高中物理力学竞赛辅导资料专题03牛顿力学中的传送带问题含解析

合集下载

牛顿第二定律传送带问题

牛顿第二定律传送带问题

牛顿第二定律的应用——传送带问题【模型一】水平传送带例:水平传送带被广泛地应用于机场和火车站,如下图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg 的行李无初速度地放在A处,设行李与传送带之间的动摩擦因数μ=0.1,A、B 间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)求行李从A处传送到B处的时间;(4)这个木箱放在传送带上后,传送带上将留下一段多长的摩擦痕迹?(5)如果提高传送带的运行速率,行李就能较快的被传送到B处,求行李从A 处传送到B处的最短时间和传送带对应的虽小运行速率。

【跟踪检测】=6m/s 1、如图,光滑圆弧槽的末端与水平传送带相切,一滑块从圆槽滑下,以v的速度滑上传送带,已知传送带长L=8m,滑块与传送带之间的动摩擦因数为μ=0.2,求下面三种情况下,滑块在传送带上运动的时间(g=10m/s2)(1)传送带以4m/s的速度逆时针转动;(2)传送带不动;(3)传送带以4m/s的速度顺时针转动。

2、如下图所示,一水平方向足够长的传送带以恒定的速度v1沿逆时针方向运动,传送带左端有一与传送带等高的光滑水平面,一物体以恒定的速度v2沿直线向右滑上传送带后,经过一段时间后又返回光滑水平面上,其速率为v3,下列说法正确的是()A.若v1<v2,则v3=v1B.若v1>v2,则v3=v2C.不管v2多大,总有v3=v2D.若v1=v2,才有v3=v1【模型二】倾斜传送带例2:如图所示,传送带与地面成夹角θ=37°,以1m/s的速度顺时针转动,在传送带下端轻轻地放一个质量为m=0.5kg的物体,它与传送带之间的动摩擦因数μ=0.8,已知传送带AB的长度L=5m,则物体从A运动到B需时间是多少? (g 取10 m/s2)【跟踪检测】如图所示,传送带与水平面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从AB的长度L=16m,求:(1)物体从A传送到B需要的时间为多少?(2)物体从A传送到B过程中在传送带上留下的划痕多长?【巩固练习】1、如图,车以某一加速度向右运动,物块刚好沿车厢壁匀速下滑。

牛顿运动定律与直线运动 二轮专题复习:牛顿运动定律的传送带问题 含解析 精品

牛顿运动定律与直线运动 二轮专题复习:牛顿运动定律的传送带问题 含解析 精品

牛顿运动定律的传送带问题一.滑块在水平传送带上运动常见的三个情景情景一(1)可能一直加速(2)可能先加速后匀速情景二(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景三(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v 返回时速度为v0例题1.如图所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示.已知v2>v1,则( )A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用解析:选B.物块滑上传送带后将做匀减速运动,t1时刻速度为零,此时小物块离A处的距离达到最大,选项A错误;然后在传送带滑动摩擦力的作用下向右做匀加速运动,t 2时刻与传送带达到共同速度,此时小物块相对传送带滑动的距离最大,选项B 正确;0~t 2时间内,小物块受到的摩擦力方向始终向右,选项C 错误;t 2~t 3时间内小物块不受摩擦力,选项D 错误.例题2. (多选)如图所示,质量为m 的物体用细绳拴住放在粗糙的水平传送带上,物体距传送带左端的距离为L .当传送带分别以v 1、v 2的速度逆时针转动(v 1<v 2),稳定时绳与水平方向的夹角为θ,绳中的拉力分别为F 1,F 2;若剪断细绳时,物体到达左端的时间分别为t 1、t 2,则下列说法正确的是( )A .F 1<F 2B .F 1=F 2C .t 1一定大于t 2D .t 1可能等于t 2解析:选BD.绳剪断前物体的受力情况如图所示,由平衡条件得F N +F sin θ=mg ,F f =μF N =F cos θ,解得F =μmg μsin θ+cos θ,F 的大小与传送带的速度无关,选项A 错误,B 正确;绳剪断后m 在两速度的传送带上的加速度相同,若L ≤v 212μg ,则两次都是匀加速到达左端,t 1=t 2,若L >v 212μg ,则物体在传送带上先加速再匀速到达左端,在速度小的传送带上需要的时间更长,t 1>t 2,选项C 错误,D 正确.例题3、 (多选)如图所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P 速度随时间变化的图象可能是( )解析若v1>v2,且P受到的滑动摩擦力大于Q的重力,则可能先向右匀加速,加速至v1后随传送带一起向右匀速,此过程如图B所示,故B正确.若v1>v2,且P 受到的滑动摩擦力小于Q的重力,此时P一直向右减速,减速到零后反向加速.若v 2>v1,P受到的滑动摩擦力向左,开始时加速度a1=FT+μmgm,当减速至速度为v1时,摩擦力反向,若有F T>μmg,此后加速度a2=FT-μmgm,故C正确,A、D错误.答案BC二、倾斜传送带问题滑块在倾斜传送带上运动常见的四个情景情景一①可能一直加速②可能先加速后匀速情景二①可能一直加速②可能先加速后匀速③可能先以a1加速后以a2加速情景三①可能一直加速②可能先加速后匀速③可能一直匀速④可能先以a1加速后以a2加速情景四①可能一直加速②可能一直匀速③可能先减速后反向加速例题4 如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,在传送带顶端A处无初速度的释放一个质量为m=0.5 kg的物体,已知物体与传送带间的动摩擦因数μ=0.5,g取10 m/s2.求:(sin 37°=0.6,cos 37°=0.8)(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.解析(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有mg(sin 37°-μcos 37°)=ma则a=g sin 37°-μg cos 37°=2 m/s2,根据l=12at2得t=4 s.(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a1,由牛顿第二定律得mg sin 37°+μmg cos 37°=ma1则有a1=mg sin 37°+μmg cos 37°m=10 m/s2.设当物体运动速度等于传送带转动速度时经历的时间为t1,位移为x1,则有t1=va1=1010s=1 s,x1=12a1t21=5 m<l=16 m.当物体运动速度等于传送带速度瞬间,有mg sin 37°>μmg cos 37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力——摩擦力发生突变.设当物体下滑速度大于传送带转动速度时物体的加速度为a2,则a2=mg sin 37°-μmg cos 37°m=2 m/s2x2=l-x1=11 m又因为x2=vt2+12a2t22,则有10t2+t22=11解得t2=1 s(t2=-11 s舍去)所以t总=t1+t2=2 s.答案(1)4 s (2)2 s例题5.如图所示,A、B两个皮带轮被紧绷的传送皮带包裹,传送皮带与水平面的夹角为θ,在电动机的带动下,可利用传送皮带传送货物.已知皮带轮与皮带之间无相对滑动,皮带轮不转动时,某物体从皮带顶端由静止开始下滑到皮带底端所用的时间是t,则( )A.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定大于tB.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于tC .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间可能等于tD .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t解析:选D.传送带不动物体下滑时,物体受摩擦力向上,故加速度a =g sin θ-μg cos θ; 当传送带向上运动时,摩擦力一定也是向上,而摩擦力的大小不变,故a 不变,所以物体运动到B 的时间不变,故A 、B 错误;当皮带向下运动时,物体受摩擦力开始是向下的,故加速度开始一定增大,位移不变,故由A 滑到B 的时间小于t ,故C 错误,D 正确.例题6.如图所示为上、下两端相距 L =5 m 、倾角α=30°、始终以v =3 m/s 的速率顺时针转动的传送带(传送带始终绷紧).将一物体放在传送带的上端由静止释放滑下,经过t =2 s 到达下端,重力加速度g 取10 m/s 2,求:(1)传送带与物体间的动摩擦因数多大?(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端?解析:(1)物体在传送带上受力如图所示,物体沿传送带向下匀加速运动,设加速度为a .由题意得L =12at 2解得a =2.5 m/s 2 由牛顿第二定律得mg sin α-F f =ma 又F f =μmg cos α故μ=0.29.(2)如果传送带逆时针转动,要使物体从传送带上端由静止释放能最快地到达下端,则需要物体有沿传送带向下的最大加速度即所受摩擦力沿传送带向下,设此时传送带速度为v m,物体加速度为a′.由牛顿第二定律得mg sin α+F f=ma′又v2m=2La′故v m=2La′=8.66 m/s.答案:(1)0.29 (2)8.66 m/s例题7.(多选)如图所示是某工厂所采用的小型生产流水线示意图,机器生产出的物体源源不断地从出口处以水平速度v0滑向一粗糙的水平传送带,最后从传送带上落下装箱打包.假设传送带静止不动时,物体滑到传送带右端的速度为v,最后物体落在P处的箱包中.下列说法正确的是( )A.若传送带随皮带轮顺时针方向转动起来,且传送带速度小于v,物体仍落在P 点B.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v0,物体仍落在P点C.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v,物体仍落在P 点D.若由于操作不慎,传送带随皮带轮逆时针方向转动起来,物体仍落在P点解析:选AD.若传送带静止,物体滑到传送带右端的过程中,物体一直减速,其加速度a=μg,v2-v20=2aL,当传送带顺时针转且速度小于v时,物体仍一直减速,到达传送带右端速度仍为v,因而物体仍落在P点,A正确;当传送带顺时针转且速度大于v0时,物体应先加速,因而到达右端时速度一定大于v,应落在P点右侧,B 错误;当传送带顺时针转且速度大于v时,物体在传送带上应先减速,当速度达到传送带速度时便和传送带一起匀速运动,到达右端时速度大于v,应落在P点右侧,C 错误;当传送带逆时针转时,物体一直减速,到达右端时速度为v,仍落在P点,D 正确.。

运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析

运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析

牛顿第二定律的运用之传送带问题一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。

【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求:(1)经过多长时间才与皮带保持相对静止?(2)传送带上留下一条多长的摩擦痕迹?【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动(2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律:皮箱加速度:a==m/s2=6m/s2由v=at 得t==s=0.1s(2)到相对静止时,传送带带的位移为s1=vt=0.06m皮箱的位移s2==0.03m摩擦痕迹长L=s1--s2=0.03m(10分)所以,(1)经0.1s行李与传送带相对静止(2)摩擦痕迹长0.0.03m二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。

此时物体可能经历两个过程——匀加速运动和匀速运动。

【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示:可知,物体所受合力F合=f-Gsinθ又因为f=μN=μmgcosθ所以根据牛顿第二定律可得:此时物体的加速度a===m/s2=1.2m/s2当物体速度增加到10m/s时产生的位移x===41.67m因为x<50m所以=8.33s所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动故匀速运动的位移为50m-x,所用时间所以物体运动的总时间t=t1+t2=8.33+0.83s=9.16s答:物体从A到B所需要的时间为9.16s.三、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的顶端,物体被向下传送。

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1. 在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。

如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端AB间距离为S o=lOm,传送带与行李箱间的动摩擦因数卩=0.2当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,重力加速度g取10m/2;求:(1) 行李箱开始运动时的加速度大小a;(2) 行李箱从A端传送到B端所用时间t;(3) 整个过程行李对传送带的摩擦力做功W。

【答案】⑴,(2)薜耳⑶="-纠【解析】【分析】行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动,根据牛顿第二定律及运动学基本公式即可解题行李箱开始运动时的加速度大小和行李箱从A端传送到B 端所用时间;根据做功公式求解整个过程行李对传送带的摩擦力做功;【详解】解:(1)行李在传送带上加速,设加速度大小为aI__7(2)行李在传送带上做匀加速直线运动,加速的时间为t1V 2灯== Is1所以匀加速运动的位移为:s\=尹甘=lrnSo-Si 10-1行李随传送带匀速前进的时间:(2 = ---------- = —-一=4.5$v 2行李箱从A传送到B所需时间::3 --气出⑶t1传送带的的位移为:怜一叽“ -根据牛顿第三定律可得传送带受到行李摩擦力为:『◎『整个过程行李对传送带的摩擦力做功:w =7比=-吓阿=-20/2. 如图甲所示,质量为m的A放在足够高的平台上,平台表面光滑•质量也为m的物块B放在水平地面上,物块B与劲度系数为k的轻质弹簧相连,弹簧与物块A用绕过定滑轮的轻绳相连,轻绳刚好绷紧•现给物块A施加水平向右的拉力F (未知),使物块A做初速度为零的匀加速直线运动,加速度为a,重力加速度为g,A、B均可视为质点.根据v 2 2ax 解得:v . 2ax 对物体A:F T ma ; 对物体B:T=mg , 解得 F=ma+mg ; (2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:F cosT | m C a ,其中T | kx mg ;竖直方向:F sin m C g ;联立解得m e3mg4g 3a3.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止 于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量 m1=0.98kg 的小木块.射钉枪以速度v °=ioom/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数 卩=0.05其它摩擦不计.若木板每次与 A 、B 相碰后速度立即减为 0,且与A 、B 不粘连,重力加 速度 g=10m/s 2.求:(1) 当物块B 刚好要离开地面时,拉力 F 的大小及物块 A 的速度大小分别为多少;(2)若将物块 A 换成物块C ,拉力F 的方向与水平方向成 37°角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块 C 的质量应满足什么条件? ( sin37°0.6,cos37° 0.8)【答案】(1) F ma mg;v 【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时, B 受力分析有mg kx ,得:x2嘗(2) m C设弹簧的伸长量为mg k3mg 4g 3ax ,物块A 的速度大小为v ,对物块2amg k(3)木块最终停止时离 A 点的距离s.【答案】(1) v 2m/s (2) F N 12.5N (3) L 1.25m 【解析】(1) 设铁钉与木块的共同速度为 v ,取向左为正方向,根据动量守恒定律得:m °V 0 (m ° mjv解得:v 2叹;⑵木块滑上薄板后,木块的加速度 印 g 0.5,且方向向右设经过时间t ,木块与木板共同速度 v 运动 则:va 2t此时木块与木板一起运动的距离等于木板的长度.1 .2 1 2x vt a 1ta 2t L2 2故共速时,恰好在最左侧 B 点,此时木块的速度 v v a 1t 1^S 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2vF N mg m R代入相关数据解得:F N =12.5N. 由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;1 2⑶木块还能上升的高度为 h ,由机械能守恒有:(m ° mjv (m 0 m^gh2h 0.05m 0.4m木块不脱离圆弧轨道,返回时以 1m/s 的速度再由B 处滑上木板,设经过 t 1共速,此时木 板的加速度方向向右,大小仍为a 2,木块的加速度仍为 a 1,板产生的加速度a 2 mg M, 且方向向左则:v2 a1t1 a2t1,解得:t1 1s1 2 1 2此时x v t1a-i t-i a2t| 0.5m2 2v3v2 at10.5叹碰撞后,v薄板=0,木块以速度V3=0.5m/s的速度向右做减速运动v3设经过t2时间速度为0,则t2a;1s| 2x v3t2a2t2 0.25m2故△L=b △x' - x=1.25m即木块停止运动时离A点1.25m远.4. 如图,光滑固定斜面上有一楔形物体A。

4、传送带问题 第三章《牛顿运动定律》高中物理教学课件

4、传送带问题 第三章《牛顿运动定律》高中物理教学课件

的水平传送带装置的示意图.绷紧的传送带始终保持
3.0m/s的恒定速率运行,传送带的水平部分AB距水平
地面的高度为h=0.45m.现有一行李包(可视为质点)由A
端被传送到B端,且传送到B端时没有被及时取下,行李
包从B端水平抛出,不计空气阻力,g取l 0 m/s2
(1)若行李包从B端水平抛出的初速v=3.0m/s,求
由牛顿第二定律沿水平面有 f=macosθ
N a f
Hale Waihona Puke 竖直方向有N-G==masinθ
G
得:N==masinθ+mg
二、斜方向传送带:
【例题2】如图所示,传送带与水平面夹角为370 ,并以
v=10m/s运行,在传送带的A端轻轻放一个小物体,物体与传 送带之间的动摩擦因数μ=0.5,AB长16米,求:以下两种情 况下物体从A到B所用的时间.
它在空中运动的时间和飞出的水平距离;
(2)若行李包以v0=1.0m/s的初速从A端向右滑行, 包与传送带间的动摩擦因数μ=0.20,要使它从B端飞
出的水平距离等于(1)中所
求的水平距离,求传送带的长
L
度L应满足的条件.
A
B
h
解:(1)设行李包在空中运动时间为t,
飞出的水平距 离为s,则 h=1/2 gt2 s=v t
(1)传送带顺时针方向转动
(2)传送带逆时针方向转动
解: (1)传送带顺时针方向转动时受力如图示:
mg sinθ-μmg cosθ= m a a = gsinθ-μgcosθ= 2m/s2
S=1/2at2
B
N
f A
v mg
t 2S 2164s
a
2
(2)传送带逆时针方向转动物体受力如图:

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。

高考物理计算题复习《用牛顿运动定律分析传送带问题》(解析版)

高考物理计算题复习《用牛顿运动定律分析传送带问题》(解析版)

《用牛顿运动定律分析传送带问题》一、计算题1.如图所示,光滑水平面MN左端足够远的地方有一弹性挡板(碰撞时无能量损失)P,右端N与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ的长度L=2m,传送带逆时针匀速转动,其速度v=2m/s.MN上放置着两个可视为质点的质量m A=4kg、m B=1kg的小物块A、B,开始时A、B都静止,A、B间压缩一锁定的轻质弹簧,其弹性势能E P=10J.现解除锁定,弹簧弹开A、B后迅速移走弹簧,g=10m/s2.求:(1)物块A、B被弹开时各自的速度大小;(2)要使两物块能在水平面MN上发生碰撞,则小物块B与传送带间的动摩擦因数至少为多大;(3)若物块A、B与传送带间的动摩擦因数都等于第(2)问中的临界值,且两物块碰撞后结合成整体.在此后物块A、B三次离开传送的运动过程中,两物块与传送带间产生的总热量.2.如图1所示,水平传送带保持以速度v0向右运动,传送带长L=10m。

t=0时刻,将质量为M=1kg的木块轻放在传送带左端,木块向右运动的速度—时间图象(v−t图象)如图2所示。

当木块刚运动到传送带最右端时,一颗质量为m=20g的子弹以大小为v1=250m/s水平向左的速度正对射入木块并穿出,子弹穿出时速度大小为v2=50m/s,以后每隔时间Δt=1s就有一颗相同的子弹射向木块。

设子弹与木块的作用时间极短,且每次射入点各不相同,木块长度比传送带长度小得多,可忽略不计,子弹穿过木块前后木块质量不变,重力加速度取g=10m/s2。

求:(1)传送带运行速度大小v0及木块与传送带间动摩擦因数μ;(2)木块在传送带上最多能被多少颗子弹击中。

3.现在传送带传送货物已被广泛地应用,如图所示为一水平传送带装置示意图。

紧绷的传送带AB始终保持恒定的速率v=1m/s沿顺时针运行,一质量为m=4kg的物体被无初速度地放在A处,传送带对物体的滑动摩擦力使物体开始做匀加速直线运动,随后物体又以与传送带相等的速率做匀速直线运动。

高中物理传送带问题知识难点讲解汇总(带答案)

高中物理传送带问题知识难点讲解汇总(带答案)

高中物理传送带问题知识难点讲解汇总(带答案)弄死我咯 ,搞了一个多钟传送带问题一、难点形成的原因:1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。

二、难点突破策略:( 1)突破难点1在以上三个难点中,第1 个难点应属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。

通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。

摩擦力的产生条件是:第一,物体间相互接触、挤压;第二,接触面不光滑;第三,物体间有相对运动趋势或相对运动。

前两个产生条件对于学生来说没有困难,第三个条件就比较容易出问题了。

若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。

关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。

若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。

牛顿运动定律(传送带问题)PPT课件

牛顿运动定律(传送带问题)PPT课件

吊的重物质量为m2,人用力向后蹬传送带而人的重 心不动,设传送带上侧以速度V向后运动,则
①人对传送带不做功 ②人对传送带做功
(C)
③人对传送带做功的功率为m2gV
④人对传送带做功的功率为(m1+m2)gV
⑤传送带对人做功的功率为m1gV
A.① B.②④
C.②③ D.①⑤
-
6
专题训练 3.物块从光滑曲面上的P点自由滑下,
-
8
专题训练
5.如图所示,传送带与地面间的夹角为370,AB间
传动带长度为16m,传送带以10m/s的速度逆时针匀
速转动,在传送带顶端A无初速地释放一个质量为
0.5kg的物体,它与传送带之间的动摩擦因数为0.5,
则物体由A运动到B所需时间为(g=10m/s2
sin370=0.6) A.1s B.2s
②物体从A运动到B,皮带对物体所做的功是多少?
③ 在这段时间内电动机对运s1/ vt输12.5机所做的功是多少? B
解析:第一阶段,物块匀加速运动
a=μgcosθ-gsinθ=2.5 m/s2
t1
v a
1,s1
v2 2a
1.25
A
θ
传送带 s1/ vt1 2.5-
10
B
专题训练
相对位移s相s1' s11.25,
这种传送带是指两皮带轮等大,轴心共面但不在同一水 平线上(不等高),传送带将物体在斜面上传送的装 置.处理这类问题,同样是先对物体进行受力分析,再判 断摩擦力的方向是关键,正确理解题意和挖掘题中隐含条 件是解决这类问题的突破口.这类问题通常分为:运动学 型;动力学型;能量守恒型.
例3. 如图所示,传送带与地面倾角θ=370,从A到B长

牛顿定律的应用之传送带及板块问题

牛顿定律的应用之传送带及板块问题

牛顿定律的应用之传送带及板块问题一、板块问题分析二、传送带问题分析【例2】水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图。

紧绷的传送带AB始终保持恒定的速率v=1m/s运行,一质量为m=4kg的行李无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动。

设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2m,g取10m/s2。

【例2】⑴求行李刚开始运动时所受滑动摩擦力的大小与加;⑵求行李做匀加速直线运动的时间;⑶如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率。

1【变式】质量为m的物体从离传送带高为H处沿光滑圆弧轨道下滑,水平进入长为L的静止的传送带落在水平地面的Q点,已知物体与传送带间的动摩擦因数为μ,则当传送带转动时,物体仍以上述方式滑下,将落在Q点的左边还是右边? 【例3】如图示,传送带与水平面夹角为37°,并以v=10m/s运行,在传送带的A端轻轻放一个小物体,物体与传送带之间的动摩擦因数μ=0.5,AB长16米,求:以下两种情况下物体从A到B所用的时间。

⑴传送带顺时针方向转动⑵传送带逆时针方向转动AB【变式】如图所示是长度为L=8.0m水平传送带,其皮带轮的半径为R=0.20m,传送带上部距地面的高度为h=0.45m。

一个旅行包(视为质点)以v0=10m/s的初速度从左端滑上传送带。

旅行包与皮带间的动摩擦因数μ=0.60。

g取10m/s2。

求:【变式】⑴若传送带静止,旅行包滑到B端时,若没有人取包,旅行包将从B端滑落。

包的落地点距B端的水平距离为多少?⑵设皮带轮顺时针匀速转动,当皮带轮的角速度ω值在什么范围内,包落地点距B端的水平距离始终为⑴中所得的水平距离?⑶若皮带轮的角速度ω1=40rad/s,旅行包落地点距B端的水平距离又是多少?⑷设皮带轮以不同的角速度顺时针匀速转动,画出旅行包落地点距B端的水平距离s随角速度ω变化的图象(ω的取值范围从0到100rad/s)。

高中物理力学竞赛辅导专题牛顿力学中的传送带问题

高中物理力学竞赛辅导专题牛顿力学中的传送带问题

专题03 牛顿力学中的传送带问题一、内容解读1.传送带的基本类型(1)按放置可分为:水平(如图a)、倾斜(如图b,图c)、水平与倾斜组合;(2)按转向可分为:顺时针、逆时针。

2.传送带的基本问题分类(1)运动学问题:运动时间、痕迹问题、运动图象问题(运动学的角度分析);(2)动力学问题:物块速度和加速度、相对位移,运动时间(动力学角度分析);(3)功和能问题:做功,能量转化(第五章讲)。

二、传送带模型分类(一)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。

其中v0>v返回时速度为v,当v0<v返回时速度为v01.(多选)如图所示,水平传送带A、B两端点相距x=4 m,以v0=2 m/s的速度(始终保持不变)顺时针运转。

今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g 取10 m/s2。

由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕。

则小煤块从A运动到B的过程中 ( )图1A.小煤块从A运动到B的时间时 2 sB .小煤块从A 运动到B 的时间是2.25 sC .划痕长度是4 mD .划痕长度是0.5 m【解析】选BD 小煤块刚放上传送带后,加速度a =μg =4 m/s 2,由v 0=at 1可知,小煤块加速到与传送带同速的时间为t 1=v 0a =0.5 s ,此时小煤块运动的位移x 1=v 02t 1=0.5 m ,而传送带的位移为x 2=v 0t 1=1 m ,故小煤块在带上的划痕长度为l =x 2-x 1=0.5 m ,D 正确,C 错误;之后的x -x 1=3.5 m ,小煤块匀速运动,故t 2=x -x 1v 0=1.75 s ,故小煤块从A 运动到B 的时间t =t 1+t 2=2.25 s ,A 错误,B 正确。

牛顿第二定律的应用(三)传送带问题

牛顿第二定律的应用(三)传送带问题

牛顿第二定律的应用(三)传送带问题基本方法解决传送带问题要特别注重物理过程的分析和理解,关键是分析传送带上随行物时一般以地面为参照系。

1、对物体受力情况进行正确的分析,分清摩擦力的方向、摩擦力的突变。

当传送带和随行物相对静止时,两者之间的摩擦力为恒定的静摩擦力或零;当两者由相对运动变为速度相等时,摩擦力往往会发生突变,即由滑动摩擦力变为静摩擦力或变为零,或者滑动摩擦力的方向发生改变。

2、对运动情况进行分析分清物体的运动过程,明确传送带的运转方向。

【例1】一水平传送带长度为20m,以2m/s的速度做顺时针匀速转动,已知某物体与传送带间动摩擦因数为0.1,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少?【例2】. 如下图所示为车站使用的水平传送带模型,传送带长L=8m,现有一质量为m=10kg的旅行包以的初速度水平地滑上水平传送带。

已知旅行包与传送带间的动摩擦因数为,可将旅行包视为质点,取。

试讨论如下问题:(1)若传送带静止,则旅行包从传送带左端A滑到右端B所需要的时间是多少?(2)若传送带以速度v=4m/s沿顺时针方向匀速转动,则旅行包从传送带左端A滑到右端B历时多少?(3)若传送带以速度v=4m/s沿逆时针方向匀速转动,则旅行包能否从传送带的A端滑到B 端?如不能试说明理由;如能试计算历时多少?【例3】传送带以恒定速度υ=1.2m/s运行, 传送带与水平面的夹角为37º。

现将质量m=20kg 的物品轻放在其底端,经过一段时间物品被送到1.8m高的平台上,如图所示。

已知物品与传送带之间的摩擦因数μ=0.85,则物品从传送带底端到平台上所用的时间是多少?【例4】、如图2—1所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A→B的长度L=16m,则物体从A到B需要的时间为多少?【例5】.如图所示,传送带以恒定的速度v=10 m/s顺时针转动,传送带与水平面的夹角θ为37°,PQ=16 m,将一小物块无初速地放在传送带上P点,物块与此传送带间的动摩擦因数μ=0.5,g=10 m/s2. (sin 37°=0.6,cos 37°=0.8)求:小物块运动到Q点的时间为多少?。

(完整版)高中物理传送带问题(有答案).docx

(完整版)高中物理传送带问题(有答案).docx

传送带问题例1:一水平传送带长度为 20m,以 2m/s 的速度做匀速运动,已知某物体与传送带间动摩擦因数为 0.1 ,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少?解 : 物体加速度a=μ g=1m/s2,经 t1=v/a =2s 与传送带相对静止,所发生的位移S1=1/2 at12=2m, 然后和传送带一起匀速运动经t2=l-s1/v =9s ,所以共需时间t=t1+t2=11s练习:在物体和传送带达到共同速度时物体的位移,传送带的位移,物体和传送带的相对位移分别是多少?(S1=1/2 vt1=2m, S2=vt1=4m,s=s2-s1=2m )例 2:如图 2—1 所示,传送带与地面成夹角θ =37°,以 10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量 m=0.5 ㎏的物体,它与传送带间的动摩擦因数μ =0.5 ,已知传送带从 A→ B 的长度 L=16m,则物体从 A 到 B 需要的时间为多少?【解析】物体放上传送带以后,开始一段时间,其运动加速度a mg sin mg cos10m/s 2。

m这样的加速度只能维持到物体的速度达到10m/s 为止,其对应的时间和位移分别为:v 10s 1s,2t 1s15m< 16ma102a以后物体受到的摩擦力变为沿传送带向上,其加速度大小为(因为mgsin θ>μ mgcosθ)。

a 2mg sinmg cos2m/s 2 。

m设物体完成剩余的位移s 2 所用的时间为 t 2 ,则 s 20t 21a 2 t 2 2 , 11m= 10t 2 t 22 ,2解得: t 2 1 s,或 t 22 11 s(舍去 ) , 所以: t 总 1s 1 s 2 s 。

1例 3:如图 2—2 所示,传送带与地面成夹角θ =30°,以 10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5 ㎏的物体, 它与传送带间的动摩擦因数μ=0.6 ,已知传送带从 A → B 的长度 L=16m ,则物体从 A 到 B 需要的时间为多少?【解析】 物体放上传送带以后,开始一段时间,其运动加速度amgsinmg cos8.46m/s 2 。

3-4 牛顿运动定律的应用--皮带传送问题

3-4  牛顿运动定律的应用--皮带传送问题

N
f A
mg
v
B
t
2S a
2 16 4s 2
(2)传送带逆时针方向转动物体受力如图: 开始摩擦力方向向下,向下匀加速运动
a=g sin370 +μ g cos370 = 10m/s2
t1=v/a=1s S1=1/2 ×at2 =5m S2=11m
1秒后,速度达到10m/s,摩擦力方向变为向上
单选
[解析] 物体A与传送带相对静 止,倾角为θ 的传送带沿逆时针 方向以加速度a加速转动时,A有 沿斜面向下的加速度a,对A受力 分析可知,只有a<gsinθ ,A才 受沿传送带向上的静摩擦力作用, B正确.
例题3.如图所示水平传送装置由轮半径均为 R 1 / m 的主动轮O1和从动轮O2及传送带等构成。两轮轴心相 距L=8.0m,轮与传送带不打滑。现用此装置运送一袋 面粉,已知面粉袋与传送带间的动摩擦因数为μ=0.4, 这袋面粉中间的面粉可不断地从袋中渗出。 (1)当传送带以v0=4.0m/s的速度匀速运动时,将 这袋面粉由左端O2 正上方的A点轻放在传送带上后, 这袋面粉由A端运送到O1 正上方的B端所用时间为多 少? (2)要想尽快将这带面粉由A端送到B端(设初速 度仍为零),主动轮O1的转速至少应为多大? (3)由于面粉的渗漏,在运送这袋面粉的过程中 会在深色传送带上留下白色的面粉的痕迹。这袋面粉 在传送带上留下的痕迹最长能有多长 A B (设袋的初速度仍为零)? 此时主 O2 O1 动轮的转速应满足何种条件?
当小物块的速度加速到 12 m/s 时, mgsin θ=μmgcos θ, 因 小物 块受到的摩擦力由原来的滑动摩擦力突变为静摩擦力,而且此 时刚好为最大静摩擦力,小物块此后随皮带一起做匀速运动.

高中物理【传送带问题】(含经典习题)

高中物理【传送带问题】(含经典习题)

牛顿第二定律的应用---传送带问题一、传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向二、传送带模型的一般解法①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。

难点疑点:传送带与物体运动的牵制。

牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。

分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。

一、水平放置运行的传送带1.如图所示,物体A从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A滑至传送带最右端的速度为v1,需时间t1,若传送带逆时针转动,A滑至传送带最右端的速度为v2,需时间t2,则()A.1212,v v t t><B.1212,v v t t<<C.1212,v v t t>>D.1212,v v t t==2.如图7所示,一水平方向足够长的传送带以恒定的速度v1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v2′,则下列说法正确的是:()A.只有v1= v2时,才有v2′= v1B.若v1 >v2时, 则v2′= v2C.若v1 <v2时, 则v2′= v2D.不管v2多大,v2′= v2.3.物块从光滑斜面上的P点自由滑下通过粗糙的静止水平传送带后落到地面上的Q点.若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P点自由滑下,则()A.物块有可能落不到地面B.物块将仍落在Q点C.物块将会落在Q点的左边D.物块将会落在Q点的右边PQ4.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A、B始终保持v=1m/s的恒定速率运行;一质量为m=4kg的行李无初速地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB间的距离l=2m,g取10m/s2.(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处.求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.二、倾斜放置运行的传送带5.如图所示,传送带与地面倾角θ=37°,从AB长度为16m,传送带以10m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为0.5.(sin37°=0.6,cos37°=0.8)求:物体从A运动到B需时间是多少?(思考:物体从A运动到B在传送带上滑过的痕迹长?)6.如图所示,传送带两轮A、B的距离L=11 m,皮带以恒定速度v=2 m/s运动,现将一质量为m的物块无初速度地放在A端,若物体与传送带间的动摩擦因数为μ=0.8,传送带的倾角为α=37°,那么物块m从A端运到B端所需的时间是多少?(g取10 m/s2,cos37°=0.8)三、组合类的传送带7.如图所示的传送皮带,其水平部分AB长s AB=2m,BC与水平面夹角θ=37°,长度s BC=4m,一小物体P与传送带的动摩擦因数 =0.25,皮带沿A至B方向运行,速率为v=2m/s,若把物体P放在A点处,它将被传送带送到C点,且物体P不脱离皮带,求物体从A点被传送到C点所用的时间.(sin37°=0.6,g=l0m/s2)牛顿第二定律的应用----传送带问题参考答案一、水平放置运行的传送带1.D 提示:物体从滑槽滑至末端时,速度是一定的.若传送带不动,物体受摩擦力方向水平向左,做匀减速直线运动.若传送带逆时针转动,物体受摩擦力方向水平向左,做匀减速直线运动.两次在传送带都做匀减速运动,对地位移相同,加速度相同,所以末速度相同,时间相同,故D .2.B3.B 提示:传送带静止时,物块能通过传送带落到地面上,说明滑块在传送带上一直做匀减速运动.当传送带逆时针转动,物块在传送带上运动的加速度不变,由2202t v v as =+可知,滑块滑离传送带时的速度v t 不变,而下落高度决定了平抛运动的时间t 不变,因此,平抛的水平位移不变,即落点仍在Q 点.4.【答案】(1)4N ,a =lm/s 2;(2)1s ;(3)2m/s解析:(1)滑动摩擦力F =μmg① 以题给数值代入,得F =4N② 由牛顿第二定律得F =ma ③代入数值,得a =lm/s 2 ④(2)设行李做匀加速运动的时间为t ,行李加速运动的末速度v=1m /s .则 v =at ⑤代入数值,得t =1s⑥(3)行李从A 匀加速运动到B 时,传送时间最短.则2min 12l at = ⑦代入数值,得min 2s t =⑧ 传送带对应的运行速率V min =at min ⑨代人数据解得V min =2m/s⑩ 二、倾斜放置运行的传送带5.【答案】2s解析:物体的运动分为两个过程,一个过程在物体速度等于传送带速度之前,物体做匀加速直线运动;第二个过程是物体速度等于传送带速度以后的运动情况,其中速度相同点是一个转折点,此后的运动情况要看mgsinθ与所受的最大静摩擦力,若μ<tanθ,则继续向下加速.若μ≥tanθ,则将随传送带一起匀速运动,分析清楚了受力情况与运动情况,再利用相应规律求解即可.本题中最大静摩擦力等于滑动摩擦力大小.物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F ,物体受力情况如图所示.物体由静止加速,由牛顿第二定律得a 1=10×(0.6+0.5×0.8)m/s 2=10m/s 2物体加速至与传送带速度相等需要的时间1110s=1s 10v t a ==, t 1时间内位移21115m 2s a t ==.由于μ<tanθ,物体在重力情况下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F .此时物体受力情况如图所示,由牛顿第二定律得:222sin cos ,2m/s mg mg ma a θμθ-==.设后一阶段物体滑至底端所用的时间为t 2,由 222212L s vt a t -=+,解得t 2=1s ,t 2=-11s (舍去).所以物体由A→B 的时间t=t 1+t 2=2s .6.解析:将物体放在传送带上的最初一段时间内物体沿传送带向上做匀加速运动 由牛顿第二定律得μmg cos37°-mg sin37°=ma则a =μg cos37°-g sin37°=0.4 m/s 2物体加速至2 m/s 所需位移s 0=v 22a =222×0.4m =5 m<L 经分析可知物体先加速5 m再匀速运动s =L -s 0=6 m.匀加速运动时间t 1=v a =20.4s =5 s. 匀速运动的时间t 2=s v =62s =3 s. 则总时间t =t 1+t 2=(5+3) s =8 s.答案:8 s三、组合类的传送带7.【答案】2.4s解析:物体P 随传送带做匀加速直线运动,当速度与传送带相等时若未到达B ,即做一段匀速运动;P 从B 至C 段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间.P 在AB 段先做匀加速运动,由牛顿第二定律11111,,N F ma F F mg v a t μμ====, 得P 匀加速运动的时间110.8s v v t a gμ===. 22111112110.8m,22AB s a t gt s s vt μ===-=, 匀速运动时间120.6s AB s s t v-==. P 以速率v 开始沿BC 下滑,此过程重力的下滑分量mg sin37°=0.6mg ;滑动摩擦力沿斜面向上,其大小为μmg cos37°=0.2mg .可见其加速下滑.由牛顿第二定律233cos37cos37,0.44m/s mg mg ma a g μ︒-︒===,233312BC s vt a t =+,解得t 3=1s (另解32s t '=-,舍去). 从A 至C 经过时间t =t 1+t 2+t 3=2.4s .。

人教高中物理必修一4.3牛顿第二定律-传送带问题讲解及例题集锦(人教版)

人教高中物理必修一4.3牛顿第二定律-传送带问题讲解及例题集锦(人教版)

的热各是多少?
a1
m gsin 370
m gcos370
m
8m / s2
a2
m gsin 370
m gcos370
m
4m / s2
wf wf 1 wf 2 0.8 4.8 4J
wf f s对地
Q Q1 Q2 2.4J
Q f s对皮带
思考题、一传送带装置示意如图,其中传送带经过AB区域时是 水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画 出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大量 的质量均为m的小货箱一个一个在A处放到传送带上,放置时初 速为零,经传送带运送到D处,D和A的高度差为h。稳定工作时 传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。 每个箱子在A处投放后,在到达B之前已经相对于传送带静止, 且以后也不再滑动(忽略经BC段时的微小滑动)。已知在一段相当 长的时间T内,共运送小货箱的数目为N。这装置由电动机带动, 传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的 平均输出功率P。
带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求 v
此黑色痕迹的长度。
t1
v0 a0
t2
v0
g
v0
O
t11
l
1 2
v0 (t2t1)来自1 2v0( v0
g
v0 a0
)
v02
(a0 g) 2a0 g
t2 t
对于匀速运动的传送带传送初速为零的物体,传送带应提 供两方面的能量:
一、物体动能的增加 二、物体与传送带间的摩擦所生成的热(即内能)
a1
mg sin
mg
m
cos
10m/s2

4.9《牛顿第二定律:传送带问题》

4.9《牛顿第二定律:传送带问题》
1kg 的小物块P 和质量为m2= 1 .5 kg 的小物块Q 由通过定滑轮的轻绳连接,轻绳足够
长且不可伸长。某时刻物块P 从传送带左端以速度v0=4m/s 冲上传送带, P 与定滑轮
间的绳子水平。已知物块P 与传送带间的动摩擦因数μ=0.5, 重力加速度为g= 10m/s²,
不计滑轮的质量与摩擦,整个运动过程中物块Q 都没有上升到定滑轮处。求:
难点是当物体与皮带速度出现大小相等、方向相同时,物体能否与皮带保持相对静止。
【例3】( 多选) 如图所示,水平传送带两端A 、B 相距x=6m, 以 =4 m/s 的速度顺时针运
转.现将一小煤块(视为质点)无初速度地轻放在A 端,由千煤块与传送带之间有相对滑动,
会在传送带上留下划痕.已知煤块与传送带间的动摩擦因数μ=0.25, 重力加速度g=10 m/s², 则
相对位移:Δx=带 + 物
相对位移:Δx=带 + 物
相对位移:Δx=带 + 物
划痕长=带 + 物
划痕长=带 + 物
划痕长=带 + 物
当物体、传送带位移反向时相对位移:Δx=传 + 物 →划痕长=传 + 物
3、相对位移方向发生变化
③相对位移:Δx= 传 − 物 ,
数μ=0.1,A、B间的距离L=2 m,g 取10 m/s2。
(1)求物体刚开始运动时所受滑动摩擦力的大小与加速度的大小;
(2)求物体做匀加速直线运动的时间;
(3)如果提高传送带的运行速率,物体就能被较快地传送到B处,求物体从A处传送
到B处的最短时间和传送带对应的最小运行速率。
【作业8】 如图所示,一足够长的水平传送带以速度v = 2m/s 匀速运动,质量为m1=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题03 牛顿力学中的传送带问题一、内容解读1.传送带的基本类型(1)按放置可分为:水平(如图a)、倾斜(如图b,图c)、水平与倾斜组合;(2)按转向可分为:顺时针、逆时针。

2.传送带的基本问题分类(1)运动学问题:运动时间、痕迹问题、运动图象问题(运动学的角度分析);(2)动力学问题:物块速度和加速度、相对位移,运动时间(动力学角度分析);(3)功和能问题:做功,能量转化(第五章讲)。

二、传送带模型分类(一)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。

其中v0>v返回时速度为v,当v0<v返回时速度为v01.(多选)如图所示,水平传送带A、B两端点相距x=4 m,以v0=2 m/s的速度(始终保持不变)顺时针运转。

今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g取10 m/s2。

由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕。

则小煤块从A运动到B的过程中( )图1A.小煤块从A运动到B的时间时 2 sB .小煤块从A 运动到B 的时间是2.25 sC .划痕长度是4 mD .划痕长度是0.5 m【解析】选BD 小煤块刚放上传送带后,加速度a =μg =4 m/s 2,由v 0=at 1可知,小煤块加速到与传送带同速的时间为t 1=v 0a =0.5 s,此时小煤块运动的位移x 1=v 02t 1=0.5 m,而传送带的位移为x 2=v 0t 1=1 m,故小煤块在带上的划痕长度为l =x 2-x 1=0.5 m,D 正确,C 错误;之后的x -x 1=3.5 m,小煤块匀速运动,故t 2=x -x 1v 0=1.75 s,故小煤块从A 运动到B 的时间t =t 1+t 2=2.25 s,A 错误,B 正确。

2、(多选)如图2所示,水平传送带A 、B 两端相距x =3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A 端的瞬时速度v A =4m/s,到达B 端的瞬时速度设为v B .下列说法中正确的是( )图2A .若传送带逆时针匀速转动,vB 一定等于3m/s B .若传送带逆时针匀速转动越快,v B 越小C .若传送带顺时针匀速转动,v B 有可能等于3m/sD .若传送带顺时针匀速转动,物体刚开始滑上传送带A 端时一定做匀加速运动【解析】若传送带不动,物体的加速度:a =μg =1m/s 2,由v 2A -v 2B =2ax, 得:v B =3m/s.若传送带逆时针匀速转动,物体的受力情况不变,由牛顿第二定律得知,物体的加速度仍为a =μg ,物体的运动情况跟传送带不动时的一样,则v B =3 m/s.故A 正确,B 错误;若传送带以小于3m/s 的速度顺时针匀速转动,物体滑上传送带时所受的滑动摩擦力方向水平向左,做匀减速运动,物体的加速度仍为a =μg ,物体的运动情况跟传送带不动时的一样,则v B =3 m/s.若传送带以大于3m/s 且小于4 m/s 的速度顺时针匀速转动,则开始时物体受到的摩擦力向左,物体做减速运动,最后物体随传送带一起做匀速运动.若传送带以大于4m/s 的速度顺时针匀速转动,则开始时物体受到的摩擦力向右,物体做加速运动,v B 可能大于4 m/s.故C 正确,D 错误.3、如图3甲所示的水平传送带AB 逆时针匀速转动,一物块沿曲面从一定高度处由静止开始下滑,以某一初速度从传送带左端滑上,在传送带上由速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块刚滑上传送带时为计时起点)。

已知传送带的速度保持不变,重力加速度g 取10 m/s 2。

关于物块与传送带间的动摩擦因数μ及物块在传送带上运动第一次回到传送带左端的时间t ,下列计算结果正确的是( )图3A .μ=0.4B .μ=0.2C .t =4.5 sD .t =3 s【解析】由题图乙可得,物块做匀变速运动的加速度大小为a =Δv Δt=2.0 m/s 2,由牛顿第二定律得F f =ma =μmg ,则可得物块与传送带间的动摩擦因数μ=0.2,A 错误,B 正确;在v -t 图象中,图线与t 轴所围面积表示物块的位移,则物块经减速、反向加速到与传送带相对静止,最后匀速运动回到传送带左端时,物块的位移为0,由题图乙可得物块在传送带上运动的总时间为4.5 s,C 正确,D 错误。

答案 BC4、如图所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带。

不计定滑轮质量和摩擦,绳足够长。

正确描述小物体P 速度随时间变化的图像可能是( )【解析】选BC 本题需考虑速度之间的关系及摩擦力与Q 重力之间的关系,分别讨论求解。

若v 1>v 2,且P 受到的滑动摩擦力大于Q 的重力,则可能先向右匀加速,加速至v 1后随传送带一起向右匀速,此过程如图B 所示,故B 正确。

若v 1>v 2,且P 受到的滑动摩擦力小于Q 的重力,此时P 一直向右减速,减速到零后反向加速。

若v 2>v 1,P 受到的滑动摩擦力向左,开始时加速度a 1=F T +μmgm,当减速至速度为v 1时,摩擦力反向,若有F T>μmg ,此后加速度a 2=F T -μmgm,故C 正确,A 、D 错误。

5、如图4所示,水平传送带两端相距x =8 m,工件与传送带间的动摩擦因数μ=0.6,工件滑上A 端时速度v A =10 m/s,设工件到达B 端时的速度为v B 。

(取g =10 m/s 2)图4(1)若传送带静止不动,求v B ;(2)若传送带顺时针转动,工件还能到达B 端吗?若不能,说明理由;若能,求到达B 点的速度v B ; (3)若传送带以v =13 m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。

【解析】(1)根据牛顿第二定律可知μmg =ma ,则a =μg =6 m/s 2, 又v 2A -v 2B =2ax ,代入数值得v B =2 m/s 。

(2)能。

当传送带顺时针转动时,工件受力不变,其加速度不发生变化,仍然始终减速,故工件到达B 端的速度v B =2 m/s 。

(3)工件速度达到13 m/s 时所用时间为t 1=v -v Aa=0.5 s, 运动的位移为x 1=v A t 1+12at 21=5.75 m <8 m,则工件在到达B 端前速度就达到了13 m/s,此后工件与传送带相对静止,因此工件先加速后匀速。

匀速运动的位移x 2=x -x 1=2.25 m,t 2=x 2v≈0.17 s ,t =t 1+t 2=0.67 s 。

6、如图所示,一足够长的水平传送带以速度v 0匀速运动,质量均为m 的小物块P 和小物块Q 由通过滑轮组的轻绳连接,轻绳足够长且不可伸长.某时刻物块P 从传送带左端以速度2v 0冲上传送带,P 与定滑轮间的绳子水平.已知物块P 与传送带间的动摩擦因数μ=0.25,重力加速度为g,不计滑轮的质量与摩擦.求: (1)运动过程中小物块P 、Q 的加速度大小之比;(2)物块P 刚冲上传送带到右方最远处的过程中,PQ 系统机械能的改变量;若传送带以不同的速度v (0<v<2v 0)匀速运动,当v 取多大时物块P 向右冲到最远处时,P 与传送带间产生的摩擦热最小?最小值为多大?【解析】(1)设P 的位移、加速度大小分别为s 1、a 1,Q 的位移、加速度大小分别为s 2、a 2, 因s 1=2 s 2,故a 1=2a 22121 a a (2)对P 有:μmg+T=m a 1 对Q 有:mg ﹣2T=ma 2 得:a 1=0.6g P 先减速到与传送带速度相同,设位移为x 1,共速后,由于f=μmg<21mg,P不可能随传送带一起匀速运动,继续向右减速, 设此时P 加速度为a 1′,Q 的加速度为/1/221a a =对P 有:T ﹣μmg=ma 1′,对Q 有:mg ﹣2T=ma 2’解得:a 1′=0.2g设减速到0位移为x 2,PQ 系统机械能的改变量等于摩擦力对P 做的功,△E=﹣μmgx 1+μmgx 2=0(3)第一阶段P 相对皮带向前,相对路程:第二阶段相对皮带向后,相对路程:/1222a v S =摩擦产生的热Q=μmg(S 1+S 2)=当021v v =时,摩擦热最小--2085mv Q =7、如图5甲所示,水平传送带沿顺时针方向匀速运转。

从传送带左端P 先后由静止轻轻放上三个物体A 、B 、C ,物体A 经t A =9.5 s 到达传送带另一端Q ,物体B 经t B =10 s 到达传送带另一端Q ,若释放物体时刻作为t=0时刻,分别作出三物体的v -t 图象如图乙、丙、丁所示,求:图5(1)传送带的速度大小v 0; (2)传送带的长度L ;(3)物体A 、B 、C 与传送带间的动摩擦因数; (4)物体C 从传送带左端P 到右端Q 所用的时间t C 。

【解析】(1)物体A 与B 先做匀加速直线运动,然后做匀速直线运动,说明物体的速度与传送带的最终速度相等,所以由图乙、丙可知传送带的速度大小是4 m/s 。

(2)v -t 图线与t 轴围成图形的面积表示物体的位移,所以A 的位移x A =36 m, 传送带的长度L 与A 的位移相等,也是36 m 。

(3)(4)A 的加速度a A =Δv A t 1=4 m/s 2由牛顿第二定律得μA mg =ma A ,所以μA =a Ag =0.4 同理,B 的加速度a B =Δv B t 2=2 m/s 2,μB =a B g=0.2设物体C 从传送带左端P 到右端Q 所用的时间为t C ,则L =0+v C 2t C t C =2L v C =24 s C 的加速度a C =Δv C t C =18 m/s 2,μC =a C g=0.012 5。

8、一水平传送带以2.0 m/s 的速度顺时针传动,水平部分长为2.0 m 。

其右端与一倾角为θ=37°的光滑斜面平滑相连,斜面长为0.4 m,一个可视为质点的物块无初速度地放在传送带最左端,已知物块与传送带间动摩擦因数μ=0.2, 试问:(1)物块能否到达斜面顶端?若能则说明理由,若不能则求出物块沿斜面上升的最大距离。

(2)物块从出发到4.5 s 末通过的路程。

相关文档
最新文档