提升机制动减速度、制动压力计算

合集下载

多绳摩擦式提升机防滑系数验算

多绳摩擦式提升机防滑系数验算

多绳摩擦式提升机防滑系数安全验算说明主要检验计算公式:主绳每米重量,9.56kg/m×1m×10m/N×4=382.4N/m;尾绳每米重量,19.12 kg/m×1m×10m/N×2=382.5N/m系统为等重尾绳提升。

l、提升系统总变位质量Σm计算Σm=(Q+2Q Z+n1pL p+n2qL q+G t+G j+G d)=32000+2×48000+4×9.56×720+2×19.12×560+2×12000+30000+1451.8=232399kg式中Q一一次提升载荷重量,N=32t;Qz_ 提升容器自重,N=48t;n1—主绳根数,n1=4;p—主绳每米重量,9.56kg;L P—每根提升主绳实际全长,720m;n2—尾绳根数;n2=2q—尾绳每米重量,19.12 kg;L q—尾绳实际全长,560m;G t—天轮的变位重量,12000kg(查天轮规格表);G j-提升机的变位重量,30000kg(查提升机的规格表);G d——电动机转子的变位重量,G d=4J d*i2/D2=4×7350×12/4.52=1451.8。

J d——电动机转子的转动惯量:J d=1/12*mR2=7350m——电动机转子的重量29830kgR——电动机转子的半径1.72mi——减速箱减速比,取1D——滚筒直径,4.5m2、提升机强度验算2.l最大静张力验算(1)根据矿井实际提升情况计算最大静张力F jmF jm= (Q+Qz) +( n1pL p+n2qL q)/1000=320+480+(382.4×500+382.4×50)/1000=1010KN(2)验算F jm≤[F jm]其中[F jm]----提升机设计许用最大静张力(查提升机规格表),980kN。

浅谈矿井提升的恒减速制动技术

浅谈矿井提升的恒减速制动技术

浅谈矿井提升的恒减速制动技术【摘要】目前,矿井提升机主要有一级制动、二级制动和恒减速制动等几种制动模式,正常运行时,各种制动模式几乎都可以满足系统的工作要求,但随着采掘技术的进步和工作面的不断延伸,系统对提升制动的安全性要求不断升高,恒减速制动模式的优势逐渐显露出来,逐渐成为了矿井提升控制的主流发展趋势。

本文对矿井提升的恒减速制动技术进行了介绍。

【关键词】矿井提升机;恒减速;制动技术0 引言作为矿井作业中的关键机械,矿井提升设备在生产的全过程中担负着矿物、人员、材料及设备的上下和运输工作,对采矿效率具有重要影响。

而提升系统一旦出现事故,常常会造成不可估量的生命财产损失。

因此,必须对其制动系统进行精密和及时的控制,以便在发生紧急情况时,通过可靠的制动性能,减少和避免危险的发生,确保煤炭生产的安全性和稳定性。

研究显示,影响提升机制动效果的因素复杂,并可能根据不同的工况发生变化,而若在多变的工况下制动减速度变化过大,制动过程就会变得不平稳,出现诸如钢丝绳打滑等现象,使提升设备的安全性受到严重影响。

目前,矿井提升机主要有一级制动、二级制动和恒减速制动等几种制动模式,正常运行时,各种制动模式几乎都可以满足系统的工作要求,但随着采掘技术的进步和工作面的不断延伸,系统对提升制动的安全性要求不断升高,恒减速制动模式的优势逐渐显露出来,逐渐成为了矿井提升控制的主流发展趋势。

该方法通过自动调节油压动力实现了减速度恒定的控制目标,让提升设备可以按照事先设定减速度完成制动,使提升设备的安全性大大提高。

1 恒减速制动的意义提升机安全制动是在提升机事故状态下,为防止事故扩大化所必须采用的最后一种技术手段。

在竖井和30°以上的斜井提升时,提升机制动力矩不得小于最大静力矩的三倍。

但如果把大于或等于三倍静力矩的制动力一次直接加丁.提升机上,将会产生过人的减速度。

这样,钢丝绳将剧烈地摆动,很可能会引起断丝,从而影响钢丝绳的使用寿命,斜井提升机可能断绳,载人的提升机将可能发生重大人身伤亡事故。

矿井运输提升之提升机的制动系统

矿井运输提升之提升机的制动系统

提升机制动系统概述制动装置由制动器和传动机构组成。

制动器是直接作用于制动轮或制动盘上产生制动力矩的部分。

按结构分为:盘式闸和块式闸。

传动机构是控制和调节制动力矩的部分。

按动力来源分为:油压、气压、弹簧等。

一、制动系统的作用:⑴在提升终了或停机时,能可靠地闸住提升机的滚筒或摩擦轮,即正常停车;⑵在减速阶段及下放重物时,控制提升容器的运行速度,即工作制动;⑶当提升机发生紧急事故时,能迅速且合乎要求地自动闸住提升机,保护提升系统;即安全制动⑷双滚筒提升机在更换提升水平、更换钢丝绳或调绳时,能闸住游动滚筒。

二、对制动系统的要求(1)提升机工作制动或安全制动产生的最大制动力矩不得小于提升或下放最大静负荷力矩的3倍;(2)对于双滚筒提升机在调整滚筒旋转的相对位置时,制动装置在各滚筒上的制动力矩,不得小于该滚筒悬挂提升容器和钢丝绳重力所产生的静力矩的1.2倍;(3)对于摩擦式提升机工作制动或安全制动的减速度,不得超过钢丝绳的滑动极限,即不引起钢丝绳打滑;(4)在立井和倾角大于30°以上的斜井,提升机安全制动时,全部机械的减速度在下放重载时不得小于1.5m/s 2;在上提重载时不得大于5m/s 2。

井筒倾角小于30°时,下放重载时安全制动减速度不得小于0.75m/s 2,上提重载时安全制动减速度不得大于自然减速度(由井筒倾角计算得出)。

为什么同一个安全制动力矩,在《煤矿安全规程》中对上提重载和下放重载规定了不同的安全制动减速度限值呢?静阻力矩和制动力矩的方向是否一致(5)安全制动必须能自动、迅速和可靠地实现,制动器的空动时间(由安全制动开始动作起至闸瓦刚刚接触到制动轮上的一段无效时间)气压块闸不得超过0.5s ,液压块闸不得超过0.6s ,盘式闸制动器不得超过0.3s 。

为什么规定制动力矩的大小呢?若制动力矩过小,产生的减速度太小,使本来立即停车能防止的事故,由于停车时间太长而造成事故;若制动力矩太大,产生的制动减速度过大,就会出现过大的动负荷,这对提升系统很不利,会影响机械的使用寿命。

2JK-3×1.5提升机选型计算

2JK-3×1.5提升机选型计算

官庄河煤业副斜井提升绞车能力核算说明书一、设备参数:1.提升机型号: 2JK-3×1.52.卷筒直径: 3 m3.卷筒宽度: 1.5m4.钢丝绳直径: 6×19+FC(36mm)5. 卷筒数量: 2个6. 减速器型号 ZKL37. 减速比 31.58. 最大静张力: 135kN9. 最大静张力差: 90kN10. 提升长度: 525m11.提升斜角 21度12. 钢丝绳重: 4.78Kg/m×525=2510kg≈25.1 kN13. 大件重: 185 kN14. 平板车重: 15 kN15.电机 YTS400L3-10 功率400KW 电压660V 转速594r/min二、牵引力校核:实际载荷校核计算对于斜井 F= G·sinθ+G钢·sinθ+0.015 G·cosθ+0.175 G钢cosθG钢—钢丝绳总重: 25.1 kNG—最大件重(含平板车): 185+15=200 kNθ—提升倾角: 21°F—实际静张力差: kN所以 F=200×sin21°+25.1× sin21°+0.015×200cos21°+0.175×25.1 cos21°=87.6kN5.2JK-3×1.5矿井提升机最大静张力差为90 kN,满足使用。

三、制动力矩校核计算:安全系数na≥3.25 闸瓦摩擦系数μ=0.35 制动头数量n=16 摩擦中心直径Dm=3270mm制动器最大正压力 N=(F×D×na)/(n×μ×Dm)=(87.6×3000×3.25)/(16×0.35×3270)≈46.6 kN50kN正压力的制动器可满足使用。

选用50kN正压力的制动器。

四、电机校核1.电机转速计算n= 60Vi/Dπ式中n—电机转速 r/minV—最大提升速度3.11m/si—减速器传动比 31.5D—卷筒直径3 mn= 60×3.11×31.5/3π≈624r/min靠标准选用594 r/min转速可以,此时提升速度为2.96m/s。

第六章主立井单绳缠绕式提升设备的选型计算

第六章主立井单绳缠绕式提升设备的选型计算

第六章主立井单绳缠绕式提升设备的选型计算一、提升容器的选择1.确定合理的经济速度立井提升的合理经济速度为V j =√H式中V j —经济提升速度,m /s ;H ——提升高度,m ;H=H s +H x +H zH x --卸载水平与井口高差,简称卸载高度,m ,箕斗:H x =18m 一25m ,罐笼H x =0;Hz ——装载水平与井下运输水平高差,简称装载高度,m ,箕斗:H z =18m~25m ,罐笼H z =0; H s —井筒深度,m 。

2.估算一次提升循环时刻(按五时期速度图估算)式中T j --依据经济提升速度估算的一次提升循环时刻,s ;a —提升加速度,m /s 2,在以下范围内选取:罐笼提升时,≤/s 2,箕斗提升时,≤/s 2;u —容器爬行时期附加时刻,箕斗提升可取10s ,罐笼提升可取5s ;θ—休止时刻。

3、计算一次合理的经济提升量式中rn j --一次合理的经济提升量,t ;A n —矿井年产量,t /a ;C —提升不均衡系数,关于主井提升设备:有井底煤仓时,1.1~1.15,无井底煤仓时,1.2; a f ——提升能力富裕系数,主井提升设备对第一水平应留有1.2的富裕系数;b r ——提升设备年工作日数,一般取b r =300d ;t ——提升设备日工作小时数,一般取t=14h 。

依据计算出的一次合理的提升量m j 取之相近的标准容器,并列表记录其技术规格。

4.确定实际一次提升循环时刻T ′x 及完成年产量An 的最大提升速度V ′m 。

(1) 依据所选出的型号,计算一次提升循环所需要的时刻为(2) 计算提升机所需的提升速度二、提升钢丝绳的选择计算中选定标准容器之后,那么可按下边的公式计算钢丝绳每米质量m-----一次提升货载质量,kgM z ——提升容器自身质量,kg ;m p —提升钢丝绳每米质量,kg /m ;g —重力加速度,m /s 2;H c —钢丝绳最大悬垂长度,m ,H s --井筒深度,m ;H z —装载高度,m ,罐笼提升,Hz=0,箕斗提升,Hz=18m 一25m ;H j ——井架高度,井架高度在尚未精确确定时,可按下面数值选取:罐笼提升,15m 一25m ;箕斗提升,30m ~35m 。

煤矿在用提升机制动减速度计算值与实测值的比较

煤矿在用提升机制动减速度计算值与实测值的比较

煤矿在用提升机制动减速度计算值与实测值的比较作者:池海钰来源:《中国新技术新产品》2011年第10期摘要:文章通过对提升机制动减速度的实际测试值与计算值的比较,分析了计算时产生差异的原因并探讨了解决方法,对提升机制动速度的检测有一定的借鉴意义。

关键词:提升机;制动减速度;测试;比较;分析中图分类号:X752 文献标识码:A前言煤矿在用提升机的检测中经常会遇到制动速度的测试,《煤矿安全规程》及AQ1015-2005《煤矿在用提升机系统安全检测检验规范》中就规定,提升机的制动减速度是检验项目中的一个否决项。

制动减速度可以通过实测得知,也可以通过验算的方法得到。

实测是在提升机全速运行时断开提升机的安全回路使提升机抱闸,这时用专门的测量仪器测出提升机的制动减速度;验算是通过已知的参数计算出提升机的变位质量及最大静张力,通过测量仪器测得提升机闸盘的贴闸油压值,然后通过计算得到提升机的制动减速度。

提升机在全速运行时断开安全回路,各个连接部位受到较大的冲击,做这个测试有一定的危险性,因此通常用的方法是通过验算得到制动减速度,验算得到的数值是否真实的反应了实际状况,我们通过下面的实验来说明。

实验地点是某煤矿,该矿采用斜井串车提升,提升装置是锦州某厂生产的型号为JK-2×1.5A提升机、24.0毫米钢丝绳、配山西某厂生产的YRJ355L2-8电机;矿井的具体参数是:提升距离580米;提升倾角 =20°;井口门到天轮的距离是60米;通常提7个煤车。

1计算最大静张力8(900+450)10(Sin200+0.013cos200)+2.129(580+60)(Sin200+0.17cos200)10=45094.39 N式中:n为提升车数,取8;Q为单车提升重量(kg),取900;QZ为单车提升重量(kg),取450;g为重力加速度(m/s2),取10;?琢为提升倾角(°),取20;ω1为矿车沿轨道运行的阻力系数,取0.013;P为每米钢丝绳自重(kg/m),取 2.129;ω2为钢丝绳运行时的阻力系数,取0.17;L为580+60=740m。

提升机参数校核计算

提升机参数校核计算
钢丝绳最大静张力
kN
71.973
钢丝绳最大静张力差
kN
45.252
钢丝绳安全系数(专为升降物料≥6.5)
8.366
2)
卷筒计算
卷筒名义直径与钢丝绳直径之比(规程要求D/d≥80)
mm
83.333
出绳偏角
°
1.209
钢丝绳绳间距(一般取2~3mm)
mm
2.500
摩擦圈数(规程要求3圈)

3.000
窜绳圈数(规程要求一个季度窜动1/4圈)
1.400
系统效率(包含联轴器、减速器、轴承)
0.920
最大提升速度
m/s
4.811
估算电动机功率
kW
231.160
5)
制动器计算
制动器正压力
kN
40.000
制动器对数

8.000
闸瓦摩擦系数
0.350
制动直径
m
2.650
制动器产生的制动力矩
kN.m
296.800
安全系数(安全规程要求n≥3)
5.247

4.000
试验绳长度
m
30.000
一层缠绕最大提升高度
m
226.765
二层缠绕最大提升高度
m
468.388
三层缠绕最大提升高度
m
746.826
3)
减速器计算
减速器传动比
20.000
减速器所需最小扭矩(载荷系数1.8)
kN.m
101.817
4)
电动机计算
电动机转速
r/min
735.000
备用系数(箕斗提升一般取1.2~1.4)

4.3-1制动效能-制动减速度

4.3-1制动效能-制动减速度

abmax s g
当汽车没有装ABS,
又不允许车轮抱死时
a bmax bmax g
武汉理工大学汽车工ห้องสมุดไป่ตู้学院
abmax<s g
2
平均制动减速度
中国行业标准采用平均减速度的概念
1 t2 a a(t)dt t2 t1 t1
t1—制动压力达到75%最大压力pamax的时刻; t2—到停车时总时间的2/3的时刻。
武汉理工大学汽车工程学院
4
思考题
• 制动减速度如何计算? • 最大制动减速度如何确定?
武汉理工大学汽车工程学院
5
本知识点内容结束
下一知识点:制动距离的概念和计算
武汉理工大学汽车工程学院
6
制动减速度
主讲:余晨光
武汉理工大学汽车工程学院
1
制动减速度及其最大值
假设FW=0、Ff=0 制动时总的地面制动力
G du FXb ( FZ 1 FZ 2 )b Gb g dt
当汽车装有ABS时
abmax p g
当前、后轮同时抱死时
汽车能达到的制动减速度 du ab b g dt
武汉理工大学汽车工程学院
3
平均制动减速度
ECE R13和GB7258采用的是充分发出 的平均减速度(m/s2)
2 ub ue2 MFDD 25.92 se sb
u0 —起始制动车速(km/h); ub—0.8u0 的车速(km/h); ue—0.1u0 的车速(km/h); sb—u0 到ub车辆经过的距离(m); se—u0 到ue车辆经过的距离(m)。

2JK-3×1.5提升机选型计算

2JK-3×1.5提升机选型计算

官庄河煤业副斜井提升绞车能力核算说明书一、设备参数:1.提升机型号: 2JK-3×1.52.卷筒直径: 3 m3.卷筒宽度: 1.5m4.钢丝绳直径: 6×19+FC(36mm)5. 卷筒数量: 2个6. 减速器型号 ZKL37. 减速比 31.58. 最大静张力: 135kN9. 最大静张力差: 90kN10. 提升长度: 525m11.提升斜角 21度12. 钢丝绳重: 4.78Kg/m×525=2510kg≈25.1 kN13. 大件重: 185 kN14. 平板车重: 15 kN15.电机 YTS400L3-10 功率400KW 电压660V 转速594r/min二、牵引力校核:实际载荷校核计算对于斜井 F= G·sinθ+G钢·sinθ+0.015 G·cosθ+0.175 G钢cosθG钢—钢丝绳总重: 25.1 kNG—最大件重(含平板车): 185+15=200 kNθ—提升倾角: 21°F—实际静张力差: kN所以 F=200×sin21°+25.1× sin21°+0.015×200cos21°+0.175×25.1 cos21°=87.6kN5.2JK-3×1.5矿井提升机最大静张力差为90 kN,满足使用。

三、制动力矩校核计算:安全系数na≥3.25 闸瓦摩擦系数μ=0.35 制动头数量n=16 摩擦中心直径Dm=3270mm制动器最大正压力 N=(F×D×na)/(n×μ×Dm)=(87.6×3000×3.25)/(16×0.35×3270)≈46.6 kN50kN正压力的制动器可满足使用。

选用50kN正压力的制动器。

四、电机校核1.电机转速计算n= 60Vi/Dπ式中n—电机转速 r/minV—最大提升速度3.11m/si—减速器传动比 31.5D—卷筒直径3 mn= 60×3.11×31.5/3π≈624r/min靠标准选用594 r/min转速可以,此时提升速度为2.96m/s。

矿井提升机制动技术的发展

矿井提升机制动技术的发展

矿井提升机制动技术的发展1 制动器的分类鼓式制动器是我国当前在矿井开采中应用较多的一种提升制动器,鼓式制动器在使用中的表现出的强大的安全性能被广大用户所认可,特别是在与液压系统和PLC相结合之后使鼓式制动器具有了较强的控制性能。

液压鼓式制动器作为传统制动器之一,它的特点是造价比较便宜,符合传统设计的特点,生产安全性能较高。

2 矿井提升机制动技术的要求和发展矿井提升机的制动系统是所有提升设备中最重要、最复杂的系统,新型的制动系统是由制动器和传动机构组成的。

制动器是指直接作用于制动轮或者制动盘上,用来直接产生制动力的部分。

制动器按照结构可以分为盘式制动器和块式制动器[1] 。

传动机构是指控制和调节制动力的机构,新型的矿井提升机一般都采用的是油压盘式闸制动系统,这种系统控制性能较强,安全性能较高。

2.1提升机制动系统的要求1)矿井提升机的制动系统除了装有制动装置之外,还装有定车装置,这两种装置的安装,可以在使用提升机进行制动的时候还可以一边对提升机进行定车;2)矿井提升机的制动力矩不得小于提升机最大设计载荷所需转矩的三倍,保证矿井提升机制动系统的正常运动;3)在对提升机进行紧急制动的时候,提升机在提升重物的时候,它的减速度必须小于5m/s2;在提升机下放重物的时候,它的减速度必须大于 1.5m/s2 ;4)对于摩擦轮式的提升机来说,在提升机进行紧急制动的时候,它的减速度不能使钢丝绳在摩擦轮上产生滑动,否则会出现设备的不正常运行;5)矿井提升机的紧急制动闸必须采用配重式或弹簧式的制动装置,因为这两种制动装置是经过多年的验证是当前矿井提升机的运用中相对比较安全的紧急制动设备;6)当矿井的井筒倾角在三十度以下的时候,矿井提升机的制动力矩的倍数必须符合规定的要求。

2.2矿井提升机制动系统的发展1)矿井提升机制动系统今后的发展方向是要保证提升机的制动按照给定的状态进行运动,并且要保证在矿井中需要的位置进行制动。

缠绕式提升机选型方法和步骤

缠绕式提升机选型方法和步骤

缠绕式提升机选型方法和步骤1.提升容器的选择1)小时提升量:式中-----不均衡系数。

《规范》规定:有井底煤仓时为1.10~1.15;无井底煤仓时为1.20;----提升能力富裕系数。

2)提升速度:式中---提升距离,罐笼提升时:;箕斗提升时:。

3)一次提升时间估算:式中---提升正常加速度,通常;---容器启动初加速及爬行段延续的时间,取5~10s;---提升容器在每次提升终了后的休止时间,s。

4)一次提升量的确定:2.钢丝绳的选择1)钢丝绳的端部荷重:立井:式中---容器的载重量,即实际一次提升量,kg ;---容器(包括连接装置)的重量,kg 。

斜井:式中---井筒的倾角;---提升容器在倾坡运输道上运动的阻力系数。

2)钢丝绳的单重:立井:斜井:式中---钢丝绳的公称抗拉强度,一般选=155~170;m----钢丝绳的静力安全系数;---提升距离, m ;---钢丝绳的摩擦阻力系数;---井架高度, m 。

---钢丝绳的最大悬垂长度,m 。

箕斗提升:罐笼提升:3.提升机的选择1)滚筒直径:;式中:---滚筒的计算直径,mm ;---已选定的钢丝绳直径,mm ;---已选定的钢丝绳中最粗钢丝的直径,mm 。

2)滚筒缠绕宽度及缠绕层数计算:单滚筒单层单钩提升:;单滚筒单层双钩提升:式中:---定期试验用的钢丝绳长度,一般取30m ;d---钢丝绳直径,mm;---钢丝绳在滚筒上缠绕时,钢丝绳间的间隙。

3)钢丝绳作用在滚筒上的力:a)钢丝绳作用在滚筒上的最大静张力:立井:;斜井:。

b)钢丝绳作用在滚筒上的最大静张力差:立井:;斜井:。

4.提升系统的确定1)天轮直径:;2)井架高度计算:立井:箕斗提升:;罐笼提升:式中:---容器的全高, m;---天轮半径, m;---过卷高度;---箕斗在卸煤位置时,高出卸载煤仓溜煤口的高度,一般取0.3~0.5m 。

斜井:斜井甩车场:式中:---钢丝绳从井口至天轮接触点的斜长,m;---钢丝绳的倾角。

提升机选型设计说明书

提升机选型设计说明书

1.提升容器的选择1)小时提升量:式中-----不均衡系数。

《规范》规定:有井底煤仓时为1.10~1.15;无井底煤仓时为1.20;----提升能力富裕系数。

2)提升速度:式中---提升距离,罐笼提升时:;箕斗提升时:。

3)一次提升时间估算:式中---提升正常加速度,通常;---容器启动初加速及爬行段延续的时间,取5~10s;---提升容器在每次提升终了后的休止时间,s。

4)一次提升量的确定:2.钢丝绳的选择1)钢丝绳的端部荷重:立井:式中---容器的载重量,即实际一次提升量,kg ;---容器(包括连接装置)的重量,kg 。

斜井:式中---井筒的倾角;---提升容器在倾坡运输道上运动的阻力系数。

2)钢丝绳的单重:立井:斜井:式中---钢丝绳的公称抗拉强度,一般选=155~170;m----钢丝绳的静力安全系数;---提升距离, m ;---钢丝绳的摩擦阻力系数;---井架高度, m 。

---钢丝绳的最大悬垂长度,m 。

箕斗提升:罐笼提升:3.提升机的选择1)滚筒直径:;式中:---滚筒的计算直径,mm ;---已选定的钢丝绳直径,mm ;---已选定的钢丝绳中最粗钢丝的直径,mm 。

2)滚筒缠绕宽度及缠绕层数计算:单滚筒单层单钩提升:;单滚筒单层双钩提升:式中:---定期试验用的钢丝绳长度,一般取30m ;d---钢丝绳直径,mm;---钢丝绳在滚筒上缠绕时,钢丝绳间的间隙。

3)钢丝绳作用在滚筒上的力:a)钢丝绳作用在滚筒上的最大静张力:立井:;斜井:。

b)钢丝绳作用在滚筒上的最大静张力差:立井:;斜井:。

4.提升系统的确定1)天轮直径:;2)井架高度计算:立井:箕斗提升:;罐笼提升:式中:---容器的全高, m;---天轮半径, m;---过卷高度;---箕斗在卸煤位置时,高出卸载煤仓溜煤口的高度,一般取0.3~0.5m 。

斜井:斜井甩车场:式中:---钢丝绳从井口至天轮接触点的斜长,m;---钢丝绳的倾角。

矿井提升机安全制动与二级制动整定

矿井提升机安全制动与二级制动整定

(N·m)
(6)
在忽略运动阻力时,重载下放安全制动力矩
MZ =Rmax ′+RS
(N·m)
(7)
式 中 ,m— — — 提 升 系 统 变 位 质 量 ,kg
2
ax ′— ——重载下放时安全制动减速度,m/s
2
由于规定立井下放安 全 制 动 减 速 度 ax ′≥1.5m/s ,代 入 上 两式后得 P1 上限值
P1
≤2P2
-
R Rz
× 1.5m+S AX υ
-P0
(Pa)
(8)
同样,重载上提时安全制动力矩
MZ =Rmas ′-RS
(N·m)
(9)
2
式中,as ′— ——重载上提时安全制动减速度,m/s
2
而上提时安全制动减速度 as ′≤5m/s ,代入得 P1 下限值
P1≥2P2-
R Rz
× 5m-S AX υ
【关键词】矿井提升机;液压制动系统;整定区间;二级制动整定
1.立井单绳缠绕式提升系统安全制动的整定
对 于 洛 阳 矿 山 机 器 厂 的 TE130 、TE131、TE132 和 TE150
等盘形闸液压系统,油压为 P 时产生的制动力矩为:
Mz=2Ax υ Rz(P2 -P)
(N·m)
(1)
式 中 ,A— — — 每 一 制 动 油 缸 的 有 效 面 积 ,m2
图 1 提升机液压制动系统组成原理图
图 2 制动执行部分简化模型
290
◇能源科技◇
2010 年第 32 期
压向闸盘的正压力
N=F2 -F1 -F3
=ky0 -PA-F3
=P0 A-PA-F3

煤矿安全规程 版提升机部分

煤矿安全规程 版提升机部分

《煤矿安全规程2016版》第二节立井提升第三百九十三条立井提升容器和载荷, 必须符合下列要求: (一)立井中升降人员应当使用罐笼.在井筒内作业或者因其他原因,需要使用普通箕斗或者救急罐升降人员时,必须制定安全措施. (二)升降人员或者升降人员和物料的单绳提升罐笼必须装设可靠的防坠器.(三)罐笼和箕斗的最大提升载荷和最大提升载荷差应当在井口公布,严禁超载和超最大载荷差运行.(四)箕斗提升必须采用定重装载.第三百九十四条专为升降人员和升降人员与物料的罐笼,必须符合下列要求:(一)乘人层顶部应当设置可以打开的铁盖或者铁门,两侧装设扶手.(二)罐底必须满铺钢板,如果需要设孔时,必须设置牢固可靠的门;两侧用钢板挡严,并不得有孔.(三)进出口必须装设罐门或者罐帘,高度不得小于1.2m.罐门或者罐帘下部边缘至罐底的距离不得超过250mm,罐帘横杆的间距不得大于200mm.罐门不得向外开,门轴必须防脱.(四)提升矿车的罐笼内必须装有阻车器.升降无轨胶轮车时,必须设置专用定车或者锁车装置.(五)单层罐笼和多层罐笼的最上层净高(带弹簧的主拉杆除外)不得小于1.9m,其他各层净高不得小于1.8m.带弹簧的主拉杆必须设保护套筒.(六)罐笼内每人占有的有效面积应当不小于0.18m2.罐笼每层内1次能容纳的人数应当明确规定.超过规定人数时,把钩工必须制止.(七)严禁在罐笼同一层内人员和物料混合提升.升降无轨胶轮车时,仅限司机一人留在车内,且按提升人员要求运行.第三百九十五条立井罐笼提升井口、井底和各水平的安全门与罐笼位置、摇台或者锁罐装置、阻车器之间的联锁,必须符合下列要求:(一)井口、井底和中间运输巷的安全门必须与罐位和提升信号联锁:罐笼到位并发出停车信号后安全门才能打开;安全门未关闭,只能发出调平和换层信号,但发不出开车信号;安全门关闭后才能发出开车信号;发出开车信号后,安全门不能打开.(二)井口、井底和中间运输巷都应当设置摇台或者锁罐装置,并与罐笼停止位置、阻车器和提升信号系统联锁:罐笼未到位,放不下摇台或者锁罐装置,打不开阻车器;摇台或者锁罐装置未抬起,阻车器未关闭,发不出开车信号.(三)立井井口和井底使用罐座时,必须设置闭锁装置,罐座未打开,发不出开车信号.升降人员时,严禁使用罐座.第三百九十六条提升容器的罐耳与罐道之间的间隙,应当符合下列要求:(一)安装时,罐耳与罐道之间所留间隙应当符合下列要求:1、使用滑动罐耳的刚性罐道每侧不得超过5mm,木罐道每侧不得超过10mm.2、钢丝绳罐道的罐耳滑套直径与钢丝绳直径之差不得大于5mm.3、采用滚轮罐耳的矩形钢罐道的辅助滑动罐耳,每侧间隙应当保持10~15mm.(二)使用时,罐耳和罐道的磨损量或者总间隙达到下列限值时,必须更换:1、木罐道任一侧磨损量超过15mm 或者总间隙超过40mm.2、钢轨罐道轨头任一侧磨损量超过8mm,或者轨腰磨损量超过原有厚度的25%;罐耳的任一侧磨损量超过8mm,或者在同一侧罐耳和罐道的总磨损量超过10mm,或者罐耳与罐道的总间隙超过20mm.3、矩形钢罐道任一侧的磨损量超过原有厚度的50%.4、钢丝绳罐道与滑套的总间隙超过15mm.第三百九十七条立井提升容器间及提升容器与井壁、罐道梁、井梁之间的最小间隙,必须符合表7要求.提升容器在安装或者检修后,第一次开车前必须检查各个间隙,不符合要求时不得开车.采用钢丝绳罐道,当提升容器之间的间隙小于表7要求时,必须设防撞绳.第三百九十八条钢丝绳罐道应当优先选用密封式钢丝绳.每个提升容器(平衡锤)有4根罐道绳时,每根罐道绳的最小刚性系数不得小于500N/m,各罐道绳张紧力之差不得小于平均张紧力的5%,内侧张紧力大,外侧张紧力小.每个提升容器(平衡锤)有2根罐道绳时,每根罐道绳的刚性系数不得小于1000N/m,各罐道绳的张紧力应当相等.单绳提升的2根主提升钢丝绳必须采用同一捻向或者阻旋转钢丝绳.表7立井提升容器间及提升容器与井壁、第三百九十九条应当每年检查1次金属井架、井筒罐道梁和其他装备的固定和锈蚀情况,发现松动及时加固,发现防腐层剥落及时补刷防腐剂.检查和处理结果应当详细记录.建井用金属井架,每次移设后都应当涂防腐剂.第四百条提升系统各部分每天必须由专职人员至少检查1次,每月还必须组织有关人员至少进行1次全面检查.检查中发现问题,必须立即处理,检查和处理结果都应当详细记录.第四百零一条检修人员站在罐笼或箕斗顶上工作时,必须遵守下列规定:(一)在罐笼或箕斗顶上,必须装设保险伞和栏杆.(二)必须系好保险带.(三)提升容器的速度,一般为0.3~0.5m/s,最大不得超过2m/s.(四)检修用信号必须安全可靠.第四百零二条罐笼提升的井口和井底车场必须有把钩工.人员上下井时,必须遵守乘罐制度,听从把钩工指挥.开车信号发出后严禁进出罐笼.第四百零三条每一提升装置,必须装有从井底信号工发给井口信号工和从井口信号工发给司机的信号装置.井口信号装置必须与提升机的控制回路相闭锁,只有在井口信号工发出信号后,提升机才能启动.除常用的信号装置外,还必须有备用信号装置.井底车场与井口之间、井口与司机操控台之间,除有上述信号装置外,还必须装设直通电话.1套提升装置服务多个水平时,从各水平发出的信号必须有区别.第四百零四条井底车场的信号必须经由井口信号工转发,不得越过井口信号工直接向提升机司机发送开车信号;但有下列情况之一时,不受此限:(一)发送紧急停车信号.(二)箕斗提升.(三)单容器提升.(四)井上下信号联锁的自动化提升系统.第四百零五条用多层罐笼升降人员或者物料时,井上、下各层出车平台都必须设有信号工.各信号工发送信号时,必须遵守下列规定:(一)井下各水平的总信号工收齐该水平各层信号工的信号后,方可向井口总信号工发出信号.(二)井口总信号工收齐井口各层信号工信号并接到井下水平总信号工信号后,才可向提升机司机发出信号.信号系统必须设有保证按上述顺序发出信号的闭锁装置.第四百零六条在提升速度大于3m/s的提升系统内,必须设防撞梁和托罐装置.防撞梁必须能够挡住过卷后上升的容器或者平衡锤,并不得兼作他用;托罐装置必须能够将撞击防撞梁后再下落的容器或者配重托住, 并保证其下落的距离不超过0.5m.第四百零七条立井提升装置的过卷和过放应当符合下列要求: (一)罐笼和箕斗提升,过卷和过放距离不得小于表8所列数值.(二)在过卷和过放距离内,应当安设性能可靠的缓冲装置.缓冲装置应当能将全速过卷(过放)的容器或者平衡锤平稳地停住,并保证不再反向下滑或者反弹.(三)过放距离内不得积水和堆积杂物.(四)缓冲托罐装置必须每年至少进行1次检查和保养.表8立井提升装置的过卷和过放距离∗提升速度为表8中所列速度的中间值时,用插值法计算.第四节提升装置第四百一十七条提升装置的天轮、卷筒、摩擦轮、导向轮和导向滚等的最小直径与钢丝绳直径之比值,应当符合表13的要求. 第四百一十八条各种提升装置的卷筒上缠绕的钢丝绳层数,必须符合下列要求:(一)立井中升降人员或者升降人员和物料的不超过1层,专为升降物料的不超过2层.(二)倾斜井巷中升降人员或者升降人员和物料的不超过2层,升降物料的不超过3层.(三)建井期间升降人员和物料的不超过2层.(四)现有生产矿井在用的绞车,如果在滚筒上装设过渡绳楔,滚筒强度满足要求且滚筒边缘高度符合本规程第四百一十九条要求,可按本条(一)、(二)所规定的层数增加1层.(五)移动式或者辅助性专为升降物料的(包括矸石山和向天桥上提升等),不受本条(一)、(二)、(三)的限制.第四百一十九条缠绕2层或者2层以上钢丝绳的卷筒,必须符合下列要求:表13提升装置的天轮、卷筒、摩擦轮、导向轮和导向滚等的最小直径与钢丝绳直径之比值(一)卷筒边缘高出最外层钢丝绳的高度,至少为钢丝绳直径的2 5倍.(二)卷筒上必须设有带绳槽的衬垫.(三)钢丝绳由下层转到上层的临界段(相当于绳圈1/4长的部分) 必须经常检查, 并每季度将钢丝绳移动1/4绳圈的位置.对现有不带绳槽衬垫的在用提升机,只要在卷筒板上刻有绳槽或者用1层钢丝绳作底绳,可继续使用.第四百二十条钢丝绳绳头固定在卷筒上时,应当符合下列要求:(一)必须有特备的容绳或者卡绳装置,严禁系在卷筒轴上.(二)绳孔不得有锐利的边缘,钢丝绳的弯曲不得形成锐角.(三)卷筒上应当缠留3圈绳,以减轻固定处的张力,还必须留有定期检验用绳.第四百二十一条通过天轮的钢丝绳必须低于天轮的边缘,其高差:提升用天轮不得小于钢丝绳直径的1.5倍,悬吊用天轮不得小于钢丝绳直径的1倍.天轮和摩擦轮绳槽衬垫磨损达到下列限值,必须更换:(一)天轮绳槽衬垫磨损达到1根钢丝绳直径的深度,或者沿侧面磨损达到钢丝绳直径的1/2.(二)摩擦轮绳槽衬垫磨损剩余厚度小于钢丝绳直径,绳槽磨损深度超过70mm.第四百二十二条矿井提升系统的加(减)速度和提升速度必须符合表14的要求.表14矿井提升系统的加(减)速度和提升速度值注:v—最大提升速度,m/s;H —提升高度,m.第四百二十三条提升装置必须按下列要求装设安全保护: (一)过卷和过放保护:当提升容器超过正常终端停止位置或者出车平台0.5m 时,必须能自动断电,且使制动器实施安全制动. (二)超速保护:当提升速度超过最大速度15%时,必须能自动断电,且使制动器实施安全制动.(三)过负荷和欠电压保护.(四)限速保护:提升速度超过3m/s的提升机应当装设限速保护,以保证提升容器或者平衡锤到达终端位置时的速度不超过2m/s.当减速段速度超过设定值的10%时,必须能自动断电,且使制动器实施安全制动.(五)提升容器位置指示保护:当位置指示失效时,能自动断电,且使制动器实施安全制动.(六)闸瓦间隙保护:当闸瓦间隙超过规定值时,能报警并闭锁下次开车.(七)松绳保护:缠绕式提升机应当设置松绳保护装置并接入安全回路或者报警回路.箕斗提升时,松绳保护装置动作后,严禁受煤仓放煤.(八)仓位超限保护:箕斗提升的井口煤仓仓位超限时,能报警并闭锁开车.(九)减速功能保护:当提升容器或者平衡锤到达设计减速点时,能示警并开始减速.(十)错向运行保护:当发生错向时,能自动断电,且使制动器实施安全制动.过卷保护、超速保护、限速保护和减速功能保护应当设置为相互独立的双线型式.缠绕式提升机应当加设定车装置.第四百二十四条提升机必须装设可靠的提升容器位置指示器、减速声光示警装置,必须设置机械制动和电气制动装置.严禁司机擅自离开工作岗位.第四百二十五条机械制动装置应当采用弹簧式,能实现工作制动和安全制动.工作制动必须采用可调节的机械制动装置.安全制动必须有并联冗余的回油通道.双滚筒提升机每个滚筒的制动装置必须能够独立控制,并具有调绳功能.第四百二十六条提升机机械制动装置的性能,必须符合下列要求:(一)制动闸空动时间:盘式制动装置不得超过0.3s,径向制动装置不得超过0.5s.(二)盘形闸的闸瓦与闸盘之间的间隙不得超过2mm.(三)制动力矩倍数必须符合下列要求:1、制动装置产生的制动力矩与实际提升最大载荷旋转力矩之比K 值不得小于3.2、对质量模数较小的提升机,上提重载保险闸的制动减速度超过本规程规定值时,K 值可以适当降低,但不得小于2.3、在调整双滚筒提升机滚筒旋转的相对位置时,制动装置在各滚筒闸轮上所产生的力矩,不得小于该滚筒所悬重量(钢丝绳重量与提升容器重量之和)形成的旋转力矩的1.2倍.4 计算制动力矩时,闸轮和闸瓦的摩擦系数应当根据实测确定,一般采用0.30~0.35.第四百二十七条各类提升机的制动装置发生作用时,提升系统的安全制动减速度,必须符合下列要求:(一)提升系统的安全制动减速度必须符合表15的要求.表15提升系统安全制动减速度规定值注: ∗A c=g(sinθ+f cosθ)式中A c———自然减速度,m/s2;g———重力加速度,m/s2;θ———井巷倾角,(°);f———绳端载荷的运行阻力系数,一般取0.010~0.015.(二)摩擦式提升机安全制动时,除必须符合表15的要求外,还必须符合下列防滑要求:1、在各种载荷(满载或者空载)和提升状态(上提或者下放重物)下,制动装置所产生的制动减速度计算值不得超过滑动极限.钢丝绳与摩擦轮衬垫间摩擦系数的取值不得大于0.25,由钢丝绳自重所引起的不平衡重必须计入.2、在各种载荷和提升状态下,制动装置发生作用时,钢丝绳都不出现滑动.计算或者验算时,以本条第(二)款第1项为准;在用设备,以本条第(二)款第2项为准.第四百二十八条提升机操作必须遵守下列规定:(一)主要提升装置应当配有正、副司机.自动化运行的专用于提升物料的箕斗提升机,可不配备司机值守,但应当设图像监视并定时巡检.(二)升降人员的主要提升装置在交接班升降人员的时间内,必须正司机操作,副司机监护.(三)每班升降人员前,应当先空载运行1次,检查提升机动作情况;但连续运转时,不受此限.(四)如发生故障,必须立即停止提升机运行,并向矿调度室报告.第四百二十九条新安装的矿井提升机,必须验收合格后方可投入运行.专门升降人员及混合提升的系统应当每年进行1次性能检测,其他提升系统每3年进行1次性能检测,检测合格后方可继续使用. 第四百三十条提升装置管理必须具备下列资料,并妥善保管:(一)提升机说明书.(二)提升机总装配图.(三)制动装置结构图和制动系统图.(四)电气系统图.(五)提升机、钢丝绳、天轮、提升容器、防坠器和罐道等的检查记录簿.(六)钢丝绳的检验和更换记录簿.(七)安全保护装置试验记录簿.(八)故障记录簿.(九)岗位责任制和设备完好标准.(十)司机交接班记录簿.(十一)操作规程.制动系统图、电气系统图、提升装置的技术特征和岗位责任制等应当悬挂在提升机房内.。

提升机过卷安全距离计算

提升机过卷安全距离计算

****公司主斜巷提升绞车过卷安全距离计算****公司机电运输科二〇一七年一月一、计算公式Lg= 1.5(L1 +L2 +L3)L g—过卷距离L1—串车最高停车点与防止过卷开关间的距离,《煤矿安全规程》第四百二十七条规定为0.5m。

L2—按最大提升速度3m/s计算,在盘式制动闸制动的空行程时间内串车运行的距离。

《煤矿安全规程》第四百三十一条规定,盘式制动闸的空行程时间不得超过0.3s,估算L3=0.3V。

L3—制动后,串车自由滑行的距离L3=V2/2a,a制动减速度,制动减速度=制动力/最大载荷,实测计算制动减速度3.72m/s。

1.5—备用系数。

根据《煤矿安全规程》第三百七十一条规定,倾斜井巷的上端有足够的过卷距离,并有1.5倍的备用系数。

所以,Lg=1.5×[0.5+0.3V+V2/2a]二、11绞车过卷安全距离计算(1)V=0.5m/s(2)Lg=1.5×[0.5+0.3×3+32/(2×3.72)]=3.9m(3)最大串车长度12.5m,斜坡顶阻车器至过卷开关距离50m,(4) 12.5+3.9=16.4m,50m>16.4m结论:11绞车过卷安全距离满足《煤矿安全规程》。

二、31绞车过卷安全距离计算(1)V max=3m/s(2)Lg=1.5×[0.5+0.3×3+32/(2×4.45)]=3.62m(4)最大串车长度10m,斜坡顶阻车器至过卷开关距离39m,(5) 10+3.62=13.62m,39m>13.62m结论:31绞车过卷安全距离满足《煤矿安全规程》。

提升机制动减速度、制动压力计算

提升机制动减速度、制动压力计算

长春羊草煤业股份有限公司一矿地面副井提升机制动减速度及制动压力计算副井提升系统基础数据:JK2.5/2.0 , 24°,最大静张力(差):Fe=83kN=8460.75kg(根据《AQ1035-2007煤矿用单绳缠绕式提升机 安全检验规范》附录A 中选取钢丝绳每米质量:P 0=3.10kg/m绞车道斜长:L=900m一、提升系统安全制动减速度确定根据《煤矿安全规程》第四百二十七条规定:1. 上提时提升系统安全制动减速为21/61.3)3021cos 015.03021(sin 81.9)cos (sin s m f g A c ='︒+'︒⨯=+≤αα2. 下放时提升系统安全制动减速为2/75.0s m A c ≥3. 提升系统实际最大静张力)cos (sin )cos )(sin (2010max a f a L P a f a Q Q n F ++++=kg02.6557)3021cos 3.03021(sin 90010.3)3021cos 015.03021)(sin 17001.1630(5='︒+'︒⨯⨯+'︒+'︒⨯+⨯=式中Q ——每辆矿车载荷质量,1.1×1700kg ;Q 0——每辆矿车质量,630kg ;n ——每次提升矿车数,5;f 1——矿车运行阻力系数,0.015;P 0——钢丝绳每米系数,3.10kg/m ;L ——提升斜长,900m ;f 2——钢丝绳运行阻力系数,根据托绳辊状态,可取f 2=0.15~0.5;取0.3a ——绞车道倾角,21°30′。

4. 提升系统变位质量∑m ——包括缠绕在滚筒上的钢丝绳在内的转动部分的变位质量,kN ·s 2/m ;kggP L Q Q n L P W W Wkk k z t d j m 86.401881.910.3900)63017001.1(5560192004375)(10=⨯++⨯+++=++++++=∑Wj ——绞车机械部分的变位重量,kN ;kg D B g j 43755.2)2200200()200200(W 22=⨯⨯+=+=Wd ——电机的变位重量,kN ;[]222222192005.220300m kg D i GD W T d d •=⨯==2d GD ——电机转子的回转惯量,㎏·㎡;i ——减速比;20Dg ——滚筒直径,2.5m ;WT ——天轮的变位重量,kN ;10222÷÷=t t t t D D G WGt ——天轮轮缘重量,㎏;Dt ——天轮直径,m ;或 2225602140140m kg D W t t •=⨯==L ——缠在滚筒上的钢丝长度,m ;P0——钢丝绳每米质量,kg/m ;g ——重力加速度9.81m/s 2;保险制动后,矿车减速度的确定5. 保险制动后转动部分的制动减速度; 质量模数61.002.655786.4018max ===∑F m Z 重载上提时制动减速度为22m/s 61.3m/s 56.661.0131==+=+=Ac Z k s >α 重载下放的制动减速度2/75.028.361.0131s m Z K a x >=-=-= 变位制动力kg e z 25.2538275.84603F 3F =⨯==式中 Fz ——折算到滚筒周边的保险制动力,kN ,综合上述计算结果,该提升系统采用二级制动液压控制系统。

矿井提升机制动系统组成部分知识讲解

矿井提升机制动系统组成部分知识讲解
盘型制动器的布置形式
三、盘式制动器的制动过程模型
盘式制动器的简单模拟如图a所示
图中只画出了制动系统中的一副制动器,制动器左边装有蝶 形弹簧,右边为油腔。采用这样的结构,是为了在出现紧急情 况时通过蝶形弹簧对提升机 进行制动。
制动时,活塞杆右边的闸块与卷筒侧壁相接处,通过摩擦力对 卷筒进行制动。贴闸后活塞杆上的水平受力情况如图所示,有 图可知:
平移式制动器
1-安全制动重锤;2-安全制动气缸பைடு நூலகம்3-工作制动气缸;4-制动拉杆;5-辅助立柱; 6-三角杠杆;7-立柱;8-制动杠杆;9-顶丝;10-制动梁;11-横拉杆; 12-可调节拉杆;13-闸瓦;14-制动轮
二、制动工作原理 角移式制动系统的制动工作原理如图所示。
角移式制动系统
1-立杆;2-电磁铁;3-制动杠杆;4-差动杠杆;5-四通阀; 6-三通阀;7-液压缸;8-重锤
盘式制动装置的缺点为:
(1)对制动盘和盘式闸的制造精度要求高; (2)对闸瓦的性能要求较高。 盘式闸制动系统包括两部分,即盘式闸制动器和 液压站。前者是制动系统的执行机构成,后者是系 统的控制装置。
一、盘式制动器的结构及工作原理
盘式制动器结构图
1-制动器体;2-盘形弹簧;3-弹簧垫;4-卡圈;5-挡圈;6-锁紧螺栓;7-泄油管; 8-密封圈;9-油缸盖;10-活塞;11-后盖;12、13-密封圈;14-连接螺栓; 15-活塞内套;16、19-密封圈;17-进油接头;18-放气螺栓;20-调节螺母; 21-油缸;22-螺孔;23、24-密封圈;25-挡板;26-压板螺栓;27-垫圈; 28-带筒体的衬板;29-闸瓦;30-制动盘
FN-FP-FD-fu=0 式中:FN——蝶形弹簧施加的正压力

液压系统油压值的计算

液压系统油压值的计算

液压系统油压值的计算一、竖井提升最大油压值的确定1、贴闸油压的计算P x =An KF c75.2式中:P x —贴闸油压,MP aF c —实际使用静张力差,Nn —制动器液压缸数量A —制动液压缸有效面积,mm 2K —制动力矩计算倍数。

K 值可根据质量系数计算。

当0<c <1时,K=c 25.3;当1<C <1.75时,K=3.25。

质量系数C=m F c ΣΣm —整个提升机系统的变位质量,kg2、最大油压的计算P m ≥f cP An KF +75.2式中:P m —最大油压值,MP aP f —系统综合阻力,MP a3、一级油压值的确定 竖井重物下放时:n 1.5m 8.72∑c x1A F P P +=级 式中:P 1级—一级制动油压值,MP a二、斜井提升最大油压值的确定1、贴闸油压的计算P x =An KF c75.2式中:P x —贴闸油压,MP aF c —实际使用静张力差,Nn —制动器液压缸数量A —制动液压缸有效面积,mm 2K —制动力矩计算倍数。

K 值可根据质量系数计算。

当0<c <1时,K=c 25.3;当1<C <1.75时,K=3.25。

质量系数C=m F c ∑Σm —整个提升机系统的变位质量,kg2、最大油压的计算P m ≥f cP An KF K +175.2式中:P m —最大油压值,MP aP f —系统综合阻力,MP aK 1—倾角影响系数倾角影响系数3、一级制动油压的计算⑴ 斜井双钩提升P Ⅰ级=2 P x -An F m d )(14.51+Σα式中:P Ⅰ级—一级制动油压值,MP a α—提升容器的自然减速度,α≥17°时,α=3m/s 2;α<17°时,α=g (sin α+f 1cos α)F d —下放侧的静张力,N ;F d =(Q z +PL )gsin αΣm 1—不包括提升侧的系统终端负荷变位质量,kg⑵ 斜井单钩提升P Ⅰ级=2P x -An m α214.5Σ式中:Σm 2—所有转动部分的变位质量,kg4、一级制动时间的计算t=αmaxV (s)式中:t —一级制动时间,SV max —最大提升速度,m/sα—提升系统紧急制动减速度,m/s 2竖井重物下放:α=1.5m/s 2斜井重物提升:α=3m/s 2(α≥17°时);α=g (sin α+f 1cos α)(α<17°时)。

提升机性能验算

提升机性能验算
验算提升重载加速度 时,由无导向轮的一侧为准。
在等重尾绳情况下: =
=
=
=
其中式中: —主绳根数; —钢丝绳最大悬重长度;
—一个导向轮变位质量;3.4T
k—矿井阻力系数,k=1.2
、 —分别为上升侧和下降侧的矿井阻力,罐笼取0.1Qg
= =
加减速度
式中:Q—最大载荷; —容器质量,kg,p—钢丝绳每米重力
(一)方案一:在不下重物或支架期间减少配重锤重量
1、减少配重铁18块(1.5T)。
2、下支架前恢复配重。
(二)方案二:空载上提(平衡锤下放)时降低运行速度。
1、正常时装车不能少于4个空车皮或两车矸石。
2、在检修期间或其他无法装车情况下绞车速度降至5m/s2
Gj-提升机的变位重量,7380kg(查提升机的规格表);
Gd——电动机转子的变位重量,
Gd=4Jd*i2/D2=4×144×10.52/2.82=8100kg。
Jd——电动机转子的转动惯量:Jd=144(查电机铭牌参数)
i——减速箱减速比,取10.5
D——滚筒直径,2.8m
二、静防滑安全系数
公式:
根据实测制动力矩安全制动闸(6对)制动力矩验算如下
1、安全制动力矩验算:
3倍最大静荷重力矩3 Mj =3* Fjc物*r=289816.8NM
Mz=∑Fz*R=(制动力之和)*R
=(70200+75200+66000+69000+68990+69700)*1.4=586726NM>3 Mj
安全制动力矩符合安全规程要求。
空载上提(平衡锤下放)二级制动减速度
az= =2.747 m/s2>1.5 m/s2
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长春羊草煤业股份有限公司一矿地面副井提升机制动减速度及制动压力计算副井提升系统基础数据:JK2.5/2.0 , 24°,最大静张力(差):Fe=83kN=8460.75kg(根据《AQ1035-2007煤矿用单绳缠绕式提升机 安全检验规范》附录A 中选取钢丝绳每米质量:P 0=3.10kg/m绞车道斜长:L=900m一、提升系统安全制动减速度确定根据《煤矿安全规程》第四百二十七条规定:1. 上提时提升系统安全制动减速为21/61.3)3021cos 015.03021(sin 81.9)cos (sin s m f g A c ='︒+'︒⨯=+≤αα2. 下放时提升系统安全制动减速为2/75.0s m A c ≥3. 提升系统实际最大静张力)cos (sin )cos )(sin (2010max a f a L P a f a Q Q n F ++++=kg02.6557)3021cos 3.03021(sin 90010.3)3021cos 015.03021)(sin 17001.1630(5='︒+'︒⨯⨯+'︒+'︒⨯+⨯=式中Q ——每辆矿车载荷质量,1.1×1700kg ;Q 0——每辆矿车质量,630kg ;n ——每次提升矿车数,5;f 1——矿车运行阻力系数,0.015;P 0——钢丝绳每米系数,3.10kg/m ;L ——提升斜长,900m ;f 2——钢丝绳运行阻力系数,根据托绳辊状态,可取f 2=0.15~0.5;取0.3a ——绞车道倾角,21°30′。

4. 提升系统变位质量∑m ——包括缠绕在滚筒上的钢丝绳在内的转动部分的变位质量,kN ·s 2/m ;kg gP L Q Q n L P W W W kk k z t d j m 86.401881.910.3900)63017001.1(5560192004375)(10=⨯++⨯+++=++++++=∑ Wj ——绞车机械部分的变位重量,kN ;kg D B g j 43755.2)2200200()200200(W 22=⨯⨯+=+=Wd ——电机的变位重量,kN ;[]222222192005.220300m kg D i GD W T d d •=⨯== 2d GD ——电机转子的回转惯量,㎏·㎡;i ——减速比;20Dg ——滚筒直径,2.5m ;WT ——天轮的变位重量,kN ;10222÷÷=t t t t D D G WGt ——天轮轮缘重量,㎏;Dt ——天轮直径,m ;或 2225602140140m kg D W t t •=⨯==L ——缠在滚筒上的钢丝长度,m ;P0——钢丝绳每米质量,kg/m ;g ——重力加速度9.81m/s 2;保险制动后,矿车减速度的确定5. 保险制动后转动部分的制动减速度; 质量模数61.002.655786.4018max ===∑F m Z 重载上提时制动减速度为22m/s 61.3m/s 56.661.0131==+=+=Ac Z k s >α 重载下放的制动减速度2/75.028.361.0131s m Z K a x >=-=-= 变位制动力kg e z 25.2538275.84603F 3F =⨯==式中 Fz ——折算到滚筒周边的保险制动力,kN ,综合上述计算结果,该提升系统采用二级制动液压控制系统。

二、提升系统制动压力值确定1. 根据实际最大静张力确定所需的最大工作油压值MPa c P F F P e X 58.51.25.475.846002.65570max =+⨯=+⨯=根据计算结果最大工作油压值调整为5.6MPa 。

2. 二级制动油压值的确定MPa 92.36.57.0P 7.0P X =⨯==Ⅱ级根据计算结果二级制动油压值调整为4.0MPa 。

式中P X ——实际需要的工作油压,MPa ;P 0——提升机设计最大静张力差时的贴闸油压值,4.5MPa ;Fmax ——提升机实际最大静张力,6557.02kg ;Fe ——提升机设计最大静张力,8460.75kg ;C ——盘形闸阻力之和,MPa P P P c 1.25.07.09.0321=++=++=;P1——完全松闸时,保证闸瓦的必要间隙而压缩蝶形弹簧的力,折算成油压值,P1≈0.9MPa ;P2——油缸、密封圈、拉紧弹簧等阻力,折算成油压值,P2≈0.7MPa ;P3——液压站制动状态时的残压,按最大残压计算,P3=0.5MPa ;长春羊草煤业股份有限公司一矿二段材料井提升机制动减速度及制动压力计算副井提升系统基础数据:JKB-2.5/2A , 24°最大静张力(差):Fe=83kN=8460.75kg(根据《AQ1035-2007煤矿用单绳缠绕式提升机 安全检验规范》附录A 中选取钢丝绳每米质量:P 0=3.10kg/m绞车道斜长:L=900m一、提升系统安全制动减速度确定根据《煤矿安全规程》第四百二十七条规定:1.上提时提升系统安全制动减速为21/61.3)3021cos 015.03021(sin 81.9)cos (sin s m f g A c ='︒+'︒⨯=+≤αα2.下放时提升系统安全制动减速为2/75.0s m A c ≥3.提升系统实际最大静张力)cos (sin )cos )(sin (2010max a f a L P a f a Q Q n F ++++=kg02.6557)3021cos 3.03021(sin 90010.3)3021cos 015.03021)(sin 17001.1630(5='︒+'︒⨯⨯+'︒+'︒⨯+⨯=式中Q ——每辆矿车载荷质量,1.1×1700kg ;Q 0——每辆矿车质量,630kg ;n ——每次提升矿车数,5;f 1——矿车运行阻力系数,0.015;P 0——钢丝绳每米系数,3.10kg/m ;L ——提升斜长,900m ;f 2——钢丝绳运行阻力系数,根据托绳辊状态,可取f 2=0.15~0.5;取0.3a ——绞车道倾角,21°30′。

4.提升系统变位质量∑m ——包括缠绕在滚筒上的钢丝绳在内的转动部分的变位质量,kN ·s 2/m ;kg gP L Q Q n L P W W W kk k z t d j m 58.421481.910.3900)63017001.1(5560211204375)(10=⨯++⨯+++=++++++=∑ Wj ——绞车机械部分的变位重量,kN ;kg D B g j 43755.2)2200200()200200(W 22=⨯⨯+=+=Wd ——电机的变位重量,kN ;[]222222211205.220330m kg D i GD W T d d •=⨯== 2d GD ——电机转子的回转惯量,㎏·㎡;i ——减速比;20Dg ——滚筒直径,2.5m ;WT ——天轮的变位重量,kN ;10222÷÷=t t t t D D G WGt ——天轮轮缘重量,㎏;Dt ——天轮直径,m ;或 2225602140140m kg D W t t •=⨯==L ——缠在滚筒上的钢丝长度,m ;P0——钢丝绳每米质量,kg/m ;g ——重力加速度9.81m/s 2;保险制动后,矿车减速度的确定5.保险制动后转动部分的制动减速度; 质量模数64.002.655758.4214max ===∑F m Z 重载上提时制动减速度为22m/s 61.3m/s 25.664.0131==+=+=Ac Z k s >α 重载下放的制动减速度2/75.013.364.0131s m Z K a x >=-=-= 变位制动力kg e z 25.2538275.84603F 3F =⨯==式中 Fz ——折算到滚筒周边的保险制动力,kN ,综合上述计算结果,该提升系统采用二级制动液压控制系统。

二、提升系统制动压力值确定1.根据实际最大静张力确定所需的最大工作油压值MPa c P F F P e X 58.51.25.475.846002.65570max =+⨯=+⨯=根据计算结果最大工作油压值调整为5.6MPa 。

2.二级制动油压值的确定MPa 92.36.57.0P 7.0P X =⨯==Ⅱ级根据计算结果二级制动油压值调整为4.0MPa 。

式中P X ——实际需要的工作油压,MPa ;P 0——提升机设计最大静张力差时的贴闸油压值,4.5MPa ;Fmax ——提升机实际最大静张力,6557.02kg ;Fe ——提升机设计最大静张力,8460.75kg ;C ——盘形闸阻力之和,MPa P P P c 1.25.07.09.0321=++=++=;P1——完全松闸时,保证闸瓦的必要间隙而压缩蝶形弹簧的力,折算成油压值,P1≈0.9MPa ;P2——油缸、密封圈、拉紧弹簧等阻力,折算成油压值,P2≈0.7MPa ; P3——液压站制动状态时的残压,按最大残压计算,P3=0.5MPa ;长春羊草煤业股份有限公司一矿三段材料井提升机制动减速度及制动压力计算副井提升系统基础数据:JKB-2.5/2PA ,17°,最大静张力(差):Fe=83kN=8460.75kg(根据《AQ1035-2007煤矿用单绳缠绕式提升机 安全检验规范》附录A 中选取钢丝绳每米质量:P 0=3.10kg/m绞车道斜长:L=670m一、提升系统安全制动减速度确定根据《煤矿安全规程》第四百二十七条规定:1.上提时提升系统安全制动减速为21/12.4)24cos 015.024(sin 81.9)cos (sin s m f g A c =︒+︒⨯=+≤αα2.下放时提升系统安全制动减速为2/75.0s m A c ≥3.提升系统实际最大静张力)cos (sin )cos )(sin (2010max a f a L P a f a Q Q n F ++++=kg02.6669)24cos 3.024(sin 67010.3)24cos 015.024)(sin 17001.1630(5=︒+︒⨯⨯+︒+︒⨯+⨯=式中Q ——每辆矿车载荷质量,1.1×1700kg ;Q 0——每辆矿车质量,630kg ;n ——每次提升矿车数,5;f 1——矿车运行阻力系数,0.015;P 0——钢丝绳每米系数,3.10kg/m ;L ——提升斜长,900m ;f 2——钢丝绳运行阻力系数,根据托绳辊状态,可取f 2=0.15~0.5;取0.3a ——绞车道倾角,21°30′。

相关文档
最新文档