(完整版)第7章受拉构件的截面承载力习题答案
第7章 偏心受压构件的正截面承载力
![第7章 偏心受压构件的正截面承载力](https://img.taocdn.com/s3/m/0e32a1d26bec0975f465e2b2.png)
第7章偏心受压构件的正截面承载力计算当轴向压力N的作用线偏离受压构件的轴线时[图7-1a)],称为偏心受压构件。
压力N的作用点离构件截面形心的距离e称为偏心距。
截面上同时承受轴心压力和弯矩的构件[图7-1b)],称为压弯构件。
根据力的平移法则,截面承受偏心距为e的偏心压力N相当于承受轴心压力N和弯矩M(=Ne)的共同作用,故压弯构件与偏心受压构件的基本受力特性是一致的。
β)图7-1 偏心受压构件与压弯构件a)偏心受压构件b)压弯构件钢筋混凝土偏心受压(或压弯)构件是实际工程中应用较广泛的受力构件之一,例如,拱桥的钢筋混凝土拱肋,桁架的上弦杆、刚架的立柱、柱式墩(台)的墩(台)柱等均属偏心受压构件,在荷载作用下,构件截面上同时存在轴心压力和弯矩。
钢筋混凝土偏心受压构件的截面型式如图7-2所示。
矩形截面为最常用的截面型式,截面高度h大于600mm的偏心受压构件多采用工字形或箱形截面。
圆形截面主要用于柱式墩台、桩基础中。
图7-2 偏心受压构件截面型式a)矩形截面b)工字形截面c)箱形截面d)圆形截面在钢筋混凝土偏心受压构件的截面上,布置有纵向受力钢筋和箍筋。
纵向受力钢筋在截面中最常见的配置方式是将纵向钢筋集中放置在偏心方向的两对面[图7-3a)],其数量通过正截面承载力计算确定。
对于圆形截面,则采用沿截面周边均匀配筋的方式[图7-3b)]。
箍筋的作用与轴心受压构件中普通箍筋的作用基本相同。
此外,偏心受压构件中还存在着一定的剪力,可由箍筋负担。
但因剪力的数值一般较小,故一般不予计算。
箍筋数量及间距按普通箍筋柱的构造要求确定。
图7-3 偏心受压构件截面钢筋布置形式a)纵筋集中配筋布置b)纵筋沿截面周边均匀布置7.1 偏心受压构件正截面受力特点和破坏形态钢筋混凝土偏心受压构件也有短柱和长柱之分。
本节以矩形截面的偏心受压短柱的试验结果,介绍截面集中配筋情况下偏心受压构件的受力特点和破坏形态。
7.1.1 偏心受压构件的破坏形态钢筋混凝土偏心受压构件随着偏心距的大小及纵向钢筋配筋情况不同,有以下两种主要破坏形态。
第6章受压构件的截面承载力习题答案
![第6章受压构件的截面承载力习题答案](https://img.taocdn.com/s3/m/f0275633bd64783e09122b9a.png)
第6章受压构件的截面承载力6.1选择题1.钢筋混凝土轴心受压构件,稳定系数是考虑了( D )。
A.初始偏心距的影响;B.荷载长期作用的影响;C.两端约束情况的影响;D.附加弯矩的影响;2.对于高度、截面尺寸、配筋完全相同的柱,以支承条件为( A )时,其轴心受压承载力最大。
A.两端嵌固;B.一端嵌固,一端不动铰支;C.两端不动铰支;D.一端嵌固,一端自由;3.钢筋混凝土轴心受压构件,两端约束情况越好,则稳定系数( A )。
A.越大;B.越小;C.不变;4.一般来讲,配有螺旋箍筋的钢筋混凝土柱同配有普通箍筋的钢筋混凝土柱相比,前者的承载力比后者的承载力( B )。
A.低;B.高;C.相等;5.对长细比大于12的柱不宜采用螺旋箍筋,其原因是( D )。
A.这种柱的承载力较高;B.施工难度大;C.抗震性能不好;D.这种柱的强度将由于纵向弯曲而降低,螺旋箍筋作用不能发挥;6.轴心受压短柱,在钢筋屈服前,随着压力而增加,混凝土压应力的增长速率( C )。
A.比钢筋快;B.线性增长;C.比钢筋慢;7.两个仅配筋率不同的轴压柱,若混凝土的徐变值相同,柱A配筋率大于柱B,则引起的应力重分布程度是( B )。
A.柱A=柱B;B.柱A>柱B;C.柱A<柱B;8.与普通箍筋的柱相比,有间接钢筋的柱主要破坏特征是( D )。
A.混凝土压碎,纵筋屈服;B.混凝土压碎,钢筋不屈服;C.保护层混凝土剥落;D.间接钢筋屈服,柱子才破坏;9. 螺旋筋柱的核心区混凝土抗压强度高于fc 是因为( C )。
A .螺旋筋参与受压;B .螺旋筋使核心区混凝土密实;C .螺旋筋约束了核心区混凝土的横向变形;D .螺旋筋使核心区混凝土中不出现内裂缝;10. 有两个配有螺旋钢箍的柱截面,一个直径大,一个直径小,其它条件均相同,则螺旋箍筋对哪一个柱的承载力提高得大些( B )。
A .对直径大的;B .对直径小的;C .两者相同;11. 为了提高钢筋混凝土轴心受压构件的极限应变,应该( C )。
第7章受拉构件的截面承载力
![第7章受拉构件的截面承载力](https://img.taocdn.com/s3/m/176ecaa0b0717fd5360cdc97.png)
(2)矩形截面小偏心受拉构件正截面承载力计算 (2)矩形截面小偏心受拉构件正截面承载力计算
1)不对称配筋 ①基本公式: 基本公式:
′ N u e = f y A s′ ( h0 − a s )
(1)
′ N u e′ = f y As ( h0 − as )
'
(2)
' s
e = 0.5h − e0 − as , e = e0 + 0.5h − a
截面校核:按公式( )进行。 ② 截面校核:按公式(2)进行。
本节结束! 本节结束!
7.3 偏心受拉构件的斜截面承载力计算
轴拉力的存在使斜裂缝贯通全截面, 轴拉力的存在使斜裂缝贯通全截面,从而不 存在剪压区,降低了斜截面承载力。因此, 存在剪压区,降低了斜截面承载力。因此,受拉 构件的斜截面承载力公式是在受弯构件相应公式 的基础上减去轴拉力所降低的抗剪强度部分, 的基础上减去轴拉力所降低的抗剪强度部分,即 0.2N。 。
②截面设计:已知构件尺寸、材料强度等级和内力, 截面设计:已知构件尺寸、材料强度等级和内力, 求配筋。此情况下基本公式中有二个未知数,直接求 求配筋。此情况下基本公式中有二个未知数, 解。 ③截面校核:一般已知构件尺寸、配筋、材料强度, 截面校核:一般已知构件尺寸、配筋、材料强度, 偏心距e 由式( )和式( )都可直接求出N, 偏心距 0,由式( 1)和式( 2)都可直接求出 , 并 取其较小者。 取其较小者。
e = e0 − 0 .5 h + a s
2)适用条件 ) 同大偏心受压构件。 同大偏心受压构件。 3)不对称配筋计算方法 ) ①截面设计;类似于大偏心受压构件。 截面设计;类似于大偏心受压构件。 ②截面校核,一般已知构件尺寸、配筋、材料强度。 截面校核,一般已知构件尺寸、配筋、材料强度。 若再已知N可求出 可求出x和 或再已知e 则可求出x和 。 若再已知 可求出 和e0或再已知 0则可求出 和N。 4)对称配筋计算方法 )
结构设计原理第七章受拉构件正截面承载力习题及答案
![结构设计原理第七章受拉构件正截面承载力习题及答案](https://img.taocdn.com/s3/m/b4274e55a76e58fafbb0032f.png)
第七章受拉构件正截面承载力一、选择题1.仅配筋率不同的甲、乙两轴拉构件即将开裂时,其钢筋应力()A.甲乙大致相等; B甲乙相差很多; C 不能肯定2.轴心受拉构件从加载至开裂前()A.钢筋与砼应力均线性增加; B.钢筋应力的增长速度比砼快;C.钢筋应力的增长速度比砼慢; D.两者的应力保持相等。
3.在轴心受拉构件砼即将开裂的瞬间,钢筋应力大致为()A.400N/mm2; mm2; mm2; D210N/mm24.偏心受拉构件的受拉区砼塑性影响系数Y与轴心受拉构件的塑性影响系数Y相比()A. 相同;B.小;C.大.5.矩形截面对称配筋小偏拉构件在破坏时()A. A s´受压不屈服;B. A s´受拉不屈服;C. A s´受拉屈服;D. A s´受压屈服6.矩形截面不对称配筋小偏拉构件在破坏时()A. 没有受压区,A s´受压不屈服;B. 没有受压区,A s´受拉不屈服;C. 没有受压区,A s´受拉屈服;D. 没有受压区,A s´受压屈服二、思考题1. 如何划分受拉构件是大偏心受拉还是小偏心受拉?它们的各自的受力特点和破坏特征是什么?第七章受拉构件正截面承载力答案一、A B C C B B二、1、根据受拉构件偏心距的大小,并以轴向拉力的作用点在截面两侧纵向钢筋之间或在纵向钢筋之外作为区分界限,即:当轴向拉力N在纵向钢筋A合力点及s A'合力点范围以外时为大偏心受拉构s件;当轴向拉力N在纵向钢筋A合力点及s A'合力点范围以内时为小偏心受拉构s件。
大偏心受拉构件的受力特点是:当拉力增大到一定程度时,受拉钢筋首先达到抗拉屈服强度,随着受拉钢筋塑性变形的增长,受压区面积逐步缩小,最后构件由于受压区混凝土达到极限压应变而破坏。
其破坏形态与小偏心受压构件相似。
小偏心受拉构件的受力特点是:混凝土开裂后,裂缝贯穿整个截面,全部轴向拉力由纵向钢筋承担。
第6,7章计算题
![第6,7章计算题](https://img.taocdn.com/s3/m/884707fd7c1cfad6195fa7be.png)
第七章偏心受压构件承载力计算题参考答案1.(矩形截面大偏压)已知荷载设计值作用下的纵向压力,弯矩·m,柱截面尺寸,,混凝土强度等级为C30,f c=14.3N/mm2,钢筋用HRB335级,f y=f’y=300N/mm2,,柱的计算长度,已知受压钢筋(),求:受拉钢筋截面面积A s。
解:⑴求e i、η、e取(2)判别大小偏压为大偏压(3)求A s由即整理得:解得(舍去),由于x满足条件:由得选用受拉钢筋,2。
(矩形不对称配筋大偏压)已知一偏心受压柱的轴向力设计值N= 400KN,弯矩M= 180KN·m,截面尺寸,,计算长度l0 = 6.5m, 混凝土等级为C30,f c=14.3N/mm2,钢筋为HRB335,, ,采用不对称配筋,求钢筋截面面积。
解:(1)求e i、η、e有因为取(2)判别大小偏压按大偏心受压计算。
(3)计算和则按构造配筋由公式推得故受拉钢筋取,A s= 1256mm2受压钢筋取,402mm23.(矩形不对称配筋大偏压)已知偏心受压柱的截面尺寸为,混凝土为C25级,f c=11.9N/mm2 ,纵筋为HRB335级钢,,轴向力N,在截面长边方向的偏心距。
距轴向力较近的一侧配置416纵向钢筋,另一侧配置220纵向钢筋,柱的计算长度l0= 5m。
求柱的承载力N。
解:(1)求界限偏心距C25级混凝土,HRB335级钢筋查表得,。
由于A’s及A s已经给定,故相对界限偏心距为定值,=0.506属大偏心受压。
(2)求偏心距增大系数,故,(3)求受压区高度x及轴向力设计值N。
代入式:解得x=128.2mm;N=510.5kN(4)验算垂直于弯矩平面的承载力4.(矩形不对称小偏心受压的情况)某一矩形截面偏心受压柱的截面尺寸计算长度混凝土强度等级为C30,f c=14.3N/mm2,,用HRB335级钢筋,f y=f y’=300N/mm2,轴心压力设计值N = 1512KN,弯矩设计值M = 121.4KN·m,试求所需钢筋截面面积。
小偏拉构件
![小偏拉构件](https://img.taocdn.com/s3/m/938870bad0d233d4b14e694a.png)
e0 e
N
fyAs as
大偏心受拉构件
7.3 偏心受拉构件
第七章 偏心受力构件
二、偏拉构件破坏特征
2、小偏拉
全截面受拉 ;As一侧首先开裂,裂缝贯通整个截面, 最后As和A's均屈服而达到极限承载力。
e'
e0
Ne
as' fyA's
h0-as'
fyAs as
小偏心受拉构件
7.3 偏心受拉构件
第七章 偏心受力构件
第七章 偏心受力构件
当x<h-hf 时, Ac=bx+(b'f-b)h'f Sc=bx(h0-0.5x)+(b'f-b)h'f(h0-0.5h'f)
当x>h-hf 时, Ac=bx+(b'f-b)h'f+(bf-b)(x-h+hf) Sc=bx(h0-0.5x)+(b'f-b)h'f(h0-0.5h'f)+(bf-b)(x-h+hf)[hf-as-0.5(x-h+hf)]
第七章 偏心受力构件
偏心受拉构件示例
7.1 概 述
第七章 偏心受力构件
偏心受力构件的截面形式
7.1 概 述
第七章 偏心受力构件
7.2 偏心受压构件正截面承载力计算
偏心受压构件与压弯构件
7.2 偏心受压构件正截面承载力计算
第七章 偏心受力构件
一、破坏特征
1、 大偏心受压(受拉破坏 ) N
As适量 fyAs
二、工形截面正截面承载力计算 (一)基本公式
1.大偏压(ξ≤ξb )
6.5 工形截面正截面承载力计算
混凝土结构设计原理第7章
![混凝土结构设计原理第7章](https://img.taocdn.com/s3/m/41cf7f4502d276a201292ec5.png)
7.2.2 裂缝出现后的性能
图7-3 扭矩—扭转角曲线
图7-4 钢筋混凝土受扭试件的螺 旋形裂缝展开图 注:图中所注数字是该裂缝出现 时的扭矩值(kN·m),未注数字 的裂缝是破坏时出现的裂缝。
图7-5 纯扭构件纵筋和箍筋的扭矩-钢筋拉应变曲线
7.2.3 破坏形态
受扭构件的破坏形态与受扭纵筋和受扭箍筋配筋率的大小有关,可 分为适筋破坏、部分超筋破坏、超筋破坏和少筋破坏四类。
VT bh0 ? wt ? 0.7 ft
或V bh0
?
T wt
?
0.7 ft
?
N 0.07
bh0
N ? 0.3 fc A
?
0.2 N
? ??
?
Asv s
f yv h0 ?
Asv s
f yv h0
(2)受扭承载力
Tu
?
?t
??? 0.35
ft
?
0.2
N A
???Wt
?
1.2
?
f yv
Ast1 Acor s
? 1.2
?
f yv
Ast1 Acor s
7.6 协调扭转的钢筋混凝土构件扭曲截面承载力
协调扭转的钢筋混凝土构件开裂以后,受扭刚度降低, 由于内力重分布将导致作用于构件上的扭矩减小。一般情况 下,为简化计算,可取扭转刚度为零,即忽略扭矩的作用, 但应按构造要求配置受扭纵向钢筋和箍筋,以保证构件有足 够的延性和满足正常使用时裂缝宽度的要求,此即一些国外 规范采用的零刚度设计法。我国《混凝土结构设计规范》没 有采用上述简化计算法,而是规定宜考虑内力重分布的影响, 将扭矩设计值T降低,按弯剪扭构件进行承载力计算。
受弯构件的正截面承载力习题答案
![受弯构件的正截面承载力习题答案](https://img.taocdn.com/s3/m/1b22bd7d7fd5360cba1adb8a.png)
第4章 受弯构件的正截面承载力4.1选择题1.( C )作为受弯构件正截面承载力计算的依据。
A .Ⅰa 状态; B. Ⅱa 状态; C. Ⅲa 状态; D. 第Ⅱ阶段; 2.( A )作为受弯构件抗裂计算的依据。
A .Ⅰa 状态; B. Ⅱa 状态; C. Ⅲa 状态; D. 第Ⅱ阶段; 3.( D )作为受弯构件变形和裂缝验算的依据。
A .Ⅰa 状态; B. Ⅱa 状态; C. Ⅲa 状态; D. 第Ⅱ阶段; 4.受弯构件正截面承载力计算基本公式的建立是依据哪种破坏形态建立的( B )。
A. 少筋破坏;B. 适筋破坏;C. 超筋破坏;D. 界限破坏;5.下列那个条件不能用来判断适筋破坏与超筋破坏的界限( C )。
A .b ξξ≤; B .0h x b ξ≤;C .'2s a x ≤;D .max ρρ≤6.受弯构件正截面承载力计算中,截面抵抗矩系数s α取值为:( A )。
A .)5.01(ξξ-; B .)5.01(ξξ+; C .ξ5.01-; D .ξ5.01+;7.受弯构件正截面承载力中,对于双筋截面,下面哪个条件可以满足受压钢筋的屈服( C )。
A .0h x b ξ≤; B .0h x b ξ>;C .'2s a x ≥; D .'2s a x <;8.受弯构件正截面承载力中,T 形截面划分为两类截面的依据是( D )。
A. 计算公式建立的基本原理不同;B. 受拉区与受压区截面形状不同;C. 破坏形态不同;D. 混凝土受压区的形状不同;9.提高受弯构件正截面受弯能力最有效的方法是( C )。
A. 提高混凝土强度等级;B. 增加保护层厚度;C. 增加截面高度;D. 增加截面宽度;10.在T 形截面梁的正截面承载力计算中,假定在受压区翼缘计算宽度范围内混凝土的压应力分布是( A )。
A. 均匀分布;B. 按抛物线形分布;C. 按三角形分布;D. 部分均匀,部分不均匀分布; 11.混凝土保护层厚度是指( B )。
受弯构件的斜截面承载力习题答案
![受弯构件的斜截面承载力习题答案](https://img.taocdn.com/s3/m/6ad5411bec630b1c59eef8c75fbfc77da2699724.png)
第5章受弯构件的斜截面承载力选择题1.对于无腹筋梁,当1 <,< 3时,常发生什么破坏(B )。
A.斜压破坏;B.剪压破坏;C.斜拉破坏;D.弯曲破坏;2.对于无腹筋梁,当X < 1时,常发生什么破坏(A )。
A.斜压破坏;B.剪压破坏;C.斜拉破坏;D.弯曲破坏;3.对于无腹筋梁,当X > 3时,常发生什么破坏(C )。
A.斜压破坏;B.剪压破坏;C.斜拉破坏;D.弯曲破坏;4.受弯构件斜截面承载力计算公式的建立是依据( B )破坏形态建立的。
A.斜压破坏;B.剪压破坏;C.斜拉破坏;D.弯曲破坏;5.为了避免斜压破坏,在受弯构件斜截面承载力计算中,通过规定下面哪个条件来限制(C )。
A.规定最小配筋率;B.规定最大配筋率;C.规定最小截面尺寸限制;D.规定最小配箍率;6.为了避免斜拉破坏,在受弯构件斜截面承载力计算中,通过规定下面哪个条件来限制(D )。
A.规定最小配筋率;B.规定最大配筋率;C.规定最小截面尺寸限制;D.规定最小配箍率;7. M R图必须包住M图,才能保证梁的(A )。
A.正截面抗弯承载力;B.斜截面抗弯承载力;C.斜截面抗剪承载力;8.《混凝土结构设计规范》规定,纵向钢筋弯起点的位置与按计算充分利用该钢筋截面之间的距离,不应小于(C )。
A.B.h 0C.h 0D.h 09.《混凝土结构设计规范》规定,位于同一连接区段内的受拉钢筋搭接接头面积百分率,对于梁、板类构件,不宜大于(A )。
A.25%;B.50%;C.75%;D.100%;10.《混凝土结构设计规范》规定,位于同一连接区段内的受拉钢筋搭接接头面积百分率,对于柱类构件,不宜大于(B )。
A.25%;B.50%;C.75%;D.100%;判断题1.梁侧边缘的纵向受拉钢筋是不可以弯起的。
(V )2.梁剪弯段区段内,如果剪力的作用比较明显,将会出现弯剪斜裂缝。
(X )3.截面尺寸对于无腹筋梁和有腹筋梁的影响都很大。
第7章(受扭构件的扭曲截面承载力)习题参考答案
![第7章(受扭构件的扭曲截面承载力)习题参考答案](https://img.taocdn.com/s3/m/10e7cd8471fe910ef12df893.png)
习题
习题 7.3 参考答案
第7章 受扭构件
bcor + 2 × 0.25hcor ρ min bh + ρ stl ,min bh ucor 150 + 2 × 0.25 × 350 = 0.002 × 200 × 400 + 0.00269 × 200 × 400 × 1000 = 230mm 2 < 710mm 2
Asv V − 0.7(1.5 − β t ) f t bh0 = s 1.25 f yv h0 40 ×103 − 0.7 × (1.5 − 1)×1.27 × 200 × 365 = 1.25 × 210 × 365 = 0.079mm 2 / mm Ast1 Asv 0.079 + = 0.417 + = 0.457mm 2 / mm s 2 2s 选取φ8 50.3 s= = 110mm 取 s = 100mm 0.457 选配箍筋φ8@100 或 φ8@110
40 ×103 9 ×106 V T + = + bh0 0.8Wt 200 × 365 0.8 × 666.7 ×10 4 = 2.235N / mm 2 < 0.25β c f c = 0.25 ×1×11.9 = 2.975N / mm 2 40 ×103 9 ×106 V T + = + bh0 Wt 200 × 365 666.7 ×10 4 = 1.898N / mm 2 > 0.7 f t = 0.7 ×1.27 = 0.889 N / mm 2
或 Astl = 350mm 2 > ρ stl ,min bh = 0.00269 × 200 × 400 = 215mm 2
(7)验算梁截面弯曲受拉边的纵筋最小配筋量 ft 1.27 ρ min = 0.45 = 0.45 × = 0.191% < 0.2% fy 300
7-4偏心受拉构件计、构造规定
![7-4偏心受拉构件计、构造规定](https://img.taocdn.com/s3/m/6553214ce45c3b3567ec8b46.png)
⑵大偏心受压 大偏心受拉时,可能有下述几种情况发生:
情况1:As’和As均为未知
为节约钢筋,充分发挥受压混凝土的作用。令x=ξbh0。将x代入(7102)式即可求得受压钢筋As’如果As’≥ρ
minbh,说明取 x=ε bh0成立。即 进一步将 x=ξ bh0及As’代人式(7-101)求得As。如果As’<ρ minbh或为负值则 说明取x=ξ bh0不能成立,此时应根据构造要求选用钢筋As’的直径及根 数。然后按As’为已知的情况2考虑。
N A s f y A s f y 1 f c bx
' '
(7-101)
x ' ' ' Ne 1 f c bx h0 f y A s h0 a s 2
(7-102)
若x<2as’或为负值,则表明受压钢筋位于混凝土受压区合力作用点的
内侧,破坏时将达不到其屈服强度,即As’的应力为一未知量,此时,
Huaihai Institute of Technology
(3)若x<2as’,可利用截面上的内外力对As’合力作用点取矩的 平衡条件求得Nu;Nu源自A s f y h0 a s
'
e
'
以上求得的Nu与N比较,即可
判别截面的承载力是否足够。
s
淮海工学院土木工程系 (/jiangong/index.htm)
Huaihai Institute of Technology
2.截面配筋计算 (1)小偏心受拉
当截面尺寸、材料强度、及截面的作用效应M及N为已知时,可直 接由下式求出两侧的受拉钢筋。
N As f y As f y
(完整版)第7章受拉构件的截面承载力习题答案
![(完整版)第7章受拉构件的截面承载力习题答案](https://img.taocdn.com/s3/m/716c6269c8d376eeaeaa31e8.png)
第7章 受拉构件的截面承载力7.1选择题1.钢筋混凝土偏心受拉构件,判别大、小偏心受拉的根据是( D )。
A. 截面破坏时,受拉钢筋是否屈服;B. 截面破坏时,受压钢筋是否屈服;C. 受压一侧混凝土是否压碎;D. 纵向拉力N 的作用点的位置;2.对于钢筋混凝土偏心受拉构件,下面说法错误的是( A )。
A. 如果b ξξ>,说明是小偏心受拉破坏;B. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担;C. 大偏心构件存在混凝土受压区;D. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置;7.2判断题1. 如果b ξξ>,说明是小偏心受拉破坏。
( × )2. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担。
( ∨ )3. 大偏心构件存在混凝土受压区。
( ∨ )4. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置。
( ∨ )7.3问答题1.偏心受拉构件划分大、小偏心的条件是什么?大、小偏心破坏的受力特点和破坏特征各有何不同?答:(1)当N 作用在纵向钢筋s A 合力点和's A 合力点范围以外时,为大偏心受拉;当N 作用在纵向钢筋s A 合力点和's A 合力点范围之间时,为小偏心受拉;(2)大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。
2.大偏心受拉构件的正截面承载力计算中,b x 为什么取与受弯构件相同?答:大偏心受拉构件的正截面破坏特征和受弯构件相同,钢筋先达到屈服强度,然后混凝土受压破坏;又都符合平均应变的平截面假定,所以b x 取与受弯构件相同。
3.大偏心受拉构件为非对称配筋,如果计算中出现'2s a x <或出现负值,怎么处理?答:取'2s a x =,对混凝土受压区合力点(即受压钢筋合力点)取矩, )('0's y s a h f Ne A -=,bh A s 'min 'ρ=4.为什么小偏心受拉设计计算公式中,只采用弯矩受力状态,没有采用力受力状态,而在大偏心受拉设计计算公式中,既采用了力受力状态又采用弯矩受力状态建立?答:因为,大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。
第七章-受压构件正截面受压承载力
![第七章-受压构件正截面受压承载力](https://img.taocdn.com/s3/m/0bed930b326c1eb91a37f111f18583d049640fb6.png)
第7章 受压构件正截面受压承载力知识点1.配有纵筋和箍筋的轴心受压柱的受力全过程及其破坏特征;2.配有纵筋和箍筋的轴心受压柱的承载力计算;3.配有纵筋和螺旋筋的轴心受压柱的承载力及计算公式;4.偏心受压构件的破坏形态及其分类,界限破坏,纵向弯曲(二阶弯矩)的影响;5.矩形、工字形截面偏心受压构件的正截面承载力计算,矩形截面不对称和对称配筋的计算方法;6.偏心受压构件斜截面受剪承载力计算;7.双向偏心受压矩形正截面承载力的简化计算方法;8.受压构件的构造要求;9.偏心受压构件的截面延性的特点。
要点1.螺旋箍筋柱较普通箍筋柱承载力提高的原因是螺旋筋约束了混凝土的横向变形。
2.轴心受压构件,配置纵筋的作用是帮助混凝土承受压力,减力构件截面尺寸。
3.《混凝土结构设计规范》规定,配有螺旋式或焊接环式间接钢筋柱的承载能力不能高于配有普通箍筋柱承载能力的50%。
4.偏心受压构件界限破坏的特点:偏心受压构件界限破坏时远离轴向力一侧的钢筋屈服与受压区混凝土压碎同时发生。
5.如何确定大偏心受压构件:计算偏心受压构件,当b ξξ≤时,构件确定属于大偏心受压构件。
6.偏心受压构件的破坏形态有大偏心受压和小偏心受压两种情况。
7.轴心受压承载力的计算公式:N =0.9φ(f c A +f ′′y A ′s )。
8.偏心受压构件斜截面受剪承载力计算公式是在受弯构件斜截面受剪承载力公式基础上多了一项0.07N ,同时要求当轴向力N>0.3f c A 时,取A f N c 3.0=。
9.《混凝土结构设计规范》采用稳定系数ϕ表示长柱承载能力的降低程度,所以,ϕ为长柱的承载力)(l u N 与短柱的承载力)(su N 之比。
<0.55h 0 >2a ′10.轴心受压构件中,配置纵筋的作用是帮助混凝土承受压力,减小构件截面尺寸。
11.偏心受压构件的破坏特征:大偏心受压破坏,属延性破坏;破坏特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎。
第七章受扭构件承载力计算
![第七章受扭构件承载力计算](https://img.taocdn.com/s3/m/e9188fb8ec3a87c24028c456.png)
第七章 受扭构件承载力计算7.1 概述工程中的钢筋砼受扭构件有两类:● 一类是 —— 平衡扭矩:是静定结构由于荷载的直接作用所产生的扭矩,这种构件所承受的扭矩可由静力平衡条件求得,与构件的抗扭刚度无关。
如:教材图7·1a 、b 所示受檐口竖向荷载作用的挑檐梁,及受水平制动力作用的吊车梁以及平面曲梁、折线梁、螺旋楼梯等。
● 另一类是 —— 协调扭矩:是超静定结构中由于变形协调条件使截面产生的扭矩,构件所承受的扭矩与其抗扭刚度有关。
如:教材图7·2 所示现浇框架的边梁。
由于次梁在支座(边梁)处的转角产生的扭转,边梁开裂后其抗扭刚度降低,对次梁转角的约束作用减小,相应地边梁的扭矩也减小。
● 本章只讨论平衡扭转情况下的受扭构件承载力计算。
在工程结构中,直接承受扭矩、弯矩、剪力和轴向力复合作用的构件是常遇的。
但规范对弯扭、剪扭和弯剪扭构件的设计计算,是以抗弯、抗剪能力计算理论和纯扭构件的承载力计算理论为基础,采用分别计算和叠加配筋的方法进行的,故有必要先了解纯扭构件的受力性能和承载力的计算方法。
7.2 纯扭构件的受力性能7.2.1 素砼纯扭构件的受力性能素砼构件也能承受一定的扭矩。
素砼构件在扭矩T 的作用下,在构件截面中产生剪应力τ及相应的主拉应力tp σ 和主压应力cp σ(教材图7·3)。
根据微元体平衡条件可知:τστσ==cp tp ,由于砼的抗拉强度远低于它的抗压程度,因此当主拉应力达到砼的抗拉强度时,即t tp f ≥=τσ时,砼就会沿垂直于主拉应力方向裂开(教材图7·3)。
所以在纯扭矩作用下的砼构件的裂缝方向总是与构件轴线成45o的角度。
并且砼开裂时的扭矩T 也就是相当于t f =τ时的扭矩,即砼纯扭构件的受扭承载力co T 。
为了求得co T ,需要建立扭矩和剪应力之间的关系,然后根据强度条件,即砼纯扭构件的破坏条件求出受扭承载力co T 。
7.2.2 素砼纯扭构件的承载力计算(一) 、弹性分析法:用弹性分析方法计算砼纯扭构件承载力时,认为砼构件为单一匀质弹性材料。
混凝土结构设计原理(第五版)课后习题答案
![混凝土结构设计原理(第五版)课后习题答案](https://img.taocdn.com/s3/m/717b31b2a58da0116c1749b9.png)
《混凝土结构设计原理》2003年8月第4章 受弯构件的正截面受弯承载力习 题4.1 查表知,环境类别为一类,混凝土强度等级为C30时梁的混凝土保护层最小厚度为25mm 。
故设a s =35mm ,则h 0=h -a s =500-35=465mm 由混凝土和钢筋等级,查表得:f c =14.3N/mm 2,f t =1.43 N/mm 2,f y =300N/mm 2,1α=1.0,1β=0.8,b ξ=0.55求计算系数116.04652503.140.1109026201=⨯⨯⨯⨯==bh f M c s αα 则55.0124.076.01211b s =<=-=--=ξαξ,可以。
938.0)76.01(5.02211ss =+=-+=αγ故688465938.0300109060s y s =⨯⨯⨯==h f MA γmm 226850025030043.145.0)45.0(y t s =⨯⨯⨯=>bh f f A mm 2 且250500250002.0002.0=⨯⨯=>bh A s mm 2,满足要求。
选用318,A s =763mm 2,配筋图如图1所示。
4.2 梁自重:25.245.002.025'k=⨯⨯=g kN/m则简支梁跨中最大弯矩设计值:M 1=)(2Qik Ci Qi Q1k Q1GkG 0∑=++ni M M M ψγγγγ=]81)(81[2k Q 2'k k G0l q l g g ⋅++⋅γγγ 465500352503 18图1图2=1.0×[222.58814.12.5)25.25.9(812.1⨯⨯⨯+⨯+⨯⨯] =85.514kN ·mM 2=)(1Qik Ci Qi GkG 0∑=+ni M M ψγγγ=]81)(81[2k Ci Q 2'k k G0l q l g g ψγγγ⋅++⋅ =1.0×[222.58817.04.12.5)25.25.9(8135.1⨯⨯⨯⨯+⨯+⨯⨯]=80.114 kN ·mM =max {M 1,M 2}=85.514 kN ·m查表知,环境类别为二类,混凝土强度等级为C40,梁的混凝土保护层最小厚度为30mm ,故设a s =40mm ,则h 0=h -a s =450-40=410mm 由混凝土和钢筋等级,查表得:f c =19.1 N/mm 2,f t =1.71 N/mm 2,f y =360N/mm 2,1α=1.0,1β=0.8,b ξ=0.518求计算系数133.04102001.190.110514.8526201=⨯⨯⨯⨯==bh f M c s αα 则518.0143.0211b s =<=--=ξαξ,可以。
第7章 钢筋混凝土受扭构件承载力计算
![第7章 钢筋混凝土受扭构件承载力计算](https://img.taocdn.com/s3/m/d652963f87c24028915fc3d8.png)
第7章 钢筋混凝土受扭构件承载力计算1.简述钢筋混凝土矩形截面纯扭构件的四种破坏形态及其与设计的关系。
答:矩形截面纯扭构件的破坏形态以下四种类型:(1)少筋破坏当抗扭钢筋数量过少时,裂缝首先出现在截面长边中点处,并迅速沿45°方向向邻近两个短边的面上发展,在第四个面上出现裂缝后(压区很小),构件立即破坏。
破坏形态如图7-3(a),其破坏类似于受弯构件的少筋梁,破坏时扭转角较小(图7-4曲线1),属于脆性破坏,构件受扭极限承载力取决于混凝土抗拉强度和截面尺寸,设计中应予避免。
该类破坏模型是计算混凝土开裂扭矩的试验依据,并可按此求得抗扭钢筋数量的最小值。
(2)适筋破坏 当抗扭钢筋数量适中时,破坏形态如图7-3(b)。
混凝土开裂并退出工作,由其承担的拉力转给钢筋,钢筋的应力突增,但没有达到屈服,使构件在破坏前形成多条裂缝。
当通过主裂缝处的纵筋和箍筋达到屈服强度后,第四个面上的受压区混凝土被压碎而破坏。
适筋破坏扭转角较大(图7-4曲线2),属于延性破坏,该类破坏模型是建立构件受扭承载力设计方法的试验依据。
(3)超筋破坏当抗扭钢筋数量过多,构件破坏时抗扭纵筋和箍筋均未达到屈服,破坏是由某相邻两条45°螺旋缝间混凝土被压碎引起的。
破坏形态见图7-3(c),构件破坏时螺旋裂缝条数多而细,扭转角较小(图7-4曲线3),属于超筋脆性破坏,构件承载力主要取决于截面尺寸及混凝土抗压强度。
这类破坏称为完全超筋破坏,在设计中应避免。
该类破坏模型是计算抗扭钢筋数量最大值的试验依据。
(4)部分超筋破坏当抗扭纵筋和抗扭箍筋数量比例不当,致使混凝土压碎时,箍筋或纵筋两者之一不能达到屈服点,这种破坏属于部分超筋破坏。
虽然结构在破坏时有一定延性,设计可用,但不经济。
2.什么是配筋强度比ζ的物理意义、计算公式与合理的取值范围。
答:配筋强度比ζ的物理意义:ζ为受扭构件纵向钢筋与箍筋的配筋强度比,如图7-5,其物理意义是协调抗扭纵筋和箍筋应合理配置,充分利用抗扭钢筋的作用,使受扭构件的破坏形态呈现适筋破坏。
(完整版)混凝土结构设计原理填空题库(带答案)全解
![(完整版)混凝土结构设计原理填空题库(带答案)全解](https://img.taocdn.com/s3/m/f3ae3b7acc22bcd127ff0c3c.png)
绪论1.在混凝土内配置钢筋的主要作用是提高结构或构件的承载能力和变形能力.2.混凝土内配置钢筋的主要作用是提高结构或构件的承载能力和变形能力。
3.钢筋混凝土结构的主要缺点有:自重大、抗裂性差以及费模费工等。
第一章混凝土结构的设计方法1.混凝土结构对钢筋主要有强度、塑性、___可焊性____和与混凝土的粘结四个性能要求。
2.钢筋的冷加工包括冷拉和冷拔,其中_____冷拔_____后既可以提高抗拉强度又可以提高抗压强度。
3.有明显屈服点钢筋的主要强度指标是____屈服强度________。
4.伸长率包括断后伸长率和___断裂总伸长率__________。
5.反映钢筋塑性性能的主要指标是____断后伸长率___和冷弯性能(p9)。
6.要使配筋后的混凝土结构能够提高承载能力和变形能力,就要求:①钢筋与混凝土两者变形一致,共同受力;②钢筋的位置和数量等也必须正确.7.混凝土的应力不变,__应变___随时间而增长的现象称为混凝土的徐变。
8.钢筋与混凝土之间的粘结,包括两类问题:①沿钢筋长度的粘结;②钢筋端部的锚固 .9.混凝土强度等级是根据___立方体抗压___强度标准值确定的。
10.结构或构件破坏前没有明显预兆的,属脆性破坏;破坏前有明显预兆的,属_延性_破坏。
11.为了保证可靠锚固,绑扎骨架中受拉光圆钢筋末端应做__半圆弯钩___.12.钢筋的伸长率是反映其___塑性____性能的指标。
13.在钢筋长度保持不变的条件下,钢筋应力随时间增长而逐渐降低的现象称为钢筋的__应力松弛____。
14.钢筋与混凝土之间的粘结力主要由胶着力、摩擦力和__机械咬合力____三部分组成.15.为使钢筋与混凝土变形一致、共同受力,钢筋端部要有足够的__锚固长度____.16.过混凝土应力—应变曲线原点所作切线的斜率为混凝土的_弹性模量_____。
17.混凝土在三向受压下,不仅可提高其____抗压强度______,而且可提高其变形能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章受拉构件的截面承载力
7.1选择题
1 •钢筋混凝土偏心受拉构件,判别大、小偏心受拉的根据是( D )。
A.截面破坏时,受拉钢筋是否屈服;
B.截面破坏时,受压钢筋是否屈服;
C.受压一侧混凝土是否压碎;
D.纵向拉力N的作用点的位置;
对于钢筋混凝土偏心受拉构件,下面说法错误的是( A )。
A.如果b,说明是小偏心受拉破坏;
B.小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担;
C.大偏心构件存在混凝土受压区;
D.大、小偏心受拉构件的判断是依据纵向拉力N的作用点的位置;
7.2判断题
1. 如果b,说明是小偏心受拉破坏。
(x )
2. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担。
(V )
3. 大偏心构件存在混凝土受压区。
(V )
4. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置。
(V )
7.3问答题
1. 偏心受拉构件划分大、小偏心的条件是什么?大、小偏心破坏的受力特点和破坏特征各有何不同?
答: (1)当N作用在纵向钢筋A s合力点和A s合力点范围以外时,为大偏心受拉;当N
作用在纵向钢筋A s合力点和A s合力点范围之间时,为小偏心受拉;
(2)大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。
2. 大偏心受拉构件的正截面承载力计算中,X b为什么取与受弯构件相同?
答:大偏心受拉构件的正截面破坏特征和受弯构件相同,钢筋先达到屈服强度,然后混
凝土受压破坏;又都符合平均应变的平截面假定,所以x b取与受弯构件相同。
3•大偏心受拉构件为非对称配筋,如果计算中出现x 2a s或出现负值,怎么处理?
答:取x 2a s,对混凝土受压区合力点(即受压钢筋合力点)取矩,
Ne'
f y(h。
a s),As min bh
4•为什么小偏心受拉设计计算公式中,只采用弯矩受力状态,没有采用力受力状态,而 在大偏心受拉设计计算
公式中,既采用了力受力状态又采用弯矩受力状态建立? 答:因为,大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏; 小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。
7.4计算题
1. 某矩形水池,壁厚 200mm , a s =a s =25mm ,池壁跨中水平向每米宽度上最大弯矩
f y =f y =300 N/mm 2,求池壁水平向所需钢筋。
解:
(1)
判别大小偏心
属大偏拉。
300 175 25 2
5561.5mm
2
min 'bh 0.002 1000 200
400mm
可选用 |二血2@70 (A s '
5702mm 2)
该题为已知A s 求A s 的问题。
300 103 1225 9.6 1000x(175 x/2) 360 5702 175 25
整理后得到 2
x 350x 23106.3 0 解得
I
x 88.3mm 2a s 50mm 又 x 88.3mm b h ° 91mm
M=390KN.m ,相应的轴向拉力 N=300KN ,
混凝土
C20, f c =9.6N/mm 2,钢筋 HRB335 ,
e °
6
M 390 10 N
300 103
h
1300mm
2
a
s
200
25 75mm
(2)
求所需钢筋面积
e e °
a s 1300 200
25 1225mm, h 0 175mm
A s '
2
0.550,由式
2
1f c
bh °
b
0.5
f y ' h ° a s '
3 2 2
300 10 1225 9.6 1000 175
0.550 0.5 0.550
Ne
取A s '
由式Ne
1f c
bx h °
I I 1 f c bh 0 b f y A s N 则 A s —1 c
二
y
-
f y
3
9.6 1000 88.3 300 5702
300 10
300
2
9527.6 mm
可选用 130@70mm A s 10603mm 2)
2.
某混凝土偏心拉杆,
b x h=250mm x 400mm , a s =a s =35mm ,混凝土 C20 ,
f c =9.6N/mm 2,钢筋HRB335 , f y =f y =300 N/mm 2,已知截面上作用的轴向拉力 N=550KN , 弯矩M=60KN ・m ,求:所需钢筋面积。
解:
1)判别大小偏心
M 60 10
“C d h "C CL "L e 0
3 109.1mm
a s 200 35 165mm
N
550 103
2
轴向力作用在两侧钢筋之间,属小偏拉。
A s 选用 2 14 A s 308mm 2
A s 选用 4 22
A s 1520mm 2
h e a a $ 2 ,h , e - e 0 a s
2
A s ' Ne
35 35 550 103 55.7
300 365 35
55.9mm 274.1mm
2
310.6mm min
'bh
0.002 250 400 200mm 2
Ne'
y h 。
' a s
550 103
274.1 300 365 35 2 1522.8mm
2)求所需钢筋面积
400
109.1
2
2
400 109.1
A s。