ANSYS有限元分析作业

合集下载

ansys有限元分析作业经典案例

ansys有限元分析作业经典案例

工程软件应用及设计实习报告实习时间:一.实习目的:1.熟悉工程软件在实际应用中具体的操作流程与方法,同时结合所学知识对理论内容进行实际性的操作.2.培养我们动手实践能力,将理论知识同实际相结合的能力,提高大家的综合能力,便于以后就业及实际应用.3.工程软件的应用是对课本所学知识的拓展与延伸,对我们专业课的学习有很大的提高,也是对我们进一步的拔高与锻炼. 二.实习内容(一)用ANSYS软件进行输气管道的有限元建模与分析计算分析模型如图1所示承受内压:1.0e8 PaR1=0.3R2=0.5管道材料参数:弹性模量E=200Gpa;泊松比v=0.26.图1受均匀内压的输气管道计算分析模型(截面图)题目解释:由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生.然后根据结构的对称性,只要分析其中1/4即可.此外,需注意分析过程中的单位统一.操作步骤1.定义工作文件名和工作标题1.定义工作文件名.执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮.2.定义工作标题.执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK 按钮.3.更改目录.执行Utility Menu-File→change the working directory –D/chen2.定义单元类型和材料属性1.设置计算类型ANSYS Main Menu: Preferences →select Structural →OK2.选择单元类型.执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →applyAdd/Edit/Delete →Add →select Solid Brick 8node 185 →OKOptions…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框.图23.设置材料属性.执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框.图33.创建几何模型1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK2. 生成管道截面.ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical →ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In Active Coord →依次连接1,2,3,4点→OK 如图4图4Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条边→OK →ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 如图5图53.拉伸成3维实体模型Preprocessor →Modeling→operate→areas→along normal输入2,如图6所示图64.生成有限元网格Preprocessor →Meshing →Mesh Tool→V olumes Mesh→Tet→Free,.采用自由网格划分单元.执行Main Menu-Preprocessor-Meshing-Mesh-V olume-Free,弹出一个拾取框,拾取实体,单击OK按钮.生成的网格如图7所示.图75.施加载荷并求解1.施加约束条件.执行Main Menu-Solution-Apply-Structural-Displacement-On Areas,弹出一个拾取框,拾取前平面,单击OK按钮,弹出如图8所示的对话框,选择“U Y”选项,单击OK按钮.图8同理,执行Main Menu-Solution-Apply-Structural-Displacement-On Areas,弹出一个拾取框,拾取左平面,单击OK按钮,弹出如图8所示的对话框,选择“U X”选项,单击OK按钮.2.施加载荷.执行Main Menu-Solution-Apply-Structural-Pressure-On Areas,弹出一个拾取框,拾取内表面,单击OK按钮,弹出如图10所示对话框,如图所示输入数据1e8,单击OK按钮.如图9所示.生成结构如图10图9图103.求解.执行Main Menu-Solution-Solve-Current LS,弹出一个提示框.浏览后执行file-close,单击OK按钮开始求解运算.出现一个【Solution is done】对话框是单击close按钮完成求解运算.6.显示结果1.显示变形形状.执行Main Menu-General Posproc-Plot Results-Deformed Shape,弹出如图11所示的对话框.选择“Def+underformed”单选按钮,单击OK按钮.生成结果如图12所示.图11图122.列出节点的结果.执行Main Menu-General Posproc-List Results-Nodal Solution,弹出如图13所示的对话框.设置好后点击OK按钮.生成如图14所示的结果图13图143.浏览节点上的V on Mises应力值.执行Main Menu-General Posproc-Plot Results-Contour Plot-Nodal Solu,弹出如图15所示对话框.设置好后单击OK按钮,生成结果如图16所示.图15图167.以扩展方式显示计算结果1.设置扩展模式.执行Utility Menu-Plotctrls-Style-Symmetry Expansion,弹出如图17所示对话框.选中“1/4 Dihedral Sym”单选按钮,单击OK按钮,生成结果如图18所示.图17图182.以等值线方式显示.执行Utility Menu-Plotctrls-Device Options,弹出如图19所示对话框,生成结果如图20所示.图19图20结果分析通过图18可以看出,在分析过程中的最大变形量为418E-03m,最大的应力为994E+08Pa,最小应力为257E+09Pa.应力在内表面比较大,所以在生产中应加强内表面材料的强度.。

ansys有限元分析报告02

ansys有限元分析报告02
分析2:平面钢板受力分析
姓名: 班级:10 机制二班 学号:1038
1、概述
图示为一个 130mm×200mm×15mm 的钢制平板,钢板上沿板的中 心线钻出三个孔(半径 12mm),钢板底部已施加约束,钢板顶 边受 300N/mm 均布拉力。忽略重力影响。材料属性:杨氏模量: 190GPa;泊松比:0.3 求:钢板的应力分布情况及变形情况(提 示可参看课本第三章实例,可采用 Plane82 单元模拟;也可三维 建模采用 Solid45 实体单元模拟,注意单位制! )
0.113e9 N。 最大应力在图中红色区域,最大应力为 最大应力在图中红色区域,最大应力为0.113e9 0.113e9N
单元类型。再修改单元类型选项(options)
� Main Menu>Preprocessor>Material Models 定义材料属性
� Main Menu>Preprocessor>Real Constants 定义的截面的厚度。
� Main Menu>Preprocessor>Mesh>MeshTool 直接用 meshtool 对模型进行自由 网格划分
0. 255 e8m 最大变形在图中红色区域,最大变形为 最大变形在图中红色区域,最大变形为0. 0.255 255ee-8 � 应力云图
Main Menu>General Posproc>Plot Results>Contour Plot>Nodal Solu 弹出对话框选择Stess>von Mises stress获取下图
� 将模型底边自由度完全约束;
Байду номын сангаас
� 顶部边加载 F = -300000 N/M

ansys有限元分析练习_-_轴承座静力学分析

ansys有限元分析练习_-_轴承座静力学分析

M5-31
练习 - 轴承座(续)
9. 创建 Web. Main Menu: Preprocessor -> Modeling-Create -> VolumePrism -> By Vertices + 1. 拾取轴承孔座与整个基座的交点。 2. 拾取轴承孔上下两个体的交点 3. 拾取整个基座的左上角。 4. 重新拾取第一点,这时已经完成了Web的三角形侧面 的建模。 5. 输入Web的厚度值“.15”,厚度的方向是向周成孔中 心。 6. OK Toolbar: SAVE_DB
September 30, 1998
Introduction to ANSYS - Release 5.5 (001128)
M5-26
练习 - 轴承座(续)
4. 偏移工作平面到 bushing bracket 的前表面 Utility Menu: WorkPlane -> Offset WP to -> Keypoints + 1. 在刚刚创建的实体块的左上角拾取关键点 2. OK Toolbar: SAVE_DB (SAVE_DB 保存数据库或拾取 RESUM_DB 取消上一次操作)
恭喜! 你已经到达第一块里程碑 -- 几何建模. 下一步是网格划分.
September 30, 1998
Introduction to ANSYS - Release 5.5 (001128)
M5-33
练习 - 轴承座(续)
13. 定义 10-节点 四面体实体结构单元 (SOLID92) 为单元类型 1. Main Menu: Preprocessor -> Element Type -> Add/Edit/Delete ... 1. Add 2. 选择 Structural-Solid, 并下拉菜单选择 “Tet 10Node 92” 3. OK 4. Close

基于ANSYS的有限元分析

基于ANSYS的有限元分析

基于ANSYS的有限元分析有限元大作业基于ansys的有限元分析班级:学号:姓名:指导老师:完成日期:ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo,NASTRAN, Alogor, I-DEAS, AutoCAD等。

是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。

在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。

ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。

目前,中国100多所理工院校采用ANSYS 软件进行有限元分析或者作为标准教学软件。

2D Bracket问题描述:We will model the bracket as a solid 8 node plane stress element.1.Geometry: The thickness of the bracket is 3.125 mm2.Material: steel with modulus of elasticity E=200 GPa.3.Boundary conditions: The bracket is fixed at its left edge.4.Loading: The bracket is loaded uniformly along its top surface. Theload is 2625 N/m.5.Objective: a.Plot deformed shapeb.Determine the principal stress and the von Mises stress. (Use the stress plots to determine these)c.Remodel the bracket without the fillet at the corner or change the fillet radius to 0.012 and 0.006m, and see howd.principal stress and von Mises stress change.一,建立模型1设置工作平面在ansys主菜单里找到workplane>wp settings,输入如下参数。

ANSYS大作业扳手有限元分析

ANSYS大作业扳手有限元分析

ANSYS大作业扳手有限元分析nXXX。

which is a hand tool that uses the principle of leverage to turn bolts。

screws。

nuts。

XXX or to hold the XXX。

The Monte Carlo method。

also known as the statistical n method。

is a method proposed by Metropolis during World War II for studying the XXX random processes。

XXX。

XXX。

XXX。

XXX a large number of random processes using the Monte Carlo method。

complex random problems XXX particular。

the advent of computers has greatly expanded the scope and efficiency of the Monte Carlo method by allowing XXX are.1 Model XXXThe wrench model was established in UG NX。

and since the UG NX n is too high。

ANSYS cannot directly recognize its files and needs to be saved as a Step format.Figure 1 shows the wrench model drawn in UG NX.2 XXX of Engineering Files in ANSYS Workbench2.1 Open Static StructuralImport the Step file in Geometry and open the Model n. Figure 2 shows the XXX.2.1.1 XXXXXX:zx+X=0x y zxyyzy+++Y=0x y zxz+yz+z+Z=0y z xThe nonlinear finite element analysis method with XXX n of the product were analyzed。

有限元分析-案例

有限元分析-案例

有限元分析作业作业名称横臂梁有限元建模分析姓名学号班级一、问题描述图25所示为一工字钢梁,两端均为固定端,其截面尺寸为,16,2.0,.0===。

试建立该工字钢梁的三维实体模型,并.0=0.1=,l03cmmdm02b,.0mma在考虑重力的情况下对其进行结构静力分析。

其他已知参数如下:弹性模量(也称杨式模量) E= 206GPa ;泊松比3.0=u ;材料密度3/7800m kg =ρ;重力加速度2/8.9s m g =;作用力Fy 作用于梁的上表面沿长度方向中线处,为分布力,其大小Fy=-5000N二、实训目的本实训的目的是使学生学会掌握ANSYS 在三维实体建模方面的一些技术,并深刻体会ANSYS 软件在网格划分方面的强大功能。

三、结果演示使用ASSY S 8。

0软件对该工字钢梁进行结构静图26单元类型库对话框图25 工字钢结构示意图力分析,显示其节点位移云图。

四、实训步骤(一)ASSYS8.0的启动与设置与实训1第一步骤完全相同,请参考。

(二)单元类型、几何特性及材料特性定义1定义单元类型。

点击主菜单中的“Preprocessor>Element Type >Add/Edit/Delete ”,弹出对话框,点击对话框中的“Add…”按钮,又弹出一对话框(图26),选中该对话框中的“Solid ”和“Brick 8node 45”选项,点击“OK ”,关闭图26对话框,返回至上一级对话框,此时,对话框中出现刚才选中的单元类型:Solid45,如图27所示。

点击“Close ”,关闭图27所示对话框。

注:Solid45单元用于建立三维实体结构的有限元分析模型,该单元由8个节点组成,每个节点具有X 、Y 、Z 方向的三个移动自由度。

2.定义材料特性。

点击主菜单中的 “Preprocessor>Material Props >Material Models ”,弹出窗口如图28所示,逐级双击右框中“Structural\ Linear\ Elastic\ Isotropic ”前图标,弹出下一级对话框,在“弹性模量”(EX )文本框中输入:2.06e11,在“泊松比”(PRXY )文本框中输入:0.3,如图29所示,点击“O K ”图28 材料特性参数对话框按钮,回到上一级对话框,然后,双击右框中的“Density ”选项,在弹出对话框的“DENS ”一栏中输入材料密度:7800,点击“OK ”按钮关闭对话框。

课程设计ANSYS有限元分析(最完整)

课程设计ANSYS有限元分析(最完整)

有限元法分析与建模课程设计报告学院:机电学院专业:机械制造及其自动化指导教师:****学生:****学号:2012011****2015-12-31摘要本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。

力求较为真实地反映光盘在光驱中实际应力和应变分布情况,为人们进行合理的标准光盘结构设计和制造工艺提供理论依据。

关键词:ANSYS10.0;光盘;应力;应变。

目录第一章引言31.1 引言3第二章问题描述52.1有限元法及其基本思想52.2 问题描述5第三章力学模型的建立和求解63.1设定分析作业名和标题63.2定义单元类型73.3定义实常数103.4定义材料属性133.5建立盘面模型153.6对盘面划分网格233.7施加位移边界283.8施加转速惯性载荷并求解31第四章结果分析334.1 旋转结果坐标系334.2查看变形344.3查看应力36总结39参考文献40第一章引言1.1 引言光盘业是我国信息化建设中发展迅速的产业之一,认真研究光盘产业的规律和发展趋势,是一件非常迫切的工作。

光盘产业发展的整体性强,宏观调控要求高,因此,对于光盘产业的总体部署、合理布局和有序发展等问题,包括节目制作、软件开发、硬件制造、节目生产、技术标准等。

在高速光盘驱动器中,光盘片会产生应力和应变,在用ANSYS分析时,要施加盘片高速旋转引起的惯性载荷,即可以施加角速度。

需要注意的是,利用ANSYS施加边界条件时,要将孔边缘节点的周向位移固定,为施加周向位移,而且还需要将节点坐标系旋转到柱坐标系下。

本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。

有限元分析大作业

有限元分析大作业

一、有限元方法的手工计算结果与ansys分析结果的对比1分析的问题描述如图1所示,桁架的杆截面面积为8,由钢制成(E=200GPa)。

用有限元法计算出每个节点的位移以及反作用力。

(1)(2)(3)图1对于上述问题,本文将用手工计算和ansys软件分别计算出结果,对计算出来的结果进行对比。

2手工计算2.1桁架结构的有限元计算方法对于桁架结构,每个单元的刚度矩阵为,(2-1)YX图2其中,为桁架单元在整体坐标系中与X轴的夹角;,A为桁架的截面积,E 为弹性模量,L为桁架长度。

在固体力学问题中,有限元公式通常由如下的一般形式,Ku=F(2-2)其中,K为刚度矩阵,u为位移矩阵,F为载荷矩阵。

运用公式(2-3),就能求出反作用力,R=Ku-F(2-3)其中,R为反作用力矩阵。

2.2计算过程计算每个桁架单元的刚度,用公式(2-1)计算每个每个桁架单元的刚度矩阵,将每个单元放入总刚度矩阵,他们的位置分别为:10-100000 00000000 -10100000 00000000 00000000 00000000 00000000 0000000000000000 00000000 0010-1000 0000000000-101000 00000000 00000000 000000003.9-4.90000-3.9 4.9-4.9 6.10000 4.9-6.1 00000000 00000000 00000000 00000000-3.9 4.90000 3.9-4.9 4.9-6.10000-4.9 6.100000000 00000000 00000000 000 1.28000-1.28 00000000 00000000 00000000 000-1.28000 1.2800000000 00000000 00000000 00000000 0000 3.9 4.9-3.9-4.9 0000 4.9 6.1-4.9-6.1 0000-3.9-4.9 3.9 4.9 0000-4.9-6.1 4.9 6.1将个刚度矩阵相加得到总刚度矩阵为,19.9-4.90-16000-3.9 4.9 -4.9 6.100000 4.9-6.1 -160320-16000 00012.8000-12.8 00-16019.9 4.9-3.9-4.9 0000 4.9 6.1-4.9-6.1 -3.9 4.900-3.9-4.97.80 4.9-6.10-12.8-4.9-6.1025应用边界条件施加载荷,将总刚度矩阵带入式(2-2)得:19.9-4.90-16000-3.9 4.9Ux1 -4.9 6.100000 4.9-6.1Uy1 -160320-16000Ux2 00012.8000-12.8Uy200-16019.9 4.9-3.9-4.9Ux3 0000 4.9 6.1-4.9-6.1Uy3 -3.9 4.900-3.9-4.97.80Ux4 4.9-6.10-12.8-4.9-6.1025Uy4带入边界条件解得:将结果带入(2-3)得:=Fx1Fy1Fx2Fy2Fx3Fy3Fx4Fy43用ansys软件求解(单位统一N,mm,Mpa)(1)选择单元(图3)图3(2)附材料属性(图4)图4(3)创建模型(图5)图5(4)施加载荷(图6)图6(5)求解每个节点的位移(图7)图7节点的反力(图8)图8(6)模型变形图(7)位移等值线分布图4结果对比及分析手算结果ansys 计算结果位移(mm)Ux100Uy100Ux2-0.0016-0.0016Uy2-0.0468-0.0468Ux300Uy300Ux4-0.0066-0.0066Uy4-0.0317-0.0317表1手算结果ansys计算结果节点反力(N)Fx1-1027.8-1027.8 Fy11608.31608.3 Fx2 5.60 Fy2-100 Fx32066.72063.1 Fy32257.12255.4 Fx48.80 Fy4-2.70表2由表1和表2可以看出,手工计算的结果与ansys计算的结果基本一致。

滑轮有限元分析-ANSYS FEM 大作业

滑轮有限元分析-ANSYS FEM 大作业

滑轮有限元分析-ANSYS FEM 大作业1.问题描述某滑轮结果如下图所示,试分析结构在实际工作中的受力情况,并利用FEM类软件校核材料的强度是否满足要求。

其中天车最大钓钩载荷为3150KN,游动系统以及钢丝绳总重为150KN。

材料为Q345。

2.问题分析天车最大钓钩载荷为3150KN,游动系统以及钢丝绳总重为150KN,游车与天车选用6x7轮系,钢丝绳实际最大拉力F=(3150+150)/12=275KN。

滑轮受力图如下图所示,当钢丝绳两端拉力平行,滑轮受力最大为2F=550KN。

图1 滑轮受力分析滑轮上端面与绳索接触,所有滑轮外表面的上半面受力,且载荷不是均匀分析,而是按照正弦函数分析。

同时滑轮内表面的上半面受力,下半面为自由状态。

在有限元分析中,需要注意选择合适的边界条件和载荷加载。

有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。

利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。

有限元分析是用较简单的问题代替复杂问题后再求解。

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。

由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,且能适应各种复杂形状,因而成为行之有效的工程分析手段3.求解步骤滑轮材料为Q345,根据API Spec 8C-2012第5版4.7规定滑轮的设计安全系数不小于3,所以滑轮的许用应力为115Mpa,其中弹性模量为2.1e11Pa,泊松比为0.3。

对滑轮结构进行有限元网格划分,滑轮存在较多倒角过度细节,所以采用四面体网格进行划分,对倒角圆孔区域进行局部加密,有限元网格模型如下图所示。

ansys有限元分析考题

ansys有限元分析考题

1. ANSYS‎交互界面环‎境包含交互界面主‎窗口和信息输出窗‎口。

2. 通用后处理‎器提供的图‎形显示方式‎有变形图、等值线图、矢量图、粒子轨迹图‎以及破裂和‎压碎图。

3. ANSYS‎软件是融结‎构、流体、电场、磁场、声场和耦合‎场分析于一‎体的有限元分析‎软件。

4. 启动ANS‎Y S 10.0的程序,进入ANS‎YS交互界‎面环境,包含主窗口和输出窗口。

5. ANSYS‎程序主菜单‎包含有前处‎理、求解器、通用后处理‎、时间历程后‎处理器等主‎要处理器,另外还有拓‎扑优化设计‎、设计优化、概率设计等‎专用处理器‎。

6. 可以图形窗‎口中的模型‎进行缩放、移动和视角‎切换的对话‎框是图形变‎换对话框。

7. ANSYS‎软件默认的‎视图方位是‎主视图方向‎。

8. 在ANSY‎S中如果不‎指定工作文‎件名,则所有文件‎的文件名均‎为 file 。

9. ANSYS‎的工作文件‎名可以是长‎度不超过 64 个字符的字‎符串,必须以字母开头,可以包含字‎母、数字、下划线、横线等。

10. ANSYS‎常用的坐标‎系有总体坐标系、局部坐标系、工作平面、显示坐标系、节点坐标系‎、单元坐标系‎和结果坐标‎系。

11. ANSYS‎程序提供了‎4个总体坐‎标系,分别是:总体直角坐标系,固定内部编‎号为0;总体柱坐标系,固定内部编‎号为1;总体球坐标系,固定内部编‎号为2;总体柱坐标系,固定内部编‎号为5。

12. 局部坐标系‎的类型分为‎直角坐标系、柱坐标系、球坐标系和环坐标系。

13. 局部坐标系‎的编号必须‎是大于或等‎于 11 的整数。

14. 选择菜单路‎径U til‎i ty Menu →WorkP‎l ane→Displ‎a y Worki‎n g Plane‎,将在图形窗‎口显示工作平面。

15. 启动ANS‎Y S进入A‎N SYS交‎互界面环境‎,最初的默认‎激活坐标系‎(当前坐标系‎)总是总体直角坐标系。

《有限元教程》20例ANSYS经典实例

《有限元教程》20例ANSYS经典实例

《有限元教程》20例ANSYS经典实例有限元方法在工程领域中有着广泛的应用,能够对各种结构进行高效精确的分析和设计。

其中,ANSYS作为一种强大的有限元分析软件,被广泛应用于各个工程领域。

下面将介绍《有限元教程》中的20个ANSYS经典实例。

1.悬臂梁的静力分析:通过加载和边界条件,研究悬臂梁的变形和应力分布。

2.弯曲梁的非线性分析:通过加载和边界条件,研究受弯曲梁的非线性变形和破坏。

3.柱体的压缩分析:研究柱体在压缩载荷作用下的变形和应力分布。

4.钢筋混凝土梁的受弯分析:通过添加混凝土和钢筋材料属性,研究梁的受弯变形和应力分布。

5.圆盘的热传导分析:根据热传导方程,研究圆盘内部的温度分布。

6.输电线杆的静力分析:研究输电线杆在风载荷和重力作用下的变形和应力分布。

7.轮胎的动力学分析:通过加载和边界条件,研究轮胎在不同路面条件下的变形和应力分布。

8.支架的模态分析:通过模态分析,研究支架的固有频率和振型。

9.汽车车身的碰撞分析:通过加载和边界条件,研究汽车车身在碰撞中的变形和应力分布。

10.飞机翼的气动分析:根据飞机翼的气动特性,研究翼面上的气压分布和升力。

11.汽车车身的优化设计:通过参数化建模和优化算法,寻找最佳的车身结构设计。

12.轮毂的疲劳分析:根据材料疲劳寿命曲线,研究轮毂在不同载荷下的寿命。

13.薄膜材料的热应力分析:根据热应力理论,研究薄膜材料在不同温度下的应变和应力。

14.壳体结构的模态分析:通过模态分析,研究壳体结构的固有频率和振型。

15.地基基础的承载力分析:通过加载和边界条件,研究地基基础的变形和应力分布。

16.水坝的稳定性分析:根据水力和结构力学,研究水坝的稳定性和安全性。

17.风机叶片的动态分析:通过加载和边界条件,研究风机叶片在不同风速下的变形和应力分布。

18.圆筒容器的蠕变分析:根据蠕变理论,研究圆筒容器在持续加载下的变形和应力。

19.桥梁结构的振动分析:通过模态分析,研究桥梁结构的固有频率和振型。

ANSYS有限元分析实例

ANSYS有限元分析实例

ANSYS有限元分析实例假设我们需要分析一个简单的悬臂梁结构,该梁由一个固定端和一个自由端组成。

其几何形状和材料属性如下:梁的长度:L = 1000mm梁的宽度:W = 20mm梁的高度:H = 10mm梁的材料:钢材材料的弹性模量:E=210GPa材料的泊松比:υ=0.3在进行有限元分析之前,我们首先需要绘制悬臂梁的几何模型,并划分网格。

对于本例,我们可以使用ANSYS软件的几何建模工具进行绘制和网格划分。

然后,我们需要定义材料属性和加载条件。

在ANSYS中,可以通过分析系统中的属性表来定义材料属性。

在本例中,我们将定义钢材的弹性模量和泊松比。

接下来,我们将定义结构的约束和加载条件。

悬臂梁的固定端不允许位移,因此我们需要将其固定。

我们还需要定义在自由端施加的外部力或力矩。

在建立有限元模型之后,我们需要进行模型网格划分并设置网格精度。

在ANSYS中,可以选择适当的网格划分工具,例如自适应网格划分或手动划分。

完成网格划分后,我们可以应用适当的材料属性和加载条件。

在ANSYS中,可以使用强度分析工具来定义材料属性,并使用负载工具来定义加载条件。

我们可以在加载条件中指定施加在自由端的外部力或力矩。

然后,我们需要选择适当的求解器类型和求解方法。

在ANSYS中,可以选择静态结构分析求解器,并选择适当的求解器设置。

在求解器设置完成后,我们可以运行有限元分析,并获得结构的响应和性能结果。

在ANSYS中,可以查看和分析各个节点和单元的应力、应变、位移等结果。

最后,我们可以通过对结果进行后处理和分析,得出结构的安全性和性能评估。

在ANSYS中,可以使用后处理工具查看节点和单元的应力云图、变形云图、反应力云图等。

综上所述,这是一个使用ANSYS有限元分析进行静态结构分析的简单实例。

通过应用ANSYS软件的建模、网格划分、材料属性定义、加载条件定义、求解器设置、求解分析等步骤,我们可以获得悬臂梁结构在不同加载条件下的响应和性能结果。

(完整版)ansys有限元分析报告

(完整版)ansys有限元分析报告

桌面受力有限元分析报告班级:机自0805姓名:刘刚学号:200802070515摘要:本报告是在ANSYS10.0的平台上,采用有限元静力学分析方法,对桌面受力进行应力与变形分析。

一、问题描述:桌面长1500mm,宽800mm,厚50mm,桌脚长650mm,为空心圆管,外径70mm,内径60mm,桌面中央300mmX150mm的区域内承受2.5 Mpa的压力,四个桌脚完全固定,假设所有材料为铝合金,弹性模量E=7.071×104 Mpa,泊松比μ=0。

3。

试用Shell63单元模拟桌面、Beam188单元模拟桌脚,分析此桌子的变形及受力情况。

假设桌子的垂直方向最大变形量的许用值为0。

5%(约7。

5mm),该设计是否满足使用要求,有何改进措施?二、定义类型:(1)定义单元类型 63号壳单元和188号梁单元(2)定义材料属性弹性模量E=7.071×104 Mpa泊松比μ=0.3(3)定义63号壳单元的实常数,输入桌面厚度为50mm定义梁单元的截面类型为空心圆柱,内半径30mm,外半径35mm(4) 建立平面模型(5)划分网格利用mapped网格划分工具划分网格(6)施加载荷将四个桌脚完全固定,在桌面中央300mmX150mm的区域内施加向下的2.5 Mpa压力三、分析求解(1)变形量(2)位移云图(3)应力云图四、结果分析根据位移云图可知,蓝色地方的变形量最大,最大变形量为:10.048mm根据应力云图可知,红色地方所受的应力最大,最大应力为:191.73Mpa五、结论由于桌子垂直方向最大变形量为10.048mm,而材料最大许用变形量为7。

5mm 即SMX=10.048mm>[SMX=7。

5mm]故:此设计不满足要求,应该重新选择材料。

ANSYS大作业_轴承座有限元分析

ANSYS大作业_轴承座有限元分析

轴承座轴瓦 轴四个安装孔径向约束 (对称) 轴承座底部约束 (UY=0)沉孔上的推力 (3000 psi.) 向下作用力 (15000 psi.) 基于ANSYS 的轴承座有限元分析一、 问题描述在我们机械设计课程中曾经学习过轴系,主要是学习了轴的设计、受力分析以及轴承的设计等等。

但没有对轴承座的承受能力进行分析,所以我在这里主要是对一种简单的轴承座进行了有限元分析。

在查阅了相关资料之后,可将分析的轴承座示意如下图。

在实际当中,考虑到工艺的要求,图中相应的边缘处须设置有圆角、倒边等等。

但在有限元模型中忽略了这些要素。

二、 力学模型的分析与建立如下图所示在查阅了相关资料后可将上面描述的问题简化成上述模型,其中的载荷参考了网上的相关资料,在沉孔面上垂直于沉孔面上作用有3000psi.的推力载荷,在轴承孔的下半部分施加15000psi.的径向压力载荷,这个载荷是由于受重载的轴承受到支撑作用而产生的。

由于轴承座一般固定于机身上,所以可以在其底部施加法向位移约束,并且四个安装孔要受到螺栓的约束,所以可以在四个螺栓孔中施加径向对称约束(在ansys中体现为Symmetry B.C.)三、力学模型的有限元分析1.建立模型1)创建基座模型生成长方体Main Menu:Preprocessor->Modeling->Create->Volumes->Block->By Dimensions输入x1=0,x2=3,y1=0,y2=1,z1=0,z2=3平移并旋转工作平面Utility Menu>WorkPlane->Offset WP by IncrementsX,Y,Z Offsets 输入2.25,1.25,.75 点击ApplyXY,YZ,ZX Angles输入0,-90点击OK。

创建圆柱体Main Menu:Preprocessor->Modeling->Create->Volumes->Cylinder> Solid CylinderRadius输入0.75/2, Depth输入-1.5,点击OK。

ANSYS 有限元分析 四梁平面框结构

ANSYS 有限元分析 四梁平面框结构

《有限元基础教程》作业一:四梁平面框结构的有限元分析班级:机自101202班姓名:韩晓峰学号:2010120302101.1 进入ANSYS程序→ANSYS10.0 →Ansys→File→change directory(选择所设路径)。

File→change jobname→enter new jobname: beam3 →Run1.2 设置计算类型ANSYS Main Menu: Preferences →select Structural (结构分析)→ OK1.3 选择单元类型ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete…→Add…→select Beam:2D elastic 3 →OK (back to Element Types window) →Close (the Element Type window)1.4 定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear (线性)→Elastic(弹性)→Isotropic(各向同性)→input EX:2.1e11, PRXY:0.3 → OK1.5定义实常数以及确定平面问题的厚度ANSYS Main Menu: Preprocessor →Real Constants…→Add/Edit/Delete→Add→Type 1 beam3→OK→Real Constant Set No.1(第一号实常数),Cross-sectional area:6.8e-4(梁的横截面积)→Area moment of inertia:6.5e-7(梁的惯性矩) →OK→Close1.6 生成几何模型√生成节点ANSYS Main Menu: Preprocessor →Modeling →Create →Nodes→in Active CS→Node number 1→X:0,Y:0.96,Z:0→Apply→Node number 2→X:1.44,Y:0.96,Z:0→Apply→Node number 3→X:0,Y:0,Z:0→Apply→Node number 4→X:1.44,Y:0,Z:0→OK√生成单元ANSYS Main Menu: Preprocessor →Modeling →Create →Element →Auto Number →Thru Nodes →选择节点1,2(生成单元1)→Apply→选择节点1,3(生成单元2)→Apply→选择节点2,4(生成单元3)→选择节点3,2(生成单元4)→Apply OK1.7 模型施加约束√左边加X方向的受力ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment→On Node →选择节点1→Apply→Direction of force:FX→VALUE:3000 → OK√上方施加Y方向的均布载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Beams→选取单元1(节点1和节点2之间)→Apply →VALI:4167 →VALJ:4167 → OK√左、右下角节点加约束ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement → On Nodes →选取节点3和节点4→Apply →Lab:ALL DOF→ OK1.8 分析计算ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →OK1.9 结果显示显示变形图:ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape… → select Def + Undeformed →OK (back to Plot Results window) →Contour Plot →Nodal Solu →select: DOF solution, UY, Def + Undeformed , Rotation, ROTZ ,Def + Undeformed →OK查看支座反力:ANSYS Main Menul:General Postproc>→List Results→Reaction Solu→select12 All items →OK 。

ANSYS有限元分析实例

ANSYS有限元分析实例

ANSYS有限元分析实例1.悬臂梁的结构分析悬臂梁是一种常见的结构,其呈直线形式,一端固定于支撑点,另一端自由悬挂。

在这个分析中,我们将使用ANSYS来确定悬臂梁的最大弯曲应力和挠度。

首先,我们需要创建悬臂梁的几何模型,并给出其材料属性和加载条件。

然后,在ANSYS中创建有限元模型,并进行网格划分。

接下来,进行力学分析,求解材料在给定加载下的应力和位移。

最后,通过对结果的后处理,得出最大弯曲应力和挠度。

2.螺旋桨的流体力学分析螺旋桨是一种能够产生推力的旋转装置,广泛应用于船舶、飞机等交通工具中。

螺旋桨的流体力学分析可以帮助我们确定其叶片的受力情况和推力性能。

在这个分析中,我们需要建立螺旋桨的几何模型,并给出流体的流速和压力条件。

然后,我们在ANSYS中创建螺旋桨的有限元模型,并进行网格划分。

通过求解流体场方程,计算叶片上的压力分布和受力情况。

最后,通过对结果的后处理,得出叶片的受力情况和推力性能。

3.散热片的热传导分析散热片是一种用于散热的装置,广泛应用于电子设备、电脑等领域。

散热片的热传导分析可以帮助我们确定散热片在给定热源条件下的温度分布和散热性能。

在这个分析中,我们需要建立散热片的几何模型,并给出材料的热导率和热源条件。

然后,我们在ANSYS中创建散热片的有限元模型,并进行网格划分。

通过求解热传导方程,计算散热片上各点的温度分布。

最后,通过对结果的后处理,得出散热片的温度分布和散热性能。

以上是三个ANSYS有限元分析的实例,分别涉及结构分析、流体力学分析和热传导分析。

通过这些实例,我们可以充分展示ANSYS在不同领域的应用,并帮助工程师和科研人员解决工程问题,提高设计效率和产品性能。

ANSYS有限元分析——找形分析作业

ANSYS有限元分析——找形分析作业

ANSYS有限元分析——找形分析作业⼆找形分析1找形分析概述初始状态形状确定问题简称为“找形”,其基本原理是减⼩弹性刚度的影响,利⽤结构应⼒刚度求的满⾜边界条件的平衡曲⾯。

因此,在找形分析时应采⽤较⼩的弹性模量,且不施加外荷载和⾃重荷载。

2 问题描述如图1,2所⽰的菱形索⽹,四个⾓点铰⽀,长度L=6m,宽度H=4.8m,垂度V=4.2m,弹性模量E=150GPa,四边主索为?22的钢丝绳,截⾯⾯积A1=1.92E-4m2,初始预应⼒T1=15KN,副索为?14的钢丝绳,截⾯⾯积A2=7.78E-5m2,初始预应⼒T2=5KN。

图1 菱形索⽹图图1 菱形索找形后空间图形3 命令流实现有限元分析及结果!菱形索⽹找形分析(国际单位制K,M,S)FINI/CLEA/PREP7!定义⼏何参数荷载参数等,单元类型和材料性质L=6 !定义索⽹⾯X向长度H=4.8 !定义索⽹⾯Y向宽度V=4.2 !定义索⽹⾯Z向位移A1=1.92E-4 !定义直径为22的主索横截⾯⾯积A2=7.78E-5 !定义直径为14的副索横截⾯⾯积T1=1.5E4 !定义主索预应⼒T2=5E3 !定义副索预应⼒ISTRAN=0.999 !定义很⼤的初应变ET,1,LINK10 !定义单元类型R,1,A1,ISTRAN !定义主索实常数MP,EX,1,T1/(ISTRAN*A1) !定义主索弹性模量MP,PRXY,1,0.3 !定义主索泊松⽐R,2,A2,ISTRAN !定义副索实常数MP,EX,2,T2/(ISTRAN*A2)MP,PRXY,2,0.3!在平⾯位置建⽴⼏何模型并⽣成有限元模型K,1,-L/2,0K,2,0,-H/2K,3,L/2K,4,0,H/2L,1,2 !创建线,形成索⽹外边界L,2,3L,4,3L,1,4LDIV,ALL,,,6 !所有线等分为6段*DO,I,0,9 !通过循环创建内部线L,5+I,15+I*ENDDOLOVL,ALL !执⾏线搭接,形成关键点NUMM,ALL !合并相同元素DK,1,UX,,,,UY$DK,1,UZ,V !关键点1和3处为铰⽀座DK,3,UX,,,,UY$DK,3,UZ,VDK,2,UX,,,,UY$DK,2,UZ,-V !关键点2和4处施加⽀座位移DK,4,UX,,,,UY$DK,4,UZ,-V LSEL,S,LINE,,1,24LATT,1,1,1LSEL,INVE,LINELATT,2,2,1LSEL,ALL !选择所有线LESIZE,ALL,,,1 !定义每⼀条线划分⼀个单元LMESH,ALL!求解获得初始状态的变形/SOLUANTYPE,0NLGE,ON !打开⼤变形NSUB,20 !定义⼦步数OUTR,ALL,ALL !输出结果SOLVE FINI。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.工程背景
房屋刚性独立基础
当建筑物上部结构采用框架结构或单层排架结构承重时,基础常采用方形、圆柱形和多边形等形式的独立式基础,是整个或局部结构物下的无筋或配筋基础。

本例以独立坡形基础为例。

2.几何参数及材料
底部:3m*3m,全高:1.8m,上部平台面积:0.6m*0.6m,斜坡坡高:1.2m,坡脚:45°,截面为正方形,选取1/2的单向简化模型。

桩体材料:线弹性材料,弹性模量GPa,泊松比0.2,密度2700kg/m3
土体材料:DP材料,弹性模量25MPa,泊松比0.45,密度2000kg/m3,粘聚力10,摩擦角30°,膨胀角30°
3.建模过程
(1)前处理
1——定义单元类型及材料属性
2——建立平面模型
3——进行网格划分
4——拉伸成体
(2)加载及求解
1——施加约束(整体模型的对称面X=0处施加对称约束,模型底面Y=-2施加全自由度约束,顶面为自由面,其余三个侧面约束其平面外的平动自由度)
2——施加重力荷载
3——施加上部约束
(3)后处理
1——自重荷载下的受力及变形
2——施加约束后的结果
4.命令流
/CLEAR
/prep7
et,1,plane182
et,2,solid65
mp,ex,1,2.5e10 !桩的弹性模量
mp,nuxy,1,0.2 !桩的泊松比
mp,dens,1,2700 !桩的密度
mp,ex,2,2.5e7 !土的弹性模量
mp,nuxy,2,0.45 !土的泊松比
mp,dens,2,2000 !土的密度
tb,dp,2
tbdata,1,10,30,30 !粘聚力c为10,摩擦角为30度,膨胀角为30 !keypoints
k,1 !建立模型关键点
k,2,1.5
k,3,1.5,0.3
k,4,0.3,1.5
k,5,0.3,1.8
k,6,0,1.8
k,7,1.5,1.8
k,8,4,1.8
k,9,4,0
k,10,4,-2
k,11,0,-2
*do,i,1,5 !连接关键点成线
l,i,i+1
*enddo
l,1,6
l,3,7
l,5,7
*do,i,7,10
l,i,i+1
*enddo
l,2,9
l,11,1
/pnum,line,1
lplot
al,1,2,3,4,5,6 !显示直线编号
al,3,4,8,7 !绘制直线
al,2,7,9,10,13 !围成基础面
al,1,13,11,12,14 !生成土体面
/pnum,area,1
aplot
aglue,all !显示面
nummrg,all !粘贴各部分
numcmp,all
lsel,s,,,2,8,1 !选择直线
lsel,u,,,3 !去除L3
lesize,all,0.15 !设定划分尺寸
lsel,s,,,3 !选择L3
lesize,all,,,10 !分10份
lsel,s,,,all !反选L2-L8
lsel,u,,,2,8,1
lesize,all,0.15 !设置划分直线尺寸
amesh,1,4 !划分面
EXTOPT,ESIZE,3,0, !拉伸成体1 设置单元份数EXTOPT,ACLEAR,1 !清除多余
type,2
mat,1
VEXT,1,,,,,-0.6
type,2
mat,2
VEXT,2,4,,,,-0.6
nummrg,all
numcmp,all
allsel
/view,1,1,1,1
eplot
FINISH
/SOL
ASEL,S,LOC,X,0 !进入求解模块
DA,ALL,SYMM !选择X=0的面
ASEL,S,LOC,X,4 !施加对称约束
DA,ALL,UX
ASEL,S,LOC,Z,0
ASEL,A,LOC,Z,-0.6
DA,ALL,UZ
ASEL,S,LOC,Y,-2 !选择底面
DA,ALL,ALL !约束所有自由度ALLSEL !选择实体
ACEL,0,9.8,0 !施加重力加速度
solve !求解
finish
/solu !重新进入求解
ASEL,S,,,10 !选择顶面a10
SFa,ALL,,PRES,,50000 !加压!
ANTYPE,STATIC !类型为静力分析TIME,1 !时间
NSUB,100 !荷载步数
OUTRES,ALL,ALL !结果输出
ALLSEL
GPLOT !绘图设置
SOLVE
FINISH
/POST1 !进入后处理
SET,FIRST,FIRST !读取数据
PLNSOL,U,Y !绘制Y方向位移图
PLNSOL,S,Y,0,1 !应力图
PLNSOL,S,EQV,0,1 !等效应力云图PLNSOL,NL,EPEQ,0,1
/PBC,ALL,,0
/PBC,NFOR,,1
SET,LAST !读取PLNSOL,U,Y
PLNSOL,S,Y,0,1
PLNSOL,S,EQV,0,1
PLNSOL,NL,EPEQ,0,1 !累计塑性变形云图LCDEF,1,1,1,
LCDEF,2,1,15
LCASE,2
LCOPER,SUB,1
PLNSOL,U,Y
PLNSOL,S,Y,0,1
/REPLOT,RESIZE
/VIEW,1,1,1,1
/ANG,1
/REP,FAST
/VIEW,1,1,2,3
/ANG,1
/REP,FAST
FINISH
! /EXIT,ALL
5.上机运行图。

相关文档
最新文档