高中数学人教A版选修2-1求轨迹方程的常用方法
人教A版选修2-1第二章第2课时导学案§2.1.2 求曲线的方程
§2.1.2 求曲线的方程学习目标1.学会根据条件,选择适当的坐标系求轨迹方程;2.掌握求轨迹方程的基本方法.学习过程一、课前准备(预习教材理P 35~ P 37,找出疑惑之处)复习1:已知曲线C 的方程为 22y x = ,曲线C 上有点(1,2)A ,A 的坐标是不是22y x = 的解?点(0.5,)t 在曲线C 上,则t =___ .复习2:曲线(包括直线)与其所对应的方程(,)0f x y =之间有哪些关系?复习3:求曲线方程的一般步骤是:(1) ;(2) ;(3) ;(4) ;(5) .二、新课导学※ 学习探究引入:圆心C 的坐标为(6,0),半径为4r =,求此圆的方程.问题:此圆有一半埋在地下,求其在地表面的部分的方程.探究:若4AB =,如何建立坐标系求AB 的垂直平分线的方程.【基础练习】1.已知点A(2,5)、B(3,一1),则线段AB 的方程是( ).(A)6x+y-17=0(B)6x+y-17=0(x ≥3)(C)6x+y-17=0(x ≤3)(D)6x+y-17=0(2≤x ≤3)2.直角坐标系内到两坐标轴距离之差等于1的点的轨迹方程是( ). (A) 1=-y x (B) 1=-y x (C)1=-y x (D) 1=±y x .3.设B A ,两点的坐标分别是()()7,3,1,1--,则线段AB 的垂直平分线的方程为: .4.已知等腰三角形三个顶点的坐标分别是()())0,2(,0,2,3,0C B A -,中线)(为原点O AO 所在直线的方程是 .5.已知方程222=+by ax 的曲线经过点⎪⎭⎫ ⎝⎛35,0A 和点(),1,1B 求b a ,的值.※ 典型例题例1(直接法)已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2,一条曲线也在直线l 的上方,它上面的每一个点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条直线的方程.例2 (相关点法) 动点M 在曲线x 2+y 2=1上移动,M 和定点B(3,O)连线的中点为P ,求P 点的轨迹方程,并指出点P 的轨迹.例3(定义法)已知直角三角形ABC, C ∠为直角,,求满足条件的点C 的轨迹方程.例4(参数法)在平面直角坐标系中,O 为坐标原点,已知两点())3,1(,1,3-B A 为,若点C 满足βα+=,其中R ∈βα,且1=+βα,求点C 的轨迹方程.三、总结提升※ 学习小结1. 求曲线的方程;2. 通过曲线的方程,研究曲线的性质.※ 知识拓展求曲线方程常用的方法有:直接法、代入法、参数法、定义法、相关点法、待定系数法、向量法等.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.方程[]2(3412)log (2)30x y x y --+-=的曲线经过点(0,3)A -,(0,4)B ,(4,0)C ,57(,)34D -中的( ). A .0个 B .1个 C .2个 D .3个2.已知(1,0)A ,(1,0)B -,动点满足2MA MB -=,则点M 的轨迹方程是( ).A .0(11)y x =-≤≤B .0(1)y x =≥C .0(1)y x =≤-D .0(1)y x =≥3.曲线y =与曲线0y x +=的交点个数一定是( ).A .0个B .2个C .4个D .3个4.若定点(1,2)A 与动点(,)P x y 满足4O PO A ∙=,则点P 的轨迹方程是 .5.由方程111x y -+-=确定的曲线所围成的图形的面积是 . 课后作业1.以O 为圆心,2为半径,上半圆弧的方程是什么?在第二象限的圆弧的方程是什么?2.已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B .设点M 是线段AB 的中点,求点M 的轨迹方程.。
人教A版高中数学选修2—1《抛物线及其标准方程》课件
教材 分析
教学 方法
过程 设计
教学 反思
教 学 反 思
1.对于这一节内容,有两种不同的处理方 式:一种是直接介绍而不讲具体的探寻过程, 这样的处理不利于我校学生数学思维能力的 培养;二是本课方式,通过强调对公式的探 索过程,提高学生利用代数方法处理几何问 题的能力;
教 学 反 思
2.在标准方程的推导过程中,本课重点介绍了寻 找轨迹方程的基本思想:建立直角坐标系——设 点——寻找等量关系.让学生在明了基本步骤的 前提下,再进行有效的推导;
目标 分析
教材 分析
教学 方法
过程 设计
教学 反思
教 材 分 析
1.教学内容及地位
《抛物线及其标准方程》是普通高中课程标准教科 书(选修2-1)人民教育出版社第二章的第四节“抛物 线”的第一节课,抛物线是继椭圆、双曲线之后的第三 种圆锥曲线,与前两者不同的是学生在初中已学过“二 次函数的图象是抛物线”,在物理上也研究过“抛物线 是抛体的轨迹”,这些足以说明抛物线在实际生活中应 用的广泛性,在这节内容里,我们将更深入的研究抛物 线的定义及其标准方程。为进一步理解圆锥曲线的性质 做好铺垫,在教学中有承上启下的作用。
2、抛物线的标准方程
(1)教师指出:定点F到定直线L的距离是常数,
可设为P(P﹥0),要求学生自己建立适当的坐标
系,求出抛物线的方程。 (2)课件投影三种建系法:
建 系 方 式
以L所在直线为 y轴,过F作L的 垂线为X轴建立 直角坐标系。
以F为原点, 过F与L垂直的 直线为X轴, 建立直角坐标 系。
目标 分析
教材 分析
Hale Waihona Puke 教学 方法过程 设计
教学 反思
目 标 分 析
椭圆标准方程课件-高二上学期数学人教A版选修2-1
思考:当椭圆的焦点在y轴上时,它的标准方程是怎样 的呢
椭圆的标准方程
y2 a2
x2 b2
1
(a b 0)
它表示:
① 椭圆的焦点在y轴
② 焦点是F1(0,-c)、 F2(0,c) ③ c2= a2 - b2
y
F2
P
ox
F1
填表
标准方程
x2 + y2 = 1a > b > 0 y2 + x2 = 1a > b > 0
因此, 所求椭圆的标准方程为x2 y2 1 .
10 6
求椭圆标准方程的方法: (1)定义法; (2)待定系数法; 注意先判断焦点的位置. 探究8、本节课你都学到了哪些知识?
1、椭圆的标准方程
标准方程
x2 + y2 = 1a > b > 0 y2 + x2 = 1a > b > 0
a2 b2
a2 b2
a2 b2
a2 b2
y
不
图形
同
点
y P
F1 O F2
x
F2 P
O
x
F1
焦点坐标
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
相
定义
平面内到两个定点F1,F2的距离的和等 于常数(大于F1F2)的点的轨迹
同 点
a、b、c 的关系
a2 = b2 + c2
焦点位置的判断 分母哪个大,焦点就在哪个轴上
并且经过点
, 求它的标准方程.
解: 由椭圆的定义知
2a ( 5 2)2 ( 3)2 ( 5 2)2 ( 3)2 2 10
人教版数学高二数学选修2-1 2.2三种方法巧解一类椭圆轨迹变式问题
三种方法巧解一类椭圆轨迹变式问题椭圆的轨迹问题是圆锥曲线中一块重要内容,求解的方法较多,但常见的有三类轨迹问题,一般可用定义法、转移法、交轨法进行破解,下面就如何用这三种方法巧解三类相似的椭圆的轨迹问题进行举例分析:一、定义法破椭圆轨迹 所谓定义法,就是根据椭圆的定义设出椭圆的方程,若是标准型的椭圆则求出涉及到椭圆方程的二个参数,a b ;对于非标准型的椭圆则需要利用第一定义求解.例1、一个椭圆的焦点是()0,0和(4,0)F ,长半轴为3,求这个椭圆方程.分析:在所给的条件为非标准情况时,如适合椭圆定义,也可用椭圆的定义求它的方程.解:设(,)M x y 为椭圆上任意一点,根据椭圆的定义有6MO MF +=6=,移项,平方,整理可得:225920250x y x +--=,即22(2)195x y -+=为所求椭圆方程. 点评:此题中的椭圆为非标准型的,解题时主要是利用了第一定义求方程,但当已知椭圆是标准型时,求椭圆方程一般为以下三步:1、依题意设出方程22221x y a b +=或22221x y b a+=,或利用椭圆的定义;2、根据已知条件,建立关于,a b 的方程;3、解方程求出,a b ,然后代入所设方程.二、转移法破椭圆轨迹所谓转移法,就是指转移代入法,主要是利用动点M 和曲线上的点P 的关系(有相关性),通过求出点M 与点P 的坐标关系,用点M 的坐标表示点P 坐标,然后代入点P 坐标所满足方程的方法.例2、已知圆229x y +=,从这个圆上任意一点P 向x 轴作垂线段PP ',点M 在PP '上,并且2PM MP '=,求点M 的轨迹.分析:此题是一个已知P 点的轨迹求未知点M 的轨迹问题,需要通过建立已知点的坐标和未知点的坐标关系求解,即转移代入法.解:设(,)M x y ,P 的坐标为()00,x y ,则由题意如图,003x x y y=⎧⎨=⎩,因为点P 在圆229x y +=上,即满足22009x y +=,将003x x y y=⎧⎨=⎩代入得2299x y +=,即2219x y +=,所以点M 的轨迹是一个圆. 点评:此题是一个转移代入法求椭圆轨迹问题,解题的步骤是:1、先写出P 点与M 点的关系,2、用点M 的坐标表示点P 的坐标,3、代入点P 的坐标所满足的方程。
高二数学人教A版选修2-1课件:2.1.2 求曲线的方程(共25张ppt)
超级记忆法-记忆 规律 第四个记忆周期是 1天 第五个记忆周期是 2天 第六个记忆周期是 4
天 第七个记忆周期是 7天 第八个记忆周期是15天 这五个记忆周期属于长期记忆的范畴。 所以我们可以选择这样的时间进行记忆的巩固,可以记得更扎实。
如何利用规律实现更好记忆 呢?
1.圆心在直线x-2y+7=0上的圆C与x轴交于两点 A(-2,0),B(-4,0),则圆C的方程为_______. 答案:(x+3)2+(y-2)2=5
2.在△ABC中,B,C 坐标分别为(-3,0), (3,0),且三角形周长为16,则点A的轨迹方 程是_______________________________.
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
什么是学习力
什么是学习力-你遇到这些问 题了吗
备习惯
积极
以终
主动
为始
分清 主次
不断 更新
高效学习模型
高效学习模型-学习的完
整过程
方向
资料
筛选
认知
高效学习模型-学习的完
整过程
消化
固化
模式
拓展
小思 考
TIP1:听懂看到≈认知获取;
TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
【例2】已知一条直线l和它上方的一个点F,点F到l 的距离是2.一条曲线也在l的上方,它上面的每一 点到F的距离减去到l的距离的差都是2,建立适当的 坐标系,求这条曲线的方程. 分析:在建立坐标系时,一般应当充分 利用已知条件中的定点、定直线等, 这样可以使问题中的几何特征得到更好的 表示,从而使曲线方程的形式简单一些.
高中数学人教A版选修2-1第二章椭圆及其标准方程精讲讲义
当 PF1 PF 2 2a F1F 2 时, P 的轨迹为 以 F1、F2 为端点的线段
2.椭圆的方程与几何性质:
标准方程
x2 y 2 1(a b 0) a2 b2
参数关系
性
焦点
(c,0), (c,0)
质
焦距
范围
| x | a,| y | b
a2 b2 c2 2c
y2 a2
x2 b2
举一反三:【变式 1】两焦点的坐标分别为 0,4,0,- 4,且椭圆经过点(5,0)。
【变式 2】已知一椭圆的对称轴为坐标轴且与椭圆 x 2 y 2 1有相同的焦点,并且经过点(3, 94
-2),求此椭圆的方程。
2
类型三:求椭圆的离心率或离心率的取值范围 例 3.椭圆 x 2 y 2 1(a>b>0)的半焦距为 c,若直线 y=2x 与椭圆的一个交点的横坐标为 c,求 a2 b2
(Ⅰ)求以 A、B 为焦点,且过 C、D 两点的椭圆的标准方程;
5:直线与椭圆问题(韦达定理的运用)
弦长公式:若直线 l : y kx b 与圆锥曲线相交与 A 、 B 两点, A(x1, y1), B(x2 , y2 ) 则
弦长 AB (x1 x2 )2 ( y1 y2 )2 (x1 x2 )2 (kx1 kx2 )2 1 k 2 x1 x2
5
举一反三【变式 1】已知直线 l:y=2x+m 与椭圆 C: x2 y2 1 交于 A、B 两点 54
(1) 求 m 的取值范围
(2) 若|AB|= 5 15 ,求 m 的值 6
例 9、已知椭圆 C: x2 y2 1 ,直线 l:y=kx+1,与 C 交于 AB 两点,k 为何值时,OA⊥OB. 4
2017-2018学年高中数学人教A版选修2-1教师用书:2-4
第1课时 抛物线及其标准方程[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 64~P 67的内容,回答下列问题.(1)观察教材P 64-图2.4-1,点F 是定点,l 是不经过点F 的定直线,H 是l 上任意一点,过点H 作MH ⊥l ,线段FH 的垂直平分线m 交MH 于点M ,拖动点H ,观察点M 的轨迹.①M 的轨迹是什么形状? 提示:抛物线.②|MH |与|MF |之间有什么关系? 提示:相等.③抛物线上任意一点M 到点F 和直线l 的距离都相等吗? 提示:都相等.(2)观察教材P 65-图2.4-2,直线l 的方程为x =-p2,定点F 的坐标为⎝⎛⎭⎫p 2,0,设M (x ,y ),根据抛物线的定义可知|MF |=|MH |,则M 点的轨迹方程是什么?提示:y 2=2px (p >0). 2.归纳总结,核心必记 (1)抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)抛物线的标准方程续表[问题思考](1)在抛物线定义中,若去掉条件“l 不经过点F ”,点的轨迹还是抛物线吗? 提示:不一定是抛物线,当直线l 经过点F 时,点的轨迹是过点F 且垂直于定直线的一条直线,l 不过定点F 时,点的轨迹是抛物线.(2)到定点A (3,0)和定直线l :x =-3距离相等的点的轨迹是什么?轨迹方程又是什么? 提示:轨迹是抛物线,轨迹方程为:y 2=12x .(3)若抛物线的焦点坐标为(2,0),则它的标准方程是什么?提示:由焦点在x 轴正半轴上,设抛物线的标准方程为y 2=2px (p >0),其焦点坐标为⎝⎛⎭⎫p 2,0,则p 2=2,故p =4.所以抛物线的标准方程是y 2=8x .[课前反思]通过以上预习,必须掌握的几个知识点.(1)抛物线的定义是: ;(2)抛物线的焦点和准线的定义是: ; (3)抛物线的标准方程是什么?其对应的抛物线的开口方向有什么特点?焦点坐标和准线方程又是什么?.[思考1] 抛物线的标准方程有哪几种类型?名师指津:y 2=2px (p >0);y 2=-2px (p >0);x 2=2py (p >0);x 2=-2py (p >0). [思考2] 抛物线方程中p 的几何意义是什么? 名师指津:p 的几何意义是:焦点到准线的距离.[思考3] 如何根据抛物线标准方程求焦点坐标和准线方程?名师指津:先确定抛物线的对称轴和开口方向,然后求p ,利用焦点坐标及准线的定义求解.讲一讲1.求下列抛物线的焦点坐标和准线方程: (1)y 2=-14x ;(2)5x 2-2y =0; (3)y 2=ax (a >0).[尝试解答] (1)因为p =7,所以焦点坐标是⎝⎛⎭⎫-72,0,准线方程是x =72. (2)抛物线方程化为标准形式为x 2=25y ,因为p =15,所以焦点坐标是⎝⎛⎭⎫0,110,准线方程是y =-110.(3)由a >0知p =a 2,所以焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a 4.根据抛物线方程求其焦点坐标和准线方程时,首先要看抛物线方程是否为标准形式,如果不是,要先化为标准形式;然后判断抛物线的对称轴和开口方向,再利用p 的几何意义,求出焦点坐标和准线方程.练一练1.求抛物线y =ax 2(a ≠0)的焦点坐标和准线方程. 解:把抛物线方程y =ax 2化成标准方程x 2=1ay .当a >0时,焦点坐标是⎝⎛⎭⎫0,14a ,准线方程是y =-14a ; 当a <0时,焦点坐标是⎝⎛⎭⎫0,14a ,准线方程是y =-14a. 综上知,所求抛物线的焦点坐标为⎝⎛⎭⎫0,14a ,准线方程为y =-14a.[思考1]抛物线标准方程有什么特点?名师指津:等号一边是某个变量的完全平方,等号的另一边是另一个变量的一次项.[思考2]如何求抛物线的标准方程?名师指津:(1)确定抛物线的对称轴和开口方向;(2)求p的值.讲一讲2.求适合下列条件的抛物线的标准方程:(1)过点M(-6,6);(2)焦点F在直线l:3x-2y-6=0上.[尝试解答](1)∵点M(-6,6)在第二象限,∴过M的抛物线开口向左或开口向上.若抛物线开口向左,焦点在x轴上,设其方程为y2=-2px(p>0),将点M(-6,6)代入,可得36=-2p×(-6),∴p=3.∴抛物线的方程为y2=-6x.若抛物线开口向上,焦点在y轴上,设其方程为x2=2py(p>0),将点M(-6,6)代入可得,36=2p×6,∴p=3,∴抛物线的方程为x2=6y.综上所述,抛物线的标准方程为y2=-6x或x2=6y.(2)①∵直线l与x轴的交点为(2,0),∴抛物线的焦点是F(2,0),∴p2=2,∴p=4,∴抛物线的标准方程是y2=8x.②∵直线l与y轴的交点为(0,-3),即抛物线的焦点是F(0,-3),∴p2=3,∴p=6,∴抛物线的标准方程是x2=-12y.综上所述,所求抛物线的标准方程是y2=8x或x2=-12y.求抛物线标准方程的两种方法(1)当焦点位置确定时,可利用待定系数法,设出抛物线的标准方程,由已知条件建立关于参数p 的方程,求出p 的值,进而写出抛物线的标准方程.(2)当焦点位置不确定时,可设抛物线的方程为y 2=mx 或x 2=ny ,利用已知条件求出m ,n 的值.练一练2.根据下列条件写出抛物线的标准方程: (1)准线方程为y =-1;(2)焦点在x 轴的正半轴上,焦点到准线的距离是3.解:(1)由准线方程为y =-1知抛物线焦点在y 轴正半轴上,且p2=1,则p =2.故抛物线的标准方程为x 2=4y .(2)设焦点在x 轴的正半轴上的抛物线的标准方程为y 2=2px (p >0), 则焦点坐标为⎝⎛⎭⎫p 2,0,准线为x =-p 2, 则焦点到准线的距离是⎪⎪⎪⎪-p 2-p2=p =3, 因此所求的抛物线的标准方程是y 2=6x .讲一讲3.已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时的P 点坐标.[尝试解答] 如图,作PN ⊥l 于N (l 为准线),作AB ⊥l 于B ,则|P A |+|PF |=|P A |+|PN |≥|AB |,当且仅当P 为AB 与抛物线的交点时,取等号. ∴()|P A |+|PF |min=|AB |=3+12=72.此时y P =2,代入抛物线得x P =2,∴P 点坐标为(2,2).(1)抛物线的定义中指明了抛物线上的点到焦点的距离与到准线的距离相等,故二者可相互转化,这也是利用抛物线定义解题的实质.(2)解决与抛物线焦点、准线距离有关的最值、定值问题时,首先要注意应用抛物线的定义进行转化,其次是注意平面几何知识的应用,例如两点之间线段最短;三角形中三边间的不等关系;点与直线上点的连线中,垂线段最短等.练一练3.已知点P 是抛物线y 2=2x 上的一个动点,求点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值.解:由抛物线的定义可知,抛物线上的点到准线的距离等于到焦点的距离.由图可知, 当点P ,A (0,2),和抛物线的焦点F ⎝⎛⎭⎫12,0三点共线时距离之和最小.所以最小距离d =⎝⎛⎭⎫0-122+(2-0)2=172.讲一讲4.一辆卡车高3 m ,宽1.6 m ,欲通过截面为抛物线型的隧道,已知拱口宽AB 恰好是拱高的4倍,若拱口宽为a m ,求能使卡车通过的a 的最小整数值.[尝试解答] 以拱顶为原点,拱高所在直线为y 轴,建立直角坐标系,如图所示,设抛物线方程为x 2=-2py (p >0),则点B 的坐标为⎝⎛⎭⎫a 2,-a4,由点B 在抛物线上, 得⎝⎛⎭⎫a 22=-2p ⎝⎛⎭⎫-a 4, 所以p =a2,所以抛物线方程为x 2=-ay .将点(0.8,y )代入抛物线方程,得y =-0.64a.欲使卡车通过隧道,应有a 4-|y |=a 4-0.64a >3.解得a >12.21,或a <-0.21(舍去). ∵a 取整数, ∴a 的最小值为13.在建立抛物线的方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系,这样可使得方程不含常数项,形式更为简单,便于计算.练一练4.喷灌的喷头装在直立管柱OA 的顶点A 处,喷出水流的最高点B 高5 m ,且与OA 所在的直线相距4 m ,水流落在以O 为圆心,半径为9 m 的圆上,则管柱OA 的长是多少?解:如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x 2=-2py (p >0),因为点C (5,-5)在抛物线上, 所以25=-2p ·(-5),因此2p =5, 所以抛物线的方程为x 2=-5y , 点A (-4,y 0)在抛物线上, 所以16=-5y 0,即y 0=-165,所以OA 的长为5-165=1.8(m).所以管柱OA 的长为1.8 m.—————————————[课堂归纳·感悟提升]——————————————— 1.本节课的重点是抛物线标准方程的求法和焦点坐标、准线的求法.难点是抛物线定义的应用和抛物线方程的实际应用.2.本节课要重点掌握的规律方法(1)由抛物线方程求焦点坐标和准线方程,如讲1; (2)求抛物线的标准方程,如讲2; (3)利用抛物线的定义解决最值问题,如讲3.3.由抛物线方程求焦点坐标和准线方程时,如果不是标准方程应先转化为标准方程,这是本节课的易错点.课时达标训练(十二)[即时达标对点练]题组1 由抛物线方程求焦点坐标和准线方程 1.对抛物线y =4x 2,下列描述正确的是( ) A .开口向上,焦点为(0,1) B .开口向上,焦点为⎝⎛⎭⎫0,116 C .开口向右,焦点为(1,0) D .开口向右,焦点为⎝⎛⎭⎫0,116 解析:选B 由y =4x 2,得x 2=14y ,故抛物线开口向上,且焦点坐标为⎝⎛⎭⎫0,116. 2.抛物线y =-x 28的准线方程是( )A .x =132B .y =2C .x =14D .y =4解析:选B 由y =-x 28,得x 2=-8y ,故抛物线开口向下,其准线方程为y =2.3.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( ) A.|a |4 B.|a |2 C .|a | D .-a 2解析:选B ∵2p =|a |,∴p =|a |2.∴焦点到准线的距离是|a |2.题组2 求抛物线的标准方程4.焦点是F (0,5)的抛物线的标准方程是( ) A .y 2=20x B .x 2=20y C .y 2=120x D .x 2=120y解析:选B 由5=p2得p =10,且焦点在y 轴正半轴上,故方程形式为x 2=2py ,所以x 2=20y .5.顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4x B .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y解析:选C 设抛物线方程为y 2=-2p 1x 或x 2=2p 2y ,把(-4,4)代入得16=8p 1或16=8p 2,即p 1=2或p 2=2.故抛物线的标准方程为y 2=-4x 或x 2=4y . 题组3 抛物线定义的应用6.设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆解析:选A 由题意知,圆C 的圆心到点(0,3)的距离比到直线 y =0的距离大1,即圆C 的圆心到点(0,3)的距离与到直线y =-1的距离相等,根据抛物线的定义可知,所求轨迹是一条抛物线.7.若抛物线y 2=8x 上一点P 到其焦点F 的距离为9,则点P 的坐标为( ) A .(7,±14) B .(14,±14) C .(7,±214) D .(-7,±214)解析:选C 由y 2=8x ,得抛物线的准线方程为x =-2,因P 点到焦点的距离为9,故P 点的横坐标为7.由y 2=8×7,得y =±214,即P (7,±214).8.若点P 是抛物线y 2=2x 上的一个动点,求点P 到直线3x -4y +72=0的距离与P 到该抛物线的准线的距离之和的最小值.解:如图.|P A |+|PQ |=|P A |+|PF |≥|AF |min .AF 的最小值为F 到直线3x -4y +72=0的距离.d =⎪⎪⎪⎪3×12+7232+42=1.题组4 抛物线方程的实际应用9.某抛物线拱桥跨度是20米,拱桥高度是4米,在建桥时,每4米需用一根支柱支撑,求其中最长支柱的长.解:如图,建立直角坐标系,设抛物线方程为x 2=-2py (p >0).依题意知,点P(10,-4)在抛物线上,所以100=-2p×(-4),2p=25.即抛物线方程为x2=-25y.因为每4米需用一根支柱支撑,所以支柱横坐标分别为-6,-2,2,6.由图知,AB是最长的支柱之一,设点B的坐标为(2,y B),代入x2=-25y,得y B=-4 25.所以|AB|=4-425=3.84(米),即最长支柱的长为3.84米.10.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少有0.5米.(1)以抛物线的顶点为原点O,其对称轴所在的直线为y轴,建立平面直角坐标系(如图),求该抛物线的方程;(2)若行车道总宽度AB为7米,请计算通过隧道的车辆限制高度为多少米(精确到0.1米)?解:如图所示,(1)依题意,设该抛物线的方程为x2=-2py(p>0),因为点C(5,-5)在抛物线上,所以该抛物线的方程为x 2=-5y .(2)设车辆高h ,则|DB |=h +0.5,故D (3.5,h -6.5),代入方程x 2=-5y ,解得h =4.05,所以车辆通过隧道的限制高度为4.0米.[能力提升综合练]1.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.12B .1C .2D .4解析:选C ∵抛物线y 2=2px 的准线x =-p 2与圆(x -3)2+y 2=16相切,∴-p 2=-1,即p =2.2.抛物线y =12x 2上的点到焦点的距离的最小值为( )A .3B .6 C.148 D.124解析:选C 将方程化为标准形式是x 2=112y ,因为2p =112,所以p =124.故到焦点的距离最小值为148. 3.动点到点(3,0)的距离比它到直线 x =-2的距离大1,则动点的轨迹是( )A .椭圆B .双曲线C .双曲线的一支D .抛物线解析:选D 已知条件可等价于“动点到点(3,0)的距离等于它到直线x =-3的距离”,由抛物线的定义可判断,动点的轨迹为抛物线,故选D.4.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34B .1 C.54 D.74解析:选C ∵|AF |+|BF |=x A +x B +12=3, ∴x A +x B =52. ∴线段AB 的中点到y 轴的距离为x A +x B 2=54. 5.已知抛物线y 2=2px (p >0)上一点M (1,m )到其焦点的距离为5,双曲线x 2-y 2a =1的左顶点为A ,若双曲线的一条渐近线与直线AM 垂直,则实数a =________.解析:根据抛物线的定义得1+p 2=5,解得p =8.不妨取M (1,4),则AM 的斜率为2,由已知得-a ×2=-1,故a =14. 答案:146.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________.解析:如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6,∴|PF |=x 0+2=8.答案:87.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求m 的值、抛物线方程和准线方程.解:法一:如图所示,设抛物线的方程为x 2=-2py (p >0),则焦点F ⎝⎛⎭⎫0,-p 2,准线l :y =p 2,作MN ⊥l ,垂足为N ,则|MN |=|MF |=5,而|MN |=3+p 2=5,即p =4.所以抛物线方程为x 2=-8y ,准线方程为y =2.由m 2=-8×(-3)=24,得m =±2 6.法二:设所求抛物线方程为x 2=-2py (p >0),则焦点为F ⎝⎛⎭⎫0,-p 2. ∵M (m ,-3)在抛物线上,且|MF |=5,故⎩⎪⎨⎪⎧ m 2=6p , m 2+⎝⎛⎭⎫-3+p 22=5,解得⎩⎨⎧p =4,m =±2 6. ∴抛物线方程为x 2=-8y ,m =±26,准线方程为y =2.8.已知圆C 的方程x 2+y 2-10x =0,求与y 轴相切且与圆C 外切的动圆圆心P 的轨迹方程.解:设P 点坐标为(x ,y ),动圆的半径为R ,∵动圆P 与y 轴相切,∴R =|x |.∵动圆与定圆C :(x -5)2+y 2=25外切,∴|PC |=R +5.即|PC |=|x |+5.当点P 在y 轴右侧时,即x >0,则|PC |=x +5,故点P 的轨迹是以(5,0)为焦点的抛物线,则圆心P 的轨迹方程为y 2=20x (x >0);当点P 在y 轴左侧时,即x <0,则|PC |=-x +5,此时点P 的轨迹是x 轴的负半轴,即方程y =0(x <0).故点P 的轨迹方程为y 2=20x (x >0)或y =0(x <0).。
高中数学选修2-1《圆锥曲线》教案
4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。
求轨迹方程的常用方法
轨迹(曲线)方程的求法求轨迹方程问题是高中数学的一个难点,求轨迹方程的常用方法有:1)直接法;2)待定系数法;3)定义法;4)代入法;5)参数法;6)交轨法. 下面分别介绍以上六种方法:(1)直接法 —— 直接利用条件通过建立x 、y 之间的关系式f (x ,y )=0,是求轨迹的最基本的方法. 课标教材(人教版)²高中数学 选修2﹣1(以下所称教材都是指该教材)的《§2.1.2 求曲线的方程》中介绍了此法.直接法求轨迹(曲线)方程一般有五个步骤:① 建立适当的坐标系,设曲线上任意一点M 的坐标为(x ,y ); ② 写出点M 运动适合的条件P 的集合:P={M |P(M)}; ③ 用坐标表示条件P(M),列出方程 f (x ,y )=0; ④ 化方程 f (x ,y )=0 为最简形式;⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点. 一般地,步骤(5)可省略,如有特殊情形,可以适当说明.教材推导圆锥曲线(椭圆、双曲线、抛物线)的标准方程,都是使用直接法. 教材中还配有大量练习题(如:教材P.37练习/3,习题2.1/A 组/2、3,B 组/1、2;P.41例3,P.42练习/4,P.47例6,P.49习题2.2 / B 组/3;P.59例5,P.62习题2.3 / B 组/3;P.74习题2.4 / B 组/3;P.80复习参考题/ A 组/10,B 组/5).例1. 如图所示,线段AB 与CD 互相垂直平分于点O ,|AB|=2a (a >0),|CD|=2b (b>0),动点P 满足|PA|²|PB|=|PC|²|PD|. 求动点P 的轨迹方程.解:以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立直角坐标系,则A (-a ,0),B (a ,0),C (0,-b ),D (0,b ), 设P (x ,y ),由题意知 |PA|²|PB|=|PC|²|PD|,∴22)(y a x ++²22)(y a x +-=22)(b y x ++²22)(b y x -+,化简得 x 2-y 2=222b a -.故动点P 的轨迹方程为 x 2-y 2=222b a -.【练习1】 1、已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN |²|MP |+MN ²NP =0,求动点P (x ,y )的轨迹方程.2、如图所示,过点P (2,4)作互相垂直的直线l 1、l 2.若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M 的轨迹方程.(2)待定系数法 —— 当已知所求曲线的类型(如:直线,圆锥曲线等)求曲线方程,可先根据条件设出所求曲线的方程,再由条件确定方程中的系数(待定系数),代回所设方程即可.要注意设出所求曲线的方程的技巧.(如:教材P.40例1,P.42练习/2,P.46例5,P.48练习/3、4,P.49习题2.2/A 组/2、5、9;P.54例1,P.55练习/1,P.58例4,P.61练习/2、3,P.61习题2.3 / A 组/2、4、6,B 组/1;P.67练习/1,P.68例3,P.72练习/1,P.73习题2.4 / A 组/4、7;P.80复习参考题/ A 组/1).例2 根据下列条件,求双曲线的标准方程.(1)与双曲线41622y x -=1有公共焦点,且过点(32,2). (2)与双曲线16922y x -=1有共同的渐近线,且过点(-3,23); 解: (1)设双曲线方程为2222by a x -=1. 由题意易求c=25.∵双曲线过点(32,2), ∴()2223a -24b=1. 又 ∵a 2+b 2=(25)2, ∴解得 a 2=12,b 2=8.故 所求双曲线的方程为 81222y x -=1. (2)设所求双曲线方程为16922y x -=λ(λ≠0), 将点(-3,23)代入得λ=41,∴ 所求双曲线方程为16922y x -=41, 即49422y x -=1. 【练习2】 已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),但|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.(3)定义法 —— 如果根据已知能够确定动点运动的条件符合某已知曲线的定义,则可由该曲线的定义直接写出动点轨迹方程.(如:教材P.49习题2.2/A 组/1、7,B 组/2;P.54例2,P.62习题2.3/A 组/5,B 组/2)例3. 已知动圆过()1,0,且与直线1x =-相切. (1) 求动圆圆心的轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设动圆圆心为M ,定点()1,0为F ,过点M 作直线1x =-的垂线,垂足为N ,由题意知: MF MN =即动点M 到定点F 与到定直线1x =-的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线, 其中()1,0F 为焦点,1x =-为准线,∴动圆圆心的轨迹方程为 x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k k =->,01k k ∴<>或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=, 即()()21212110ky y y y --+=,整理得 2221212(1)()0k y y k y y k +-++=,∴ 2224(1)40k k k k k +-⋅+=, 解得4k =-或0k =(舍去), 又 40k =-<,∴ 直线l 存在,其方程为440x y +-=【练习3】 1、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.2、在△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0)且满足条件x =sinC -sinB=21sinA ,则动点A 的轨迹方程是 ( ) A. 2216a x -221516a y =1(y ≠0)B. 2216a y -22316a x =1(x ≠0)C. 2216a x -221516a y =1(y ≠0)的左支 D. 2216a x -22316ay =1(y ≠0)的右支(4)代入法(也叫相关点法或转移法) ——若动点P(x ,y )随另一动点Q(x 1,y 1)的运动而运动,并且Q(x 1,y 1)又在某已知曲线上运动,则求点P 的轨迹方程问题常用此法.代入法求轨迹(曲线)方程一般有以下几个步骤:① 设所求点P 的坐标为 (x ,y ) (称之为从动点),动点Q 的坐标为(x 1,y 1) (称之为主动点) ② 找出点P 与点Q 的坐标关系;③ 用从动点的坐标x 、y 的代数式表示主动点的坐标x 1、y 1; ④ 再将x 1、y 1代入已知曲线方程,即得要求的动点轨迹方程.(如:教材P.41例2,P.50习题2.2 / B 组/1;P.74习题2.4 / B 组/1)例4. 设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN =2MP ,PM ⊥PF ,当点P 在y 轴上运动时,求点N 的轨迹方程. 解设N (x ,y ),M (x 1,0),P (0,y 0),由MN =2MP 得(x -x 1,y )=2(-x 1,y 0),∴11022x x x y y -=-⎧⎨=⎩,即1012x x y y =-⎧⎪⎨=⎪⎩.∵PM ⊥PF ,PM =(x 1,-y 0),PF =(1,-y 0), ∴(x 1,-y 0)·(1,-y 0)=0,∴x 1+y 2=0. ∴-x +42y =0,即y 2 = 4x .故所求的点N 的轨迹方程是 y 2 = 4x .【练习4】 如图所示,已知P (4,0)是圆 x 2+y 2=36 内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.(5)参数法 ——当动点P (x ,y )的横坐标x 、纵坐标y 之间的关系不易直接找到时,可以考虑将x 、y 都用一个中间变量(参数)来表示,即得参数方程,再消去参数就可得到普通方程.例5. 如图所示,已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B. 设点M 是线段AB 的中点,求点M 的轨迹方程.解 方法一(参数法):设M 的坐标为(x ,y ).若直线CA 与x 轴垂直,则可得到M 的坐标为(1,1). 若直线CA 不与x 轴垂直,设直线CA 的斜率为k ,则直线CB 的斜率为-k1, 故直线CA 方程为:y =k(x -2)+2,令y =0得x =2-k2,则A 点坐标为(2-k2,0).CB 的方程为:y =-k1(x -2)+2,令x =0,得y =2+k2, 则B 点坐标为(0,2+k 2),由中点坐标公式得M 点的坐标为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=-=+-=k k k k 112022112022y x ①, 消去参数k 得到x +y -2=0 (x ≠1), 又∵ 点M (1,1)在直线x +y -2=0上, 综上所述,所求轨迹方程为x +y -2=0.方法二(直接法)设M (x ,y ),依题意A 点坐标为(2x ,0),B 点坐标为(0,2y ).∵|MA|=|MC|, ∴22)2(y x x +-=22)2()2(-+-y x , 化简得x +y -2=0.方法三(定义法)依题意 |MA|=|MC|=|MO|,即:|MC|=|MO|,所以动点M 是线段OC 的中垂线,故由点斜式方程得到:x +y -2=0.(6)交轨法 —— 当所求轨迹上的动点是两动曲线的交点时,只要把两动曲线(族)的方程分别求出:0),,(=t y x f 与0),,(=t y x g(t 为参数),然后消去参数t ,即得所求轨迹方程.例6. 如图,过圆224x y +=与x 轴的两个交点A 、B 作圆的切线AC 、BD ,再过圆上任意一点H 作圆的切线,交AC 、BD 于C 、D 两点,设AD 、BC 的交点为R ,求动点R 的轨迹E 的方程.解:设点H 的坐标为(0x ,0y ),则20x +20y =4 由题意可知0y ≠0,且以H 为切点的圆的切线的斜率为0x y -, ∴切线CD 方程为 y -0y =0x y -(x -0x ),展开得 0x x +0y y =20x +20y =4, 即 以H 为切点的圆的切线方程为 0x x +0y y =4,∵A (-2,0),B (2,0),将x =±2代人0x x +0y y =4 可得 点C 、D 的坐标分别为C (-2,0042x y +),D (2,042x y -), 则直线AD 、BC 的方程分别为AD l :002424y x x y +=- …… ①, BC l :002424y x x y -=+- …… ②将两式相乘并化简可得动点R 的轨迹E 的方程为 2244x y +=,即2214x y += 解法二:设点R 的坐标为(0x ,0y );直线AR 的方程分别为y =002y x +(x +0x ),与直线BD 的方程x =2联立,解得D (2,0042y x +),同法可得C (-2,0042y x --),则直线CD 斜率为002024x y x -, ∴直线CD 的方程为y -0042y x --=002024x yx -(x +2)∵直线CD 与⊙O 相切, ∴圆心O 到直线CD 的距离等于圆半径2,000244x y y -=2,化简得 (20x -4)2+420x 20y =(420y )2整理得 (20x -4)2+420y (20x -4)=0, ∴20x -4=0 (舍去)或20x -4+420y =0即 动点R 的轨迹E 的方程为2244x y +=,即2214x y +=总结:求轨迹方程的方法:(1)求单个动点的轨迹问题,用直接法 或待定系数法 或定义法; (2)求两个动点的轨迹问题,用代入法;(3)求多个动点的轨迹问题,用参数法 或交轨法。
2014-2015学年高中数学(人教版选修2-1)配套课件第二章 2.1.2 求曲线的方程
0+9+x1 x= , 3
x1=3x-9, 所以 y1=3y.
因为点C(x1,y1)在曲线x2-y2=18上运动,所以(3x
-9)2-(3y)2=18,整理得(x-3)2-y2=2,为所求轨迹方 程. 点评:代入法求轨迹方程就是利用所求动点P(x,y) 与相关动点 Q(x0,y0)坐标间的关系式,且 Q(x0,y0)又在 某已知曲线上,则可用所求动点P的坐标(x,y)表示相关动 点Q的坐标(x0,y0),即利用x,y表示x0,y0,然后把x0,
变 式 迁 移
1.若A、B两点的坐标分别是(1,0)、(-1,0),
且kMA· kMB=-1,则动点M的轨迹方程是什么? 答案: x2+y2=1(x≠±1)
栏 目 链 接
题型二 例2
定义法求曲线方程 已知圆C:(x-1)2+y2=1,过原点O作圆的
任意弦,求所作弦的中点的轨迹方程.
解析:如图,设 OQ 为过 O 点的一条弦, P(x,y)为线段 OQ 的中 1 点,则 CP⊥OQ,设 M 为 OC 的中点,则 M 的坐标为 ,0. 2 因为∠OPC=90°, 所以动点 P 在以点 M 为圆心,以 OC 为直径的圆上,所以圆的 12 1 方程为x- +y2= (0<x≤1). 2 4
代入法求曲线方程
例3 已知△ABC的两个顶点 A、 B的坐标分别为
A(0,0), B(9,0),顶点C在曲线x2-y2=18上运动,求△ABC 的重心的轨迹方程.
解析:设 M(x,y)为所求轨迹上任意一点,顶点 C(x1,y1), 则由三角形重心公式得
栏 目 链 接
0+0+y y= , 3
2
+
(y-4)2= 4x2+4y2,
高中数学选修2-1人教A版:.1抛物线及其标准方程ppt课件
.
OF
x
四、点与抛物线的位置关系
y
F
.
o
x
五、抛物线定义的应用
1,求抛物线标准方程 2,涉及抛物线的最值问题
五、抛物线的通径、焦半径、焦点弦
1、通径:
y
通过焦点且垂直对称轴的直线,
P (x0, y0 )
与抛物线相交于两点,连接这 OF
x
两点的线段叫做抛物线的通径。
F
O
x
B (x2, y2)
焦点弦公式: ABx1x2p
焦点弦的性质
y 1、抛物线的焦点弦AB的长是否存
A
在最小值?若存在,其最小值为
多少?
O Fx B
垂直于对称轴的焦点弦最短,叫做抛 物线的通径,其长度为2p.
2、A、B两点的坐标是否存在相关关
系?若存在,其坐标之间的关系如
何?
yA
O Fx B
2
p 1
1 k2
p tan
d 2
1 tan 2
1 1 tan 2
S 2p 2
tan 2
p tan
2
p2
1 tan 2 2 sin
斜率为 1 的直线 l 经过抛物线 y2 4x 的焦点 F , 且与抛物线相交于 A,B 两点,求线段 AB 的长.
解这题,你有什么方法呢?
法一:直接求两点坐标,计算弦长(运算量一般较大); 法二:设而不求,运用韦达定理,计算弦长(运算量一般);
法三:活用定义,运用韦达定理,计算弦长.
法四:纯几何计算,这也是一种较好的思维.
解法1 F1(1 , 0), l的 方 程 为 : yx1 yy2x4x1x26x10
人教版高中数学选修2-1《轨迹方程的求法》
∵PM、PN 是圆 O1、圆 O2 的切线, ∴△PO1M 和△PO2N 是直角三角形. ∵|PM|= |PN|,∴|PM|2=2|PN|2. ∵由两圆的半径均为 1, ∴|PO1|2-1=2(|PO2|2-1). 设 P(x,y).
关键: 找等量关系
∴(x+2)2+y2-1=2[(x-2)2+y2-1],整理,得(x-6)2+y2=33. 故点 P 的轨迹方程为(x-6)2+y2=33.
代入法
(相关点法)
当所求动点的运动很明显地依赖于一已知曲线上 的动点的运动时,可利用代入法,其关键是找出两 动点的坐标的关系,这要充分利用题中的几何条件. 如果轨迹动点P(x,y)的坐标之间的关系不易找 到,也没有相关点可用时,可先考虑将x、y用一 个或几个参数来表示,消去参数得轨迹方程.参数 法中常选角、斜率等为参数.
易漏掉x≠-2的情 形!
x2 2 y 1 【2017 课标 II, 理】 设 O 为坐标原点, 动点 M 在椭圆 C:2
上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足 NP 2 NM 。 (1) 求点 P 的轨迹方程;
参数法 ——若动点P (x,y)的横、纵坐标之间 的关系不易找到,则可借助中间变量(参数) 来表示x,y,然后消去参数就得到动点P (x,y) 的轨迹方程
参数法
高考要求
求曲线的轨迹方程是解析几何的基本问题 之一 求符合某种条件的动点的轨迹方程,其 实质就是利用题设中的几何条件,用“坐标化” 将其转化为寻求变量间的关系 。 这类问题除 了考查考生对圆锥曲线的定义,性质等基础知 识的掌握,还充分考查了各种数学思想方法及 一定的推理能力和运算能力,因此这类问题成 为高考命题的热点!
人教A版高中数学选修2-1课件【10】求曲线的方程
答案:B
3.已知等腰三角形 ABC 底边两端点是 A(- 3,0),B( 3, 0),顶点 C 的轨迹是( A.一条直线 C.一个点 ) B.一条直线去掉一点 D.两个点
解析:注意当点 C 与 A、B 共线时,不符合题意,应去掉.
答案:B
4. 已知两定点 A(-2,0), B(1,0), 如果动点 P 满足|PA|=2|PB|, 则点 P 的轨迹所围成的图形的面积等于( A.π C.8π B.4π D.9π )
第二章
圆锥曲线与方程
2. 1
曲线与方系的 作业 一般方法,熟悉求曲线方程的五个 目标 步骤;②掌握求轨迹方程的几种常 用方法. 作业 设计 限时:40 分钟 满分:90 分
一、选择题:每小题 5 分,共 30 分. 1.到两坐标轴距离之和为 4 的点 M 的轨迹方程为( A.x+y=4 C.|x+y|=4 B.x-y=4 D.|x|+|y|=4 )
9.已知点 A(0,-1),当点 B 在曲线 y=2x2+1 上运动时, 线段 AB 的中点 M 的轨迹方程是__________.
解析:设点 B(x0,y0),则 y0=2x2 0+1.(*) y0-1 x0 设线段 AB 中点为 M(x,y),则 x= ,y= . 2 2 即 x0=2x,y0=2y+1,代入(*)式, 得 2y+1=2· (2x)2+1. 即 y=4x2 为线段 AB 中点的轨迹方程.
A.y=0(-1≤x≤1) C.y=0(x≤-1)
解析:由题意可知,|AB|=2,则点 M 的轨迹方程为射线 y =0(x≤-1).
答案:C
6.在△ABC 中,若 B、C 的坐标分别是(-2,0)、(2,0),中线 AD 的长度是 3,则 A 点的轨迹方程是( A.x2+y2=3 C.x2+y2=9(y≠0) B.x2+y2=4 D.x2+y2=9(x≠0) )
高中数学人教版选修2-1追本溯源-用椭圆的定义解题
追本溯源――用椭圆的定义解题追本溯源,也就是我们常说的回归定义,定义常常是解决问题的犀利武器. 在学习圆锥曲线内容时,不仅要领悟其概念的实质,而且要强化应用定义解题的意识,在解题中灵活运用. 本文例谈运用椭圆的定义求轨迹方程的几例,抛砖引玉,希望读者能举一反三.一、联系平面几何考察椭圆定义例1.已知A 1(,0)2-,B 是圆F :221()42x y -+=(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为_____分析:由题意,题中的A ,F 是定点,B ,P 是动点,要求P 点的轨迹方程,只须研究P 与A ,F 的距离的和与差即可.解:因为直线l 为AB 的垂直平分线,则PB PA =,又因为PB +PF 为圆F 的半径,故可知PB +PF=2,即PA +PF =2,可知P 点的轨迹为中心在原点,长轴长为2,焦距为1的椭圆,可得椭圆的轨迹方程为22413x y +=. 点评:在解决圆锥曲线的轨迹问题时,经常联想的是动点到两个定点的距离,并研究其和与差,如果和与差是定值,则就有可能是椭圆或是双曲线.二、逆用椭圆的定义求轨迹例2.过原点的椭圆的一个焦点为1(1,0)F ,长轴长为4,求椭圆中心的轨迹.解析:设椭圆中心为(,)M x y ,由于椭圆的一个焦点为1(1,0)F ,则椭圆的另一个焦点为2(21,2)F x y -,再由椭圆定义可知124OF OF +=,即221(21)44x y -+=,即2219()24x y -+=(除去点(-1,0)).点评:本题由于题干短小,看似简单,但实际上由条件不易得出结论,故回归椭圆定义是最好的办法.三、联系圆的内外切考察椭圆的定义例3.已知圆C :226910x y x ++-=及圆内一点(3,0)P ,求过点P 且与已知圆内切的圆的圆心M 的轨迹方程.解析:设动圆半径为r ,则(10)10MC MP r r +=-+=,故M 点的轨迹是以C 、P 为焦点的椭圆,其标准方程为2212516x y +=. 点评:有关圆的内切与外切问题,一般来说可以使用圆心距等于两圆半径的和与差来解决.四、联系正弦定理考察椭圆定义例4.在中,A ,B ,C 所对的三边为,,a b c ,(1,0),(1,0)B C -,求满足sin sin 2sin C B A +=时,顶点A 的轨迹方程.1ACA 解:1sin sin sin2C B A+=,2224c b a∴+==⨯=,即4AB AC+=,动点(,)A x y符合椭圆的定义,且24,2,22,1a a c c====,故此可知,动点A的轨迹方程为22143x y+=(0y≠).点评:本题最易忽视轨迹方程成立的条件,即在ABC中,如果0y=,则A,B,C三点共线.五、联系立体几何考察椭圆定义例5.在正方体ABCD-1111A B C D中,侧面AB11B A内的动点P到底面ABCD的距离等于到直线11B C的距离的2倍,则在侧面AB11B A内动点P的轨迹是()(A) 椭圆的一部分(B)双曲线的一部分(C) 抛物线的一部分(D)线段解析:点P到底面ABCD的距离即到直线AB的距离,点P到直线11B C的距离即到点1B的距离,故将此问题转化到椭圆的第二定义,到定点1B的距离与到定直线AB的距离的比为12,故选A.点评:在立体几何中应用圆锥曲线的定义是创新之举,读者也可以尝试把比值改变,从而得出轨迹是双曲线与抛物线.作者:唐学宁图2。
人教版高中数学选修2-1《求曲线方程的常用方法》教学案
求曲线方程常用的四种方法许成怀一、普通高中数学课程标准(2017年版)要求:了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;二、情感、态度与价值观:培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法,进一步理解数形结合的思想方法;三、高考导向:近几年高考对曲线与方程的知识直接考查较少,多是应用后面要学习的圆锥曲线的定义求动点的轨迹方程、判断曲线的形状等,常在解答题的第一问中出现,为研究圆锥曲线的几何性质提供模型;四、求曲线方程的常用方法:(1)定义法;(2)直接法;(3)相关点法;(4)参数法;五、常用方法的应用举例:1、定义法:例1 已知ABC Rt ∆中,C ∠为直角,且),0,1(),0,1(B A -求满足条件的C 的轨迹方程。
解析:以斜边AB 的中点为原点,AB 所在的直线为x 轴建立平面直角坐标系内。
因为在ABC Rt ∆中,C ∠为直角,所以点C 到直线AB 的中点的距离为||AB 的一半,即1||=OC 。
所以点C 的轨迹是以O(0,0)为圆心,r=1为半径的圆,故圆的方程为:122=+y x 又因为点C 是ABC Rt ∆的顶点,所以A,B,C 不共线,即1±≠x 。
所以,点C 的轨迹方程为122=+y x (1±≠x )。
易错点提示:求出曲线方程后易忽视点C 为三角形的顶点,从而忘记去掉点(1,0)与(-1,0)。
总结:定义法求曲线方程:如果动点的轨迹满足某种已知曲线定义,则可由曲线的定义直接写出方程,利用定义法求轨迹方程要善于抓住曲线定义的特征。
变式训练1:已知点A (-5,0),B (5,0),曲线上任意一点M 与A,B 连接的线段MA,MB 互相垂直,求曲线的方程。
解析:依题意,BM AM ⊥,所以点M 的轨迹是以O 为圆心,半径52||==AB r 的圆。
所以,点M 的轨迹方程为:)5(2522±≠=+x y x 。
人教版高中数学选修2-1第二章椭圆及其标准方程(二)(共19张PPT)教育课件
圆上运动时,线段 PD 的中点 M 的轨迹是什 么?为什么?
解 设点 M 的坐标为(x,y),点 P 的坐标为(x0,y0),
则 x=x0,y=y20.因为点 P(x0,y0)在圆 x2+y2=4 上,
之前有个网友说自己现在紧张得不得了 ,获得 了一个 大公司 的面试 机会, 很不想 失去这 个机会 ,一天 只吃一 顿饭在 恶补基 础知识 。不禁 要问, 之前做 什么去 了?机 会当真 就那么 少?在 我看来 到处都 是机会 ,关键 看你是 否能抓 住。运 气并非 偶然, 运气都 是留给 那些时 刻准备 着的人 的。只 有不断 的积累 知识, 不断的 进步。 当机会 真的到 来的时 候,一 把抓住 。相信 学习真 的可以 改变一 个人的 运气。 在当今社会,大家都生活得匆匆忙忙, 比房子 、比车 子、比 票子、 比小孩 的教育 、比工 作,往 往被压 得喘不 过气来 。而另 外总有 一些人 会运用 自己的 心智去 分辨哪 些快乐 或者幸 福是必 须建立 在比较 的基础 上的, 而哪些 快乐和 幸福是 无需比 较同样 可以获 得的, 然后把 时间花 在寻找 甚至制 造那些 无需比 较就可 以获得 的幸福 和快乐 ,然后 无怨无 悔地生 活,尽 情欢乐 。一位 清洁阿 姨感觉 到快乐 和幸福 ,因为 她刚刚 通过自 己的双 手还给 路人一 条清洁 的街道 ;一位 幼儿园 老师感 觉到快 乐和幸 福,因 为他刚 给一群 孩子讲 清楚了 吃饭前 要洗手 的道理 ;一位 外科医 生感觉 到幸福 和快乐 ,因为 他刚刚 从死神 手里抢 回了一 条人命 ;一位 母亲感 觉到幸 福和快 乐,因 为他正 坐在孩 子的床 边,孩 子睡梦 中的脸 庞是那 么的安 静美丽 ,那么 令人爱 怜。。 。。。 。
高二选修2-1求轨迹方程的方法总结
求轨迹方程的方法总结在平面直角坐标系中,如果某曲线C(看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.求曲线的方程是这一部分的难点,总结一下这一部分求轨迹的步骤及方法 步骤:(1)建系——建立适当的坐标系; (2)设点——设轨迹上的任一点P(x ,y); (3)列式——列出动点P 所满足的关系式;(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简;(5)证明——证明所求方程即为符合条件的动点轨迹方程. 方法一直接法 二定义法 三代入法(相关点法) 四消参法 例题及练习:一直接法:设出动点的坐标,根据题意列出关于的等式即可;1.已知()1,0A -, ()2,0B ,动点(),M x y 满足12MA MB=.设动点M 的轨迹为C . 求动点M 的轨迹方程,并说明轨迹C 是什么图形; 由直接法,设出点坐标列方程即可P(x,y) (1()2221122x y x y ++=-+, 化简可得: ()2224x y ++=,轨迹C 是以()2,0-为圆心,2为半径的圆 练习:1已知点,A B 的坐标分别为()()2,0,2,0-,直线,AM BM 相交于点M ,且它们的斜率之积是12-,点M 的轨迹为曲线E .求E 的方程; 二 定义法:根据题意动点符合已知曲线的定义,直接求出方程 例2.1.动点P (x ,y )()()2222228x y x y -+++=.试确定点P 的轨迹.试题分析:题目中()222x y -+是(),x y 到()2,0的距离,()222x y ++是(),x y 到()2,0-的距离,根据题目意思,几何椭圆定义就可以确定点P 的轨迹。
解析:设A (2,0),B (-2,0), 则()222x y -+表示PA ,()222x y -+表示PB ,又AB =4,∴PA +PB =8>4,∴点P 的轨迹是以A 、B 为焦点的椭圆.2已知动圆M 过定点A (-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.试题分析:设动圆M 的半径为r ,则|MA |=r ,|MB |=8-r ,有|MA |+|MB |=8,由此知轨迹为椭圆,进而可得方程. 试题解析:设动圆M 的半径为r , 则|MA |=r ,|MB |=8-r ,∴|MA |+|MB |=8,且8>|AB |=6,∴动点M 的轨迹是椭圆,且焦点分别是A (-3,0),B (3,0),且2a =8, ∴a =4,c =3, ∴b 2=a 2-c 2=16-9=7. ∴所求动圆圆心M 的轨迹方程是+=1.练习1在直角坐标系xOy 中, 已知定圆()22:136M x y ++=,动圆N 过点()1,0F 且与圆M 相切,记动圆圆心N 的轨迹为曲线C .求曲线C 的方程;2 .已知动点(),P x y (其中0x ≥)到y 轴的距离比它到点()1,0F 的距离少1. 求动点P 的轨迹方程;三 代入法 设所求点的坐标为(),x y ,找出所求点与已知点的等量关系,借助已知点所满足的方程求出所求,例3 已知点A 的坐标为()2,0-,圆C 的方程为224x y +=,动点P 在圆C 上运动,点M为AP 延长线上一点,且AP PM =.求点M 的轨迹方程. 试题解析:(1)设(),M x y ,点A 的坐标为()2,0-,动点P 在圆C 上运动,点M 为AP 延长线上一点,且AP PM =,则点P 为A , M 的中点,所以得2,22x y P -⎛⎫⎪⎝⎭代入圆C 的方程()22224216x y x y +=-+=,得.练习1已知圆422=+y x 上一定点A(2,0),P 为圆上的动点.求线段AP 中点的轨迹方程. 例4 消参法,把x,y 分别用第三个变量表示,消去参数即可;设椭圆方程为2214y x,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足,)(21B O A O P O+=点 N 的坐标为11(,)22,当直线l 绕点M 旋转时,求动点P 的轨迹方程.分析:由直线l 过点M (0,1),可设其斜率为k (斜率不存在时要讨论),则直线l 的方程可表示出来,根据直线l 的斜率变化直接影响动点P 的轨迹,所以,只要求出点P 的横、纵坐标与斜率k 的关系,然后消去参数k 即可求得点P 的轨迹方程.(1)当直线l 的斜率存在时,设其斜率为k ,由直线l 过点M (0,1),则l 的方程为1ykx .记点A 、B 的坐标分别为1122(,)(,)x y x y 、,由题设可得点A 、B 的坐标1122(,)(,)x y x y 、是方程组141{22=++=y x kx y 的解. 将1ykx 代入2214y x,并化简得,所以1212122228, ()2.44kx x y y k x x kk于是.)(21B O A O P O +==()44,4()2,2222121kk k y y x x ++-=++ 设点P 的坐标为(,)x y ,则{222444k y k k x +=+-= 消去参数k , 得2240xy y ;练习1.设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点P 的轨迹方程为。
高二数学选修2-1课件抛物线及其标准方程新人教A版1.ppt
定直线 l : x 16 的距离的比是常数 5 ,
5
求点M的轨迹方程.
x2
y2
4
11Biblioteka 91、若点F是定直线l外一定点,动点M 到点F的距离与它到直线l的距离之比等 于常数e(e>1),则点M的轨迹是双曲线
吗? 是!称为双曲线的第二定义
试与椭圆的第二定义比较
B1
B
4. |
11 AF | | BF |
1 p
5.A,O, B1三点共线.
直线与抛物线的关系
尝试练习
已知抛物线y2=4x,过定点A(-2, 1)的直 线l的斜率为k,下列情况下分别求k的取值 范围: 1. l与抛物线有且仅有一个公共点; 2. l与抛物线恰有两个公共点; 3. l与抛物线没有公共点.
移动,F是抛物线的焦点,则|MF|+|MA|
的最小值是( 3 ),此时M的坐标是 (( 1 ,1) )
5.已知M是抛物线
y
1
4
x2上一动点,M
4
到其准线的距离为d1 , M到直线x+y=2的
距离为d2 , 则d1+d2的最小值是( 3 2 ).
2
y2 16x.
6. 若点M到点F(4,0)的距离比它到
直线l:x+5=0的距离少1,求点M的轨
迹方程.
yM
l
y2 16x或x2 8y.
y2 16x.
OF x
7.如图,一个动圆M与一个定圆C外切, 且与定直线l相切,则圆心M的轨迹是什 么?
M
l
C
以点C为焦点的抛物线.
例1 一种卫星接收天线的轴截面如图
所示,卫星波束呈近似平行状态射入轴
人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_抛物线的方程与性质_基础
人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习抛物线的方程与性质【学习目标】1.掌握抛物线的定义 、几何图形和标准方程.2.理解抛物线的简单性质(范围、对称性、顶点、离心率). 3.能用抛物线的方程与性质解决与抛物线有关的简单问题. 4. 进一步体会数形结合的思想方法. 【要点梳理】要点一、抛物线的定义定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.要点二、抛物线的标准方程 标准方程的推导如图,以过F 且垂直于 l 的直线为x 轴,垂足为K.以F,K 的中点O 为坐标原点建立直角坐标系xoy. 设|KF|=p(p >0),那么焦点F 的坐标为(,0)2p ,准线l 的方程为2p x =-. 设点M (x,y )是抛物线上任意一点,点M 到l 的距离为d.由抛物线的定义,抛物线就是集合}|||{d MF M P ==..|2|)2(|,2|,)2(||2222p x y p x px d y p x MF +=+-∴+=+-=将上式两边平方并化简,得22(0)y px p =>. ①方程①叫抛物线的标准方程,它表示的抛物线的焦点在x 轴的正半轴上,坐标是(,0)2p它的准线方程是2p x =-. 抛物线标准方程的四种形式:根据抛物线焦点所在半轴的不同可得抛物线方程的的四种形式22y px =,22y px =-,22x py =,22x py =-(0)p >。
要点诠释:①只有当抛物线的顶点是原点,对称轴是坐标轴时,才能得到抛物线的标准方程;②抛物线的焦点在标准方程中一次项对应的坐标轴上,且开口方向与一次项的系数的正负一致,比如抛物线220x y =-的一次项为20y -,故其焦点在y 轴上,且开口向负方向(向下)③抛物线标准方程中一次项的系数是焦点的对应坐标的4倍,比如抛物线220x y =-的一次项20y -的系数为20-,故其焦点坐标是(0,5)-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求轨迹方程的常用方法重点:掌握常用求轨迹方法难点:轨迹的定型及其纯粹性和完备性的讨论【自主学习】知识梳理:(一)求轨迹方程的一般方法:1.待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2.直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
3.参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。
4.代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1.求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
3.求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。
(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。
检验方法:研究运动中的特殊情形或极端情形。
4.求轨迹方程还有整体法等其他方法。
在此不一一缀述。
课前热身:1.P 是椭圆5922y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:()A 、159422=+y xB 、154922=+y xC 、120922=+y x D 、53622y x +=1【答案】:B【解答】:令中点坐标为),(y x ,则点P 的坐标为()2,y x 代入椭圆方程得154922=+y x ,选B 2.圆心在抛物线)0(22>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是()A 041222=---+y x y xB 01222=+-++y x y xC 01222=+--+y x y xD 041222=+--+y x y x 【答案】:D【解答】:令圆心坐标为(),22a a ,则由题意可得2122+=a a ,解得1=a ,则圆的方程为041222=+--+y x y x ,选D 3:一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:A :抛物线B :圆C :椭圆D :双曲线一支 【答案】:D【解答】令动圆半径为R ,则有⎩⎨⎧-=+=1||1||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。
故选D 。
4:点P(x 0,y 0)在圆x 2+y 2=1上运动,则点M (2x 0,y 0)的轨迹是() A.焦点在x 轴上的椭圆B.焦点在y 轴上的椭圆 C.焦点在y 轴上的双曲线D.焦点在X 轴上的双曲线 【答案】:A【解答】:令M 的坐标为),,(y x 则⎪⎩⎪⎨⎧==⇒⎩⎨⎧==y y x x y y x x 00022代入圆的方程中得1422=+y x ,选A【互动平台】名师点题一:用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程。
例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
【解析】由,sin 45sin sin C A B =+可知1045==+c a b ,即10||||=+BC AC ,满足椭圆的定义。
令椭圆方程为12'22'2=+by ax ,则34,5'''=⇒==b c a ,则轨迹方程为192522=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。
【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。
(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (4)到定点与定直线距离相等。
【变式1】:1:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
解:设动圆的半径为R ,由两圆外切的条件可得:,。
∴动圆圆心P 的轨迹是以M 1、M 2为焦点的双曲线的右支,c=4,a=2,b 2=12。
故所求轨迹方程为2:一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:A :抛物线B :圆C :椭圆D :双曲线一支【解答】令动圆半径为R ,则有⎩⎨⎧-=+=1||1||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。
故选D 。
二:用直译法求曲线轨迹方程此类问题重在寻找数量关系。
例2:一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?解设M 点的坐标为),(y x 由平几的中线定理:在直角三角形AOB 中,OM=,22121a a AB =⨯= 22222,a y x a y x =+=+∴M 点的轨迹是以O 为圆心,a 为半径的圆周.【点评】此题中找到了OM=AB 21这一等量关系是此题成功的关键所在。
一般直译法有下列几种情况:1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。
2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。
3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。
4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.【变式2】:动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?【解答】∵|PA |=2222)3(||,)3(y x PB y x +-=++代入2||||=PB PA 得222222224)3(4)3(2)3()3(y x y x y x y x +-=++⇒=+-++ 化简得(x -5)2+y 2=16,轨迹是以(5,0)为圆心,4为半径的圆.三:用参数法求曲线轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。
注意参数的取值范围。
例3.过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。
【解析】分析1:从运动的角度观察发现,点M 的运动是由直线l 1引发的,可设出l 1的斜率k 作为参数,建立动点M 坐标(x ,y )满足的参数方程。
解法1:设M (x ,y ),设直线l 1的方程为y -4=k (x -2),(k ≠0))2(14221--=-⊥x ky l ,l l 的方程为则直线由,,A x l )0k 42(1-∴的坐标为轴交点与,k,B y l )240(2+的坐标为轴交点与∵M 为AB 的中点,)(1222421242为参数k k k y k k x ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=-=-=∴消去k ,得x +2y -5=0。
另外,当k =0时,AB 中点为M (1,2),满足上述轨迹方程; 当k 不存在时,AB 中点为M (1,2),也满足上述轨迹方程。
综上所述,M 的轨迹方程为x +2y -5=0。
分析2:解法1中在利用k 1k 2=-1时,需注意k 1、k 2是否存在,故而分情形讨论,能否避开讨论呢?只需利用△PAB 为直角三角形的几何特性:||21||AB MP =解法2:设M (x ,y ),连结MP ,则A (2x ,0),B (0,2y ), ∵l 1⊥l 2,∴△PAB 为直角三角形||21||AB MP ,=由直角三角形的性质 2222)2()2(·21)4()2(y x y x +=-+-∴化简,得x +2y -5=0,此即M 的轨迹方程。
分析3::设M (x ,y ),由已知l 1⊥l 2,联想到两直线垂直的充要条件:k 1k 2=-1,即可列出轨迹方程,关键是如何用M 点坐标表示A 、B 两点坐标。
事实上,由M 为AB 的中点,易找出它们的坐标之间的联系。
解法3:设M (x ,y ),∵M 为AB 中点,∴A (2x ,0),B (0,2y )。
又l 1,l 2过点P (2,4),且l 1⊥l 2 ∴PA ⊥PB ,从而k PA ·k PB =-1,02242204--=--=y,k x k PB PA 而 0521224·224=-+-=--∴y x y x ,化简,得 注意到l 1⊥x 轴时,l 2⊥y 轴,此时A (2,0),B (0,4) 中点M (1,2),经检验,它也满足方程x +2y -5=0 综上可知,点M 的轨迹方程为x +2y -5=0。