华东师大版九年级数学上册24.3.1《锐角三角函数(第1课时)教案(含答案)
新华师版初中数学九年级上册精品教案24.3.1 第1课时 锐角三角函数
24.3 锐角三角函数1.锐角三角函数第1课时 锐角三角函数1.理解正弦、余弦、正切的概念;(重点)2.熟练运用锐角三角函数的概念进行有关计算.(重点)一、情境导入牛庄打算新建一个水站,在选择水泵时,必须知道水站(点A )与水面(BC )的高度(AB ).斜坡与水面所成的角(∠C )可以用量角器测出来,水管的长度(AC )也能直接量得.二、合作探究探究点一:锐角三角函数【类型一】 正弦函数如图,sin A 等于( )A .2 B.55 C.12D. 5 解析:根据正弦函数的定义可得sin A =12,故选C. 方法总结:我们把锐角A 的对边a 与斜边c 的比叫做∠A 的正弦,记作sin A .即sin A =∠A 的对边斜边=a c .【类型二】 余弦函数在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( )A.513B.512C.1213D.125解析:∵Rt △ABC 中,∠C =90°,AB =13,AC =12,∴cos A =AC AB =1213.故选C. 方法总结:在直角三角形中,锐角的余弦等于这个角的邻边与斜边的比值.【类型三】 正切函数如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan A =( )A.35B.45C.34D.43解析:在直角△ABC 中,∵∠ABC =90°,∴tan A =BC AB =43.故选D. 方法总结:在直角三角形中,锐角的正切等于它的对边与邻边的比值.探究点二:求三角函数值如图,在△ABC 中,∠C =90°,点D 在BC 上,AD =BC =5,cos ∠ADC =35,求sin B 的值.解析:先由AD =BC =5,cos ∠ADC =35及勾股定理求出AC 及AB 的长,再由锐角三角函数的定义解答.解:∵AD =BC =5,cos ∠ADC =35,∴CD =3.在Rt △ACD 中,∵AD =5,CD =3,∴AC =AD 2-CD 2=52-32=4.在Rt △ACB 中,∵AC =4,BC =5,∴AB =AC 2+BC 2=42+52=41,∴sin B =AC AB =441=44141 . 方法总结:在不同的直角三角形中,要根据三角函数的定义,分清它们的边角关系,结合勾股定理是解答此类问题的关键.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC .(1)求证:AC =BD ;(2)若sin C =1213,BC =36,求AD 的长.解析:(1)根据高的定义得到∠ADB =∠ADC =90°,再分别利用正切和余弦的定义得到tan B =AD BD ,cos ∠DAC =AD AC ,再利用tan B =cos ∠DAC 得到AD BD =AD AC,所以AC =BD ;(2)在Rt △ACD 中,根据正弦的定义得sin C =AD AC =1213,可设AD =12k ,AC =13k ,再根据勾股定理计算出CD =5k ,由于BD =AC =13k ,于是利用BC =BD +CD 得到13k +5k =36,解得k =2,所以AD =24.(1)证明:∵AD 是BC 上的高,∴∠ADB =∠ADC =90°.在Rt △ABD 中,tan B =AD BD,在Rt △ACD 中,cos ∠DAC =AD AC .∵tan B =cos ∠DAC ,∴AD BD =AD AC,∴AC =BD ; (2)解:在Rt △ACD 中,sin C =AD AC =1213.设AD =12k ,AC =13k ,∴CD =AC 2-AD 2=5k .∵BD =AC =13k ,∴BC =BD +CD =13k +5k =36,解得k =2,∴AD =12×2=24.三、板书设计锐角三角函数1.正弦的定义2.余弦的定义3.正切的定义4.求三角函数值本节课的教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学.在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用.。
华东师大版数学九年级上册24.3.1锐角三角函数教学设计
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,增强学生的学习自信心。
2.引导学生认识到数学在科学技术、社会发展中的重要作用,树立正确的数学价值观。
3.培养学生的耐心、细心和毅力,让学生在解决问题的过程中,体会克服困难、解决问题的喜悦。
1.教学方法:
(1)采用情境导入法,通过生活中的实例引出锐角三角函数的概念,激发学生的学习兴趣。
(2)运用启发式教学法,引导学生观察、猜想、归纳、验证特殊角的三角函数值,培养学生的探究能力和逻辑思维能力。
(3)采用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的应用。
(4)利用信息技术手段,如多媒体课件、网络资源等,丰富教学手段,提高教学效果。
2.教学方法:
采用总结归纳法,帮助学生梳理所学知识,形成知识体系。
3.教学内容:
(1)锐角三角函数的定义及正弦、余弦、正切函数的概念。
(2)特殊角的三角函数值。
(3)锐角三角函数在实际问题中的应用。
五、作业布置
为了巩固学生对锐角三角函数的理解和应用,以及检验学生的学习效果,特布置以下作业:
1.基础知识巩固:
4.通过对锐角三角函数的学习,提高学生的数学运算能力、逻辑思维能力和空间想象能力。
(二)过程与方法
1.引导学生通过观察、猜想、归纳、验证等方法,探索特殊角的三角函数值,培养学生的观察力和归纳能力。
2.利用实际问题,激发学生的探究欲望,引导学生运用三角函数知识解决问题,提高学生的问题解决能力。
3.采用小组合作、讨论交流等形式,培养学生的团队合作意识和沟通能力。
新华师大版九年级上册初中数学 24-3-1课时2 特殊角的三角函数值 教案
24.3.1课时2 特殊角的三角函数值【知识与技能】1.熟记30°、45°、60°角的三角函数值.2.让学生经历30°、45°、60°角的三角函数值推导过程,从而掌握特殊角的三角函数的运用方法.【过程与方法】学生经历30°、45°、60°角的三角函数值推导过程,发展学生的推理能力和计算能力.【情感态度与价值观】通过本节课的学习了让学生体会锐角三角函数的数学美,从而培养学生的数学应用意识.熟记30°、45°、60°角的三角函数值.根据函数值说出对应的锐角度数.多媒体课件.上节课我们学习了锐角三角函数的定义.复习如图所示Rt△DEC,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.(sinD=4/5,cosD=3/5,tanD=4/3)一、思考探究,获取新知你能否根据锐角三角函数的定义求出30°角的三个三角函数值?1.探究3.填表思考:(1)sinα随着α的增大而增大;(2)cosα随着α的增大而减小;(3)tanα随着α的增大而增大.例1 求值:sin30°·tan30°+cos60°·tan60°解:原式1312332323=⨯+⨯=.二、运用新知,深化理解2.直线y=kx-4与y轴相交所成的锐角的正切值为12,则k的值为_______.4.已知,如图,在△ABC中,∠B=45°,∠C=60°,AB=6,求BC的长.(结果保留根号)【教师点拨】第1题的计算,注意理清运算顺序;第2题可构造直角三角形再运用锐角三角函数的知识解决,注意两种情况;第3题先求出α的三角函数值,再根据其值求角的度数.1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法.1.布置作业:从教材“习题24. 3”中选取.本节从复习锐角三角函数的定义入手,提出求解30°角的三角函数值,让学生动手探究45°、60°角的三角函数值,加以归纳总结,并学会应用.在教学上充分体现以学生为主体的思想,在教学中以调动学生的思维为主,充分培养学生的自主性和创造性.。
初中数学华师大版九年级上册《24.3.1锐角三角函数》教学设计
华师大版数学九年级上24.3.1锐角三角函数教学设计操场里有一个旗杆,老师让小明去测量旗杆高度,小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1.5米.然后他很快就算出旗杆的高度了。
如图师:你想知道小明怎样算出的吗?这节课,我们就来研究一下师:观察图中的Rt △AB 1C 1、Rt △AB 2C 2和Rt △AB 3C3,它们相似吗?生:Rt △AB 1C 1∽Rt △AB 2C 2∽Rt △AB 3C 3所以B 1C 1AC 1=B 2C 2AC 2=B 3C3AC 3.师:可见,在Rt △ABC 中,对于锐角A 的每一个确定的值,其对边与邻边的比值是唯一确定的.师:想一想,对于锐角A 的每一个确定的值,其对边与斜边、邻边与斜边、邻边与对边的比值也是惟一确定的吗?生:我认为应该是确定的. 课件展示:sin A=∠A 的对边斜边=BC AB =ac , sinA 叫做∠A 的正弦函数cos A=∠A 的邻边斜边=AC AB =bc ,cos A 叫做∠A 的余弦函数tan A=∠A 的对边∠A 的邻边=BC AC =ab ,tan A 叫做 ∠A 的余切函数师:正弦、余弦、正切统称为锐角∠A 的三角函数. 师:我们需要注意1. 我们研究的锐角三角函数都是在直角三角形中定义的.2.三角函数的实质是一个比值,没有单位,而且这个比值 只与锐角的大小有关与三角形边长无关.3. sin A 、cos A 、tan A 都是表达符号,它们是一个整体,不能拆开来理解4.sin A 、cos A 、tan A 中∠A 的角的记号“∠”∠习惯省略不写,但对于用三个大写字母和阿 拉伯数字表示的角,角的记号“∠” 不能省略.如sin ∠1不能写成sin1. 生:明白了师:思考,你能利用直角三角形的三边关系得到sinA 与 cosA 的取值范围吗? 生:0<sin A <1,0<cos A <1=1师:tan A 与cot A 之间有什么关系? 生:tan A•cot A=1 课件展示如图,在RtABC 中,∠C=90°,AC=15,BC=8.试求出∠A 的三个三角函数值.1.如图,在Rt △ABC 中,CD 是斜边AB 上的 中线,已知CD =5,AC =6,则tan B 的值是( )A .45B .35C .34D .43答案:C2.三角形在方格纸中的位置如图所示,则cos α的值是( )A A 22cos sin答案:D3.已知等腰三角形的腰长为6 cm ,底边长为10 cm ,则底角的正切值为________. 答案:√1154.在△ABC 中,∠C =90°,AC =3BC ,则sinA =__;cosA =__;tanA =____. 答案:√1010,3√1010,135.在△ABC 中,∠C =90°,AC =2,BC =1,求cosA和cosB 的值. 答案:解:AB=√AC 2+BC 2=√22+12=√5 cosA=AC AB =2√5=2√55cosB=BCAB =1√5=√55拓展提升已知:如图,△ABC 中,AC =10,sin C = 45,sin B =13 ,求AB .答案:解:作AD ⊥BC 于D 点,如图所示, 在Rt △ADC 中,AC =10,sin C =45 , ∴AD =A Csin C =10×45=8, 在Rt △ABD 中,sin B =13 ,AD =8, 则AB =ADsinB =24. 中考链接1.【汕尾中考】在Rt △ABC 中,∠C =90°,若sinA =35,则cosB 的值是( )答案:B2.【桂林中考】如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是________.答案:34。
新华东师大版九年级数学上册:24.3《锐角三角函数1》教案
24.3 锐角三角函数( 1)教课目标: 1. 直角三角形可简记为Rt △ ABC2.理解 Rt △中锐角的正弦、余弦、正切的看法.教课要点: 三种锐角三角函数的定义 .教课难点: 理解锐角三角函数的定义.教课过程:一.复习发问:1. 什么叫 Rt △?它的三边有何关系?2.Rt △中角、边之间的关系是:①∠A+∠ B=90°② a 2 b 2 c 2二.新课研究:B1.Rt △ ABC 中,某个角的对边、邻边的介绍.2. 如图,由 Rt △ AB1C1∽ Rt △ AB2C2∽Rt △ AB3C3B 1C 1 B 2 C 2 B 3C 3AC得k,B 1 AC 1AC 2AC 3B 1B 1可见,在 Rt △ ABC 中,对于锐角 A 的每一个确立的值,其对边与邻边的比值是独一确立的.ACC 2 C 31相同,其对边与斜边,邻边与斜边,邻边与对边的比值也是独一确立的 .3. 锐角三角函数 .的对边的邻边sin A的斜边 , cos A的斜边 ,AA的对边tan AA的邻边A分别叫做锐角∠ A 的正弦、余弦、正切,统称为锐角∠A 的三角函数 .明显,锐角三角函数值都是正实数,而且0<sinA<1 , 0<cosA<1, tanA>0.4. 依据三角函数的定义,我们还可以得出sin 2 A cos 2 A 1三.四种三角函数值例 1. ①求出以下列图的Rt △ ABC 中,∠ A 的三个三角函数值 .解: Rt △ ABC 中, AB=2222BCAC =158 =17∴ sinA= BC8, cosA=AB 17 tanA=BC 8 。
AC15AC15 BAB178A C②若图中 AC ︰ BC=4︰ 3 呢? 15解:设 AC=4 , BC=3 ,则 AB=5∴ sinA= 3 , cosA= 4 , tanA= 3。
5 5 4③若图中 tanA= 3呢?(解法同上)4例 2. △ ABC 中,∠ B=90°, a=5, b=13,求∠ A 的三个三角函数值 . B解: Rt △ABC 中, c= b 2 a 2 = 132 52 =12∴ sinA= 5 , cosA=12, tanA=5。
华师大版数学九年级上24.3.1锐角三角函数教学设计
cos30°、cos45°、cos60°;
tan30°、tan45°、tan60°。
4.小组合作题:
(1)分组讨论:结合本节课所学内容,讨论锐角三角函数在实际问题中的应用,总结解题方法。
(2)小组交流:各小组分享讨论成果,相互学习,提高解题能力。
注意事项:
1.完成作业时,请认真审题,确保解答过程清晰、逻辑性强。
8.教学过程中,注重数学思想的渗透,让学生在掌握知识的同时,领悟数学方法,提高数学素养。
四、教学内容与过程
(一)导入新课
1.创设情境:以学生生活中常见的景物或现象为例,如测量校园内旗杆的高度、远处建筑物的高度等,提出问题:“如何利用我们已学的数学知识来求解这些问题?”
2.引发思考:引导学生回顾直角三角形、勾股定理等知识,为新课的学习做好铺垫。
4.能够运用锐角三角函数的知识,解决一些简单的几何问题,如计算角度、边长等。
(二)过程与方法
在本章节的学习过程中,学生将经历以下过程与方法:
1.通过观察生活中的实例,引导学生发现锐角三角函数的概念,培养学生观察、思考、发现问题的能力。
2.通过小组合作、讨论交流等形式,让学生在自主探究和合作学习中发现问题、解决问题,提高学生的团队协作能力和解决问题的能力。
3.设计丰富的教学活动,如小组合作、讨论交流等,让学生在合作学习中掌握锐角三角函数的计算方法。同时,注重培养学生的动手操作能力,引导学生运用计算器或计算工具解决实际问题。
4.精选典型例题和练习题,分层设计,由浅入深,让学生在解答过程中逐步掌握解题方法。针对不同层次的学生,进行有针对性的指导,使每个学生都能在原有基础上得到提高。
(1)请用定义证明:在直角三角形中,锐角的正弦值等于它的对边与斜边的比值,余弦值等于它的邻边与斜边的比值,正切值等于它的对边与邻边的比值。
【华东师大版】九年级数学上册:24.3.1《锐角三角函数(第1课时)教案(含答案)
24.3 锐角三角函数1.锐角三角函数第1课时锐角三角函数【知识与技能】1.使学生掌握锐角的四种三角函数的定义.2.使学生掌握锐角三角函数的取值范围.【过程与方法】1.使学生会利用三角函数的定义,表示出直角三角形中某个锐角的三角函数值.2.使学生会利用锐角三角函数的定义求三角函数值.3.使学生学会运用参数法求三角函数值.【情感态度】培养学生的数形结合的思想和探索的精神.【教学重点】三角函数的定义及三角函数值的求法.【教学难点】引入参数三角函数值.一、情境导入,初步认识1.含30°角的直角三角形,有什么性质?答:30°角的直角三角形中,30°角所对的直角边与斜边的比值为12.2.上述结论与所选取的直角三角形的大小有关吗?答:无关.3.含45°角的直角三角形中,45°角所对的直角边与斜边的比值为多少?这个比值与所选取的直角三角形的大小有关吗?答:22,无关.4.一般地,在Rt△ABC中,∠A为其一个锐角,当∠A取一个固定的值时,∠A所对的直角边和斜边的比值固定吗?答:固定不变.如下图我们把这个固定的比值,称为∠A的正弦,记作sinA,当∠A看作变量时,sinA常称为∠A的正弦函数,正弦函数是三角函数的一种,今天我们就来研究锐角三角函数.二、思考探究,获取新知(一)锐角三角函数的定义如图,在Rt△ABC中,∠C=90°∠A的正弦:A BC a sinAAB c∠===的对边斜边∠A的余弦:A AC b cosAAB c∠===的邻边斜边∠A的正切:A BC a tanAA AC b∠===∠的对边的邻边【教学说明】这三个三角函数的书写和含义,特别是不能看成是乘法的关系,另外角的符号也常常省略.提问:你能按定义写出∠B的三个三角函数来吗?(二)锐角三角函数的取值范围在Rt△ABC中,∠A为其一锐角,有0<a<c,0<b<c,∴0<sinA<1,0<cosA<1,tanA>0.(三)利用锐角三角函数定义求三角函数值1.直接利用定义求三角函数值例1 如图,在Rt△ABC中,∠C=90°,AC=15,BC=8,试求出∠A的三个三角函数值.2.已知直角三角形的两边的比,求三角函数值例2 已知,在Rt△ABC中,∠C=90°,a∶b=2∶3,求sinA、cosA.3.已知某锐角三角函数值,求三角函数值.例3 已知,在Rt△ABC中,∠C=90°,sinA=23,求∠A的另外两个三角函数值.三、运用新知,深化理解1.在平面直角坐标系中,点P的坐标为(2,4),O为原点,OP与x轴的夹角为α,则sin α=______.2.在Rt△ABC中,∠C=90°,ac=513,则cosA=______.3.在Rt△ABC中,∠C=90°,tanA=13,则sinA=______,cosA=______.4.如图,在△ABC中,∠ABC=60°,AB∶BC=2∶5,求tanC的值.【教学说明】第4题教师适当点拨:过A点作AD⊥BC构造直角三角形.四、师生互动,课堂小结1.锐角三角函数的定义:∠α的正弦:sinα=α∠的对边斜边∠α的余弦:cosα=α∠的邻边斜边∠α的正切:tanα=αα∠∠的对边的邻边2.锐角三角函数的取值范围:当∠α为锐角时,0<sinα<1;0<cosα<1;tanα>0.3.利用定义求锐角三角函数值.1.布置作业:从教材相应练习和“习题24.3中选取.”2.完成练习册中本课时练习.本课时遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展.。
华东师大版九年级数学上册第24章第3节《第1课时 锐角三角函数》课件
3.sinA、 cosA的大小只与∠A的大小有关,而与直角三角形的
边长无关.
探究归纳 当直角三角形的一个锐角的大小确定时,其对边与邻
边比值也是唯一确定的吗?
如图,Rt△ABC和Rt△A′B′C′,∠C=∠C′=90°,∠A=∠A′=α,
问:
有B什C 么与关系B′C?′ AC A′C′
由于∠C=∠C′=90°,∠A=∠A′=α,所以Rt△ABC ∽
BC B'C' AB A' B'
归纳
这就是说,在直角三角形中,当锐角∠B的度数一定时,不管 三角形的大小如何,∠B的对边与斜边的比也是一个固定值.
引出定义:
当锐角∠B的大小确定时,∠B的邻边与斜边的比也是固定的,
我们把∠B的邻边与斜边的比叫做∠B的余弦(cosine),记作
cosB,即
cos
B
B的邻边 斜边
a c
如图:在Rt △ABC中,∠C=90°,
正弦
sin
A
A的对边 斜边
=
a c
余弦
cos
A
A的邻边 斜边
=
b c
sin 2
A cos2
A
a
2
c
b 2 c
a2 b2 c2
c2 c2
1
1.sinA、cosA是在直角三角形中定义的,∠A是锐角(注意数形
结合,构造直角三角形).
2.sinA、 cosA是一个比值(数值).
Rt△A′B′C′
所以
BC
AC =
B′C′ A′C′
即 BC
B′C′ =
AC A′C′
在直角三角形中,当锐角∠A的度数一定时,不管三角
新华师大版九年级上册初中数学 24-3-1课时1 锐角三角函数 教学课件
或数字表示时,它的三角函数不能省略角的符号,
如sin ∠ABC,sin ∠1等. (3)三角函数符号后面可以写成度数,如sin 20°等.
第十二页,共二十页。
c5
c5
tan B= b = 4 . a3
A
c
b
解:(2) b c2 a2 144 12
B
sin B= b = 12,cos B= a = 5 ,
c 13
c 13
tan B= b = 12 . a5
C
a
第十八页,共二十页。
拓展与延伸
如图,在Rt△DEC中,∠E=90°,CD=10, E
ED=6.试求出∠D的三个三角函数值.
正切.
sin
A=
∠A的对边 斜边
=
a c
,
cos
A=
∠A的邻边 斜边
=
b c
,
tan
A=
∠A的对边 ∠A的邻边
=
a b
.
取值范围 0<sinA<1,0<cosA<1
第九页,共二十页。
新课讲解
例 1 如图,在Rt△ACB中,∠C=90°,AC=15
知识点 ,BC=8.试求出∠A的三个三角函数值.
解: AB BC2 AC2 289 17
A
c b
B
C
a
第五页,共二十页。
新课讲解
知识点1 锐角三角函数的定义
一般情况下,Rt△ABC中,当锐角∠A
取一固定值时,∠A的对边与邻边的比值会
2015秋华师大版数学九上24.3.1《锐角三角函数》word教案1
24、3 锐角三角函数 1.锐角三角函数 第一课时 锐角三角函数(一)教学目标使学生了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义。
并能应用这些概念解决一些实际问题。
教学过程一、复习由上节课例题若加改变得,若AC =160cm ,∠C =31°,那么,AB 的长度为多少呢?同学们现在或许不能解决上述问题,但是通过这节课的学习,以上问题自然很容易得到解决。
二、新课1.明确直角三角形边角关系的名称。
直角三角形ABC 可以简记为Rt △ABC ,我们已经知道∠C 所对的边AB 称为斜边,用c 表示,另两条直角边分别为∠A 的对边与邻边,用a 、b 表示。
如右图,在Rt △EFG 中,请同学们分别写出∠E 、∠F 的对边和邻边。
2.在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。
问题1如右图,△ABC 和△A 1B 1C 1中,若∠C =∠C 1=∠90°, ∠A =∠BC AB 和A 1,那么△ABC 和△A 1B 1C 1相似吗?与相等吗? B 1C 1A 1B 1 相等吗?显然△ABC ∽△A 1B l C l ,BC AB =B 1C 1A 1B 1,这说明在Rt △ABC 中,只要一个锐角的大小不变,那么不管这个直角三角形大小如何,该锐角的对边与斜边的比值是一个固定值。
这说明,在直角三角形中,一个锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。
3.锐角三角函数的概念。
Rt △ABC 中(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA = ∠A 的对边斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA =∠A 的邻边斜边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边同学们想一想,在Rt△ABC中,∠B的正弦、余弦、正切、余切是哪一边与那一边的比值。
24.3 锐角三角函数 华师大版数学九年级上册教案
24.3 锐角三角函数1.锐角三角函数第1课时锐角三角函数的定义※教学目标※【知识与技能】了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的作用.【情感态度】1.通过学习培养学生的合作意识.2.通过探究提高学生学习数学的兴趣.【教学重点】锐角三角函数的概念.【教学难点】锐角三角函数的概念的理解.※教学过程※一、情境导入如图(1),图(2)都可以用来测量物体的高度.这两个问题的解决,将涉及直角三角形中的边角关系.直角三角形中,它的边与角有什么关系?通过本节的学习,你就会明白其中的道理,并能应用所学知识解决相关的问题.二、探索新知1.某个角的对边、邻边的概念.在Rt△ABC中,直角∠C所对的边AB称为斜边,用c表示,另两边直角边为∠A的对边与邻边,分别用a、b表示(如图).2.做一做.(1)画一个Rt△ABC,使∠C=90°,∠A=30°,那么∠A的对边与斜边的比值是多少?量一量、算一算.(2)你画的三角形与你同伴画的三角形全等吗?不全等时,比值有什么关系?和你的同伴交流一下.(3)若∠A=45°、60°时,则∠A对边与斜边之比是多少?结论:在Rt△ABC中,只要一个锐角的大小不变(如∠A=30°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个固定的值.经过验证,在Rt△ABC中,当锐角A取其他固定值时,∠A的对边与邻边的比值还是一个固定值,与Rt△ABC的大小无关.说明:观察图中的Rt△AB 1C1、Rt△AB2C2和Rt△AB3C3,易知Rt△AB1C1Rt△AB2C2∽Rt△AB3C3.∴==可见,在Rt△ABC中,对于锐角A的每一个确定的值,其对边与邻边的比值是唯一确定的.同样,其对边与斜边,邻边与斜边的比值也是唯一确定的.3.锐角三角形函数的定义∠A的正弦:sinA=∠A的余弦:cosA=∠A的正切:tanA=∠A的正弦、余弦、正切统称为锐角∠A的三角函数.4.知识拓展(1)正弦与余弦三角函数值的取值范围.∵直角三角形中,斜边大于直角边.∴0<sinA<1,0<cosA<1.(2)同角三角函数关系sin2α+cos2α=1;tanα=.(3)互余两角的三角函数值若α、β都是锐角,且α+β=90°,那么:sinα=cosβ,cosα=sinβ.三、巩固练习【例1】如图,在Rt△ABC中,∠C=90°,AC=15,BC=8.试求出∠A的三个三角函数值.解:AB==17,sinA=,cosA=,tanA=.【练习】1.如图,在Rt△MNP中,∠N=90°,则:∠P的对边是,∠P的邻边是;∠M的对边是,∠M的邻边是.第1题图第2题图2.如图,在Rt△DEC中,∠E=90°,CD=10,DE=6.试求出∠D的三个三角函数值.3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.根据下列所给条件,分别求出∠B的三个三角函数值:(1)a=3,b=4;(2)a=5,c=13.答案:1.MN PN PN MN2.由勾股定理,得CE=8,所以sinD=,cosD=,tanD=.3.(1)sinB=,cosB=,tanB=.(2)sinB=,cosB=,tanB=.四、应用拓展【例2】已知:Rt△ABC中,∠C=90°,sinA=,BC=3,求AB、AC的值.解:∵sinA=,∴AB=,∴AC=.【例3】如图,已知α为锐角,sinα=,求cosα、tanα的值.解:方法一:用定义法求解∵sinα=,∴设BC=3x,则AB=5x.由勾股定理,得AC=4x.∴cosα=,tanα=.方法二:用公式求解∵α为锐角,∴cosα==,tanα=.五、归纳小结1.正弦、余弦、正切的定义是在直角三角形中相对其锐角而定义的,其本质是两条线段长度之比,理解好这三个概念是学好本章的关键;2.正弦、余弦、正切实际上都是比值,没有单位,它们只与锐角α的大小有关,与三角形的边长无关;3.对于每一个锐角α的确定的值,它的正弦、余弦和正切都有唯一确定的值与之对应;反之,对于每一个确定的正弦、余弦和正切值,都有唯一的锐角与之对应.※课后作业※1.教材第111页习题24.3第1、2题.2.如图,在Rt△ABC中,∠CAB=90°,AD是∠CAB的平分线,tanB=,求的值.第2课时特殊角的三角函数值※教学目标※【知识与技能】1.熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【过程与方法】培养学生观察、比较、分析、概括的思维能力.【情感态度】经历观察、操作、归纳等学习数学过程,感受数学思考过程的合理性,感受数学说理的必要性,说理过程的严谨性,养成科学的、严谨的学习态度.【教学重点】特殊角的三角函数值.【教学难点】与特殊角的三角函数值有关的计算.※教学过程※一、复习引入在Rt△ABC中,∠C=90°,AC=1,AB=2,求∠A、∠B的三个三角函数值.回顾锐角三角函数的定义;直角三角形的性质.二、探索新知在Rt△ABC中,∠A=30°,∠C=90°,如图,试求两个锐角的三个三角函数值.解:在直角三角形中,30°角所对的直角边是斜边的一半.所以,若设30°角所对的直角边为1,即BC=1,则AB=2,由勾股定理得:AC=.由三角函数定义,得sin30°=.cos30°=.tan30°=.同理可得sin60°=,cos60°=,tan60°=.2.在Rt△ABC中,∠C=90°,∠A=∠B=45°,如图,试求45°角的三角函数值.若设AC=BC=1.则AB=.易得sin45°=,cos45°=,tan45°=1.【例1】求值:sin30°·tan30°+cos60°·tan60°.解:原式=.【例2】在Rt△ABC中,若sinA=,则cos的值是多少?解:由sinA=知A=60°.∴cos=cos30°=.三、巩固练习1.在△ABC中,若cosA=,tanB=,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.用特殊角的三角函数填空:= = ;= = ;1= ;= .3.化简= .4.点M(-sin60°,cos60°)关于x轴对称的点的坐标是.5.求下列各式的值:(1)sin260°+cos260°;(2)2cos60°+2sin30°+4tan45°;(3).6.如图,在Rt△ABC中,∠C=90°,AB=,BC=.求∠A的大小.答案:1.A 2.sin60° cos30° sin45° cos45°tan45° tan60° 3. 4.5.(1)1 (2)6 (3)6.∠A=45°四、应用拓展1.你能求出tan15°的值吗?如图,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至D,使BD=AB,则∠D=15°.设AC=k,则AB=2k,BC=k,所以CD=BC+BD=BC+AB=(2+)k,所以tan15°===2-.2.仿上面的解题方法,易求tan22.5°=-1.※课后作业※1.教材第111页习题24.3的第3题.2.若∠A、∠B是△ABC的两个内角且满足关系式=0,求∠C的度数.3.若α为锐角,且tan2α-(1+)tanα+1=0.求α的度数.2.用计算器求锐角三角函数值※教学目标※【知识与技能】1.会使用计算器求锐角三角函数的值.2.会使用计算器根据锐角三角函数的值求对应的锐角.【过程与方法】在做题、计算的过程中,逐步熟练计算器的使用.【情感态度】经历计算器的使用过程,熟悉其按键顺序.【教学重点】利用计算器求锐角三角函数的值.【教学难点】计算器的按键顺序. ※教学过程※一、复习引入填表:由上表我们可以直接写出30°,45°,60°角的三角函数值及由特殊值写出相应的锐角.对一些非特殊的角,怎样求它的三个三角函数值呢?二、探索新知1.求锐角三角函数值【例1】求sin63°52′41″的值(精确到0.0001).解:如下方法将角度单位状态设定为“度”:再按下列顺序依次按键:显示结果为0.897859012.∴sin63°52′41″≈0.8979.【例2】求tan19°15′的值(精确到0.0001).解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.3492156334.∴tan19°15′≈0.3492.2.由锐角三角函数值求锐角.【例3】若tanx=0.7410,求锐角x.(精确到1′)解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.53844577.再按键,显示结果为36°32′18.4″.所以x≈36°32′.三、巩固练习1.利用计算器求下列三角函数值:(精确到0.0001)(1)sin24°;(2)cos51°42′20″;(3)tan70°21′.2.已知下列锐角α的各三角函数值,利用计算器求锐角α:(精确到1′)(1)sinα=0.2476;(2)cosα=0.4174;(3)tanα=0.1890.答案:1.(1)0.4067 (2)0.6197 (3)2.8006 2.(1)14°20′(2)65°20′(3)10°42′※课后作业※1.教材第111页习题24.3的第4、5题.2.比较大小.cos25° cos32°,tan29° tan39°.3.在Rt△ABC中,∠C=90°,AB=29,AC=25,求∠A的度数.。
【新华东师大版】九年级数学上册:24.3《锐角三角函数1》学案
24. 3锐角三角函数(1)【学习目标】经历当直角三角形的锐角固定时,它的对边与斜边、邻边与斜边、对边与邻边、的比值固定这一事实。
能根据三角函数的概念进行计算【学习重点】 理解三角函数的概念【学习难点】 当直角三角形的锐角固定时,它的对边与斜边、邻边与斜边、对边 与邻边、的比值固定这一事实。
【课标要求】 掌握锐角三角函数【知识回顾】如图所示,站在离旗杆 BE 底部10米处的D 点,目测旗杆的顶部,视线 AB 与水 平线的夹角/ BAC 为34° ,并已知目高AD 为1.5米.现在若按1 : 500的比例将△ ABC 画在纸上,并记A B ' C',用刻度直尺量出纸上B' C'的长度,便可以算出旗杆的实际高度•你知道计算的方法吗? 【自主学习】 探究 1:任意画 Rt △ ABC 和 Rt △ A B' C',使得/ C=Z C =90°,BC B 'C '/ A=Z A',那么 与 有什么关系•你能解释一下吗?AB A'B'结论:这就是说,在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何, ? / A的对边与斜边的比 ______________ /A 的邻边与斜边的比 _________ / A 的对边与邻边的比 ______________ /A 的邻边与对边的比 _____________图25.1.2ti'21K概念:在Rt △ BC 中,/ C=90,/ A 的对边记作 a ,/ B 的对边记作 b ,Z C 的对 边记作c . 在 Rt △ BC 中,/ C=90°,我们把 __________________________________________ 叫做/ A 的正弦,记作_即 ________________________________ .我们把 __________________________________________ 叫做/ A 的余弦,记作_即 ________________________________ .我们把 __________________________________________ 叫做/ A 的正切,记作_即 ______________________________ .【例题学习】例1 如图,在 Rt △ ABC 中,/ C=90°,求厶ABC 中/ B 的三个三角函数值.你有什么发现?【巩固训练】1 .如图,在直角厶 ABC 中,/ C = 90o ,若 AB= 5, AC = 4,贝U sinA =(A. 13 B . 3 C 3 在 一1三「中,/ C = 90°, a , b , c 分别是/ A 、/ B / C 的对边,则有(A 二一一B :- -/ .二工4.在- 中,/ C = 90°,如果 cos A=-那么 -的值为( ) 5点的坐标为(3, 4),3-4 在厶 ABC 中,/ C=90°, BC=2 sinA=§,则边AC 的长是() 353 4A :B .-CD 5 4 4 35、如图:P 是/⑴的边0A 上一点,且P)贝H COS a =_____________ .【归纳小结】【作业】1 如图,在Rt△ MNP K/ N= 90° ./ P的对边是_______________ ,/ P的邻边是_____________________ ;/ M的对边是______________ ,/ M的邻边是__________________ ;1.设Rt△ ABC中,/ C= 90°,/ A、/ B、/ C的对边分别为a、b、c,根据下列所给条件求/B的三个三角函数值.(1)a=3,b=4; (2)a=5,c=10.4、Rt △ ABC中,/ C= 90°,已知AC=21, AB=29分别求/ A、/ B的三个三角函数值。
华师大版-数学-九上-24.3.1 锐角三角函数1 教案
24.3.1锐角三角函数1教学目标:1.知识与技能了解锐角三角函数的概念,能够正确应用sin A.cos A.tan A表示直角三角形中两边的比;2.过程与方法通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.3.情感、态度与价值观引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.教学重点:正弦、余弦;正切三个三角函数概念及其应用.教学难点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.用含有几个字母的符号组sin A.cos A表示正弦、余弦;正弦、余弦概念.教学方法:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,教学中应十分重视.同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,在教学中应作为难点处理.复习引入教师讲解:杂志上有过这样的一篇报道:始建于1350年的意大利比萨斜塔落成时就已经倾斜.1972年比萨发生地震,这座高54.5m的斜塔大幅度摇摆22分之分,仍巍然屹立.可是,塔顶中心点偏离垂直中心线的距离已由落成时的2.1m增加至5.2m,而且还以每年倾斜1cm 的速度继续增加,随时都有倒塌的危险.为此,意大利当局从1990年起对斜塔进行维修纠偏,2001年竣工,使顶中心点偏离垂直中心线的距离比纠偏前减少了43.8cm.根据上面的这段报道中,“塔顶中心点偏离垂直中心线的距离已由落成时的 2.1m增加至5.2m,”这句话你是怎样理解的,它能用来描述比萨斜塔的倾斜程度吗?这个问题涉及到锐角三角函数的知识.学过本章之后,你就可以轻松地解答这个问题了! 探究新知(一)问题的引入教师讲解:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管?教师提出问题:怎样将上述实际问题用数学语言表达,要求学生写在纸上,互相讨论,看谁写得最合理,然后由教师总结.教师总结:这个问题可以归纳为,在Rt △ABC 中,∠C =90°,∠A =30°,BC =35m ,求AB .【答案】根据“在直角三角形中,30°角所对的边等于斜边的一半”,即A BC AB ∠=的对边斜边=12可得AB =2BC =70m ,也就是说,需要准备70m 长的水管.教师更换问题的条件后提出新问题:在上面的问题中,如果使出水口的高度为50m ,那么需要准备多长的水管?要求学生在解决新问题时寻找解决这两个问题的共同点.教师引导学生得出这样的结论:在上面求AB (所需水管的长度)的过程中,虽然问题条件改变了,但我们所用的定理是一样的:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于12.也是说,只要山坡的坡度是30°这个条件不变,那么斜边与对边的比值不变.教师提出问题:既然直角三角形中,30°角的斜边与对边的比值不变,那么其他角度的对边与斜边的比值是否也不会变呢?我们再换一个解试一试.在Rt △ABC 中,∠C =90°,∠A =45°,∠A 对边与斜边的比值是一个定值吗?如果是,是多少?教师要求学生自己计算,得出结论,然后再由教师总结:在Rt △ABC 中,∠C =90°由于∠CB CBA =45°,所以Rt △ABC 是等腰直角三角形,由勾股定理得AB 2=AC 2+BC 2=2BC 2,AB BC .因此BC AB ===2, 即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于2. 教师再将问题提升到更高一个层次:从上面这两个问题的结论中可知,在一个Rt △ABC 中,∠C =90°,当∠A =30°时,∠A 的对边与斜边的比都等于12,是一个固定值;当∠A =45°时,∠A 的对边与斜边的比都等于2,也是一个固定值.这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?教师直接告诉学生,这个问题的回答是肯定的,并边板书,边与学生共同探究证明方法.这为问题可以转化为以下数学语言:任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C =∠C ′=90°,∠A =∠A ′=a ,那么''''BC B C AB A B 与有什么关系.由于∠C =∠C ′=90°,∠A =∠A ′=a ,所以Rt △ABC ∽Rt △A ′B ′C ′,''''BC AB B C A B =,即''''BC B C AB A B =. 这就是说,在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比都是一个固定值.(二)正弦函数概念的提出教师讲解:在日常生活中和数学活动中上面所得出的结论是非常有用的.为了引用这个结论时叙述方便,数学家作出了如下规定:如图,在Rt △BC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A = =a c.在图中,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .例如,当∠A =30°时,我们有sin A =sin30°=12; 当∠A =45°时,我们有sin A =sin45°. (三)正弦函数的简单应用 例.求出图所示的Rt △ABC 中∠A 的四个三角函数值.【答案】, sin A =,cos A =, tan A =,cot A =. 随堂练习如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.教师对题目进行分析:求sin A 就是要确定∠A 的对边与斜边的比;求sin B 就是要确定∠B 的对边与斜边的比.我们已经知道了∠A 对边的值,所以解题时应先求斜边的高.【答案】如图(1),在Rt △ABC 中,斜边c对边ab C B 1728922==+=AC BC AB 178=AB BC 1715=AB AC 158=AC BC 815=BC AC (1)34C B A (2)1353C B AAB .因此 sin A =BC AB =35,sin B =AC AB =45. 如图(2),在Rt △ABC 中,sin A =BC AB =513,AC =. 因此,sin B =AC AB =1213. 总结在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比都是一个固定值.在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 教后反思 ___________________________________________________________________________________________________________。
九年级数学上册-锐角三角函数24.3.1锐角三角形函数第1课时锐角三角函数教案新版华东师大版
24.3 锐角三角函数24.3.1 锐角三角形函数第1课时 锐角三角函数1.使学生掌握锐角的三种三角函数的定义.2.使学生掌握锐角三角函数的取值范围.重点三角函数的定义及三角函数值的求法.难点引入参数三角函数值.一、情境引入教师展示课件,提出问题,引导学生进入本节学习内容.1.含30°角的直角三角形,有什么性质?答:30°角的直角三角形中,30°角所对的直角边与斜边的比值为12. 2.上述结论与所选取的直角三角形的大小有关吗?答:无关.3.含45°角的直角三角形中,45°角所对的直角边与斜边的比值为多少?这个比值与所选取的直角三角形的大小有关吗?答:22,无关. 4.一般地,在Rt △ABC 中,∠A 为其一个锐角,当∠A 取一个固定的值时,∠A 所对的直角边和斜边的比值固定吗?答:固定不变,如下图.在Rt △AB 1C 1,Rt △AB 2C 2,Rt △AB 3C 3中,∠A 的对边和斜边的比值分别为B 1C 1AB 1,B 2C 2AB 2,B 3C 3AB 3. ∵B 1C 1∥B 2C 2∥B 3C 3,∴Rt △AB 1C 1∽Rt △AB 2C 2∽Rt △AB 3C 3,∴∠A的对边斜边=B 1C 1AB 1=B 2C 2AB 2=B 3C 3AB 3是一个固定值. 我们把这个固定的比值,称为∠A 的正弦,记作sin A,当∠A 看作变量时,sin A 常称为∠A 的正弦函数,正弦函数是三角函数的一种,今天我们就来研究锐角三角函数.二、探究新知(一)锐角三角函数的定义如图,在Rt △ABC 中,∠C =90°.∠A 的正弦:sin A =∠A的对边斜边=BC AB =a c, ∠A 的余弦:cos A =∠A的邻边斜边=AC AB =b c, ∠A 的正切:tan A =∠A的对边∠A的邻边=BC AC =a b. 【教学说明】这三个三角函数的书写和含义,特别是不能看成是乘法的关系,另外角的符号也常常省略.提问:你能按定义写出∠B 的三个三角函数来吗?(二)锐角三角函数的取值范围在Rt △ABC 中,∠A 为其一锐角,有0<a<c,0<b<c,∴0<sin A<1,0<cos A<1,tan A>0.(三)利用锐角三角函数定义求三角函数值1.直接利用定义求三角函数值例1 如图,在Rt △ABC 中,∠C =90°,AC =15,BC =8,试求出∠A 的三个三角函数值.解:AB =BC 2+AC 2=289=17,sin A =BC AB =817, cos A =AC AB =1517,tan A =BC AC =815.2.已知直角三角形的两边的比,求三角函数值.例2 在Rt △ABC 中,∠C =90°,a ∶b =2∶3,求sin A,cos A.解:设a =2k,b =3k,由勾股定理得c =a 2+b 2=13k,∴sin A =a c =2k 13k=21313, cos A =bc =3k 13k =31313. 3.已知某锐角三角函数值,求三角函数值.例3 在Rt △ABC 中,∠C =90°,sin A =23,求∠A 的另外两个三角函数值.解:∵sin A =a c =23, ∴设a =2k,c =3k, 由勾股定理得b =c 2-a 2=5k,∴cos A =b c =5k 3k =53, tan A =ab =2k 5k=255. 三、练习巩固教师利用课件展示练习题,可由学生独立完成练习1,2,3,由学生抢答.第4题教师适当点拨:过点A 作AD⊥BC 构造直角三角形.学生小组内交流,教师点评.1.在平面直角坐标系中,点P 的坐标为(2,4),O 为原点,OP 与x 轴的夹角为α,则sin α=________.2.在Rt △ABC 中,∠C =90°,a c =513,则cos A =______. 3.在Rt △ABC 中,∠C =90°,tan A =13,则sin A =______,cos A =________.4.如图,在△ABC 中,∠ABC =60°,AB ∶BC =2∶5,求tan C 的值.四、小结与作业小结1.锐角三角函数的定义:∠α的正弦:sin α=∠α的对边斜边, ∠α的余弦:cos α=∠α的邻边斜边, ∠α的正切:tan α=∠α的对边∠α的邻边. 2.锐角三角函数的取值范围:当∠α为锐角时,0<sin α<1;0<cos α<1;tan α>0.3.利用定义求锐角三角函数值.布置作业从教材相应练习和“习题24.3”中选取.本课时遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展.。
华师大版九年级数学上册导学案含答案-3 24.3.1 第1课时 锐角三角函数
第24章解直角三角形24.3 锐角三角函数1.锐角三角函数第1课时锐角三角函数学习目标:1.理解并掌握锐角三角函数的定义.(重点)2.学会应用锐角三角函数解决问题.(难点)自主学习一、知识链接为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管AB,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度BC为35m,那么需要准备多长的水管?合作探究一、探究过程探究点1:锐角三角函数的定义【问题】如图,∠BAC为任意给定的一个锐角,B1,B2为射线AB上任意两点,过B1,B2两点分别作AC的垂线B1C1,B2C2,垂足分别为C1,C2,试说明1122121212B C B C AC ACAB AB AB AB与,与分别相等.可见,Rt△ABC中,对于锐角∠A的每一个确定的值,其对边与邻边的比值都是唯一确定的.我们同样可以发现,对于锐角∠A 的每一个确定的值,其对边与斜边、邻边与斜边的比值和对边与邻边的比值一样也是唯一确定的.【定义】在Rt △ABC 中,∠C=90°,AB=c,BC=a ,AC=b,则∠A 的正弦、余弦、正切分别是:sin A a a A c c ∠==的对边斜边 cos A b b A c c ∠==的邻边斜边 b ab A a A A =∠∠=的邻边的对边tan它们统称为∠A 的_________.【典例精析】例1在△ABC 中,∠C =90°,AB =13,BC =5,求∠A 的正弦值、余弦值和正切值. 【归纳总结】正确地画出草图,根据条件将已知角的三角函数值转化为直角三角形中两边的关系,利用勾股定理求出第三边,然后计算出待求角的三角函数值. 【针对训练】1.在Rt △ABC 中,∠C =90°,AB =7,BC =5,那么下列式子错误的是( ) A .sin A =B .cos A =C .tan A =1265 D .cos A =762 2.如图,在Rt △ABC 中,∠C =90°,AC =2BC ,求∠B 的正弦值、余弦值和正切值.探究点2:三角函数之间的关系根据三角函数的定义,我们还可以得出同角三角函数间的关系:sin 2A+cos 2A=1. 【典例精析】例2在Rt △ABC 中,∠C =90°,给出下列结论:①sin A =cos B ;②sin 2A +cos 2A =1; ③tan B =;其中正确的是( )A .①②B .①③C .②③D .①②③例3在Rt △ABC 中,∠C =90°,求sin 2A +sin 2B 的值. 【针对训练】3.如图,在Rt △ABC 中,∠C =90°,已知sin A =,则cos B 的值为( ) A .B .C .D .4.在Rt △ABC 中,∠C =90°,sin A =,cosA=1312,则tanA 的值为( ) A .B .C .D .5.若tan α•tan32°=1,则锐角α= .二、课堂小结内容基本图形正弦c ac A a A A =∠∠=的斜边的对边sin余弦cbc A b A A =∠∠=的斜边的邻边cos正切b ab A a A A =∠∠=的邻边的对边tan三角形三角函数之间的关系sinA=cosB ,sinB=cosA ,sin 2A+cos 2A=1,tanA=AAcos sin 当堂检测1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则sin B 等于( ) A.54 B . C . D .第1题图 第2题图2.如图,在Rt △ABC 中,锐角A 的对边和邻边同时扩大为原来的100倍,tanA 的值( ) A.扩大为原来的100倍 B.缩小为原来的1100C.不变D.不能确定3.在△ABC 中,∠A =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,则下列选项中不正确的是( ) A .sin B =B .sinC =C .cos B =D .tan B =4.在Rt △ABC 中,∠C =90°,若sin A =,则cos B 等于( ) A .B .C .D .5.在Rt △ABC 中,∠C =90°,AC =4,BC =3,则tan A 的值为 .6.在Rt △ABC 中,∠C =90°,已知AC =8,AB =10,求∠B 的三个三角函数值. 7.如图,在Rt △ABC 中,∠C =90°,tan A =,AC =2,求AB 的长.8.已知cos45°=,求cos 21°+cos 22°+…+cos 289°的值.参考答案自主学习 一、知识链接解:∵∠ACB=90°,∠BAC=30°,∴AB=2BC=70m . 合作探究一、探究过程【问题】解:∵∠AC 1B 1=∠AC 2B 2,∠B 1AC 1=∠B 2AC 2, ∴△AB 1C 1∽△AB 2C 2.∴1111122222,AB B C AC AB AB B C AC AB ==,即1122121212.==,B C B C AC AC AB AB AB AB 【定义】三角函数 【典例精析】例1 解:∵∠C =90°,AB =13,BC =5,∴.∴sin A ==,cos A ==,tan A ==.【针对训练】 1.B2.解:∵∠C =90°,AC =2BC ,∴设BC =x ,则AC =2x ,∴AB =x ,∴sin B ===,cos B ===,tan B ===2.【典例精析】例2 D例3 解:Rt △ABC 中,∠C =90°,sin 2A +sin 2B =+==1.【针对训练】3.B4.B5.58°当堂检测31. A2.C3.C4.B5.46.解:∵∠C=90°,AC=8,AB=10,∴BC==6,则sin B==,cos B ==,tan B==.7.解:在Rt△ABC中,∵tan A=,AC=2,∴BC=1,∴AB=.8.解:原式=(cos21°+cos289°)+(cos22°+cos288°)+…+(cos244°+cos246°)+cos245 =(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+cos245=44+()2=44.~。
九年级数学上册第24章解直角三角形24.3锐角三角函数1锐角三角函数第1课时锐角三角函数教案华东师大版
24.3 锐角三角函数 1.锐角三角函数 第1课时 锐角三角函数1.理解正弦、余弦、正切的概念;(重点)2.熟练运用锐角三角函数的概念进行有关计算.(重点)一、情境导入牛庄打算新建一个水站,在选择水泵时,必须知道水站(点A )与水面(BC )的高度(AB ).斜坡与水面所成的角(∠C )可以用量角器测出来,水管的长度(AC )也能直接量得.二、合作探究探究点一:锐角三角函数 【类型一】 正弦函数如图,sin A 等于( )A .2 B.55 C.12D. 5 解析:根据正弦函数的定义可得sin A =12,故选C.方法总结:我们把锐角A 的对边a 与斜边c 的比叫做∠A 的正弦,记作sin A .即sin A =∠A 的对边斜边=ac.【类型二】 余弦函数在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( ) A.513 B.512 C.1213 D.125解析:∵Rt △ABC 中,∠C =90°,AB =13,AC =12,∴cos A =AC AB =1213.故选C.方法总结:在直角三角形中,锐角的余弦等于这个角的邻边与斜边的比值.【类型三】 正切函数如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan A =( )A.35B.45C.34D.43解析:在直角△ABC 中,∵∠ABC =90°,∴tan A =BC AB =43.故选D.方法总结:在直角三角形中,锐角的正切等于它的对边与邻边的比值.探究点二:求三角函数值如图,在△ABC 中,∠C =90°,点D 在BC 上,AD =BC =5,cos ∠ADC =35,求sin B的值.解析:先由AD =BC =5,cos ∠ADC =35及勾股定理求出AC 及AB 的长,再由锐角三角函数的定义解答.解:∵AD =BC =5,cos ∠ADC =35,∴CD =3.在Rt △ACD 中,∵AD =5,CD =3,∴AC =AD 2-CD 2=52-32=4.在Rt △ACB 中,∵AC =4,BC =5,∴AB =AC 2+BC 2=42+52=41,∴sin B =ACAB=441=44141 .方法总结:在不同的直角三角形中,要根据三角函数的定义,分清它们的边角关系,结合勾股定理是解答此类问题的关键.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC . (1)求证:AC =BD ;(2)若sin C =1213,BC =36,求AD 的长.解析:(1)根据高的定义得到∠ADB =∠ADC =90°,再分别利用正切和余弦的定义得到tan B =AD BD ,cos ∠DAC =AD AC ,再利用tan B =cos ∠DAC 得到AD BD =AD AC,所以AC =BD ;(2)在Rt △ACD 中,根据正弦的定义得sin C =AD AC =1213,可设AD =12k ,AC =13k ,再根据勾股定理计算出CD =5k ,由于BD =AC =13k ,于是利用BC =BD +CD 得到13k +5k =36,解得k =2,所以AD =24.(1)证明:∵AD 是BC 上的高,∴∠ADB =∠ADC =90°.在Rt △ABD 中,tan B =AD BD,在Rt △ACD 中,cos ∠DAC =AD AC .∵tan B =cos ∠DAC ,∴AD BD =AD AC,∴AC =BD ;(2)解:在Rt △ACD 中,sin C =AD AC =1213.设AD =12k ,AC =13k ,∴CD =AC 2-AD 2=5k .∵BD=AC =13k ,∴BC =BD +CD =13k +5k =36,解得k =2,∴AD =12×2=24.三、板书设计 锐角三角函数 1.正弦的定义 2.余弦的定义 3.正切的定义 4.求三角函数值本节课的教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学.在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用.。
九年级数学华东师大版上册24.3《锐角三角函数》优秀教学案例
2.掌握锐角三角函数的性质,包括正弦函数、余弦函数和正切函数的图像和性质。
3.能够运用锐角三角函数解决实际问题,如计算三角形的边长和角度等。
4.能够运用锐角三角函数进行简单的几何证明和计算,提高解题能力。
(二)过程与方法
在过程与方法方面,本节课的教学目标是培养学生的探究能力和合作意识,使他们在理解的基础上能够灵活运用锐角三角函数知识。具体包括以下几个方面:
(三)小组合作
在小组合作方面,我将组织学生进行小组讨论和合作,培养他们的团队协作能力和沟通能力。例如,可以让学生分组讨论如何运用锐角三角函数解决某个实际问题,每个小组成员负责一部分内容的分析和解答,然后将结果进行交流和分享。通过这样的小组合作,学生能够相互学习、相互启发,培养他们的合作意识和团队精神。
(四)总结归纳
在总结归纳环节,我会引导学生对所学知识进行总结和归纳。我会鼓励学生用自己的语言来表述对锐角三角函数的理解,帮助他们巩固所学知识。同时,我还会总结一些解题技巧和方法,让学生能够在解决类似问题时能够更加得心应手。
(五)作业小结
在作业小结环节,我会布置一些与本节课内容相关的作业,让学生在课后进行练习和巩固。同时,我还会提醒学生要注意作业的质量和解题过程的规范性。在下一节课开始时,我会对作业进行讲评和小结,帮助学生发现自己的不足并及时进行改正。
(二)问题导向
在问题导向方面,我将设计一系列具有逻辑性和递进性的问题,引导学生主动探索和解决问题。例如,可以从简单的问题开始,让学生计算一个直角三角形中某个锐角的正弦值、余弦值和正切值,然后逐渐增加难度,让学生解决更复杂的实际问题。通过这样的问题导向,学生能够逐步建立起对锐角三角函数的理解和认识,提高他们的思维能力和创新意识。
华师大版九年级上册《锐角三角函数》教案设计
华师大版九年级上册《锐角三角函数》教案设计
《华师大版九年级上册《锐角三角函数》教案设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
课题
24.3.1锐角三角函数
课型
新授
主备教师
授课教师
课时安排
课时
教学目标
1、知道锐角一定,它的三角函数值就随之确定。
已知直角三角形的两边(比),会求出锐角的四种三角函数值。
2、运用相似三角形的判定定理、性质定理理解锐角一定,它的三角函数值就随之确定。
3、在学习合作交流中学会与人相处
重点难点
重点:已知直角三角形的两边(比),会求出锐角的四种三角函数值
二、提出问题、探索新知
B
1.回忆,我们曾经使用两种方法求出操场旗杆的高度,其中都出现了两个相似的直角三角形,即△ABC∽△A1B1C1,按1:500的比例就一定有
华师大版九年级上册《锐角三角函数》教案设ቤተ መጻሕፍቲ ባይዱ这篇文章共4205字。
难点:区分锐角的四种三角函数。
教学方式方法
小组合作探究
教学内容及过程
创设情境、激趣导入
1、你能说出直角三角形的有关知识吗?
角的关系,边的关系,边角关系(300所对的直角边等于斜边的一半)
在上节课我们提到本章主要探究直角三角形的边角关系,那么直角三角形的边角关系究竟是怎么样的,这就是本节课我们要探讨的问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.3 锐角三角函数
1.锐角三角函数
第1课时锐角三角函数
【知识与技能】
1.使学生掌握锐角的四种三角函数的定义.
2.使学生掌握锐角三角函数的取值范围.
【过程与方法】
1.使学生会利用三角函数的定义,表示出直角三角形中某个锐角的三角函数值.
2.使学生会利用锐角三角函数的定义求三角函数值.
3.使学生学会运用参数法求三角函数值.
【情感态度】
培养学生的数形结合的思想和探索的精神.
【教学重点】
三角函数的定义及三角函数值的求法.
【教学难点】
引入参数三角函数值.
一、情境导入,初步认识
1.含30°角的直角三角形,有什么性质?
答:30°角的直角三角形中,30°角所对的直角边与斜边的比值为1
2
.
2.上述结论与所选取的直角三角形的大小有关吗?
答:无关.
3.含45°角的直角三角形中,45°角所对的直角边与斜边的比值为多少?
这个比值与所选取的直角三角形的大小有关吗?
答:
2
,无关.
4.一般地,在Rt△ABC中,∠A为其一个锐角,当∠A取一个固定的值时,∠A所对的直角边和斜边的比值固定吗?
答:固定不变.如下图
我们把这个固定的比值,称为∠A的正弦,记作sinA,当∠A看作变量时,sinA常称为∠A的正弦函数,正弦函数是三角函数的一种,今天我们就来研究锐角三角函数.
二、思考探究,获取新知
(一)锐角三角函数的定义
如图,在Rt△ABC中,∠C=90°
∠A的正弦:
A BC a sinA
AB c
∠
===
的对边
斜边
∠A的余弦:
A AC b cosA
AB c
∠
===
的邻边
斜边
∠A的正切:
A BC a tanA
A AC b
∠
===
∠
的对边
的邻边
【教学说明】这三个三角函数的书写和含义,特别是不能看成是乘法的关系,另外角的符号也常常省略.
提问:你能按定义写出∠B的三个三角函数来吗?
(二)锐角三角函数的取值范围
在Rt△ABC中,∠A为其一锐角,有0<a<c,0<b<c,∴0<sinA<1,0<cosA<1,tanA>0.
(三)利用锐角三角函数定义求三角函数值
1.直接利用定义求三角函数值
例1 如图,在Rt△ABC中,∠C=90°,AC=15,BC=8,试求出∠A的三个三角函数值.
2.已知直角三角形的两边的比,求三角函数值
例2 已知,在Rt△ABC中,∠C=90°,a∶b=2∶3,求sinA、cosA.
3.已知某锐角三角函数值,求三角函数值.
例3 已知,在Rt△ABC中,∠C=90°,sinA=2
3
,求∠A的另外两个三角函数值.
三、运用新知,深化理解
1.在平面直角坐标系中,点P的坐标为(2,4),O为原点,OP与x轴的夹角为α,则sin α=______.
2.在Rt△ABC中,∠C=90°,ac=
5
13
,则cosA=______.
3.在Rt△ABC中,∠C=90°,tanA=1
3
,则sinA=______,cosA=______.
4.如图,在△ABC中,∠ABC=60°,AB∶BC=2∶5,求tanC的值.
【教学说明】第4题教师适当点拨:过A点作AD⊥BC构造直角三角形.
四、师生互动,课堂小结
1.锐角三角函数的定义:
∠α的正弦:sinα=
α
∠的对边
斜边
∠α的余弦:cosα=
α
∠的邻边
斜边
∠α的正切:tanα=
α
α
∠
∠
的对边
的邻边
2.锐角三角函数的取值范围:
当∠α为锐角时,0<sinα<1;0<cosα<1;tanα>0.
3.利用定义求锐角三角函数值.
1.布置作业:从教材相应练习和“习题24.3中选取.”
2.完成练习册中本课时练习.
本课时遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展.。