平面向量共线定理和等和线

合集下载

平面向量基本定理以及“等和线”的应用

平面向量基本定理以及“等和线”的应用
平面向量基本定理以及 “等和线”的应用
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
问题的提出
平面向量与代数、几何融合的题目综合性强, 难度大,考试要求高。近年,以“等和线”为背景 的试题层出不穷。考生在解决此类问题时,往往因 思路不清、运算繁琐而失分。
本专题将在平面向量基本定理的基础上推导得 出“等和线”解题的原理,并利用“等和线”原理 解决与向量系数有关的最值和范围有关的问题。
所以, 3 y, 3x 3x 3 y 3
当点P与A点重合时,显然有 : 0,所以,选C.
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习:如图,四边形OABC是边长为1的正方形,点D在OA 的延长线上,且OD 2,点P为BCD内(含边界)的动点,
uuur uuur uuur
(二)起点不同,平移改造基底型
F
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习: 突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习: 突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
(三)合理调节、变换基底型 例题:
1 2
uuur uuur PA, PB1
1 3
uuur PB
.

2x 2x 3y
3y 2x 3y
1
得点
A1 ,
B1,
D
共线,即点
D
在直线
A1 B1
上.
uuur uuur 再由 PC 5PD 知点 C 的轨迹就是直线 A2B2 ,其中 PA2 5PA1, PB2 5PB1 .如下图:

平面向量中的定理

平面向量中的定理

平面向量中重要定理总结(非常经典)1、共线向量定理向量a (a ≠0)与b 共线,当且仅当存在唯一一个实数λ,使b =λa .2、三点共线的证明方法若存在非零实数λ,使得AB →=λAC →或AB →=λBC →或AC →=λBC →,则A ,B ,C 三点共线.3、平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2.4、奔驰定理:已知O 是ABC ∆内一点,则0=⋅+⋅+⋅∆∆∆OC S OB S OA S AOB AOC BOC推论:已知O 是ABC ∆内一点,若=⋅+⋅+⋅z y x ,则z y x S S S AOB AOC BOC ::::=∆∆∆5、极化恒等式定理:平行四边形的对角线的平方和等于相邻两边平方和的两倍. 即:)|||(|2|AD ||AB |2222BO AO +=+ 设.,b AD a AB == 则,,b a DB b a AC -=+= 极化恒等式:[]22)()(41b a b a b a --+=⋅,即:=⋅6、三点共线定理:已知OB y OA x OC +=,且1=+y x ,则C B A ,,三点共线 OABC向量等和线: 平面内一组基底,及任意向量,21λλ+=,若点P 在直线AB 上或在与AB 平行的直线上,则k =+21λλ(||OC k =反之也成立,我们把直线AB 以及与AB 平行的直线称为基底系数等和线7、三角形各“心”的概念介绍重心:三角形的三条中线的交点,重心将中线长度分成2∶1;垂心:三角形的三条高线的交点,垂线与对应边垂直;内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心),内心到三角形三边的距离相等;外心:三角形的三条边的垂直平分线的交点(三角形外接圆的圆心),外心到三角形各顶点的距离相等.三角形各“心”的向量表示(1)O 是△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 是△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(3)O 是△ABC 的外心⇔|OA →|=|OB →|=|OC →|(或OA →2=OB →2=OC →2).(4)O 是△ABC 的内心⇔OA →·⎝ ⎛⎭⎪⎪⎫AB →|AB →|-AC →|AC →|=OB →·⎝ ⎛⎭⎪⎪⎫BA →|BA →|-BC →|BC →|=OC →·⎝ ⎛⎭⎪⎪⎫CA →|CA →|-CB →|CB →|=0.注意:向量λ((AB →|AB →|+AC →|AC →|)(λ≠0)所在直线过△ABC 的内心(是∠BAC 的角平分线所在直线).。

向量技巧:等和线

向量技巧:等和线

等和线定理一、等和线定理 (1)平面向量共线定理已知,若,则三点共线;反之亦。

OC OB μλ+=OA 1=+μλC B A 、、(2)等和线平面内一组基底及任一向量,,若点p 在直线AB 上或在平OB OA ,OP OB OA OP μλ+=行于AB 的直线上,则(定值),反之也成立,我们把直线AB 以及与直线AB 平k =+μλ行的直线称为等和线。

1.当等和线恰为直线AB 时,k 等于12.当等和线在O 点和直线AB 之间时,)1,0(∈k 3.当直线AB 在O 点和等和线之间时, ),1(+∞∈k 4.当等和线经过O 点时k 等于0,5.若两等和线关于O 点对称,则定值k 互为相反数6. 定值k 的变化与等和线到O 点的距离成正比二、适用题型在平面向量基本定理的表达式中,若需研究两系数的和差积商、线性表达 式及平方和时,可以用等值线法。

三、解题步骤1、确定等值线为1 的线;2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、从长度比或者点的位置两个角度,计算最大值和最小值;四、几点补充1、平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;2、若需要研究的是两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和或差;利用等和线求向量积例题精讲例1设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于()A.OM→B .2OM→C .3OM→D .4OM→例2如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R),则λ+μ=.例3如图所示,在平行四边形ABCD 中,13AE AB = ,14AF AD =,CE 与BF 相交于G 点,记AB a = ,AD b = ,则AG =_______例4在△ABC 中,D 是△ABC 所在平面内一点,且AD →=13AB →+12AC →,延长AD 交BC 于点E ,若AE →=λAB →+μAC →,则λ-μ的值是.练习1.如图,在三角形ABC 中,BE 是边AC 的中线,O 是BE 边的中点,若AB →=a ,AC →=b ,则AO →=()A.12a +12b B.12a +13b C.14a +12b D.12a +14b 2.(2019·济南调研)在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB →+25AC →,则实数m 的值为()A .-4B .-1C .1D .43.在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为()A .911B .511C .311D .2114.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为()A .1B .2C .3D .45.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则向量EM →=()A .12AC →+13AB→B .12AC →+16AB→C .16AC →+12AB →D .16AC →+32AB→6.(2019·衡水中学调研)一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R),则52μ-λ=()A .-12B .1C.32D .-37.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R,则λ+μ=________.8.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R,则λ+μ=________.9.(2019·中原名校联考)如图,在△ABC 中,点M 是BC 的中点,N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,则APPM=________.10.点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.设OA x OP =,OB y OQ =,证明:yx 11+是定值;11.在三角形ABC 中,AM ﹕AB =1﹕3,AN ﹕AC =1﹕4,BN 与CM 相交于点P ,且a AB =,b AC =,试用a 、b表示AP .12.已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,求yx 41+的最小值.PABCMN微信公众号:高中数学学习资料第5页答案例1答案:D 解析:OA →+OB →+OC →+OD →=(OA →+OC →)+(OB →+OD →)=2OM →+2OM →=4OM →例2解:因为E 为线段AO 的中点,所以BE →=12BA →+12BO →=12BA →+1221(⨯BD →)=12BA →+14BD →=λBA →+μBD →,所以λ+μ=12+14=34.例3解:,,E G C 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数x 使得(1)AG xAE x AC∴=+- , 1133AE AB a == ,AC a b=+ 12(1)()(1)(1)33x AG x a x a b a x b ∴=⨯+-+=-+-…………………①又,,F G B 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数λ使得(1)AG AB AFλλ∴=+-1144AF AD b ==,,1(1)4AG a b λλ∴=+-……………………………②由①②两式可得:213114x x λλ⎧=-⎪⎪⎨-⎪=-⎪⎩6737x λ⎧=⎪⎪∴⎨⎪=⎪⎩3177AG a b ∴=+ 例4解:设AE →=xAD →,因为AD →=13AB →+12AC →,所以AE →=x 3AB →+x2AC →.由于E ,B ,C 三点共线,所以x 3+x 2=1,解得x =65.又AE →=λAB →+μAC →.所以λ=x 3=25,μ=x 2=35,因此λ-μ=-15.练习1、答案:D 解析:因为在三角形ABC 中,BE 是AC 边上的中线,所以AE →=12AC →.因为O 是BE 边的中点,所以AO →=12(AB →+AE →)=12AB →+14AC →=12a +14b .2、答案:B解析:根据题意设BP →=nBN →(n ∈R),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB →+-(1-n )AB →+n5AC →,又AP →=mAB →+25AC →,n =m ,=25,=2,=-1.3、答案:C 解析:,,B P N 三点共线,又2284111111AP m AB AC m AB AN m AB AN=+=+⨯=+8111m ∴+=311m ∴=4、答案:B 解析:因为O 为BC 的中点,所以AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n 2AN →,因为M ,O ,N 三点共线,所以m 2+n2=1,所以m +n =2.5、答案:C 解析:如图,因为EC →=2AE →,所以EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.6、答案:A 解析:AM →=λAB →-μAC →=λAB →-μ(AB →+AD →)=(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →,因此E ,M ,F 三点共线.所以2(λ-μ)+(-3μ)=1,则2λ-5μ=1.因此52μ-λ=-12.7、答案:43解析:选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →+→+12μ→,+μ=1,+12μ=1,=23,=23,所以λ+μ=43.8、答案:43解析:选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →+→+12μ→,+μ=1,+12μ=1,=23,=23,所以λ+μ=43.9、答案:4解析:设AB →=a ,AC →=b ,因为A 、P 、M 三点共线,所以存在唯一实数λ,使得AP →=λAM →.又知M 为BC 的中点,所以AP →=12λ(a +b ).因为B 、P 、N 三点共线,所以存在唯一实数μ,使得BP →=μBN →,又AP →=AB →+BP →=AB →+μBN →=AB →+μ(AN →-AB →)=AB →+-(1-μ)a +23μb ,所以12λ(a +b )=(1-μ)a +23μb ,μ=12λ,=12λ,解得λ=45,μ=35.所以AP →=45AM →,PM →=15AM →.所以|AP →|∶|PM →|=4∶1,即AP PM=4.10、证明: 因为G 是OAB 的重心,分析:211()()323OG OA OB OA OB ∴=⨯+=+ 1OP xOA OA OP x =∴= 1OQ yOB OB y=∴= 111111()()3333OG OA OB OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y∴+=113x y ∴+=11x y ∴+为定值311、解:,,N P B 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数x,y 使得,1AP xAB y AN x y =++= ,AN ﹕AC=1﹕4,b AC AN 4141==1444y y x AP xAB AC xa xa b -∴=+=+=+ ……①又,,C P M 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数μ,λ使得,1AP AM AC μλμλ∴=++= ∵AM ﹕AB=1﹕3∴a AB AM 3131==,,133AP a b a b μλλλ-∴=+=+ ……………………………②由①②两式可得:1314x x λλ-⎧=⎪⎪⎨-⎪=⎪⎩311211x λ⎧=⎪⎪∴⎨⎪=⎪⎩81,11x y y +=∴= 321111AP a b ∴=+ 12. 点P 落在ABC 的边BC 上∴B,P,C 三点共线AP xAB y AC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y x x y x y x y x y x y x y ∴+=+⨯=+⨯+=++=++ x>0,y>040,0y x x y ∴>>由基本不等式可知:44y x x y +≥=,取等号时4y x x y=224y x ∴=2y x ∴=±0,0x y >> 2y x ∴=1x y += 12,33x y ∴==,符合所以yx 41+的最小值为9。

平面向量共线定理和等和线

平面向量共线定理和等和线

乎商向曇共线恚1理一、平面向量共线定于已知51= xOB+yOC,若x+ y = 1,则A,B,C 三点共线;反之亦然二、平面向量等和纟O若66 = 2ODJP^OC = xOA+ yOB = 2(-OA+^OB) = 2OD?A 2则有中+斗=1,即x+ y = 2/I A过C点作直线III AB y在/上任作一点C‘,连接OCT1AB = D同理可得,以OA, OB为基底时,0C对应的系数和依然为2fB结论在向量起点相同的前提下,所有以与AB平行的直线上面的点为终点的向量,其基底的系数和为定值,这样的线,我们称之为“等和线”。

值的大小与起点到等和线的距离成正比,若等和线与4B在起点的两侧时,值为负。

例1、(2013 •南通二模)如图,正六边形ABCDEF^,P 是△仞£内(包括边界)的动点,设AP =(xAB + jBAF (Q, 0E R ),则Q + 0的取值范围是 _____________ .BF 为£ = 1的等和线,P 壮CDE 内时, EC 是最近的等和线,过D 点的等和线是最远的AN AD=[3,4]解析:・・・o+ 0w例2、(2009安徽(理)14)给定两个长度为1的平面向量鬲和西它们的夹角为乎,如图所示,点C 在以0为圆心的圆弧人B上变动,^-OC =xOA + yOB(x. y G R),则尤+ y的最大值是・解析:所有与AB平行的直线中,切线离圆心最远,即此时取得k最大结合角度,不难得到g=2例3、(2013江苏10)设£>, E分别是\ABC的边AB, BC上的点,AD = -AB,BE = -BC,若旋=人期+人疋仏,入w /?), 2 3则人+&的值为_________ ・A解析:过点A作~AF = ~DE,设AF与BC的延长线交于点易知AF = FH,即DF为BC的中位线,因此&+入二*例4、(2013杭州一模17)如图,在扇形OAB中,ZAOB =C为弧4B上的一个动点,若OC = xOA^yOB, 则x + 3y的取值范围是_____________ .04,03为基底。

平面向量共线定理和等和线----极化恒等式全版.全版.ppt

平面向量共线定理和等和线----极化恒等式全版.全版.ppt
巧用极化恒等式,妙解一类向量题
一、平面向量共线定理
已知OA xOB yOC,若x y 1,则A, B,C三点 共 线; 反 之 亦 然
二、平面向量等和线
若OC OD,那 么OC xOA yOB ( x OA y OB) OD,
则 有 x y 1,即x y
1、4 2、2 3、2
2
DB
2
2
a
b 2 2
2
AB
AD 2
(1)—(2)得:
a
b

1 4
a
b
2
ห้องสมุดไป่ตู้
ab
2
————极化恒等式
应用一:求值
例1.(2012浙江15)在ABC中,M是BC的中点, AM 3, BC 10,则AB AC
A
B
M
C
应用二:求范围
例2.已知正三角形ABC内接于半径为2的圆O,点P 是圆O上的一个动点,则PA PB的取值范围是____;
3
3
1、4 2、2 3、2
3
3
巧用极化恒等式 妙解一类向量题
如图,AB a, AD b,
试证明平行四边形四边 和对角线性质。
2
2
2
2
2
AC AC a b a 2a b b (1)
2
2
2
2
2
DB DB a b a 2a b b (2)
(1)+(2)得:
2
AC
3
OC OA (1 )OB (0 1) ,则 CM CN 的最小值为
A.-2
B.-1
C.-3
D.-4
4
5(. 2013浙江)设ABC,

等和线定理 9份

等和线定理   9份

大招13 向量共线模型与等和线一、平面向量共线定理若点A,B,C 互不重合,P 是A,B,C 三点所在平面上的任意一点,且满足PB y PA x PC +=,则A ,B ,C 三点共线1=+⇔y x .证明:(1)由⇒=+1y x A ,B ,C 三点共线.由1=+y x 得BA x BC PB PA x PB PC PB x PA x PB y PA x PC =⇒-=-⇒-+=+=)()1(. 即BC ,BA 共线,故A ,B ,C 三点共线.(2)由A ,B ,C 三点共线1=+⇒y x .由A ,B ,C 三点共线得BC ,BA 共线,即存在实数x 使得BA x BC =.故PB x PA x PC PB PA x PB PC )1()(-+=⇒-=-.令x y -=1,则有1=+y x .“爪”字型图:在△ABC 中,D 是BC 上的点,如果n m CD BD ::=,则AB nm n AC n m m AD +++=,其中AD ,AB ,AC 知二可求一.如果AD 是BC 边上的中线,则AB AC AD 2121+=.二、等和线Q 平面内一组基底OA ,OB 及任一向量OP ,)(R OB OA OP ∈+=μλμλ,,若点P 在直线AB 上(即图中Q 的位置)或者在平行于AB 的直线上,则)(定值k =+μλ, 反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.(1)当等和线恰为直线AB 时,1=k .(2)当等和线在O 点和直线AB 之间时,)1,0(∈k .(3)当直线AB 在O 点和等和线之间时,),1(+∞∈k .(4)当等和线过O 点时,0=k .(5)若两等和线关于O 点对称,则两定值(k )互为相反数.【解题步骤及说明】1.确定等值线为1的线;2.平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3.从长度比或点的位置两个角度,计算最大值和最小值.评注平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;若需要研究两系数的线性关系,则需要通过变换基地向量,使得需要研究的代数式为基地的系数和.例1 在ABC ∆中,已知D 是AB 边上的一点,若DB AD 2=,CB CA CD λ+=31,则λ=( ).A.32 B.31 C.31- D.32- 例2 若D 为ABC ∆所在平面的一点,CD BC 3=,则( ).A. AC AB AD 3431+-= B. AC AB AD 3431-= C. AC AB AD 3134+= D. AC AB AD 3134-=例3 已知D ,E ,F 分别是ABC ∆的三边BC ,CA ,AB 上的点,且BD DC 2=,EA CE 2=,FB AF 2=,则CF BE AD ++与BC ( ).A. 反向平行B.同向平行C.互相垂直D.既不平行也不垂直例4 ABC ∆中,点D 在AB 上,CD 平分∠ACB.若a CB =,b CA =,1=a ,2=b ,则CD =( ).A. b a 3231+B.b a 3132+C.b a 5453+D.b a 5354+例5 已知点G 是ABC ∆的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AB x AM =,AC y AN =,D 为边AB 的中点,求yx 11+的值.例6 在ABC ∆中,D 为BC 边的中点,H 为AD 的中点,过点H 作直线MN 分别交AB ,AC 于点M ,N ,若AB x AM =,AC y AN =,则y x 4+的最小值是( ).A.49 B.2 C.3 D.1例7 在PAB ∆所在平面上的点C 满足PB y PA x PC +=,且2=+y x ,请指出点C 的位置.例8、给定两个长度为1的平面向量OA 和OB ,它们的夹角为0120,如图所示,点C 在以O 为圆心的圆弧AB 上变动。

平面向量的等和线问题.ppt

平面向量的等和线问题.ppt
3当直线ab在o点与等和线之间时5若两等和线关于o点对称则定值互为相反数
平面向量 复习课(2)
平面向量共线定理 : 已知OA OB OC , 若 1, 则A, B , C 三点共线, 反之亦然. 等和线 : 平面内的一组基底OA, OB及任一向量OP , OP OA OB , 若点P 在直线AB上或平行于AB的直线上, 则 k (定值 ), 反之亦成立.我们把直线AB或平行于AB的直线叫做等和线. (1)当等和线恰为AB时, k 1; ( 2)当等和线恰在O点与AB之间时, k (0,1); (3)当直线AB在O点与等和线之间时, k (1, ); ( 4)当等和线过O点时, k 0; (5)若两等和线关于O点对称, 则定值互为相反数; (6)定值k的变化与等和线到O点的距离成正比.
1.李鸿章1872年在上海创办轮船招商局,“前10年盈和,成
为长江上重要商局,招商局和英商太古、怡和三家呈鼎立
之势”。这说明该企业的创办 A.打破了外商对中国航运业的垄断 B.阻止了外国对中国的经济侵略 C.标志着中国近代化的起步 ( )
D.使李鸿章转变为民族资本家
解析:李鸿章是地主阶级的代表,并未转化为民族资本家; 洋务运动标志着中国近代化的开端,但不是具体以某个企业 的创办为标志;洋务运动中民用企业的创办在一定程度上抵
航空都获得了一定程度的发展。
(2)近代中国交通业受到西方列强的控制和操纵。 (3)地域之间的发展不平衡。 3.影响 (1)积极影响:促进了经济发展,改变了人们的出行方式,
一定程度上转变了人们的思想观念;加强了中国与世界各地的
联系,丰富了人们的生活。 (2)消极影响:有利于西方列强的政治侵略和经济掠夺。
”;此后十年间,航空事业获得较快发展。

平面向量共线定理和等和线课件

平面向量共线定理和等和线课件
平面向量和等和线的方向相同
平面向量和等和线的方向是相同的,即如果一个向量和一个等和线对应,那么它们的方向也是一致的。
平面向量与等和线在解析几何中的应用

解析几何的基本问题
在解析几何中,平面向量和等和线是解 决基本问题的工具。例如,两点间的距 离问题、直线的斜率问题等,都可以通 过平面向量和等和线来表示和解决。
定义
在平面上,如果一条直线上的任意点 与给定点(非该直线上任意点)所确 定的向量与该直线方向相反,则称该 直线为等和线。
性质
等和线上的任意点与定点的连线和该 直线方向相反。
等和线的判定与性质的应用
判定
若一直线上任意点与定点所确定的向量与该直线方向相反,则该直线为等和线。
应用
利用等和线性质可以证明共线定理,也可以解决一些解析几何问题。
等和线在解析几何中的应用
解析几何中常常涉及到直线、曲线等几何对象,而等和线是研究这些对象的重要工 具之一。
利用等和线可以研究直线与定点之间的位置关系,也可以研究曲线上的点的性质。
在一些较复杂的解析几何问题中,等和线还可以与其他数学工具结合使用,从而解 决更为复杂的问题。
平面向量与等和
03
的系
平面向量与等和线的相互转换
2. 已知点 P(2,3) ,圆 C : x^2+y^2=100 ,求点 P 关于圆C的等和线方程。
等和线的习题与解析
解析
1. 根据等和线的定义,点A(1,2)关于点B(3,-1)的等和线方程就是向量AB与x轴正向夹角 的正切值的相反数的绝对值乘以x轴正向夹角的正切值。根据已知条件,可以计算出向 量AB与x轴正向夹角的正切值为-1/4,因此点A关于点B的等和线方程为y=-1/4x+5。

等和线

等和线

等和线定理1. 等和线定理(1)平面向量共线定理 已知OC OB μλ+=OA ,若1=+μλ,则C B A 、、三点共线;反之亦。

(2)等和线平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。

1.当等和线恰为直线AB 时,k 等于12.当等和线在O 点和直线AB 之间时,)1,0(∈k3.当直线AB 在O 点和等和线之间时,),1(+∞∈k4.当等和线经过O 点时k 等于0,5.若两等和线关于O 点对称,则定值k 互为相反数6. 定值k 的变化与等和线到O 点的距离成正比注:在平面向量基本定理的表达式中,若需研究两系数的和时,可以用等值线法。

例1.(2017全国3卷12)0在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为A .3B .22C .5D .2例2.已知三角形OAB 中,OA=OB=1,3π=∠AOB ,,若OC 与线段AB 交于P 点,且满足3,OB OA OC =+=OC μλ则μλ+的最大值为( )A.1B.32C.3D.2例3.已知向量OB OA ,满足1=+OB OA ,OB OA ⊥,OB OA OC μλ+=)、(R ∈μλ,若M 为线段AB 的中点,并且1M =C ,则μλ+的最大值是( )。

A: 21+ B: 21- C: 1-2 D: 1例4.给定两个长度为1的平面向量OB OA ,,它们的夹角为︒120 .如图所示,点C 在以O 为圆心的圆弧AB 上变动,若OB OA OC y x += 其中)、(R ∈y x ,则y x +的取值范围是________.例5.如图正六边形ABCDEF 中,P 点三角形CDE 内(包括边界)的动点,设AF AB AP y x +=,则y x +的取值范围是________.例6.(2013安徽卷9)在平面直角坐标系中,o 是坐标原点,两定点,A B 满足2,OA OB OA OB ===则点集,1,,|P OP OA OB R λμλμλμ==++≤∈所表示的区域的面积是(A )22 (B )3(C ) 42 (D )43例7.如图,在直角梯形ABCD 中,AB ⊥AD ,AB ∥DC ,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C ,半径为21,且点P 在图中阴影部分(包括边界)运动.若B C AB AP y x +=,其中x ,y ∈R ,则y x -4的取值范围是( )A ]4233,2[+B.]253,2[+C. ]253,42-3[+D.]2173,2173[+-7. (2017杭州五校联盟)在矩形ABCD 中,AB=5,3BC =,P 为矩形内一点,且25AP =,若)(R AD AB AP ∈+=λμμλ,则μλ35+的最大值为________。

等和线定理

等和线定理

第1招:等和线定理【知识点】1.等和线定理:(1)平面向量共线定理已知OA OB OC λμ=+ ,若1λμ+=,则,,A B C 三点共线;反之亦然.(2)等和线平面内一组基底,OA OB 及任一向量(),,OP OP OA OB R λμλμ=+∈ ,若点P在直线AB 上或在平行于AB 的直线上,则k λμ+=(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线成为等和线.①当等和线恰为直线AB 时,1k =;②当等和线在O 点和直线AB 之间时,()0,1k ∈;③当直线AB 在O 点和等和线之间时,()1,k ∈+∞;④当等和线过O 点时,0k =;⑤若两等和线关于O 点对称,则定值k 互为相反数;⑥定值k 的变化与等和线到O 点的距离成正比;2.等和线定理应用背景:在平面向量基本定理的表达式中,若需研究两系数的和时,可以用等值线法.【典例剖析】例1.如图,CD B ∆与ABC ∆的面积之比为2,点P 是区域ABCD 内的任一点(含边界),且AC AB AP μλ+=,则μλ+的取值范围是()A.[]1,0B.[]2,0C.[]3,0D.[]4,0解析:过点P 作GH//BC ,交AB AC ,的延长线于H G ,则AH y AG x AP +=,且1=+y x ,当点P 位于D 点时,H G ,分别位于','B C ,CD B ∆ 与ABC ∆的面积之比为2,AB AB AC AC 3',3'==∴,ACAB AB y AC x AB y AC x AH y AG x OP μλ+=⋅⋅+⋅⋅=+=+=∴33''所以,3333,3=+=+⇒==y x x y μλμλ当点P 位于A 点时,显然有:0=+μλ,所以,选C答案:C .总结:通过等和线定理绘制出一系列等和线,找出其中的临界值,即为系数和的最值.【变式训练】变式1:如图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2=AD ,点P 是BCD ∆(含边界)的动点,设OB OC OP μλ+=,则μλ+的最大值为__________.变式2:设长方形ABCD 的边长分别是2,1==AB AD ,点P 是BCD ∆(含边界)的动点设AD y AB x AP +=,则y x 2+的取值范围为()A.[]2,1B.[]3,1C.[]3,2D.[]2,0【真题链接】(2017高考全国Ⅲ理科第12题)在矩形ABCD 中,1=AB ,2=AD ,动点P 在以C 为圆心且与BD 相切的圆上,若AD AB AP μλ+=,则μλ+的最大值为()A.3B.22C.5D.2【答案】变式1:答案:23解析:当点P 位于B 点时,过点B 作BC GH //,交OD OC ,的延长线于HG ,则AH y AG x OP +=,且1=+y x ,OD OC OD y OC x OH y OG x OB OP μλ+=+=+==∴2323所以,23232323,23=+=+⇒==y x y x μλμλ故答案为23变式2:答案:B解析:AE y AB x AD y AB x AD y AB x AP 2212+=⋅+=+=∴如图,连BE ,当点P 位于B 点时,三点P E B ,,共线,且AB AP =,即1012=+=+y x ,当点P 位于C 点时,AE y AB x AE AB AC AP 22+=+==∴,即3212=+=+y x 故选B高考真题链接:答案:A。

平面向量的等和线(解析版)

平面向量的等和线(解析版)

专题七 平面向量的等和线根据平面向量基本定理,如果P A →,PB →为同一平面内两个不共线的向量,那么这个平面内的任意向量PC →都可以由P A →,PB →唯一线性表示:PC →=xP A →+yPB →.特殊地,如果点C 正好在直线AB 上,那么x +y =1,反之如果x +y =1,那么点C 一定在直线AB 上.于是有三点共线结论:已知P A →,PB →为平面内两个不共线的向量,设PC →=xP A →+yPB →,则A ,B ,C 三点共线的充要条件为x +y =1.以上讨论了点C 在直线AB 上的特殊情况,得到了平面向量中的三点共线结论.下面讨论点C 不在直线AB 上的情况.如图所示,直线DE ∥AB ,C 为直线DE 上任一点,设PC →=xP A →+yPB →(x ,y ∈R ).1.平面向量等和线定义(1)当直线DE 经过点P 时,容易得到x +y =0.(2)当直线DE 不过点P 时,直线PC 与直线AB 的交点记为F ,因为点F 在直线AB 上,所以由三点共线结论可知,若PF →=λP A →+μPB →(λ,μ∈R ),则λ+μ=1.由△P AB 与△PED 相似,知必存在一个常数k ∈R ,使得PC →=kPF →(其中k =|PC ||PF |=|PE ||P A |=|PD ||PB |),则PC →=kPF →=kλP A →+kμPB →.又PC →=xP A →+yPB → (x ,y ∈R ),所以x +y =kλ+kμ=k .以上过程可逆.在向量起点相同的前提下,所有以与两向量终点所在的直线平行的直线上的点为终点的向量,其基底的系数和为定值,这样的线,我们称之为“等和线”.2.平面向量等和线定理平面内一组基底PA →,PB →及任一向量PF →满足:PF →=λPA →+μPB →(λ,μ∈R ),若点F 在直线AB 上或在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.3.平面向量等和线性质(1)当等和线恰为直线AB 时,k =1;(2)当等和线在点P 和直线AB 之间时,k ∈(0,1); (3)当直线AB 在点P 和等和线之间时,k ∈(1,+∞); (4)当等和线过点P 时,k =0;(5)若两等和线关于点P 对称,则定值k 互为相反数. 考点一 根据等和线求基底系数和的值 【方法总结】根据等和线求基底系数和的步骤(1)确定值为1的等和线;(2)平移(旋转或伸缩)该线,作出满足条件的等和线;(3)从长度比或点的位置两个角度,计算满足条件的等和线的值.已知点P 是△ABC 所在平面内一点,且AP →=xAB →+yAC →,则有点P 在直线BC 上⇔x +y =1;点P 与点A 在直线BC 异侧⇔x +y >1,且x +y 的值随点P 到直线BC 的距离越远而越大;点P 与点A 在直线BC 同侧⇔x +y < 1,且x +y 的值随点P 到直线BC 的距离越远而越小.平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;若需要研究两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和.考虑到向量可以通过数乘继而将向量进行拉伸压缩反向等操作,那么理论上来说,所有的系数之间的线性关系,我们都可以通过调节基底,使得要求的表达式是两个新基底的系数和.【例题选讲】[例1](1)如图,A ,B 分别是射线OM ,ON 上的点,给出下列以O 为起点的向量:①OA →+2OB →;②12OA→+13OB →;③34OA →+13OB →;④34OA →+15OB →;⑤34OA →+BA →+23OB →.其中终点落在阴影区域(不包括边界)内的向量的序号是________(写出满足条件的所有向量的序号).答案 ①③ 解析 由向量共线的充要条件可得,当点P 在直线AB 上时,存在唯一的一对有序实数u ,v ,使得OP →=uOA →+v OB →成立,且u +v =1,所以点P 位于阴影区域内的充要条件是“满足OP →=uOA →+v OB →,且u >0,v >0,u +v >1”.①因为1+2>1,所以点P 位于阴影区域内,故正确;同理③正确,②④不正确;⑤原式=34OA →+(OA →-OB →)+23OB →=74OA →-13OB →,而-13<0,故不符合条件.综上可知,只有①③正确.(2)设向量OA →,OB →不共线(O 为坐标原点),若OC →=λOA →+μOB →,且0≤λ≤μ≤1,则点C 所有可能的位置区域用阴影表示正确的是( )答案 A 解析 当λ=0时,OC →=μOB →,故点C 所有可能的位置区域应该包括边界OB →或OB →的一部分,故排除B ,C ,D 项.故选A 项.(3)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A .12B .13C .14 D .1答案 A 解析 通法 设BM →=tBC →,则AN →=12AM →=12(AB →+BM →)=12AB →+12BM →=12AB →+t 2BC →=12AB →+t 2(AC →-AB →)=⎝⎛⎭⎫12-t 2AB →+t 2AC →,∴λ=12-t 2,μ=t 2,∴λ+μ=12,故选A . 等和线法 如图,BC 为值是1的等和线,过N 作BC 的平行线,设λ+μ=k ,则k =|AN ||AM |.由图易知,|AN ||AM |=12,故选A .(4)在平行四边形ABCD 中,点E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=__________.答案 43 解析 通法 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF→=AB →+12AD →,又AC →=λAE →+μAF →=⎝⎛⎭⎫12λ+μAB →+⎝⎛⎭⎫λ+12μAD →,于是得⎩⎨⎧ 12λ+μ=1,λ+12μ=1,即⎩⎨⎧λ=23,μ=23,故λ+μ=43. 等和线法 如图,EF 为值是1的等和线,过C 作EF 的平行线,设λ+μ=k ,则k =|AC ||AM |.由图易知,|AC ||AM |=43,故选B . A(5)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,向量AO →=λa +μb ,则λ+μ的值为_______.答案 23解析 等和线法 如图,BC 为值是1的等和线,过O 作BC 的平行线,设λ+μ=k ,则k=|AO ||AM |.由图易知,|AO ||AM |=23. B(6)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )BA .1B .34C .23D .12答案 B 解析 通法 ∵为线段AO 的中点,∴BE →=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →,∴λ+μ=12+14=34.等和线法 如图,AD 为值是1的等和线,过E 作AD 的平行线,设λ+μ=k ,则k =|BE ||BF |.由图易知,|BE ||BF |=34,故选B .(7)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ的值为( )A .14B .15C .45D .54答案 C 解析 法一:连接AC (图略),由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),则⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2AC →=0,得⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2 [AD →+12AB →]=0,得⎝⎛⎭⎫14λ+34μ-1AB →+⎝⎛⎭⎫λ+μ2AD →=0.又AB →,AD →不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.法二:因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.法三:根据题意作出图形如图所示,连接MN 并延长,交AB 的延长线于点T ,由已知易得AB =45AT ,所以45AT →=AB →=λAM →+μAN →,因为T ,M ,N 三点共线,所以λ+μ=45.等和线法 如图,连接MN 并延长,交AB 的延长线于点T ,则MT 为值是1的等和线,设λ+μ=k ,则k =|AB ||AT |.由图易知,|AB ||AT |=45,故选C .(8) (2013江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2∈R ),则λ1+λ2的值为________.答案 12 解析 如图,过点A 作AF →=DE →,设AF 与BC 的延长线交于点H ,易知AF =FH ,∴DF =12BH ,因此λ1+λ2=12.(9)在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,且AF →=λa +μb ,则λ+μ等于( )A .1B .34C .23D .12答案 A 解析 等和线法 如图,作AG →=BD →,延长CD 与AG 相交于G ,因为C ,F ,G 三点共线,所以λ+μ=1.故选A .C考点二 根据等和线求基底的系数和的最值(范围) 【方法总结】根据等和线求基底的系数和的最值(范围)的步骤(1)确定值为1的等和线;(2)平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值; (3)从长度比或点的位置两个角度,计算最大值和最小值.当点P 是某个平面区域内的动点时,首先作与基底两端点连线平行的直线l ,因点P 无论在l 何处,对应α+β的值恒为定值,我们不妨称之为“等和线”(或“等值线”),然后将“等和线”l 在动点P 的“可行域”内平行移动,于是问题便转化为求两个线段长度的比值范围,称之为“平移法”.已知点P 是△ABC 所在平面内一点,且AP →=xAB →+yAC →,则有点P 在直线BC 上⇔x +y =1;点P 与点A 在直线BC 异侧⇔x +y >1,且x +y 的值随点P 到直线BC 的距离越远而越大;点P 与点A 在直线BC 同侧⇔x +y < 1,且x +y 的值随点P 到直线BC 的距离越远而越小.平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;若需要研究两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和.考虑到向量可以通过数乘继而将向量进行拉伸压缩反向等操作,那么理论上来说,所有的系数之间的线性关系,我们都可以通过调节基底,使得要求的表达式是两个新基底的系数和.【例题选讲】[例1](1)如图,在正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点,设AP →=αAB →+βAF →(α,β∈R ),则α+β的取值范围是________.答案 [3,4] 解析 等和线法 直线BF 为k =1的等和线,当P 在△CDE 内时,直线EC 是最近的等和线,过D 点的等和线是最远的,所以α+β∈[AN AM ,ADAM]=[3,4].(2)(2009安徽)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3,如图所示,点C 在以O 为圆心的弧AB 上运动,若OC →=xOA →+yOB →(x ,y ∈R ),则x +y 的最大值是________.答案 2 解析 通法 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32),设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得1cos 2sin x y yαα⎧=-⎪⎪⎨⎪=⎪⎩,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.等和线法 令x +y =k ,所有与直线AB 角度,不难得到k =|DO ||OE |=2.(3) (2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C .5D .2答案 A 解析 建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD .因为CD =1,BC =2,所以BD =12+22=5,EC =BC ·CD BD =25=255,所以P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).因为AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ),所以μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A .等和线法 过动点P 作等和线,设x +y =k ,则k =|AM ||AB |.由图易知,当等和线与EF 重合时,k 取最大值,由EF ∥BD ,可求得|AE ||AB |=3,∴λ+μ取得最大值3.故选A .(4)在直角梯形ABCD 中,AB ⊥AD ,AD =DC =1,AB =3,动点P 在以点C 为圆心,且与直线BD 相切的圆内运动,设AP →=xAB →+yAD →(x ,y ∈R ),则x +y 的取值范围是________.答案 ⎝⎛⎭⎫1,53 解析 等和线法 如图,作CE ⊥BD 于E ,由△CDE ∽△DBA 知CE DA =CD BD ,即CE 1=110,所以CE =1010,设与BD 平行且与圆C 相切的直线交AD 延长线于点F ,作DH 垂直该线于点H ,显然DH =2CE =105,由△DFH ∽△BDA 得DF BD =DH BA ,即DF10=105 3,所以DF =23,过点P 作直线l ∥BD ,交AD 的延长线于点M ,设t =AMAD,则x +y =t ,由图形知“等值线”l 可从直线BD 的位置平移至直线FH 的位置(不包括BD 和FH ),由平面几何知识可得1=AD AD <AM AD <AF AD =53,即1<t <53,故x +y 的取值范围是⎝⎛⎭⎫1,53.(5)如图,在平行四边形ABCD 中,M ,N 为CD 的三等分点,S 为AM 与BN 的交点,P 为边AB 上一动点,Q 为三角形SMN 内一点(含边界),若PQ →=xAM →+yBN →(x ,y ∈R ),则x +y 的取值范围是________.答案 [34,1] 解析 如图,作PE →=BN →,PF →=AM →,过S 直线MN 的平行线,由等和线定理知,(x +y )max =1,(x +y )min =34.(6)如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A .2B .3C .2D .22答案 C 解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0),设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA→=(3,3),BD →=(3,0),故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎨⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ].由题意知,x ≥0,y ≥0,|BM →|的最大值为(23)2-(3)2=3,又(2x +y )24≥2xy ,即-(2x +y )24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号.A等和线法 BM →=xBA →+yBD →=2x (12BA →)+yBD →=2xBE →+yBD →,作出值1为的等和线DE ,AC 是过圆上的点最远的等和线,设2x +y =k ,则k =|NB ||PB |=2.∴2x +y 取得最大值2.故选C .(7) 如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0) 解析 通法 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).等和线法 如图,作OA →,OB →的相反向量OA 1→,OB 1→,则AB ∥A 1B 1,过O 作直线l ∥AB ,则直线l ,A 1B 1分别为以OA →,OB →为基底的值为0,-1的等和线,由题意线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,所以点C 在直线l 与直线A 1B 1之间,所以m +n ∈(-1,0).(8)已知点O 为△ABC 的边AB 的中点,D 为边BC 的三等分点,DC =2DB ,P 为△ADC 内(包括边界)任一点,若OP →=xOB →+yOD →,则x -2y 的取值范围为________.答案 [-8,-1] 解析 等和线法 如图,延长DO 至点E ,使DO =2OE ,则OE →=-12OD →,则OP →=xOB →+yOD →=xOB →+(-2y ) OE →,令z =-2y ,则x -2y =x +z ,OP →=xOB →+zOE →,设过点A ,C ,P 与BE 平行的直线分别为为l 1,l 2,l ,设l ,l 2交线段OD 延长线于点M ,H ,l 1交线段OD 于点K ,令x +z =t ,由图形知,t =-OMOE ,“等和线”l 可从l 1的位置平移至l 2的位置,由平面几何知识可知△OBE ≌△OAK ,△DBE∽△DCH ,所以OE OK =OB OA =1,BD CD =DE DH =3OE DH =12,所以1=OK OE ≤OM OE ≤OH OE =OD +DH OE =2OE +6OEOE =8,则-8≤t ≤-1,故x -2y 的取值范围为[-8,-1].(9)如图,在边长为1的正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧(在正方形内,包括边界点)上的任意一点,若向量AC →=λDE →+μAP →,则λ+μ的最小值为________.答案 12 解析 通法 以A 为原点,以AB 所在的直线为x 轴,AD 所在的直线为y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),E ⎝⎛⎭⎫12,0,C (1,1),D (0,1).设P (cos θ,sin θ),∴AC →=(1,1),AP →=(cos θ,sin θ),DE →=⎝⎛⎭⎫12,-1,∵AC →=λ⎝⎛⎭⎫12,-1+μ(cos θ,sin θ)=⎝⎛⎭⎫λ2+μcos θ,-λ+μsin θ=(1,1),∴⎩⎪⎨⎪⎧λ2+μcos θ=1,-λ+μsin θ=1,∴⎩⎪⎨⎪⎧λ=2sin θ-2cos θ2cos θ+sin θ,μ=32cos θ+sin θ,∴λ+μ=3+2sin θ-2cos θ2cos θ+sin θ=-1+3sin θ+32cos θ+sin θ.∴(λ+μ)′=6+6sin θ-3cos θ(2cos θ+sin θ)2>0,故λ+μ在⎣⎡⎦⎤0,π2上是增函数,∴当θ=0,即cos θ=1时,λ+μ取最小值为3+0-22+0=12.等和线法 由题意,作AK →=DE →,设AD →=λAC →,直线AC 与PK 直线相交于点D ,则有AD →=λxAK →+λyAP →,由等和线定理,λx +λy =1,从而x +y =1λ,当点P 与B 点重合时,如图,λmax =2,此时,(x +y ) max =12.(10) (2013·安徽)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是( )A .22B .23C .42D .43答案 D 解析 等和线法 如图,分别作OC →=-OA →,OD →=-OB →.当λ≥0,μ≥0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OA →+|μ|OB →,|λ|+|μ|≤1,λ,μ∈R },对应区域1;当λ≥0,μ<0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OA →+|μ|OD →,|λ|+|μ|≤1,λ,μ∈R },对应区域2;当λ<0,μ≥0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OC →+|μ|OB →,|λ|+|μ|≤1,λ,μ∈R },对应区域3;当λ<0,μ<0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OC →+|μ|OD →,|λ|+|μ|≤1,λ,μ∈R },对应区域4.综上所述可得,点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域即图中的矩形区域,其面积S =2×23=43.故选D .【对点训练】1.如图,△BCD 与△ABC 的面积之比为2,点P 是区域ABCD 内任意一点(含边界),且AP →=λAB →+μAC →, 则λ+μ的取值范围为( )ABCDO 1342AA .[0,1]B .[0,2]C .[0,3]D .[0,4] 1.答案 解析 等和线法 如图,(λ+μ)min =0,(λ+μ)max =3.故选C .2.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →, 则μ的取值范围是________.2.答案 ⎣⎡⎦⎤0,12 解析 通法 由题意可求得AD =1,CD=3,所以AB →=2DC →.∵点E 在线段CD 上, ∴DE →=λDC → (0≤λ≤1).∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 等和线法 如图,(1+μ)min =1,μmin =0.(1+μ)max =32,μmax =12.3.如图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且OD =2,点P 是△BCD 内任意 一点(含边界),设OP →=λOC →+μOD →,则λ+μ的取值范围为________.3.答案 [1,32] 解析 等和线法 如图,(λ+μ)min =1,(λ+μ)max =32.4.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上 运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B .2C .3D .24.答案 B 解析 通法 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1.又(x +y )2=x 2+y 2+2xy ≤2,故x +y 的最大值为2. 等和线法 确定值为1的等和线AB ,过动点C 作等和线,设x +y =k ,则k =|CO ||PO |.由图易知,当等和线与圆相切时,k 取最大值,此时|MO ||NO |=2,∴x +y 取得最大值2.故选B .5.如图,在边长为2的正六边形ABCDEF 中,动圆Q 半径为1,圆心在线段CD (含端点)上运动,P 是圆 上及其内部的动点,设AP →=mAB →+nAF →(m ,n ∈R ),则m +n 的取值范围是________.5.答案 [2,5] 解析 等和线法 如图1时,m +n 的值最小且m +n =ANAB =2,如图2时,m +n 的值最大且m +n =AMAB=5,6.如图,已知点P 为等边三角形ABC 外接圆上一点,点Q 是该三角形内切圆上的一点,若AP →=x 1AB →+y 1AC →,AQ →=x 2AB →+y 2AC →,则|(2x 1-x 2)+(2y 1-y 2)|的最大值为______.F6.答案 73 解析 等和线法 由等和线定理知当点P ,Q 分别在如图所示的位置时x 1+y 1取最大值,x 2+y 2取最小值,且x 1+y 1的最大值为|AP ||AM |=43,x 2+y 2的最小值为|AQ ||AM |=13.故|(2x 1-x 2)+(2y 1-y 2)|=|(2(x 1+y 1)-(x 2+y 2)| ≤43+13=73.7.如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的动点,若OC →=xOA →+yOB →,则x +3y 的取值范围是________.7.答案 [1,3] 解析 等和线法 依题意,OC →=xOA →+3y (OB →3),如图,作OB ′→=OB →3,重新调整基底为OA →,OB →′,设k =x +3y ,显然,当C 在A 点时,经过k =1的等和线,当C 在B 点时,经过k =3的等和线,这两条线分别是最近与最远的等和线,所以x +3y 的取值范围是[1,3].8.如图,G 为△ADE 的重心,P 为△GDE 内任一点(包括边界),B ,C 均为AD ,AE 上的三等分点(靠近 点A ),AP →=αAB →+βAC →,则α+12β的取值范围是________.P8.答案 ⎣⎡⎦⎤32,3 解析 等和线法 如图,在线段AE 上取点F ,使AC =CF ,则AP →=αAB →+12βAF →,设12β =γ,则AP →=αAB →+γAF →,连接BF ,延长EG 交AD 于点H ,因为G 为△ADE 的重心,所以H 为AD 的中点,又B ,C 均为AD ,AE 上靠近点A 的三等分点,所以AF FE =ABBH =2,所以BF ∥HE ,过点P 作直线l ∥HE 交AD 于点M ,设α+γ=t ,则t =AMAB ,由图形知,“等值线”l 可从直线HE 的位置平移到过点D 的位置,由平面几何知识可知32=AH AB ≤AM AB ≤AD AB =3,故32≤t ≤3,即α+γ∈⎣⎡⎦⎤32,3,故α+12β的取值范围是⎣⎡⎦⎤32,3. 9.给定两个长度为1的平面向量OA 和OB ,它们的夹角为90︒,如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC xOA yOB =+.其中x ,y ∈R ,则23x y +的最大值是( )AB .3 CD .5 9.答案 A 解析 通法点C 在以O 为圆心的圆弧AB 上运动,∴可以设圆的参数方程cos x θ=,sin y θ=,[0θ∈︒,90]︒,232cos 3sin )x y θθθϕ∴+=+=+,其中cos ϕ,sin ϕ=,3513x y∴+,当且仅当sin()1θϕ+=时取等号.x y ∴+当三角函数取到1时成立.故选A .等和线法 OC →=xOA →+yOB →=2x (12OA →)+3y (13OB →)=2xOE →+3yOF →,2x +3y =k ,则k =|OD ||OM |=13.10.平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP=1,若AP →=xAB →+yAD →,则3x +2y 的最大值为________.10.答案 2 解析 通法 |AP →|2=(xAB →+yAD →)2=9x 2+4y 2+2xy ×3×2×⎝⎛⎭⎫-12=(3x +2y )2-3(3x )·(2y )≥(3x + 2y )2-34(3x +2y )2=14(3x +2y )2.又|AP →|2=1,因此14(3x +2y )2≤1,故3x +2y ≤2,当且仅当3x =2y ,即x=13,y =12时,3x +2y 取得最大值2. 等和线法 可转化为例2(2).11.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ), 则5λ+3μ的最大值为______. 11.答案102解析 通法 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0, 3).∵AP =52,∴x 2+y 2=54.点P 满足的约束条件为⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ),∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102,当且仅当x =y 时取等号,∴5λ+3μ的最大值为102.等和线法 AP →=λAB →+μAD →=5λAB →)+3μAD →)=5λAM →+3μAN →,5λ+3μ=k ,则k=102.BAN12.如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x -y 的取值范围是________.12.答案 [1-,1] 解析 通法 设半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,建立直角坐标系,其中1(2A;(1,0)B ;(cos ,sin )C θθ(其中(0)3BOC πθθ∠=,有若OC →=xOA →+yOB→=(cos θ,1sin )(2xθ=(1y +,0);整理得:1cos 2x y θ+=sinθ=,解得x =cos y θ=,则cos cos 2sin()6x y πθθθθ-=-+-=-,其中(0)3πθ;易知cos cos 2sin()6x y πθθθθ-==-=-,为增函数,由单调性易得其值域为[1-,1],故答案为[1-,1].等和线法13.如图,在直角梯形ABCD 中,AB AD ⊥,//AB DC ,2AB =,1AD DC ==,图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP xAB yBC =+,其中x ,y ∈R ,则4x y -的最大值为( )A .3B .3C .2D .3+13.答案 B 解析 以A 为坐标原点,AB 为x 轴,AD 为y 轴建立平面直角坐标系,则(0,0)A ,(0,1)D ,(1,1)C ,(2,0)B ,直线BD 的方程为220x y +-=,C 到BD 的距离d =,∴圆弧以点C 为圆心的圆方程为221(1)(1)4x y -+-=,设(,)P m n 则(,)AP m n =,(0,1)AD =,(2,0)AB =,(1,1)BC =-,若AP xAB yBC =+,(m ∴,)(2n x y =-,)y ,2m x y ∴=-,n y =,P 在圆内或圆上,A221(21)(1)4x y y ∴--+-,设4x y t -=,则4y x t =-,代入上式整理得2280(4816)870x t x t -+++,设22()80(4816)870f x x t x t =-+++,1[2x ∈,3]2,则1()023()02f f ⎧<⎪⎪⎨⎪<⎪⎩,解得5232t+,故4x y -的最大值为3,故选B .等和线法14.如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上,且与A ,B 不重合的一个动点,OC →=xOA →+yOB →,若u =x +λy (λ>0)存在最大值,则λ的取值范围为( )A .1(, 1)2B .(1, 3)C .1(, 2)2D .1(, 3)314.答案 C 解析 通法 以O 为原点,OB 为x 轴,建立如图所示的直角坐标系,设(0)3COB πθθ∠=<<, 1OB =,则(cos ,sin )C θθ,(1,0)B ,1(2A ,由OC xOA yOB =+,得1cos 2sin y x θθ⎧=+⎪⎪⎨⎪=⎪⎩,∴cos x y θθ⎧=⎪⎪⎨⎪=-⎪⎩,cos (0)3u x y πλθλθθ∴=+=+<<,(0)u x y λλ=+>存在最大值,()u θ∴存在极值点,sin u θλθ'∴=-在(0,)3πθ∈上有零点.令0u '=,则tan θ=,(0,)3πθ∈,∴tan θ=,∴122λ<<,λ∴的取值范围为1(,2)2.故选C .等和线法15.在平面直角坐标系中,O 是坐标原点,若两定点A ,B 满足||||2OA OB ==,1OA OB =,则点集{}|, ||||2, , P OP OA OB λμλμλμ=++∈R 所表示的区域的面积是( )A. B. C. D.15.答案 D 解析2cos 1OA OB AOB =⨯∠=,1cos 2AOB ∴∠=,即60AOB ∠=︒.(1)若0λ>, 0μ>,设2OE OA =,2OF OB =,则22OP OE OF λμ=+,||||2λμλμ+=+,故当2λμ+=时,E ,F,P 三点共线,故点P表示的区域为OEF ∆,此时1sin 602OEF S ∆=⨯︒=.(2)若0λ<,0μ>,设2OE OA =-,2OF OB =,则22OP OE OF λμ=-+,||||2λμλμ+=-+,故当2λμ-+=时,P ,E,F 三点共线,故点P表示的区域为OEF ∆,此时1sin1202OEF S ∆=⨯︒=同理可得:当0λ>,0μ<时,P 点表示的区域面积为,当0λ<,0μ<时,P点表示的区域面积为综上,P 点表示的区域面积为4=.故选D .等和线法。

平面向量的等和线、等差线、等积线、等商线等

平面向量的等和线、等差线、等积线、等商线等

平面向量基本定理系数的等值线法一、适用题型在平而向量搖本崖理的表达式中.若需研究两系数的和差积商、线性表达式及平方和时.可以用等值线法・二基本理论(一)平面向*共线定理已知鬲=久西+“況.若久十“ = I, UIUB.C三点共线:反之亦然(二)等和线平面内一俎慕底oNoS及任一向量亦.亦二人花+ 〃亦(人若 0 P在直线朋上或在平行于肋的直线上,则2+“ =尿定值)仮Z也成孙我们把直线*〃以及与宜线.4B 平行的直线成为等和线。

(1)当等和线恰为直线时.A=l:⑵ 当等和线在O点和直线朋之间时.仁(0,1);(3)当住线M在O点和等和线之间时"<仏+00);(4>当等和线过O点时.^ = 0;(5)若两等和线关于O点对称.则左值《互为相反数:(6)泄值人-的变化与等和线到O点的師离成正比:(三)等差仪平面内一组慕底OA,OB及任一向量帀・帀“鬲+ “亦亿C为线段的中点.若点P在直线0C上或在平行于CC的買线上.则八戸=灿上值八反Z也成匕我们把fL线"以及线OC半行的直线称为等差线.(1)当等荃线恰为直线OC时,A=0:(2)斗等差线过X点时.A=l:(4)当等差线与阳延长线相交时.2(1卄8);⑶ 当等差线在直线0C与点/之何时.JtG(0,l):(5>若两等差线关于直线OC对称.则两足为相反数:(四)等积线平面内一组基底OA.OBJ^任一向&OP ・ 丽=几刃+ “亦(入“wR )・若 点P 在以苴线OA.OB 为渐近线的女曲线上.则“为足值I 反Z 也成必 我们 把以直线OA.OB 为渐近线的双曲线称为%积线(1) 当双曲线有一支金厶103内时,k>0t(2) 当双曲线的两支都不在乙4OB 内时.X <0:(3) 特别的.若tU=(a 上讥加= (“,"),点P 住双曲线(五)等商线点P 在过O 点(不与0/1重合〉的直线上,则虫=川定值),反之也成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档