第一章焊接电弧及其电特性.
电弧焊-基础知识

27
(二)电子的发射
(2)场致发射
当阴极表面空间有强电场存在时,金属 电极内的电子在电场静电库仑力的作用下, 从电极表面飞出的现象称为场致发射。
冷阴极电弧正是主要依靠这种方式获得足 够的电子以维持电弧稳定燃烧的。
28
(二)电子的发射
(3)光发射
当金属电极表面接受光辐射时,电极表面的 自由电子能量增加,当电子的能量达到一定值时 能飞出电极的表面,这种现象称为光发射。
9
(一)气体的电离
(1)电离与激励
电离能通常以电子伏(eV)为单位, 1电子伏就是1个电子通过1V电位差的空间所 获得的能量,其数值为1.6×10-19J。为了便 于计算,常把以电子伏为单位的能量转换为 数值上相等的电压来处理,单位为伏(V), 此电压称为电离电压。电弧气氛中常见气体 的电离电压如表1-1所示。
(1)热发射 金表面承受热作用而产生电子发射的现象称 为热发射。金属电极内部的自由电子受到热作用 以后,热运动加剧,动能增加,当自由电子的动 能大于该金属的电子逸出功时,就会从金属电极 表面飞出,参加电弧的导电过程。电子发射时从 金属电极表面带走能量,故能对金属产生冷却作 用。当电子被另外的同种金属表面接受时,将释 放能量,使金属表面加热。
二、焊接电弧的导电特性
其中,暗放电和辉光放电的电流较小,电 压较高,发热发光较弱,而电弧放电的电流最 大,电压最低,温度最高、发光最强。正是因 为电弧具有这样的特点,因此在工业中广泛用 来作为热源和光源,在焊接技术中成为一种不 可缺少的能源。 综上所述,从电弧的物理本质来看,它是一种 在具有一定电压的两电极之间的气体介质中所 产生的电流最大、电压最低、温度最高、发光 最强的自持放电现象。
第一章电弧焊基础知识
焊接电弧及其电特性

编辑ppt
10
1.2.1、焊接电弧的结构及压降分布
电弧沿着其长度方向分为三个区域,如图1-2所示。 电弧与弧焊电源正极所接的一端称阳极区,与负极 相接的那端称阴极区。阴极区和阳极区之间的部分 称弧柱区,或称正柱区、电弧等离区。阴极区的宽 度约为10-5~10-6cm, 而阳极区的宽度仅约10-3 ~10-4cm, 因此,电弧长度可以视为近似等于弧柱长 度。弧柱部分的温度高达5000~50000K。
编辑ppt
20
1.3.1 交流电弧的特点
电弧周期性地熄灭和引燃 交流电流每当经过零点并改变 极性时,电弧熄灭、电弧空间温度下降。
电弧电压和电流波形发生畸变。 热惯性作用较为明显 。
编辑ppt
21
埋弧焊电弧电压和电流波形图
图1-9 埋弧焊电弧电压和电流波形图 a)不连续燃烧 b)连续燃烧
编辑ppt
图1-3 高频和脉冲引弧示意图 a)引弧器接入方式 b)高频高压引弧电压波形 c)高压脉冲引弧电压波形
u yh — 编引辑弧pp电t 压 t— 时间
9
1.2 焊接电弧的结构和伏安特性
前面分析了焊接的物理本质和形成。现在介绍它的结构和 电特性,即伏安特性,包括静特性和动特性。直流电弧和 交流电弧是焊接电弧的两种最基本的形式。
电子发射是引弧和维持电弧稳定燃烧的一个很重要的因素。 按其能量来源的不同,可分为热发射,光电发射,重粒子 碰撞发射和强电场作用下的自发射等。
编辑ppt
6
1.1.2 焊接电弧的引燃
图1-1 引弧过程电压、电流变化曲线图
a) 接触引弧
b) 非接触引弧
b) U0- 空载电压 Uf- 电弧电压 if- 电弧电流
焊接电弧也是气体放电的一种形式。它与其他气体放电的 区别在于它的阴极压降低、电流密度大,而气体的电离和 电子发射是电弧中最基本的物理现象。
焊接电弧

逸出功的大小受电极材料及表面状态的 影响。
焊接电弧物理基础
金属表面存在氧化物时逸出功会减小
焊接电弧物理基础
阴极斑点 定义:阴极表面经常可以看到发出闪烁 的区域,这个区域称为 电子发射最集中的区域 电流最集中流过的区域 热阴极:斑点固定 W C 冷阴极:斑点不规则移动 Cu Fe Al
焊接电弧物理基础
由于电子质量远小于其他粒子的质量, 因而在电场的作用下,速度快,动能大, 其余其他粒子发生非弹性碰撞,几乎将 本身的动能全部传递给相应的粒子,使 中性粒子发生电离或激励。因而场致电 离中电子起到主要的作用。
焊接电弧物理基础
焊接电弧物理基础性气体粒子受到光辐射的作用 而产生的电离过程 范围:电弧的辐射只可能对K、Na、Ca、 Al等金属蒸汽直接引起电离,而对焊接 电弧气氛中的其他气体则不能直接引起 电离 光电离是产生带电粒子的次要途径
焊接电弧导电特性
纯金属熔点沸点低于相应氧化物,所以 纯金属容易蒸发,阳极斑点自动寻找纯 金属而避开氧化物。因而出现阳极斑点 的跳跃现象。
焊接电弧导电特性
阳极不能发射正离子,弧柱所需要的正 离子是通过阳极区电离提供的。 阳极区导电形式(场致电离、热电离) 场致电离(电弧电流小)电子数大于正 离子数,形成负的空间电场,从而电子 加速,碰撞到中性粒子产生电离。
电弧焊基本历史
1945 交流GTAW焊 接方法 1945 直流金属极焊 接方法GMA
第一节 焊接电弧
焊接电弧物理基础 焊接电弧导电特性 焊接电弧工艺特性
焊接电弧物理基础
电弧定义:电弧是 一种特殊的气体放 电现象,它是带电 粒子通过两电极之 间气体空间的一种 导电过程。 实现了将电能转化 为机械能、热能和 光能。
焊接工艺学

焊接工艺学第一章焊接电弧1.什么叫焊接电弧?电弧是两电极之间或电极与母材之间的气体介质中产生强烈而持久的放电现象2.最小电压原理在电流和周围条件一定的情况下,稳定燃烧的电弧将自动选择一个适当的断面,以保证电弧的电场强度具有最小的数值,即在固定弧长上的电压最小。
这意味着电弧总是保持最小的能量消耗。
3.电离电子发射电弧放电两个最基本物理现象气体介质的电离和电极的电子发射4.电离种类1)热电离气体粒子受热的作用而产生的电离称热电离。
其实质是气体粒子由于受热而产生高速运动和相互之间激烈碰撞而产生的一种电离。
根据气体分子运动理论可知,气体的温度高低意味着气体粒子(包括中性粒子、电子和离子)总体动能的大小,亦即气体粒子平均运动速度的快慢。
2)场致电离当气体中有电场作用时,气体中的带电粒子被加速,电能被转换为带电粒子的动能,当其动能增加到一定程度时,能与中性粒子产生非弹性碰撞,使之电离,这种电离称为场致电离。
3)光电离中性粒子接受光辐射的作用而产生的电离现象称为光电离。
不是所有的光辐射都可以引发电离,气体都存在一个能产生光电离的临界波长,气体的电离电压不同,其临界波长也不同,只有当接受的光辐射波长小于临界波长时,中性气体粒子才可能被直接电离。
5.电子发射种类根据外加能量的不同,电子发射可分为:(1)热发射:金属表面承受热作用而产生电子发射的现象称为热发射。
(2)场致发射:当阴极表面空间有强电场存在时,金属电极内的电子在电场静电库仑力的作用下,从电极表面飞出的现象称为场致发射(自发射)。
(3)光发射:当金属电极表面接受光辐射时,电极表面的自由电子能量增加,当电子的能量达到一定值时能飞出电极的表面,这种现象称为光发射。
(4)粒子碰撞发射:高速运动的粒子(电子或正离子)碰撞金属电极表面时,将能量传给电极表面的电子,使电子能量增加并飞出电极表面,这种现象称为粒子的碰撞发射。
6.阳极区导电机构电弧燃烧时,阳极区的任务主要是接受来自弧柱占总电流 99.9% 的电子流,同时还要向弧柱区发送约占总电流 0.1% 的正离子流。
绪论第一二三章 弧焊电源与数字化控制

射,重粒子碰撞发射和强电场作用下的自发射等。
27
第一章
焊接电弧及其电特性
1.1 焊接电弧的物理本质和引燃
• 焊接电弧的引燃
图1-1 引弧过程电压、电流变化曲线图
a) 接触引弧
b) 非接触引弧
28
U0- 空载电压 Uf- 电弧电压 if- 电弧电流
应用:它可作各种弧焊的电源
ZX7-160 375×155×24 0 8kg
ZX7-400 300×530×560 36kg
芬兰肯比逆变焊机
13
绪 论 - 弧 焊 电 源 的 分 类
(三)脉冲弧焊电源
原理:焊接电流以低频调制脉冲方式输出 优点:具有效率高,输入线能量较小,可在较宽范围内控制线
能量等优点 应用:它主要用作气体保护焊和等离子弧焊以及手工弧焊的电 源,适用于热敏感性大的高合金材料、薄板和全位置焊接等场合
一个数字:西方工业国家,钢产量的50~60%需要焊接
中国2001年,钢产量1.3亿吨,4000万吨需要焊接
焊 电 源
2.电弧焊是第一大类焊接方法,占70%-90%
熔化焊接、固相焊接和钎焊
3.弧焊电源是弧焊设备的主体
电源、控制箱、焊接小车、送丝机、焊枪、气路水路
5
焊接的基本原理
焊接的物理化学过程
采用施加外部能量的方法,促使分 离材料的原子接近、形成原子键结合, 同时去除一切阻碍原子键结合的一切表 面膜和吸附层,以形成一个优质的焊接 接头。
柴(汽)油机驱动直流弧焊发电机
AX1-500型直流弧焊发电机 11
绪 论 - 弧 焊 电 源 的 分 类
2.弧焊整流器(目前主流产品) 原理:交流电经整流装置获得直流电的弧焊电源。一般由初、
四川大学 焊接工程学 知识点总结

焊接工程基础第一章电弧焊基础知识第一节焊接电弧1.焊接电弧的导电特点电弧是一种气体放电现象,即当两电极之间存在电位差时,电荷通过两极之间的气体空间的一种导电现象。
电弧是由两个电极和它们之间的气体放电空间构成,电弧的带电粒子主要由气体的电离和电极发射电子产生。
电弧放电区是气体放电中电压最低、电流最大、温度最高、发光最强的一个放电区域。
电离:在一定的条件下,中性气体分子或原子分离成为电子和正离子的现象。
使中性气体粒子失去第一个电子所需要的最低外加能量称为第一电离能,生成的正离子称为一价正离子,这种电离称为一次电离。
通常把这种决定电弧气氛的电离电压称为实效电离电压。
当中性气体粒子受外来能量作用,但能量不足以使电子完全脱离气体原子或分子,而可能使电子从较低的能级转移到较高的能级时,中性粒子内部的稳定状态将被破坏,但对外仍呈电中性,这种状态称为激励。
使中性粒子激励所需的最低外加能量称为最低激励能。
激励能小于电离能,也用电压值来表示,称为激励电压。
能量的传输途径:碰撞传递(主要途径):1.弹性碰撞:引起粒子温度变化,不产生电离 2.非弹性碰撞:导致粒子内部结构变化,并产生电离(当具有足够动能的电子与中性粒子碰撞时,其动能几乎可以全部传递给中性粒子,转换为内能,使其电离。
)光辐射传递(次要途径):通过光辐射传递能量的方法直接接受外界所施加的能量,使其内能增加,造成内部结构改变而电离。
电弧中气体粒子的电离因外加能量的种类不同而分为三种:由于气体粒子的热运动发生碰撞而产生的热电离;带电粒子在电场的作用下与中性粒子产生非弹性碰撞而产生的场电离;中性粒子由于光辐射的作用而产生的光电离。
电子发射是电极表面的电子在外加能量的作用下冲破表面的束缚而飞到电弧空间的现象。
热发射:金属表面由于受热将使其内部的电子的热运动加剧,当最外层电子的动能大于逸出功时,飞出金属表面参加电弧的导电现象。
电场发射:当金属表面存在一定强度的正电场时,金属内部的电子会受到电场力的作用,当电场力足够大时电子飞出金属表面的现象。
焊接电弧及其电特性

为交流电弧的有功功率; 、 分别为电弧电压和电弧电流的瞬时值
2
交流电弧的功率
1.3.4.2 交流电弧的功率因数 交流电弧的功率因数是指交流电弧的有功功率与电弧电压和电弧电流有效值乘积之比值,即:
1、交流电弧功率 与K的关系图
焊接电弧的性质与供电电源的种类、电弧的状态、电弧周围的介质以及电极材料有关。按照不同的方法,可作出如下的分类: 按电流种类可分为:交流电弧、直流电弧和
1.1.1 气体原子的激发、电离和电子发射 焊接电弧也是气体放电的一种形式。它与其他气体放电的区别在于它的阴极压降低、电流密度大,而气体的电离和电子发射是电弧中最基本的物理现象。
1.1.1.1. 气体原子的激发与电离
气体原子的激发 如果气体原子得到了外加的能量, 电子就可能从一个较低的能级跳跃到一个较高能级,这时原子处于“激发”状态,使原子跃至“激发”状态所需的能量,称为激发能。 气体原子的电离 使电子完全脱离原子核的束缚,形成离子和自由电子的过程为电离。由原子形成正离子所需的能量称为电离能。 电离的形式 在焊接电弧中,根据引起电离的能量来源,有如下三种电离形式: (1) 撞击电离; (2) 热电离; (3) 光电离。
01
在用交流电弧进行焊接时,要求能充分利用电弧功率,以获得较高的效率。此外,还希望在弧长略有变化时功率保持稳定,使焊接过程能顺利进行。因此,研究交流电弧功率及功率因数的影响因素和计算方法,也是有必要的。
02
交流电弧的电压和电流时刻都在变化。所以,交流电弧的功率是指交流电弧在半个周期内的平均功率(又称为有功功率),即
1.4.1.2 熔化极焊接电弧
1.4.2 压缩电弧
如果把自由电弧的弧柱强迫压缩,就获得一种比一般电弧温度更高,能量更集中的热源,即压缩电弧 。
焊接电弧及其电特性

由原子形成正离子所需要的能量称为电离能 由原子形成正离子所需要的能量称为电离能
2.气体原子的电离 (1)撞击电离:在电场中,被加速的带电质点(电子,离子) 撞击电离: 电场中 被加速的带电质点(电子,离子) 和中性质点(原子)碰撞后发生的电离. 和中性质点(原子)碰撞后发生的电离. (2)热电离:在高温下,具有高动能的气体原子(或分子)互 热电离: 高温下 具有高动能的气体原子(或分子) 相碰撞而引起的电离. 相碰撞而引起的电离. (3)光电离:气体原子(或分子)吸收了光射线的光子能而产 光电离:气体原子(或分子)吸收了光射线的光子能而产 光子能 生的电离. 生的电离. 常见气体及元素的电离能E 常见气体及元素的电离能EL(eV)
第二节
焊接电弧的结构以及伏安特性
弧柱区
一,焊接电弧的结构以及压降分布
三个区域: 三个区域:阳极区 阴极区
阴极区:长度极短10 电压较大, 阴极区:长度极短10-510-6cm ,电压较大,E电场强度极高 阳极区:长度也极短10 电压较大, 阳极区:长度也极短10-210-4cm ,电压较大,E极高 弧柱区:长度基本上等于电弧长度, 弧柱区:长度基本上等于电弧长度,E较小
Ⅰ Ⅱ
Ⅲ
Uf
影响电弧静特性的因素: 影响电弧静特性的因素: 电弧长度
Ua
L2 >L1 L2 L1 电弧长度对电弧静特性的影响
周围气体种类
焊接电弧静特性的应用 对于不同的焊接方法,电弧静特性曲线有所不同. 对于不同的焊接方法,电弧静特性曲线有所不同.静特性下 降段电弧燃烧不稳定而很少采用. 降段电弧燃烧不稳定而很少采用. 焊条电弧焊,埋弧焊多半工作在静特性水平段. 焊条电弧焊,埋弧焊多半工作在静特性水平段. 水平段 熔化极气体保护焊,微束等离子弧焊, 熔化极气体保护焊,微束等离子弧焊,等离子弧焊也多半工 作在水平段,当焊接电流很大时才工作在上升段. 作在水平段,当焊接电流很大时才工作在上升段. 水平段 上升段 熔化极气体保护焊和水下焊接基本上工作在上升段. 熔化极气体保护焊和水下焊接基本上工作在上升段. 上升段
弧焊电源重点..

第一章焊接电弧及其电特性(填空)焊接电弧的特性:电压最低,电流最大,温度最高,发光最强三种电离:撞击电离,热电离,光电离四种电子发射:热发射,光电发射,重粒子撞击发射,强电场作用下的自发射1.弧焊电源可分为哪几类?按什么分类?答:(1)弧焊电源及其控制技术的分类:交流弧焊电源、直流弧焊电源、脉冲弧焊电源、逆变式弧焊电源(2)弧焊电源的控制技术分类:机械式控制、电磁式控制、数字式控制、电子式控制。
2弧焊电源的压降如何分布?答:电弧沿其长度方向分为三个区:阳极区、阴极区、弧柱区,这三个区的电压降分别称为阳极压降Uy、阴极压降Ui、弧柱压降Uz。
它们组成了总的电弧电压Uf,且Uf=Uy+Ui+Uz。
阳极压降基本不变,而阴极压降在一定条件下基本上也是固定的数值,弧柱压降则在一定气体介质下与弧柱长度成正比。
则,弧长不同,电弧电压也不同。
3。
弧焊电源的静特性、动特性是指什么?答:电弧静特性:电极材料、气体介质、弧长一定的电弧在稳定状态下,电弧电压Uf与电弧电流If之间的关系。
Uf=f(If)电弧动特性:在一定的弧长下,当电弧电流很快变化的时候,电弧电压与电流瞬时值之间的关系为:Uf=f(if)4。
焊条电弧焊、埋弧焊、CO2气体保护焊得电弧静特性是怎样的?答:焊条电弧焊:多半工作在静特性的水平段。
埋弧焊:多半工作在静特性的水平段。
CO2气体保护焊:基本上工作在上升段。
(虚线的是二氧化碳的,实线的是Ar弧焊的)5。
交流电弧有什么特点?为保护交流电弧连续燃烧电路参数应当怎样配合?答:特点:a 。
电弧周期性的熄灭引燃b 。
电弧电压和电流波形发生畸变c 。
热惯性作用较为明显(2)a 。
交流电弧连续引燃的条件之一: 即当ωt=π时,使电弧电流if 正好过零点,if=0,从而得到: b 。
连续引燃条件之二:即在ωt=0时,弧焊电源电压Uy 应大于电弧引燃电压Uyh ,即: 综上分析:为保证交流电弧连续燃烧必须保证电路中各项参数:电源空载电压U0、电弧电压Uf 及引燃电压Uyh 之间必须保持一定的关系.即:6。
焊接方法与设备-1焊接电弧

3.复合
电弧空间的正负带电粒子(正离子、负离子、电子), 在一定条件下相遇而互相结合成中性粒子的过程称为 复合,放热反应。
.
§1-1 电弧的导电机理
复合条件
3kT 2
e
40
在电弧中心部分由于温度较高,所有粒
子的热运动能量很高,不可能产生复合。在
电弧周边由于粒子温度较低,动能较小,由
于扩散作用而存在一部分电子和负离子,如
主要问题:激励能、激励与电离关系、激励作用
2.能量传递方式
.
§1-1 电弧的导电机理
碰撞传递
粒子之间以相互碰撞传递能量的形式称为碰撞 传递。 碰撞 弹性 E1+E2=E1’+E2’ (低动能时)
非弹性 E1+E2=E1’+E2’+ΔE (高动能时) ΔE〉W激励 发生激励 ΔE〉W电离 发生电离。
.
§1-1 电弧的导电机 理
电场电离
带电粒子从电场中获得能量,通过碰撞而产生的电离过 程称为电场作用下的电离。
自由行程λ :两次碰撞之间的路程长度。
Wk Ee
当某一气体中同时存在中性粒子、离子和电子 时,在一定温度和压力下它们的自由行程分别为:
e:i:grg12ng:4r1 g2ng:421rg2ng
光辐射传递
中性气体粒子可以接受外界以光量子形式所施 加的能量,提高其内能并改变其内部结构,使气体 粒子被激励或电离。
比较:在电弧燃烧过程中碰撞.传递是主要形式
§1-1 电弧的导电机 理
3.电离种类
f 热电离
电离
电场电离
T1 T2
光电离
v
热电离
T1〈T2
1.1焊接电弧及其特性

(二)电子的发射
表1-2
金属种类 纯金 属 金属 氧化 物
几种金属及其氧化物的逸出功
W Fe Al Cu K Ca Mg
4.54 4.48
4.25
4.36
2ห้องสมุดไป่ตู้02
2.12
3.78
逸出功 (eV)
3.92
3.9
3.85
0.46
1.8
3.31
16
(二)电子的发射
根据外加能量的不同形式,电子发射有以 下几种: (1)热发射 金属表面承受热作用而产生电子发射 的现象称为热发射。电子发射时从金属电极 表面带走能量,故能对金属产生冷却作用。 当电子被另外的同种金属表面接受时,将释 放能量,使金属表面加热。
17
(二)电子的发射
(2)电场发射
当阴极表面空间有强电场存在时,金属 电极内的电子在电场静电库仑力的作用下, 从电极表面飞出的现象称为电场发射。
冷阴极电弧正是主要依靠这种方式获得足 够的电子以维持电弧稳定燃烧的。
18
(二)电子的发射
(3)光发射
当金属电极表面接受光辐射时,电极表面的 自由电子能量增加,当电子的能量达到一定值时 能飞出电极的表面,这种现象称为光发射。
电子 发射 表面的束缚而飞到电弧空间的现象称为电子发射。
电极表面接受一定外加能量作用,使其内部的电子冲破电极
只有从阴极发射出的电子,在电场作用下才参加导电过程。
一般情况下,电子是不能自由地离开电极表面向外发射的。 要使电子飞出电极表面,必须给电子施予一定的能量,使它 克服电极内部正电荷对它的静电引力。 使一个电子从电极表面飞出所需要的最低外加能量称为逸出 逸出 功(Ww),单位为电子伏。因电子电量e是一个常数,通常以 功 逸出电压Uw=Ww/e来反映逸出功的大小,单位为伏。 几种金属及其氧化物的逸出电压如表1-2所示。由表中可以 看出,当金属表面附有其氧化物时,逸出电压均会减小。
1 焊接电弧基础全

大电流时,由于有电磁收缩效应,弧柱变成紧缩 的形状。碳极电弧的临界值为80A.
小电流电流密度:10-300A/cm2,温度低于
7000K;而大电流可达103-104 A/cm2,温度超
过10000K
45
3、阳极区和阳极斑点
⑴阳极区 ➢ 概念:指阳极外紧靠阳极表面的导电区,其
长度约为10-2~10-6cm。 ➢ 任务:接受电子流;
72
(二)阴极和阳极产热
即:阴极区和阳极区的产热主要决定于Uc和Uω。 熔化极电弧焊时: ∵ Uc>>Uω ∴ Pc> PA。 ∴熔化极电弧焊时为了保证熔深, 一般
均采用直流反接(即工件接电源负极)。
73
(三)电弧的温度和温度分布
74
1、弧柱温度测定
75
2、弧柱的温度分布
氩气保护电弧温度分布
Ua= Uc+ Up+ UA
19
(二)电弧的导电机构
1、阴极区和阴极斑点 ⑴阴极区 ①概念:指阴极外紧靠阴极表面的导电区,其
长度约为10-2~10-6cm。 ②任务:向弧柱区提供所需要的电子流。 ③阴极区导电机构的类型:
a、热发射型:阴极为C、W,大电流. 正离子流=总电流的0.1% 。
20
b、电场发射型
阴极
弧柱
●
● ●
●
● ●
● ●
● ● ● ●
阳极
54
阳极压降的形成过程
阴极
弧柱
●
● ●
●
● ●
● ●
● ● ● ●
阳极
55
阳极压降的形成过程
阴极
弧柱
●
● ●
●
● ●
焊接电弧

式中We——激励能;e——电子电荷量;Ue-----气体粒子的激励电压
产生电离的条件:
式中Wi——电离能;Ui——电高电压。
在一般焊接电弧中,通过光辐射传递方式来制造带电粒子与碰撞传递相比,则是次要的。
3、电离种类
(1)热电离高温下,气体粒子受热的作用相互碰撞而产生的电离称为热电离。
要使中性气体粒子失去第二个电子则需要更大的电离电压,称为第二电离电压,生成的离子移为二价正离子,这种电离称为二次电离,依此类推。
电弧气氛中可能遇到的气体电离电压列于表1—1
当电弧空间同时存在电离电压不同的几种气体时,在外加能量的作用下,电离电压较低的气体粒子将先被电离,如果这种低电离电压气体供应充分,则电弧空间的带电粒子将主要依靠这种气体的电离过程来提供,所需要的外加能量也主要取决于这种气体的电离电压。
气体粒子的平均运动速度与温度在数值上的关系如下
式中 ——气体粒子的平均速度(cm/s);
T——气体的热力学温度(K);
m——粒子的质量(g)。
由上式可见,气体温度越高,气体粒子的平均运动速度也越高,即动能也越大。
※在某一温度下粒子所具有动能并不都相同,只是拥有大于电离电压能量的那部分粒子才可能引起中性粒子的电离。
1、气体的放电:正常状态的气体导电时,带电粒子的产生过程,这就是气体的放电过程。
气体放电在形式和性质的取决因素:气体的种类和压力、电极材料和几何形状、两极间距离以及施加在两极间电压高低
因此,其导电部分的电流与电压之间呈现出一个很复杂的关系曲线,如图1-2中所示。图1—2中所示曲线,是从测量一系列同类型但电极尺寸不同的放电管中得出的气体放电伏安特性曲线。
1、热发射金属表面承受热作用而产生的电子发射现象称为热发射。
焊接电弧及其特性

热电离 —— 在高温下,具有高动能的气体原子(或分子)互相碰撞而引起的电离。
01
物质的固体或液体表面受热后电子动能增大,其中某些电子动能大于逸出功时将逸出到表面外的空间中去的现象称为“热发射”。
02
钨极氩弧焊过程中“热发射”作用明显。
物质的固体或液体表面接受光射线的能量而释放出自由电子的现象称为“光电发射”。
K
4.34
0.30
2.22
N
14.53
0.54
Mo
7.10
1.3
4.29
Na
5.14
0.35
2.33
H
13.600
B
8.30
0.3
4.30
O
13.61
2.0
Fe
7.87
0.85
4.40
F
17.42
3.62
/
固态物质表面电子发射所需的能量称为 “逸出功WY ” 。逸出功一般只为电离能的 一半 。
电弧周期性地熄灭和引燃 电流过零 — 电弧熄灭 — 电弧空间温度下降 — 带电质点中和 — 导电能力下降 — 当U0 > Uyh 时,电弧再次引燃。 电流过零时间越长,电弧再引燃越困难。
电弧电压和电流波形发生畸变 由于电弧电阻随弧柱温度发生交变,因此电弧电压及焊接电流都不再按正弦规律变化。
品牌推广规划
BRAND PLANING
商业产品部
第一章 焊接电弧及其特性
第一节 焊接电弧的物理本质和引燃 第二节 焊接电弧的结构和伏安特性 第三节 交流电弧 第四节 焊接电弧的分类及其特点
第一节 焊接电弧的物理本质和引燃
电弧是一段导体
导体?
电弧是一种气体放电现象
第1章 焊接电弧及其电特性

第1章焊接电弧及其电特性1 气体原子的电离使电子完全脱离原子核的束缚,形成离子和自由电子的过程为电离。
由原子形成正离子所需的能量称为电离能。
2 电离的形式在焊接电弧中,根据引起电离的能量来源,有如下三种电离形式:(1) 撞击电离; (2) 热电离; (3) 光电离。
2 电子发射在阴极表面的原子或分子,接受外界的能量而释放出自由电子的现象称为电子发射。
电子发射是引弧和维持电弧稳定燃烧的一个很重要的因素。
按其能量来源的不同,可分为热发射,光电发射,重粒子碰撞发射和强电场作用下的自发射等3 焊接电弧的引燃 1 接触引弧即是在弧焊电源接通后,电极(焊条或焊丝)与工件直接短路接触,随后拉开,从而把电弧引燃起来。
这2 非接触引弧它是指在电极与工件之间存在一定间隙,施以高电压击穿间隙,使电弧引燃。
4 交流电弧的特点;电弧周期性地熄灭和引燃交流电流每当经过零点并改变极性时,电弧熄灭、电弧空间温度下降。
电弧电压和电流波形发生畸变。
热惯性作用较为明显。
5影响交流电弧稳定燃烧的因素z 空载电压z 引燃电压z 电路参数z 电弧电流--z 电源频率 fz 电极的热物理性能和尺寸6 提高交流电弧稳定性的施z 为了提高交流电弧的稳定性,在焊接电源方面除了焊接回路要有足够大的电感量之外,还可以采用如下措施:(1)提高弧焊电源频率;(2)提高电源的空载电压;但不应该太高(3)改善电弧电流的波形;如改为矩形波(4)叠加高压电。
7交流电弧的分类(1)按电流种类可分为:交流电弧、直流电弧和脉冲电弧(包括高频脉冲电弧)。
(2)按电弧状态可分为:自由电弧和压缩电弧。
(3)按电极材料可分为:熔化极电弧和不熔化极电弧。
第2章对弧焊电源的基本要求1弧焊工艺对弧焊电源的要求(1)保证引弧容易;(2)保证电弧稳定;(3)保证焊接规范稳定;(4)具有足够宽的焊接规范调节范围。
2 “电源一电弧”系统的稳定性(1)系统在无外界因素干扰时,能在给定电弧电压和电流下,维持长时间的连续电弧放电,保持静态平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合电极材料的逸出功
总结:
1.焊接电弧是气体放电的一种形式 2.能量来源:焊接电源提供了空载以及焊接电压、电流, 形成和维持了电弧所需要的电场、产生了大量的光和 热,以及带电粒子的运动,包括热运动和电场定向运 动的动能。 3.作用结果:引起电极表面电子发射,导致气体原子的 激发、电离,从而维持了电弧的气体放电。 4.复合过程:同时存在正离子和电子复合成中性原子, 以及原子、分子吸附电子复合成负离子的过程。
常见气体及元素的电离能EL(eV)
气体离子与电子的复合
正离子 电子
→
中性原子
中和
中性原子
(电离)
气体原子与电子的结合 → 负离子
中性原子 电子 各种元素与电子形成负离子的倾向决定于电子的亲 和能 Eq 。 Eq 越大,形成负离子的倾向越大。
吸附、结合
负离子
电弧中常见气体元素的电离能 El、逸出功 Wy、亲和 能 Eq(ev)
3. 电子发射 固态物质表面电子发射所需的能量称为 “逸出功 在阴极表面的原子或分子,接受外界的能量 WY ” 。逸出功一般只为电离能的 一半 。 而释放出自由电子的现象称为“电子发射”。
气体 He Ar N H El 24.58 15.76 14.53 13.60 Eq <0 <0 0.54 0.8 元素 Cu Cr Mo W El 7.72 6.76 7.10 7.98 Eq 1.8 0.98 1.3 / Wy 4.36 4.59 4.29 4.50 元素 C K Na B El 11.26 4.34 5.14 8.30 Eq 1.33 0.30 0.35 0.3 Wy 4.45 2.22 2.33 4.30
气体 El Eq 元素 El Eq Wy 元素 El Eq Wy
He
Ar N H O
24.58
15.76 14.53 13.60 13.61
<0
<0 0.54 0.8 2.0
Cu
Cr Mo W Fe
7.72
6.76 7.10 7.98 7.87
1.8
0.98 1.3 / 0.85
4.36
4.59 4.29 4.50 4.40
1.1.1气体原子的激发、电离和电子发射
1.气体原子的激发
气体原子得到外加能 量电子从低能级跃迁 到高能级,这时原子 处于“激发”状态 电子完全脱离原子核 的束缚形成自由电子 的过程称为“电离”
+
激发
电离
-
-
由原子形成正离子所需要的能量称为电离能
2.气体原子的电离
(1)撞击电离:在电场中,被加速的带电质点(电子、 离子)和中性质点(原子)碰撞后发生的电离。 (2)热电离:在高温下,具有高动能的气体原子(或 分子)互相碰撞而引起的电离。 (3)光电离:气体原子(或分子)吸收了光射线的光 子能而产生的电离。
O
13.61
2.0
Fe
7.87
0.85
4.40
F
17.42
3.62
/
阴极表面的分子或原子接受外界的能量而释放 出自由电子的现象称为电子发射,电子发射所需要 的能量成为逸出功 Wy 。
(1)热发射 固态或者液态物质表面受热后其中 的某些电子具有大于逸出功的动能而逸出到表面以 外的空间中去。 (2)光电发射 固态或者液态物质表面接受光射 线的能量而释放出自由电子的现象。 (3)重粒子撞击发射 能量大的重粒子撞击到 阴极上,引起电子的逸出。
应用场合:钨极氩弧焊和等离子弧焊。
1.2 焊接电弧的结构以及伏安特性
1.2.1焊接电弧的结构以及压降分布
三个区域:阳极区 阴极区 弧柱区
Ui 、Uy 基本不变, Uz与弧长成正比。
U = Ui + Uy + Uz
阴极区:长度极短10-510-6cm 、电压较大、E电场强度极高 阳极区:长度也极短10-210-4cm 、电压较大、E极高 弧柱区:长度基本上等于电弧长度,E较小
a) 气体放电
b)金属导电
电弧是低压、大电流、产生高温、强光的一种自持气体放电现象
非自持放电:气体导电所需要的带电粒子不能通过导 电过程本身产生,而需要外加措施来产生带电粒子 (加热、施加一定能量的光子等等)。 自持放电:当电流大于一定值时,一旦放电开始,气 体导电过程本身就可以产生维持导电所需要的带电粒 子。
第1章 焊接电弧及其电 特性
1.1 焊接电弧的物理本质及其引燃
研究意义:弧焊电源是电弧能量的供应者,其电特性影响 到电弧燃烧的稳定性,从而直接影响到焊缝的质量。
焊接电弧:在电极与工件之间的气体中,产生持久、强烈的自 持放电现象。 特性:电压低、电流大、温度高、发光强。
要使两电极之间的气体导电必须具备两个条件: (1) 两电极之间有带电粒子 (2) 两电极之间有电场
1.1.2焊接电弧的引燃
1.1.2.1接触引弧
接触点面积小,电流密度大,发热,熔化,汽化, 引起热发射以及热电离,拉开时发生强场发射,带电 质点被加速,碰撞,引起撞击电离,并进一步引起光 电离和热电离从而维持电弧的稳定燃烧。
应用场合: 焊条电弧焊
熔化极气体保护焊
1.1.2.2非接触引弧
用高电压击穿间隙使电弧引燃。引弧器有两种, 高频高压引弧和高压脉冲引弧。前者是在工频电源 的半波时间内振荡一小段时间,频率为150-250kHz, 电压峰值2000-3000V,后者每半波产生一个30005000V的高压脉冲。
1.2.2焊接电弧的电特性
1.2.2.1焊接电弧的静特性 在电极材料、气体介质和弧长一定的情况下,电弧稳 定燃烧时,焊接电流和电弧电压变化的关系,又称伏 安特性。
Uf
下降特性 段
平特性段
上升特性段
Ⅰ
Ⅱ
Ⅲ
电弧静特性不服从一般导体的欧姆定律,弧压 图1-5 焊接电弧的静特性曲线形状 与气体介质、电离度、电流密度等因素有关。
C
K Na B F
11.26
4.34 5.14 8.30 17.42
1.33
0.30 0.35 0.3 3.62
4.45
2.22 2.33 4.30 /
卤族元素( F、Cl、Br、I 等)的电子亲和能最大,降低电弧 K 、 N 元素的电离能与亲和能较低,能起到稳弧 a 惰性体( Ar、He)与电子的亲和能最小,所以 的电离度,影响电弧的稳定性。 作用。 不可能形成负离子;金属元素介于两者之间。 碱性焊条药皮中含有大量 CaF2,因此电弧的稳定性较差。