点,那么直线OP 与直线AM 所成的角为 〔A 〕4π〔B 〕3π〔C 〕2π〔D 〕与P 点的位置有关 18、〔A 方案〕斜棱柱底面和侧面中矩形的个数最多可有 〔A 〕2个〔B 〕3个〔C 〕4个〔D 〕6个〔B 方案〕设空间两个不同的单位向量a =〔x 1,y 1,0〕,b =〔x 2,y 2,0〕与向量c =〔1,1,1〕的夹角都等于4π,那么2211y x y x ++等于 〔A 〕21-〔B 〕-1〔C 〕21〔D 〕1 19、〔A 方案〕如下列图,在多面体ABCDEF 中,ABCD 是边长为3的正方形,EF ∥AB ,EF =23,EF 与面AC 的间隔为2,那么该多面体的体积为 〔A 〕29〔B 〕5〔C 〕6〔D 〕215 〔第19题A 方案图〕〔第19题B 方案图〕〔B 方案〕如下列图,四面体ABCD 中,AB ,BC ,CD 两两互相垂直,且AB=BC =2,E 是AC 的中点,异面直线AD 与BE 所成的角的大小是1010arccos,那么四面体ABCD 的体积是 〔A 〕8〔B 〕6〔C 〕2〔D 〕38 20、〔A 方案〕长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,那么这个球的面积为 〔A 〕π27〔B 〕π56〔C 〕π14〔D 〕π64 〔B 方案〕设A ,B ,C ,D 是空间不一共面的四点,且满足0=⋅AC AB ,0=⋅AD AC ,0=⋅AD AB ,那么△BCD 是〔A 〕钝角三角形〔B 〕直角三角形〔C 〕锐角三角形〔D 〕不确定21、球面的三个大圆所在平面两两垂直,那么以三个大圆的交点为顶点的八面体的体积与球体积之比是 〔A 〕2∶π〔B 〕1∶2π〔C 〕1∶π〔D 〕4∶3π22、如图,在斜三棱柱A 1B 1C 1-ABC 中,∠BAC =900,BC 1⊥AC ,那么C 1在底面ABC 上的射影H 必在 〔A 〕直线AB 上〔B 〕直线BC 上〔C 〕直线AC 上〔D 〕△ABC 内部 〔第22题图〕〔第23题图〕23、在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是对角线A 1C 上的点,且PQ =2a,那么三棱锥P -BDQ 的体积为〔A 〕3363a 〔B 〕3183a 〔C 〕3243a 〔D 〕无法确定 24、球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,那么此球的体积为〔A 〕33312cm π〔B 〕33316cm π〔C 〕3316cm π〔D 〕3332cm π25、如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外外表,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,那么铁丝长度的最小值为 〔A 〕61cm 〔B 〕157cm 〔C 〕1021cm 〔D 〕1037cm26、棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为〔A 〕33a 〔B 〕43a 〔C 〕63a 〔D 〕123a27、在空间四边形ABCD 各边上分别取E 、F 、G 、H 四点,假设EF 和GH 能相交于点P ,那么 〔A 〕点P 必在直线AC 上〔B 〕点P 必在直线BD 上 〔C 〕点P 必在平面ABC 内〔D 〕点P 必在平面上ABC 外28、设长方体的三条棱长分别为a ,b ,c ,假设长方体所有棱的长度之和为24,一条对角线长度为5,体积为2,那么=++cb a 111 〔A 〕411〔B 〕114〔C 〕211〔D 〕112 29、四棱锥P -ABCD 的底面为平行四边形,设x =2PA 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,那么x ,y 之间的关系为〔A 〕x >y 〔B 〕x =y 〔C 〕x <y 〔D 〕不能确定30、〔A 方案〕如图,三棱柱ABC -A 1B 1C 1的侧面A 1B ⊥BC ,且A 1C 与底面成600角,AB=BC =2,那么该棱柱体积的最小值为〔A 〕34〔B 〕33〔C 〕4〔D 〕3〔第30题A 方案图〕〔第30题B 方案图〕〔B 方案〕如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,假设=11B A a ,=11D A b ,=A A 1c ,那么以下向量中与M B 1相等的是 〔A 〕21-a +21b +c 〔B 〕21a +21b +c 〔C 〕21a 21-b +c 〔D 〕21-a 21-b +c31、〔A 方案〕a 、b 为异面直线,α⊂a ,β⊂b ,又A ∈α,B ∈β,AB =12cm ,AB 与β成600角,那么a 、b 间间隔为.〔B 方案〕向量a 、b 满足|a |=31,|b |=6,a 与b 的夹角为3π,那么3|a |-2〔a ·b 〕+4|b |=.32、假设一个正多面体各个面的内角总和为36000,那么它的棱数、面数、顶点数依次为. 33、正方体的两个面上的两条对角线所成的角为.34、在三棱柱ABC -A 1B 1C 1中,P ,Q 分别为AA 1,BB 1上的点,且A 1P=BQ ,那么〔V C -ABQ +V C -ABP 〕∶=-111C B A ABC V . 35、如图,在四棱锥P -ABCD 中,E 为CD 上的动点,四边形ABCD 为时,体积V P -AEB 恒为定值〔写上你认为正确的一个答案即可〕.〔第35题图〕〔第36题图〕36、如图,在四棱锥E -ABCD 中,底面ABCD 为梯形,AB ∥CD ,2AB =3DC ,M 为AE 的中点,设E -ABCD 的体积为V ,那么三棱锥M -EBC 的体积为.37、如图,四棱柱ABCD -A 1B 1C 1D 1中,给出三个结论:〔1〕四棱柱ABCD -A 1B 1C 1D 1为直四棱柱;〔2〕底面ABCD 为菱形;〔3〕AC 1⊥B 1D 1. .38、〔A 方案〕一块长方体木料,按图中所示的余弦线截去一块,那么剩余局部的体积是. 〔第38题A 方案图〕〔B 方案〕在正方体ABCD -A 1B 1C 1D 1①2112111113)()(B A B A D A A A =++;②01111=-⋅)(A AB AC A ; ③B A 1与1AD 的夹角为600;④此正方体的体积为:|AD AA AB ⋅⋅1|.39、〔A 方案〕一个四面体的所有棱长都是2,四个顶点在同一个球面上,那么此球的外表积为.〔B 方案〕点A 、B 、C 的坐标分别为〔0,1,0〕,〔-1,0,1〕,〔2,1,1〕,点P 的坐标为〔x ,0,z 〕,假设AB PA ⊥,AC PA ⊥,那么点P 的坐标为.40、〔A 方案〕以下五个正方体图形中,l 是正方体的一条对角线,点M ,N ,P 分别为其所在棱的中点,能得出l ⊥面MNP 的图形的序号是.〔写出所有符合要求的图形序号〕 ①②③④⑤〔B 方案〕在平行六面体ABCD -A 1B 1C 1D 1中,各面都是全等的菱形,菱形的锐角为600,且边长为1,那么点B 到平面AB 1C 的间隔BH =.[参考答案]31、〔A 方案〕36cm ;〔B 方案〕23 32、30,20,12 33、00或者600或者90034、1∶335、可有多种答案,如正方形 36、V 10337、138、〔A 方案〕a(b+c)πm 3;〔B 方案〕③,④ 39、〔A 方案〕3π;〔B 方案〕〔31,0,32 〕40、〔A 方案〕①,④,⑤;〔B 方案〕1122或者36。
[高中高二上册数学知识点最新]
[高中高二上册数学知识点最新]生活中运用了许许多多的数学,如果你的数学没有学好的话,你的生活就和平常人有了很大的差异。
所以我们要好好学习数学,好好的去学会怎么运用数学。
高中高二上册数学知识点有哪些一起来看看高中高二上册数学知识点最新,欢迎查阅!高二上册数学知识点一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(某1,y1),(某2,y2)的直线的斜率k=(y2-y1)/(某2-某1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,⑵斜截式:直线在轴上的截距为和斜率,则直线方程为4、,,①∥,;②.直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程:.⑵圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长二、圆锥曲线方程:1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b23、抛物线:①方程y2=2p某注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线某=-;③焦半径;焦点弦=某1+某2+p;4、直线被圆锥曲线截得的弦长公式:5、注意解析几何与向量结合问题:1、,.(1);(2).2、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|coθ叫做a与b的数量积,记作a·b,即3、模的计算:|a|=.算模可以先算向量的平方4、向量的运算过程中完全平方公式等照样适用:三、直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:3、表(侧)面积与体积公式:⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=⑷球体:①表面积:S=;②体积:V=4、位置关系的证明(主要方法):注意立体几何证明的书写(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
直线与平面及简单几何体检测及答案
2009届一轮复习直线与平面及简单几何体检测及答案一.选择题(1) 已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q . 则q p 是的 ( )A 充分而不必要的条件B 必要而不充分的条件C 充要条件D 既不充分也不必要的条件(2)下列命题中正确的个数是 ( )①四边相等的四边形是菱形; ②若四边形有两个对角都是直角, 则这个四边形是圆内接四边形; ③“平面不经过直线”的等价说法是“直线上至多有一个点在平面内”; ④若两平面有一条公共直线, 则这两平面的所有公共点都在这条公共直线上.A 1个B 2个C 3个D 4个(3) 已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题,其中正确的命题个数是( )① 若m ⊂α, , n ∥α,则m ∥n ②若m ∥α,m ∥β,n,, 则α∥β ③若α∩β= n ,m ∥n, 则, m ∥α,且 m ∥β ④m ⊥α, m ⊥β, 则α∥βA 0B 1C 2D 3(4) 一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A 33π100cmB 33π208cmC 33π500cmD 33π3416cm(5) 在下列关于直线l 、m 与平面α、β的命题中,真命题是 ( )A 若l ⊂β且α⊥β,则l ⊥α.B 若l ⊥β且α∥β,则l ⊥α.C 若l ⊥β且α⊥β,则l ∥α.D 若α∩β=m 且l ∥m,则l ∥α.(6) 若直线l 、m 与平面α、β、γ满足: l =β∩γ, l ∥α, m ⊂α和m ⊥γ, 则必有( )A α⊥γ且l ⊥mB α⊥γ且m ∥βC m ∥β且l ⊥mD α∥β且α⊥γ(7) 如图, 四边形ABCD 中, AD ∥BC, AD=AB, ∠BCD=45°, ∠BAD=90°. 将△ADB 沿BD 折起, 使ABD ⊥平面BCD, 构成三棱锥A-BCD. 则在三棱锥A-BCD 中, 下列命题正确的是 ( )A 平面ABD ⊥平面ABCB 平面ADC ⊥平面BDC C 平面ABC ⊥平面BDCD 平面ADC ⊥平面ABC(8) 如图,在长方体1111D C B A ABCD -中,AB=6,AD=4,31=AA .分别过BC 、11D A 的两个平行截面将长方体分成 三部分,其体积分别记为111DFD AEA V V -=,11112D FCF A EBE V V -= A B C D A B C D CD C 1 B 1D 1A 1E 1F 1 FC F C B E B V V 11113-=.若1:4:1::321=V V V ,则截面11EFD A的面积为 ( )A. 104B. 38C. 134D. 16(9)如图四面体D-ABC 中, P ∈面DBA, 则在平面DAB 内过点P 与直线BC 成60°角的直线共有 ( ) A 0条 B 1条 C 2条 D 3条(10) 已知正四面体ABCD 的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则ST 等于( )A91 B 94 C 41 D 31 二.填空题(11)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为 .(12)已知直线m 、n 和平面α、β满足: α∥β, m ⊥α, m ⊥n, 则n 与β之间的位置关系是 (13) 已知平面α和平面交于直线l ,P 是空间一点,PA ⊥α,垂足为A ,PB ⊥β,垂足为B ,且PA=1,PB=2,若点A 在β内的射影与点B 在α内的射影重合,则点P 到l 的距离为 .(14) α、β是两个不同的平面, m 、n 是α、β之外的两条不同直线, 给出四个论断: ①m ⊥n; ②α⊥β; ③n ⊥β; ④m ⊥α. 以其中三个论断作为条件, 余下一个论断作为结论, 写出你认为正确的一个命题 .三.解答题(15) 如图,在四棱锥P —ABCD 中,底面ABCD是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC的中点,作EF ⊥PB 交PB 于点F. (Ⅰ)证明PA//平面EDB ;(Ⅱ)证明PB ⊥平面EFD ;(Ⅲ)求二面角C —PB —D 的大小.ABCDP E F A BCD P ·(16) 在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示); (Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ;(Ⅲ)求点P 到平面ABD 1的距离.(17) 如图, 四棱锥P-ABCD 的底面是AB=2, BC=2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD.AP · B 1P A CD A 1C 1D 1B O H ·(Ⅰ)证明:BC ⊥侧面PAB;(Ⅱ)证明: 侧面PAD ⊥侧面PAB;(Ⅲ)求侧棱PC 与底面ABCD 所成角的大小;(Ⅳ)求平面PAB 与平面PCD 所成二面角的正弦值.(18)在斜三棱柱A 1B 1C 1-ABC 中, 底面是等腰三角形 , AB=AC, 侧面BB 1C 1C ⊥底面ABC.(Ⅰ)若D 是BC 的中点, 求证:AD ⊥CC 1;(Ⅱ)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M, 若AM=MA 1, 求证:截面MBC 1⊥侧面BB 1C 1C; (Ⅲ) AM=MA 1是截面MBC 1⊥平面BB 1C 1C 的充要 条件吗? 请你叙述判断理由.答案一选择题: 1.B 2.B 3.B 4.C 5.B 6.A 7.D 8.C 9.D 10.A 二填空题: 11. 33, 12. n ⊂β或 n ∥β, 13.5, 14.②③④⇒①或①③④⇒②A BCD A 1 B 1 C 1 M P EF三解答题(15)证: 方法一(Ⅰ)证明:连结AC ,AC 交BD 于O , 连结EO.∵底面ABCD 是正方形,∴点O 是AC 的中点.在 PAC ∆中,EO 是中位线,∴PA // EO 而⊂EO 平面EDB 且 ⊄PA 平面EDB ,所以,PA // 平面EDB(Ⅱ)证明:∵PD ⊥底面ABCD 且⊂DC 底面ABCD , ∴DC PD ⊥∵PD=DC ,可知PDC ∆是等腰直角三角形, 而DE 是斜边PC 的中线,∴PC DE ⊥. ①同样由PD ⊥底面ABCD ,得PD ⊥BC.∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC.而⊂DE 平面PDC ,∴DE BC ⊥. ② 由①和②推得⊥DE 平面PBC.而⊂PB 平面PBC ,∴PB DE ⊥.又PB EF ⊥且E EF DE = ,所以PB ⊥平面EFD.(Ⅲ)解:由(2)知,DF PB ⊥,故EFD ∠是二面角C —PB —D 的平面角.由(Ⅱ)知,DB PD EF DE ⊥⊥,.设正方形ABCD 的边长为a ,则a BD a DC PD 2,===a BD PD PB 322=+=, a DC PD PC 222=+=a PC DE 2221==. 在PDB Rt ∆中,a aa a PB BD PD DF 3632=⋅=⋅=.在EFD Rt ∆中, 233622sin ===a aDF DE EFD ,∴3π=∠EFD .所以,二面角C —PB —D 的大小为3π.方法二:如图所示建立空间直角坐标系,D 为坐标原点,设a DC =.(Ⅰ)证明:连结 AC ,AC 交BD 于G ,连结EG .依题意得)2,2,0(),,0,0(),0,0,(a a E a P a A . ∵底面ABCD 是正方形,∴G 是此正方形的中心,故点G 的坐标为)0,2,2(aa 且 )2,0,2(),,0,(aa a a -=-=.∴2=,这表明PA//EG.而⊂EG平面EDB 且⊄PA 平面EDB ,∴PA//平面EDB.(Ⅱ)证明;依题意得)0,,(a a B ,),,(a a a -=.又)2,2,0(aa =,故022022=-+=⋅a a DE PB .∴DE PB ⊥.由已知PB EF ⊥,且E DE EF = ,所以⊥PB 平面EFD.(Ⅲ)解:设点F 的坐标为),,(000z y x ,λ=,则),,(),,(000a a a a z y x -=-λ 从而a z a y a x )1(,,000λλλ-===.所以))21(,)21(,()2,2,(000a a a z a y a x ---=---=λλλ.由条件PB EF ⊥知,0=⋅,即0)21()21(222=---+-a a a λλλ,解得31=λ.∴点F 的坐标为)32,3,3(a a a ,且)6,6,3(a a a --=,)32,3,3(a a a ---= ∴03233222=+--=⋅a a a .即FD PB ⊥,故EFD ∠是二面角C —PB —D 的平面角.∵691892222a a a a FD FE =+-=⋅,且a a a a FE 6636369||222=++=,a a a a FD 369499||222=++=,∴2136666||||cos 2=⋅==a a a FD FE EFD . ∴3π=∠EFD . 所以,二面角C —PB —D 的大小为3π.(文)……………………… 方法一:(Ⅰ)证明:连结AC 、AC 交BD 于O.连结EO,∵ 底面ABCD 是正方形 ∴ 点O 是AC 的中点. 在PAC ∆中,EO 是中位线 ∴ EO PA //.而⊂EO 平面EDB 且/⊂PA 平面EDB ,所以, //PA 平面EDB.(Ⅱ)解:作DC EF ⊥交CD 于F. 连结BF , 设正方形ABCD 的边长为a .∵ ⊥PD 底面ABCD ∴ DC PD ⊥. ∴ PD EF // F 为DC 的中点.∴ ⊥EF 底面ABCD ,BF 为BE 在底面ABCD 内的射影,故EBF ∠为直线EB 与底面ABCD 所成的角.在BCF Rt ∆中,a a a CF BC BF 25)2(2222=+=+=∵ 221a PD EF == ∴ 在EFB Rt ∆中55252tan ===a aBF EF EBF , 所以EB 与底面ABCD 所成的角的正切值为55. 方法二:如图所示建立空间直角坐标系,D 为 坐标原点.设a DC =(Ⅰ)证明:连结AC ,AC 交BD 于G.连结EG.依题意得)0,0,(a A ,),0,0(a P ,)2,2,0(aa E ∵ 底面ABCD 是正方形∴ G 是此正方形的中心,故点G 的坐标为)0,2,2(a a .∴ ),0,(α-=a PA )2,0,2(a a -=∴ 2= 这表明EG PA //.而⊂EG 平面EDB 且/⊂PA 平面EDB ∴ //PA 平面EDB.A B C D P EOF(Ⅱ)解:依题意得)0,,(a a B ,)0,,0(a C .取DC 的中点)0,2,0(aF 连结EF ,BF ∵ )2,0,0(a =,)0,2,(aa =,)0,,0(a =∴ 0=⋅,0=⋅ ∴ FB FE ⊥,DC FE ⊥. ∴ ⊥EF 底面ABCD ,BF 为BE 在底面ABCD 内的射影,故EBF ∠为直线EB 与底面ABCD 所成的角。
高中数学复习第九章《直线、平面、简单几何体和空间向量》PPT课件(578页)
下,与投影面平行的平面图形留下的影子,与平面图
形的形状和大小是全等和相等的,三视图包括 _正__视__图__、__侧__视__图__、_俯__视__图___.
4.空间几何体的直观图 空间几何体的直观图常用斜二测画法来画,基本
步骤是:
(1)画几何体的底面 在已知图形中取互相垂直的 x 轴、y 轴,两轴相交 于点 O,画直观图时,把它们画成对应的 x′轴、y′轴, 两轴相交于点 O′,且使∠x′O′y′=45°,已知图形中平 行于 x 轴、y 轴的线段在直观图中平行于 x′轴、y′轴; 已知图形中平行于 x 轴的线段,在直观图中长度_不__变__, 平行于 y 轴的线段,长度变为_原__来__的__一__半___. (2)画几何体的高 在已知图形中过 O 点作 z 轴垂直于平面 xOy,在 直观图中对应的 z′轴,也垂直于平面 x′O′y′,已知图 形中平行于 z 轴的线段,在直观图中仍平行于 z′轴且 长度__不__变___.
[知识体系]
理解以下判定定理: 如果平面外一条直线与此平面内的一条直线平 行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都 平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂 直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的垂线,那么这两 个平面互相垂直. 理解以下性质定理,并能够证明之: 如果一条直线与一个平面平行,经过该直线的任 一个平面与此平面相交,那么这条直线就和交线平行. 如果两个平行平面同时和第三个平面相交,那么 它们的交线互相平行. 垂直于同一个平面的两条直线平行. 如果两个平面垂直,那么一个平面内垂直于它们 交线的直线与另一个平面垂直.
[解析] 由斜二测画法的规则知与 x′轴平行的线段其长度不变以及因为 O′A′=a cm, 所以原图形中 OA=O′A′=a cm, 对角线 O′B′= 2a cm,则原图形中 OB=2O′B′=2 2 a cm , 且 △OBC 为 直 角 三 角 形 , 则 OC =
高三一轮专项练习(直线、平面、简单几何体) 试题
2007届高三一轮专项练习(直线、平面、简单几何体)素质能力检测一、选择题(每小题5分,共60分)1.(2003年)已知α、β是平面,m 、n 是直线,下列命题中不.正确的是 m ∥n ,m ⊥α,则n ⊥α m ∥α,α∩β=n ,则m ∥n m ⊥α,m ⊥β,则α∥βm ⊥α,m ⊂β,则α⊥β解析:如图,设平面γ∥α且m ⊂γ,αβγmn∴m ∥α,但m ∥n 不成立(异面). 答案:BABCD 沿对角线BD 折成一个120°的二面角,点C 到达点C 1,这时异面直线AD 与BC 1所成角的余弦值是A.22B.21C.43D.43 解析:由题意易知∠ABC 1是AD 与BC 1所成的角,解△ABC 1,得余弦为43.选D. 答案:D2、3、6,这个长方体对角线的长为3 B.32 C.6 D.6解析:设长宽高为a 、b 、c ,则⇒⎪⎪⎩⎪⎪⎨⎧===⇒⎪⎪⎩⎪⎪⎨⎧===312632222c b a ac bc ab l =6,选D.答案:Dl 、m 、n 是直线,α、β是平面,下列命题中是真命题的是m ∥α,n ∥α,则m ∥nα—l —β是直二面角,若m ⊥l ,则m ⊥βm 、n 在α内的射影依次是一个点和一条直线,且m ⊥n ,则n ⊂α或n ∥αm 、n 是异面直线,若m ∥α,则n 与α相交解析:当m ∥α,n ∥α时,m 、n 可相交、平行、异面,α—l —β是直二面角,m ⊥l ,m 可在βm 、n 异面,m ∥α,则n α或n ∥α或n 与α相交.答案:C5.(2003年春季)如图,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE △ABC 沿DE 、EF 、DF 折成三棱锥以后,GH 与IJ 所成角的度数为A BCDEFG HIJ°°°°解析:平面图形折叠后为正三棱锥.如图,取EF 的中点M ,连结IM 、MJ ,则MJ 21FD ,GH 21FD ,∴MJ ∥GH ,∠IJM 为异面直线GH 与JI 所成的角.MH IJEG F由已知条件易证△MJI 为正三角形.∴∠IJM =60°.答案:B6.如图,点P 在正方形ABCD 所在的平面外,PD ⊥平面ABCD ,PD =AD ,则PA 与BD 所成角的度数为PABD°°°° 答案:CA′B′C′D′—ABCD的棱长为a,EF在AB上滑动,且|EF|=b(b<a),Q点在D′C′上滑动,则四面体A′—EFQ的体积为E、FQ位置有关E、F、QE、F、Q位置均无关,是定值解析:V A′-EFQ=V Q-A′EF.AC Q'答案:D8.(理)高为5,底面边长为43的正三棱柱形容器(下有底),可放置最大球的半径是A.23C.223D.2解析:过球心作平行于底的截面,R=23tan30°=2.R23答案:B(文)(2004年全国)三个两两垂直的平面,它们的三条交线交于一点O,点P到三个平面的距离比为1∶2∶3,PO=214,则P到这三个平面的距离分别是A.1,2,3B.2,4,6C.1,4,6D.3,6,9答案:Bα—l—β的平面角为120°,A、B∈l,AC⊂α,BD⊂β,AC⊥l,BD⊥l,若AB=AC=BD=1,则CD的长为A.2B.3C.2D.5答案:B△ABC 中,AB =AC =5,BC =6,PA ⊥平面ABC ,PA =8,则P 到BC 的距离为A.5B.2555解析:取BC 的中点E ,连结AE 、PE ,由AE ⊥BC 知PE ⊥BC ,即PE 为点P 到BC 的距离. 答案:D11.条件甲:四棱锥的所有侧面都是全等三角形,条件乙:这个四棱锥是正四棱锥,则条件甲是条件乙的解析:乙⇒甲,但甲乙,例如四棱锥S —ABCD 的底面ABCD 为菱形,但它不是正四棱锥.DS答案:BP ,P 在底面上的射影为O ,PO =a ,现用平行于底面的平面去截这个棱锥,截面交PO 于点M ,并使截得的两部分侧面积相等,设OM =b ,则a 与b 的关系是A.b =(2-1)aB.b =(2+1)aC.b =222a - D.b =222a+ 解析:由平行锥体底面的截面性质,知PO PM =22,∴PO OM =222-.∴ab =222-.∴b =222-a .故选C.答案:C二、填空题(每小题4分,共16分)13.(2004年某某,15)由图(1)有面积关系:PAB B A P S S ∆''∆=PBPA B P A P ⋅'⋅',则由图(2)有体积关系:ABCP C B A P V V -'''-=_____________.B BP''A(1) (2)答案:PCPB PA C P B P A P ⋅⋅'⋅'⋅'14.P 、Q 是半径为R 的球面上两点,它们的球面距离是2πR ,则过P 、Q 的平面中,与球心最大的距离是__________.解析:以PQ 为直径的圆所在的平面到球心的距离为所求. 答案:22R 15.(2005年春季,12)如图,正方体ABCD —A 1B 1C 1D 1的棱长为a .将该正方体沿对角面BB 1D 1D 切成两块,再将这两块拼接成一个不是正方体的四棱柱,那么所得四棱柱的全面积为__________.1答案:(4+22)a 2a 、b 的公垂线段AB 的长为10 cm ,点A 、M 在直线a 上,且AM =5 cm ,若直线a 、b 所成的角为60°,则点M 到直线b 的距离是__________.解析:如图,过B 作BN ∥a ,且BN 与b 确定的平面为α,过M 作MN ⊥α于N ,过N 作NC ⊥b 于C ,连结MC ,由三垂线定理知,MC ⊥b ,故MC △B 中,NC =BN sin60°=253,∴MC =22MC MN +=2195.答案:2195三、解答题(本大题共6小题,共74分)17.(12分)(2003年某某)已知平行六面体ABCD —A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AB =4,ADB 1D ⊥BC ,直线B 1D 与平面ABCD 所成的角等于30°,求平行六面体ABCD —A 1B 1C 1D 1的体积.A AC CD DB B1111解:连结BD ,A AC CD DB B1111∵B 1B ⊥平面ABCD ,B 1D ⊥BC ,∴BC ⊥BD . 在△BCD 中,BC =2,CD =4,∴BD =23.又∵直线B 1D 与平面ABCD 所成的角等于30°,∴∠B 1DB =30°.于是BB 1=31BD =2.故平行六面体ABCD —A 1B 1C 1D 1的体积为S ABCD·BB 1=83.18.(12分)(2004年某某,18)如下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=2,E 、F 分别是线段AB 、BC 上的点,且EB =FB =1.A ABB CC D EF11(1)求二面角C —DE —C 1的正切值; (2)求直线EC 1与FD 1所成角的余弦值.解:(1)以A 为原点,AB 、AD 、1AA 分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有D(0,3,0)、D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2).于是,DE =(3,-3,0),1EC =(1,3,2),1FD =(-4,2,2). 设向量n =(x ,y ,z )与平面C 1DE 垂直,则有 n3x -3y =0n y +2z =0⇒x =y =-21z .∴n =(-2z ,-2z ,z )=2z(-1,-1,2),其中z >0. 取n 0=(-1,-1,2),则n 0是一个与平面C 1DE 垂直的向量. ∵向量1AA =(0,0,2)与平面CDE 垂直,∴n 0与1AA 所成的角θ为二面角C —DE —C 1的平面角. ∴cos θ||||1010AA n n ⋅=400411220101++⨯++⨯+⨯-⨯-=36. ∴tan θ=22. (2)设EC 1与FD 1所成的角为β,则cos β||||1111FD EC 22222222)4(2312223)4(1++-⨯++⨯+⨯+-⨯=1421. 19.(12分)(2005年春季某某,19)已知正三棱锥P —ABC 的体积为723,侧面与底面所成的二面角的大小为60°.A(1)证明:PA ⊥BC ;(2)求底面中心O 到侧面的距离.(1)证明:取BC 边的中点D ,连结AD 、PD ,则AD ⊥BC ,PD ⊥BC ,故BC ⊥平面APD .∴PA ⊥BC .(2)解:如下图,由(1)可知平面PBC ⊥平面APD ,则∠PDA 是侧面与底面所成二面角的平面角.⇒A过点O 作OE ⊥PD ,E 为垂足,则OE 设OE 为h ,由题意可知点O 在AD 上,∴∠PDO =60°,OP =2h ,OD =32h .∴BC =4h .∴S ABC ∆=43(4h )2=43h 2. ∵723=31·43h 2·2h =338h 3,∴h =3,即底面中心O 到侧面的距离为3. 20.(12分)(理)如图,已知矩形ABCD ,PA ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,设AB =a ,BC =b ,PA =c . (1)建立适当的空间直角坐标系,写出A 、B 、M 、N 点的坐标,并证明MN ⊥AB ;(2)平面PDC 和平面ABCD 所成的二面角为θ,当θ为何值时(与a 、b 、c 无关),MN 是直线AB 和PC 的公垂线段.B(1)证明:以A 为原点,分别以AB 、AD 、AP 为x 轴、y 轴、z 轴,建立空间直角坐标系.则A (0,0,0),B (a ,0,0),M (2a ,0,0),N (2a ,2b ,2c ). AB =(a ,0,0),MN =(0,2b ,2c).AB ·MN =0⇒AB ⊥MN .(2)解:P (0,0,c ),C (a ,b ,0),PC =(a ,b ,-c ),若MN 是PC 、AB 的公垂线段,则PC ·MN =0,即-22b +22c =0⇒b =c .又∵AP ⊥面ABCDCD ⊥DA∴∠PDA 是二面角P —CD —A 的平面角.∴∠PDA =45°,⇒CD ⊥PD ,即二面角P —CD —A 是45°.(文)正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 分别为棱AB 、BC 、DD 1的中点. (1)求证:PB ⊥平面MNB 1;(2)设二面角M —B 1N —B 为α,求cos α的值.(1)证明:如图,以D 为原点,DA 、DC 、DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,取正方体棱长为2,则P (0,0,1)、M (2,1,0)、B (2,2,0)、B 1(2,2,2).A Ax yC 11∵PB ·1MB =(2,2,-1)·(0,1,2)=0, ∴MB 1⊥PB ,同理,知NB 1⊥PB . ∵MB 1∩NB 1=B 1,∴PB ⊥平面MNB 1.(2)∵PB ⊥平面MNB 1,BA ⊥平面B 1BN ,∴PB =(2,2,-1)与BA =(0,2,0)所夹的角即为α,cos α||||BA PB BA PB =32. 21.(12分)已知四棱锥P —ABCD 中,PA ⊥面ABCD ,底面ABCD 为菱形,∠BAD =60°,AB =2,PA =4,E 为PC 的中点.(1)求证:平面BDE ⊥平面ABCD ; (2)求二面角B —DE —C 的大小. (1)证明:设AC ∩BD =O ,连结OE .∵E 为PC 的中点,O 为AC 的中点.∴EO ∥PA . ∵PA ⊥面ABCD ,∴EO ⊥面ABCD . ∵EO ⊂平面BDE ,∴面BDE ⊥面ABCD . (2)解法一:过O 作OF ⊥DE 于F ,连结CF .y 由(1)可知OC ⊥面BDE ,∴∵OE =21PA =2,OD =1,∴OF =52. 又∵OC =3,∴tan ∠OFC =523=215. ∴二面角B —DE —C 的大小为arctan215. 解法二:以O 为原点建立如上图所示的坐标系,则OC 为平面EBD 的法向量,OC =(0,3,0).设平面CDE 的法向量n =(x ,y ,z ).∵E (0,0,2),C (0,3,0),D (-1,0,0), ∴DC =(1,3,0),CE =(0,-3,2). ∵n ·DC =0,n ·CE =0,x +3y =0,x =-3y ,-3y +2z =0. z =23y .取y =3,则n =(-3,3,23).∴cos 〈n ,OC 〉=493933++⋅=192.∴二面角B —DE —C 的大小为arccos192.22.(14分)如图,ABCD 是边长为1的正方形,M 、N 分别是DA 、BC 上的点,且MN ∥AB ,现沿MN 折成直二面角AB —MN —CD .∴∴word11 / 11 A BCD M N(1)求证:平面ADC ⊥平面AMD ; (2)设AM =x (0<x <1),MN 到平面ADC 的距离为y ,试用x 表示y ;(3)点M 在什么位置时,y 有最大值,最大值为多少?(1)证明:∵ABCD 是正方形,且MN ∥AB ∥CD ,∴MN ⊥AM ,MN ⊥DM ,即CD ⊥AM ,CD ⊥DM ,∴CD ⊥平面AMD .∵CD ⊂平面ADC ,∴平面ADC ⊥平面AMD .(2)解:∵MN ∥CD ,∴MN ∥平面ADC .故MN 到平面ADC 的距离即为M 到平面ADCM 作MH ⊥AD 于H ,∵平面ADC ⊥平面AMD ,∴MH ⊥平面ADC ,即MH 为所求距离.在Rt △AMD 中,求得y =AD DM AM ⋅=22)1()1(x x x x -+-(0<x <1). (3)解:y ≤)1(2)1(x x x x -⋅-=22)1(x x -≤42,当且仅当x =1-x ,即x =21时,y max =42,此时M 为AD 的中点.。
直线平面简单几何体9.31
直线与平面平行(1)教学目的:1.掌握空间直线和平面的位置关系;2.理解直线和平面平行的判定定理和性质定理.教学重点:线面平行的判定定理和性质定理的证明及运用教学难点:线面平行的判定定理和性质定理的证明及运用教学过程:一、讲解新课:1.直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)——用两分法进行两次分类.它们的图形分别可表示为如下,符号分别可表示为a α⊂,a A α= ,//a α.aαaα2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:,,////a b a b a ααα⊄⊂⇒.证明:假设直线a 不平行与平面α,∵a α⊄,∴a P α= , 若P b ∈,则和//a b 矛盾,若P b ∉,则a 和b 成异面直线,也和//a b 矛盾,∴//a α.3. 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式://,,//a a b a b αβαβ⊂=⇒ .证明:∵//a α,∴a 和α没有公共点,又∵b α⊂,∴a 和b 没有公共点;即a 和b 都在β内,且没有公共点,∴//a b .a b βα二、讲解范例:例1 求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面.已知:如图,空间四边形ABCD 中,,E F 分别是,AB AD 的中点.求证://EF BCD 平面.例2 有一块木料如图,已知棱BC 平行于面A ′C ′.(1)要经过木料表面A ′B ′C ′D ′ 内的一点P 和棱BC 将木料锯开,应怎样画线?(2)所画的线和面AC 有什么关系?(2) 如果AD ∥BC ,BC ∥面A ′C ′,那么,AD 和面BC ′、面BF 、面A ′C ′都有怎样的位置关系.为什么?三、课堂练习1.经过直线外一点有 平面和已知直线平行.2.经过直线外一点 直线与已知直线平行.3.经过两条异面直线中的一条 与另一条直线平行.4.若将直线、平面都看成点的集合,则直线l∥平面α可表示为 ( )A.l∉αB.l⊂αC.l≠αD.l∩α=∅5.平行于同一个平面的两条直线的位置关系是 ( )A.平行B.相交C.异面D.平行或相交或异面6.下列四个命题中假命题的个数是 ( ) ①两条直线都和同一个平面平行,则这两条直线平行②两条直线没有公共点,则这两条直线平行③两条直线都和第三条直线垂直,则这两条直线平行④一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行,A.4B.3C.2D.1F E D C BA四、作业同步练习09031。
人教版高二数学第二册(下册A)(旧版)电子课本课件【全册】
第九章 直线、平面、简单几 何体
人教版高二数学第二册(下册A)(旧 版)电子课本课件【全册】
人教版高二数学第二册(下册A)( 旧版)电子课本课件【全册】目录
0002页 0113页 0143页 0181页 0183页 0185页 0221页 0268页 0315页 0362页 0378页
第九章 直线、平面、简单几何体 9.2 空间直线 9.4 直线与平面垂直的判定和性质 9.6 两个平面垂直的判定和性质 9.8 棱锥 研究性学习课题:多面体欧拉定理的发现 9.9 球 复习参考题九 10.1 分类计数原理与分步计数原理 10.3 组合 10.4 二项式定理 复习参考题十 11.1 随机事件的概率 11.3 相互独立事件同时发生的概率 小结与复习 附录 部分中英文词汇对照表
第九章直线平面简单几何体(B)(第6课)直线与平面平行平面与平面平行(1)
课 题:9.3直线与平面平行、平面与平面平行 (一)教学目的:1.掌握空间直线和平面的位置关系;2.掌握直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定理实现“线线”“线面”平行的转化 教学重点:线面平行的判定定理和性质定理的证明及运用 教学难点:线面平行的判定定理和性质定理的证明及运用 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 内容分析:本节有两个知识点,直线与平面和平面与平面平行,直线与平面、平面与平面平行特征性质这也可看作平行公理和平行线传递性质的推广直线与平面、平面与平面平行判定的依据是线、线平行这些平行关系有着本质上的联系通过教学要求学生掌握线、面和面、面平行的判定与性质这两个平行关系是下一大节学习共面向量的基础前面3节主要讨论空间的平行关系,其中平行线的传递性和平行平面的性质是这三小节的重点 教学过程:一、复习引入:1 空间两直线的位置关系 (1)相交;(2)平行;(3)异面2.公理4 :平行于同一条直线的两条直线互相平行推理模式://,////a b b c a c .3.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等4.等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.5.空间两条异面直线的画法ab1AA6.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:,,,A B l B l ααα∉∈⊂∉⇒AB 与l 是异面直线7.异面直线所成的角:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上2,0(π8.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥.9.求异面直线所成的角的方法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;(2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求10.两条异面直线的公垂线、距离和两条异面直线都垂直相交....的直线,我们称之为异面直线的公垂线 在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.两条异面直线的公垂线有且只有一条二、讲解新课:1.直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)——用两分法进行两次分类.a α⊂,a A α= ,//a α.aαaα2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行. 推理模式:,,////lm l m l ααα⊄⊂⇒. 证明:假设直线l 不平行与平面α,∵l α⊄,∴l P α= ,若P m ∈,则和//l m 矛盾,若P m ∉,则l 和m 成异面直线,也和//l m 矛盾, ∴//l α.3. 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. 推理模式://,,//l l m l m αβαβ⊂=⇒ . 证明:∵//l α,∴l 和α没有公共点, 又∵m α⊂,∴l 和m 没有公共点;即l 和m 都在β内,且没有公共点,∴//l m . 三、讲解范例:例1 已知:空间四边形ABCD 中,,E F 分别是,AB AD 的中点,求证://EF BCD 平面. 证明:连结BD ,在ABD ∆中, ∵,E F 分别是,AB AD 的中点,∴//EF BD ,EF BCD ⊄平面,BD BCD ⊂平面, ∴//EF BCD 平面.例2求证:如果过平面内一点的直线平行于与此平面平行的一条直线,那么这条直线在此平面内.已知://,,,//l P P m m l αα∈∈,求证:m α⊂. 证明:设l 与P 确定平面为β,且m αβ'= , ∵//l α,∴//l m ';又∵//l m ,,m m '都经过点P , ∴,m m '重合,∴m α⊂.例3 已知直线a ∥直线b ,直线a ∥平面α,b ⊄α, 求证:b ∥平面α 证明:过a 作平面β交平面α于直线∵a ∥α∴a ∥c 又∵a ∥b ∴b ∥c ,∴b ∥∵ b ⊄α, c ⊂α,∴b ∥α.FED CBAβαmlβαPmm 'a b.例4.已知直线a∥平面α,直线a∥平面β,平面α 平面β=b,求证//分析:利用公理4,寻求一条直线分别与a,b均平行,从而达到a∥b的目的.可借用已知条件中的a∥α及a∥β来实现.证明:经过a作两个平面γ和δ,与平面α和β分别相交于直线c和d,∵a∥平面α,a∥平面β,Array∴a∥c,a∥d,∴c∥d,又∵d⊂平面β,c∉平面β,∴c∥平面β,又c⊂平面α,平面α∩平面β=b,∴c∥b,又∵a∥c,所以,a∥b.四、课堂练习:1.选择题(1)以下命题(其中a,b表示直线,α表示平面)①若a∥b,b⊂α,则a∥α②若a∥α,b∥α,则a∥b③若a∥b,b∥α,则a∥α④若a∥α,b⊂α,则a∥b其中正确命题的个数是()(A)0个(B)1个(C)2个(D)3个(2)已知a∥α,b∥α,则直线a,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有()(A)2个(B)3个(C)4个(D)5个(3)如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是()(A)平行(B)相交(C)平行或相交(D)AB⊂α(4)已知m,n为异面直线,m∥平面α,n∥平面β,α∩β=l,则l ()(A)与m,n都相交(B)与m,n中至少一条相交(C)与m,n都不相交(D)与m,n中一条相交答案:(1) A (2) D (3) C (4)C2.判断下列命题的真假(1)过直线外一点只能引一条直线与这条直线平行. ()(2)过平面外一点只能引一条直线与这个平面平行. ()(3)若两条直线都和第三条直线垂直,则这两条直线平行. ( ) (4)若两条直线都和第三条直线平行,则这两条直线平行. ( ) 答案:(1) 真 (2) 假 (3) 假 (4)真 3.选择题(1)直线与平面平行的充要条件是( ) (A )直线与平面内的一条直线平行 (B )直线与平面内的两条直线平行 (C )直线与平面内的任意一条直线平行 (D )直线与平面内的无数条直线平行(2)直线a ∥平面α,点A ∈α,则过点A 且平行于直线a 的直线 ( ) (A )只有一条,但不一定在平面α内 (B )只有一条,且在平面α内 (C )有无数条,但都不在平面α内 (D )有无数条,且都在平面α内(3)若a ⊄α,b ⊄α,a ∥α,条件甲是“a ∥b ”,条件乙是“b ∥α”,则条件甲是条件乙的 ( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分又不必要条件 (4)A 、B 是直线l 外的两点,过A 、B 且和l 平行的平面的个数是 ( ) (A )0个 (B )1个 (C )无数个 (D )以上都有可能 答案:(1)D (2)B (3)A (4)D4.平面α与⊿ABC 的两边AB 、AC 分别交于D 、E ,且AD ∶DB =AE ∶EC , 求证:BC ∥平面α略证:AD ∶DB =AE ∶ECααα////BC DE BC DE BC ⇒⎪⎭⎪⎬⎫⊂⊄⇒ 5.空间四边形ABCD ,E 、F 分别是AB 、BC 的中点, 求证:EF ∥平面ACD .略证:E 、F 分别是AB 、BC 的中点α////EF ABC AC ACD EF AC EF ⇒⎪⎭⎪⎬⎫⊂⊄⇒ 6.经过正方体ABCD -A 1B 1C 1D 1的棱BB 1作一平面交平面AA 1D 1D 于E 1E ,求证:E 1E ∥B 1BC略证:11111111111////B BEE AA B BEE BB B BEE AA BB AA ⇒⎪⎭⎪⎬⎫⊂⊄1111111111111////EE AA EE B BEE A ADD A ADD AA B BEE AA ⇒⎪⎭⎪⎬⎫=⊂ 11111//////EE BB EE AA BB AA ⇒⎭⎬⎫7.选择题(1)直线a ,b 是异面直线,直线a 和平面α平行,则直线b 和平面α的位置关系是( ) (A )b ⊂α (B )b ∥α (C )b 与α相交 (D )以上都有可能(2)如果点M 是两条异面直线外的一点,则过点M 且与a ,b 都平行的平面 (A )只有一个 (B )恰有两个 (C )或没有,或只有一个 (D )有无数个 答案:(1)D (2)A 8.判断下列命题的真假.(1)若直线l ⊄α,则l 不可能与平面α内无数条直线都相交. ( ) (2)若直线l 与平面α不平行,则l 与α内任何一条直线都不平行 ( ) 答案:(1)假 (2)假9.如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC 的中点(1)求证://MN 平面PAD ;(2)若4MN BC ==,PA = 求异面直线PA 与MN 所成的角的大小略证(1)取PD 的中点H ,连接AH ,DC NH DC NH 21,//=⇒AMNH AM NH AM NH ⇒=⇒,//为平行四边形 PAD AH PAD MN AH MN ⊂⊄⇒,,//PAD MN //⇒解(2): 连接AC 并取其中点为O ,连接OM 、ON ,则OM 平行且等于BC 的一半,ON 平行且等于PA 的一半,所以ONM ∠就是异面直线PA 与MN 所成1A的角,由4MN BC ==,PA =得,OM=2,ON=所以030=∠ONM ,即异面直线PA 与MN 成030的角10.如图,正方形ABCD 与ABEF 不在同一平面内,M 、N 分别在AC 、BF 上,且AM FN =求证://MN 平面CBE 略证:作AB NH AB MT //,//分别交BC 、BE 于T 、H 点AM FN =NH MT BNH CMT =⇒∆⇒≌从而有MNHT 为平行四边形CBE MN TH MN ////⇒⇒五、小结 :“线线”与“线面”平行关系:一条直线和已知平面平行,当且仅当这条直线平行于经过这条直线的平面和已知平面的交线. 六、课后作业:七、板书设计(略)八、课后记:E。
第九章 直线平面与简单几何体学生版
直线平面与简单几何体1、已知直线l ⊥平面α,直线m ⊂平面β,有下列四个命题:①α∥β⇒l ⊥m ;②α⊥β⇒ l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β.其中正确的两个命题是 ( )A 、①与②B 、①与③C 、②与④D 、③与④1、B2、在正三棱锥中,相邻两侧面所成二面角的取值范围是( )A 、3ππ(,) B 、23ππ(,) C 、(0,2π) D 、23ππ(,)3 2、A3、如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在A 上,且AM=31AB ,点P 在平面ABCD 上,且动点P 到直线A 1D 1的 距离的平方与P 到点M 的距离的平方差为 1,在平面直角坐标系xAy 中,动点P 的轨 迹方程是 .3、91322-=x y4.命题①空间直线a ,b ,c ,若a∥b,b∥c 则a∥c②非零向量、,若∥,∥则∥ ③平面α、β、γ若α⊥β,β⊥γ,则α∥γ ④空间直线a 、b 、c 若有a⊥b,b⊥c,则a∥c ⑤直线a 、b 与平面β,若a⊥β,c⊥β,则a∥c 其中所有真命题的序号是( )A .①②③ B.①③⑤ C.①②⑤ D.②③⑤ 5、(文)棱长为1的正方体ABCD -A 1B 1C 1D 1被以A 为球心,AB 为半径的球相截,则被截形体的表面积为( ) A .45π B .87π C .π D .47π选A6.某刺猬有2006根刺,当它蜷缩成球时滚到平面上,任意相邻的三根刺都可支撑住身体,且任意四根刺的刺尖不共面,问该刺猬蜷缩成球时,共有( )种不同的支撑身体的方式。
A .2006 B .4008 C .4012 D .2008 7.命题①空间直线a ,b ,c ,若a∥b,b∥c 则a∥c②非零向量c 、b 、a ,若a ∥b ,b ∥c 则a ∥c ③平面α、β、γ若α⊥β,β⊥γ,则α∥γ ④空间直线a 、b 、c 若有a⊥b,b⊥c,则a∥c ⑤直线a 、b 与平面β,若a⊥β,c⊥β,则a∥c 其中所有真命题的序号是( )A .①②③ B.①③⑤ C.①②⑤ D.②③⑤ 8、(文)棱长为1的正方体ABCD -A 1B 1C 1D 1被以A 为球心,AB 为半径的球相截,则被截形体的表面积为( )A .45π B .87π C .π D .47π 9、四边形ABCD 是︒=∠120A 的菱形,绕AC 将该菱形折成二面角D AC B --,记异面直线AC 、BD 所成角为α,AD 与平面ABC 所成角为β,当β+α最大时,二面角D AC B --等于( )A.3π B.2π C.2arctan D.22arctanBA xM10、将边长为3的正四面体以各顶点为顶点各截去(使截面平行于底面)边长为1的小正四面体,所得几何体的表面积为_____________ . .11.(理)在正三棱锥ABC S -中,M 、N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱32=SA ,则正三棱锥ABC S -外接球的表面积是( ) A .π12B .π32C .π36D .π4812、(文)已知ABCD 是同一球面上的四点,且每两点间距离相等,都等于2,则球心到平面BCD 的距离是( ) A .36B .66 C .126 D .186 13、正方体1111D C B A ABCD -,F E ,分别是1AA ,1CC 的中点,P 是1CC 上的动点(包括端点)过E 、D 、P 作正方体的截面,若截面为四边形,则P 的轨迹是 ( )A 、线段F C 1B 、线段CFC 、线段CF 和点1CD 、线段F C 1和一点C14、P 为ABC ∆所在平面外一点,PA 、PB 、PC 与平面ABC 所的角均相等,又PA 与BC 垂直,那么ABC ∆的形状可以是 。
高考数学直线、平面、简单几何体热点分析及预测 人教版
高考数学直线、平面、简单几何体热点分析及预测人教版一、有效落实纲本,积极发挥导向(一)命题基本原则数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自的发展过程中的纵向联系和各部分知识之间的横向联系.要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试题的结构框架.对数学基础知识的考查,要求全面又突出重点,对于支撑学科知识体系的重点知识,考查时要保持较高的比例,构成数学试题的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使考查达到必要的深度.数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛应用于相关学科和社会生活中.因此,对于数学思想和方法的考查必然要与数学知识的考查结合进行,通过数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注意通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.对能力的考查,强调"以能力立意",就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同的情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能.对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,切合考生实际.运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是算理和逻辑推理的考查,以含字母的式的运算为主.空间想象能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持"贴近生活,背景公平,控制难度"的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要切合我国中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考生自觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识.创新意识和创造能力是理性思维的高层次表现.在数学学习和研究过程中,知识的迁移、组合、融汇的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,设计考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目.让考生独立思考,自主探索,发挥主观能动性,研究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现其创新意识发挥创造能力创设广阔的空间.数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值.同时兼顾试题的基础性、综合性和现实性,重视试题的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.(二)考纲要求9(A)①直线、平面、简单几何体考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想象它们的位置关系(2)握两条直线平行与垂直的判定定理和性质定理.掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离).(3)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理和性质定理掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.了解三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理.掌握二面角、二面角的平面角、两个平面间的距离的概念.掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体的概念,了解凸多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解正多面体的概念,了解多面体的欧拉公式.(10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.9(B)直线、平面、简单几何体考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系.(2)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理.了解三垂线定理及其逆定理.(3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.(4)了解空间向量的基本定理.理解空间向量坐标的概念,掌握空间向量的坐标运算.(5)掌握空间向量的数量积的定义及其性质.掌握用直角坐标计算空间向量数量积的公式.掌握空间两点间距离公式.(6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离.掌握直线和平面垂直的性质定理.掌握两个平面平行、垂直的判定定理和性质定理.(8)了解多面体的概念,了解凸多面体的概念.(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(10)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(11)了解正多面体的概念,了解多面体的欧拉公式.(12)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.【注意】高考中立体几何试题主要考查的是考生的逻辑表达能力、计算能力以及空间想象能力.而在内容上,在论证的基础上求空间的角和距离类型的试题是多年来较为稳定的考查内容.二、2004年、2005年试题回顾与特点分析近几年高考立体几何命题有以下特点:(1)题型和题量较稳定:一般是二选一填一解答,2005年题量稍有上调,在全国各省市18套不同试卷中,大多数是三选一填(或二选)一解答,分值占全卷分值的20%左右,值得关注。
数学高考复习名师精品教案:第82课时:第九章 直线、平面、简单几何体-球与多面体
数学高考复习名师精品教案第82课时:第九章直线、平面、简单几何体——球与多面体课题:球与多面体一.复习目标:1.了解多面体、正多面体的概念,了解多面体的欧拉公式,并利用欧拉公式解决有关问题;2.了解球、球面的概念, 掌握球的性质及球的表面积、体积公式, 理解球面上两点间距离的概念, 了解与球的有的内接、外切几何问题的解法.二.主要知识:1.欧拉公式;2.球的表面积;球的体积公式;3.球的截面的性质:.三.课前预习:1.一个凸多面体的顶点数为20,棱数为30,则它的各面多边形的内角和为( )D7200C6480 ()B5400 ()()A2160 ()2.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积是( )D6πC()()A3π()B4π()3.正四面体的中心到底面的距离与这四面体的高的比是 ( ) ()A 21 ()B 31 ()C 41 ()D 614.地球表面上从A 地(北纬45 ,东经120 )到B 地(北纬45 ,东经30 )的最短距离为(球的半径为R ) ( )()A 4Rπ ()B R π ()C 3Rπ ()D 2Rπ5.设,,,P A B C 是球O 面上的四点,且,,PA PB PC 两两互相垂直,若P A P B P C a===则球心O 到截面ABC 的距离是 . 四.例题分析:例1.已知三棱锥P A B C -内接于球, 三条侧棱两两垂直且长都为1, 求球的表面积与体积.例2.在北纬60 圈上有甲、乙两地,它们的纬度圆上的弧长等于2Rπ(R 为地球半径),求甲,乙两地间的球面距离。
例3.如图,球心到截面的距离为半径的一半,B C 是截面圆的直径,D 是圆周上一点,C A 是球O 的直径, (1) 求证:平面ABD ⊥平面A D C ; (2) 如果球半径是13,D 分 BC为两部分, 且 :1:2BD DC =,求A C 与BD 所成的角;(3) 如果:2BC D C =,求二面角B A C D --的大小。
知识点典型例题直线、平面、简单的几何体
知识点典型例题直线、平面、简单的几何体1引言立体几何的学习,主要把握对图形的识别及变换(分割,补形,旋转等),因此,既要熟记基本图形中元素的位置关系和度量关系,也要能在复杂背景图形中“剥出”基本图形.平面及空间直线1.平面的基本性质:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条直线.公理3:经过不在同一条直线上的三点有且只有一个平面(不共线的三点确定一平面).推论1:经过一条直线和这条直线外的一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3;经过两条平行直线有且只有一个平面.注:⑴水平放置的平面图形的直观图的画法——用斜二测....画.法..其规则是:①在已知图形取水平平面,取互相垂直的轴,Ox Oy,再取0z轴,使90xOz∠= ,且90yOz∠= ;②画直观图时,把它们画成对应的轴,,O x O y O z'''''',使45x O y'''∠= (或135 ),90x O z'''∠= ,x Oy''所确定的平面表示水平平面;③已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x'轴、y'轴或z'轴的线段;④已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变;平行于y轴的线段,长度为原来的一半.⑵运用平面的三个公理及推论,能证明共点、共线、共面一类问题。
2.空间两条直线位置关系有:相交、平行、异面.⑴相交直线───共面有且只有一个公共点;⑵平行直线───共面没有公共点;①公理4:平行于同一条直线的两条直线互相平行;②等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行那么这两组直线所成的锐角(或直角)相等.⑶异面直线───不同在任.一平面内.(Ⅰ)两条异面直线所成的角(或夹角):对于两条异面直线,a b,经过空间任一点O作直线a'∥a,b'∥b,则a'与b'所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).若两条平面及空间直线异面直线所成的角是直角,则称这两条异面直线互相垂直.异面直线所成的角的范围是(0,90⎤⎦. (Ⅱ)两条异面直线的距离:和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线. 两条异面直线的公垂线段的长度,叫做两条异面直线的距离.注:①如图:设异面直线a,b所成角为θ, 则EF2=m2+n2+d2±2mnc osθ 或AB EFdAB⋅=②证明两条直线是异面直线一般用反证法。
第九章 直线、平面、简单几何体(B)
第九章直线、平面、简单几何体(B)课时作业45平面与空间直线时间:45分钟分值:100分一、选择题(每小题5分,共30分)1.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的() A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件答案:A2.设A,B,C,D是空间四个不同的点,在下列命题中,不正确...的是() A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC答案:C3.在图1中,G、H、M、N分别是三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有()图1A.0个B.1个C.2个D.3个解析:题图(1)中,直线GH∥MN;图(2)中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图(3)中GM∥HN,因此GH与MN共面;图(4)中,G、M、N三点共面,但H∉面GMN,∴GH与MN异面.所以图(2)、(4)中GH与MN异面.答案:C4.(2009·全国卷Ⅰ)已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面ABC 上的射影为B图2C的中点,则异面直线AB与CC1所成的角的余弦值为( )A.34 B.54 C.74 D.34解析:设棱长为2,BC 的中点为D ,由题意,得AD = 3. 在Rt △A 1AD 中,A 1D =AA 21-AD 2=22-(3)2=1. 在Rt △A 1BD 中,A 1B =A 1D 2+BD 2= 2. ∵AA 1∥CC 1,∴AB 与AA 1所成的角∠A 1AB 即为AB 与CC 1所成的角. 在△A 1AB 中,由余弦定理,得cos ∠A 1AB =AA 21+AB 2-A 1B22AA 1·AB =4+4-22×2×2=34.答案:D5.直线l ⊂平面α,经过α外一点A 与l 、α都成30°角的直线有且只有( )A .1条B .2条C .3条D .4条解析:所求直线在平面α内的射影必与直线l 平行.这样的直线只有两条,故选B. 答案:B 6.(2008·辽宁高考)在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、CC 1的中点,则在空间中与三条直线A 1D 1、EF 、CD 都相交的直线( )A .不存在B .有且只有两条C .有且只有三条D .有无数条解析:分别在异面直线A 1D 1、CD 上各任取一点M 、N ,则线段MN 的中点的轨迹构成一个平面α,显然直线EF 在平面α内.在EF 上任取一点P ,点P 和直线A 1D 1确定的平面与直线CD 交于点Q ,显然直线QP 与直线A 1D 1必有交点R ,即这样的直线有无穷多条.故选D.答案:D二、填空题(每小题4分,共20分)7.已知空间四边形的对角线相等,顺次连结它的各边中点所成的四边形是________. 解析:根据三角形中位线定理,连结各边中点的四边形的边分别等于对角线的一半,且对边分别平行,则构成平面图形,并且是平行四边形,再由四条边相等,即可判断为菱形.答案:菱形8.正方体ABCD -A 1B 1C 1D 1中,M 、N 、Q 分别为AB 、BB 1、C 1D 1的中点,过M 、N 、Q 的平面与正方体相交,截得的图形是________.解析:设正方体ABCD -A 1B 1C 1D 1中,P 、R 、S 分别为B 1C 1、D 1D 、AD 的中点,则六边形MNPQRS 即为平面MNQ 与正方体相交所得的截面图形,并且它是正六边形.∵面ABB 1A 1∥面CDD 1C 1,设平面MNQ 与平面DCC 1D 1的交线为R ′Q .则MN ∥QR ′. 而QR ∥DC 1∥AB 1∥MN ,据平行公理知过点Q 与MN 平行的直线有且只有一条. ∴QR 与QR ′重合,即R 与R ′重合(R ′为D 1D 的中点). ∵MN 不平行于A 1B 1,∴MN 与A 1B 1必相交,设交点为K ,可证得B 1K =BM .同理QP 与A 1B 1也一定相交,交点为K ′,且B 1K ′=QC 1=MB =B 1K .∴MN 与QP 相交于点K .于是过点M 、N 、Q 的平面MNQR 与平面MNPQ 重合, 即M 、N 、P 、Q 、R 共面于MNQ . 同理可证S 点也在此平面MNQ 内. 所以平面MNPQRS 是一平面图形. 易证得MN =PN =QP =QR =RS =SM .由等角定理可知∠MNP =∠QRS , ∠QPN =∠MSR ,∠SMN =∠RQP .连结MQ ,易证QM ∥PN ,在等腰梯形MNPQ 中, ∠QPN =∠MNP ,同理∠PQR =∠QPN .∴∠SMN =∠MNP =∠NPQ =∠PQR =∠QRS =∠RSM . ∴MNPQRS 为正六边形. 答案:正六边形9.(2009·四川高考)如图3,已知正三棱柱ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是______.图3解析:建立如图4所示的坐标系,O 为BC 中点,设三棱柱的棱长为2a ,则点A (3a,0,0),B (0,a,0),B 1(0,a,2a ),图4M (0,-a ,a ),则AB 1→·BM →=0,所以异面直线AB 1与BM 所成的角为90°. 答案:90°10.过正方体任意两个顶点的直线共有28条,其中异面直线有________对. 解析:由于以正方体的某四个顶点可以形成C 48-(6+6)=58个三棱锥(注:先从8个顶点中任选4个顶点有C 48种选法,其中四点共面的情形有两类:一类是所选的四个顶点恰好是某一个面的四个顶点时,此类有6种;另一类是所选的四个顶点刚好是该正方体的某一个对角面的四个顶点时,此类也有6种),而每个三棱锥的四条棱间能够形成3对异面直线,因此满足题意的异面直线对共有58×3=174对.答案:174三、解答题(共50分)11.(15分)如图5,在正方体ABCD -A 1B 1C 1D 1中,O 为正方形ABCD 的中点,H 为直线B 1D 与平面ACD 1的交点.求证:D 1、H 、O 三点共线.证明:连结BD ,B 1D 1则BD ∩AC =O ,如图6, ∵BB 1綊DD 1,∴四边形BB 1D 1D 为平面图形且为平行四边形,又H ∈B 1D ,B 1D ⊂平面BB 1D 1D ,则H ∈平面BB 1D 1D ,∵平面ACD 1∩平面BB 1D 1D =OD 1,∴H ∈OD 1. ∴D 1、H 、O 三点共线.图5图612.(15分)在正方体ABCD -A 1B 1C 1D 1中E 、F 分别为BB 1、CC 1的中点,求AE 、BF 所成角的余弦值.图7解:如图7,取DD 1中点M ,连结AM 、MF 、ME ,由AB 綊CD 綊MF 知四边形ABFM 为平行四边形∴AM ∥BF ,则AM 与AE 所夹锐角或直角为异面直线所成的角,设AB =1, 则在△AEM 中AE =AM =52,ME =2,∴cos ∠MAE =AM 2+AE 2-ME 22AM ·AE =15,即异面直线AE 、BF 所成角的余弦值为15.13.(20分)(2009·广东高考)如图8,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 是正方形BCC 1B 1的中心,点F ,G 分别是棱C 1D 1,AA 1的中点.设点E 1,G 1分别是点E ,G 在平面DCC 1D 1内的正投影.图8(1)求以E 为顶点,以四边形FGAE 在平面DCC 1D 1内的正投影为底面边界的棱锥的体积;(2)证明:直线FG 1⊥平面FEE 1;(3)求异面直线E 1G 1与EA 所成角的正弦值.解:(1)依题作点E 、G 在平面DCC 1D 1内的正投影E 1、G 1,则E 1、G 1分别为CC 1、DD 1的中点,连结EE 1、EG 1、ED 、DE 1,则所求为四棱锥E —DE 1FG 1的体积,其底面DE 1FG 1的面积为(2)证明:以D 为坐标原点,DA 、DC 、DD 1所在直线分别作x 轴,y 轴,z 轴,得E 1(0,2,1)、G 1(0,0,1),图9又G (2,0,1),F (0,1,2),E (1,2,1), 则FG 1→=(0,-1,-1),FE →=(1,1,-1),FE 1→=(0,1,-1), ∴FG 1→·FE →=0+(-1)+1=0, FG 1→·FE 1→=0+(-1)+1=0,即FG 1⊥FE ,FG 1⊥FE 1. 又FE 1∩FE =F ,∴FG 1⊥平面FEE 1.(3)E 1G 1→=(0,-2,0),EA →=(1,-2,-1),则cos 〈E 1G 1→,EA →〉=E 1G 1→·EA → |E 1G 1→||EA →|=26.设异面直线E 1G 1与EA 所成角为θ,则sin θ=1-23=33.∴异面直线E 1G 1与EA 所成角的正弦值为33.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八专题 直线、平面、简单几何体
一、考情分析:
立体几何是中学数学的重要内容之一,由于立体几何内容具有相对的独立性,高考命题突出空间图形的特点,考查的重点与热点主要有两大类型,一是线线、线面、面面的平行与垂直的判断、推理,主要是数学语言、图形语言、符号语言的密切结合及相互转化,根据概念、性质、公理、定理进行逻辑推理和论证;二是空间的角和距离的概念及其计算.
选择题、填空题注重符号语言、文字语言、图形语言在推理中的运用,更重视概念明确、关系清楚、基本运算熟练等.
解答题形成了一些规律,一般将几何元素集中于一个几何体中,即以一个多面体或旋转体为依托(以多面体的时候较多)设置几个小问题,设问形式以证明或计算为主,也有时设置一些开放性的问题,每个小题之间有一定的联系,在突出考查逻辑思维能力的前提下,将空间想象能力和运算、推理能力相结合进行考查.
二、考点整合
1、空间两直线、直线与平面、 平面与平面:特别注意线与面平行、线与面垂直、面与面平行、面与面垂直的判定与性质运用的条件;
2、空间角:(1)类型有异面直线所成角]
2
,0(π、直线与平面所成角]2
,0[π、平面与平面所
成角],0[π.
(2)计算空间角的一般步骤:①作:作出平面角;②证:证明所作角即为所求角;③算:将该角归结到三角形中算出.
注:作异面直线所成角的平面角的常用方法:(1)平移法:(2)补形法:
作直线与平面所成角的平面:需作线面垂直,常从面面垂直处寻找作辅助线,常用方法:(1)定义法:(2)公式法:
作二面角的平面角的方法:①定义法:②用三垂线定理(或逆定理)作二面角的平面角:从二面角的一个面内选一个特殊点A ,由A 向另一个平面作垂线(常从面面垂直处作交线的垂线),垂足为B ,再由B 向棱作垂线交于点C ,则ACB ∠即为二面角的平面角.③作棱的垂面:作垂直于二面角的棱或二面角两个半平面的垂面,则该垂面与二面角的两个半平面交线所成的角就是二面角的平面角.④面积法:如果一个多边形在一个平面内的射影是一个多边形,且这两个多边形所在平面所成的二面角为θ,则
斜多边形
射影多边形
S S =
θcos .⑤对于未给棱的二面角的求法,一般情况下首先作棱或在有利条件下利用射影公式求更方便. 3、空间的距离
(1)立体几何中距离有八种类型:两点间距离、点到直线距离、点平面距离、两平行线间距离、异面直线间距离、与平面平行的直线到平面的距离、两平行平面间的距离以及求球面上两点间距离.这八种距离都归结到求点到点、点到线、点到面这三种距离. (2)求空间距离的步骤:①作:找到或作出表示该距离的线段;②证:证明该线段合题意;③算:将该线段归结到三角形算出.简单地表述为:一作,二证,三计算.
注:求异面直线间距离:(1)作出两条异面直线的公垂线段然后求之;(2)将异面直线间距离转化为线面之间的距离;(3)将异面直线间距离转化为面面之间的距离;(4)运用“两条异面直线间距离,是分别在两条异面直线上的两点间的距离的最小值”这一
概念求之;(5)利用体积法(主要是指三棱锥的体积)求之.
点到平面的距离:求解的关键是正确作出图形,其中确定垂足位置最重要,应充
分利用图形性质,注意各种距离之间的相互转化,等积求法及:“平行移动”的思想方法.若要作出需从面面垂直处寻找.
线与面的距离、面与面的距离最后需转化为点到面的距离.
注意间接法在求空间距离中的运用:包括等积法和转化法,转化法即不断地进行点面、线面、面面距离之间的转化,直到求出为止.
4、简单几何体:棱柱、直棱柱、正棱柱、平行六面体、长方体、正方体、正多面体、棱锥、正棱锥、球:
三、典例精讲:
例1 已知正方体1111D C B A ABCD -的棱长为1,在正方体表面上与点A 距离为
3
3
2的点的集合形成一条曲线,则这条曲线的长度为___________________. 例2 已知四棱锥ABCD P -的底面为直角梯形,ABCD PA DAB DC AB 底面⊥=∠,90,// , 且M AB DC AD PA ,12
1====是PB 的中点.
(Ⅰ)证明面PCD PAD 面⊥; (Ⅱ)求AC 与PB 所成的角;
(Ⅲ)求面AMC 与面BMC 所成二面角的大小.
例3 如图,在四棱锥ABCD P -中,底面ABCD 侧棱ABCD PD 底面⊥,E DC PD ,=是PC 的中点. (Ⅰ)证明EDB PA 平面//;
(Ⅱ)求EB 与底面ABCD 所成角的正切值.
例4 如图,在底面是菱形的四棱锥ABCD P -中,
∠a PD 2==,点E 在PD 上,且1:2:=ED PE .
(Ⅰ)证明ABCD PA 平面⊥;
(Ⅱ)求以AC 为棱,EAC 与DAC 为面的二面 角θ的大小;
(Ⅲ)在棱PC 上是否存在一点F ,使AEC BF 平面//证明你的结论.
四、提高训练:
姓名___________
(一)选择题:
1.已知直线⊥l 平面α,直线⊂m 平面β,则下列四个命题中,正确的两个命题是( ) ①m l ⊥⇒βα//;②m l //⇒⊥βα;③βα⊥⇒m l //;④βα//⇒⊥m l . A 、①② B 、③④ C 、②④ D 、①③
2.设γβα、、为平面,、l 、n m 为直线,则β⊥m 的一个充分条件是( ) A 、l m l ⊥=⊥,,βαβα B 、γβγαγα⊥⊥=,,l C 、αγβγα⊥⊥⊥m ,, D 、αβα⊥⊥⊥m n n ,, 3.若、b a 是两条异面直线,且分别在平面βα、内,若l =βα ,则直线l 必定( )
A 、分别与、b a 相交
B 、至少与、b a 之一相交
C 、与、b a 都不相交
D 、至多与、b a 之一相交
4.在下列条件中,可判断平面α与β平行的是( ) A 、βα、都垂直一于平面γ
B 、α内存在不共线三点到β的距离相等
C 、、m l 是α内两条直线,且ββ//,//m l
D 、、m l 是两条异面直线,且ββαα//,//,//,//m l m l
5.正方体1111D C B A ABCD -中,、F E 分别是1AA 、AB 的中点,则EF 与对角面
CA C A 11所成角的大小( )
A 、 60
B 、 45
C 、
150 D 、30 6.如右图,长方形中,BC AB 32=,把它折成正三棱柱的侧面,使AD 与BC 重合,长方形的对角线AC 与折痕线 、GH EF 分别交于、N M 两点,则截面MNA 与棱柱的
底面DFH 所成的角等于( ) A 、 30 B 、 45 C 、
60 D 、除、C 、B A 7.如下图左所示,在正方体1111D C B A ABCD -侧面1AB 内有一动点P ,
P 到直线11B A P 所在曲线的形状大致为( )
8.正四棱锥ABCD S -的底边长为2,高为2,则异面直线AB 与SC 所成的角是___. 9.如图,在直三棱柱ABC C B A -111中,BC AB ,2=
=分别为1AA 、11B C 的中点,沿棱柱的表面从E 到F 短路径的长度为________. (三)解答题:
10.如图,在直三棱柱111C B A ABC -中,底面ABC ∆ 是直角三角形,
90=∠ABC ,a BB BC AB ===12,且E C B BC D AC C A ==1111, ,. (Ⅰ)求证:C C BB B A 1111平面⊥;
(Ⅱ)求证:11BC C A ⊥;
(Ⅲ)设二面角E BB D --1为θ,求θtan 的值.
11.如图,四棱锥ABCD S -的底面是边长为1的正方形,SD
垂直于底面ABCD ,3=SB . (Ⅰ)求证:SC BC ⊥;
(Ⅱ)求面ASD 与面BSC 所成二面角的大小;
(Ⅲ)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小
12.在三棱锥ABC S -中,ABC ∆是边长为4的正三角形,平面⊥SAC 平面ABC ,
M SC SA ,22==为AB 中点. (Ⅰ)证明:SB AC ⊥;
(Ⅱ)求二面角A CM S --的大小; (Ⅲ)求点B 到平面SCM 的距离.。