江苏省南京市建邺区2017年中考一模数学试题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考第一次模拟测试卷
数 学
注意事项:
1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡上.
3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其它位置答题一律无效.
4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....
是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.下列实数中,无理数是
A .2
B .- 1 2
C .3.14
D .3
2.下列运算正确的是
A .a 2+a 3=a 5
B .a 2 a 3=a 6
C .a 4÷a 2=a 2
D .(a 2)4=a 6
3.不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别.某同学从布袋里任意摸出一个球,则他摸出红球的概率是
A . 3 5
B . 2 5
C . 2 3
D . 1 2
4.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为 A .5,7 B .6,7 C .8,5 D .8,7 5.如图,AB 是⊙O 的弦,半径OC ⊥AB ,AC ∥OB ,则∠BOC 的度数为
A .30°
B .45°
C .60°
D .75°
6.如图,△ABC 三个顶点分别在反比例函数y = 1 x ,y = k
x 的图像上,若∠C =90°,
AC ∥y 轴,BC ∥x 轴,S △ABC =8,则k 的值为
A .3
B .4
C .5
D .6
(第5题)
C
y
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直
接填写在答题卡相应位置.......上) 7. 若式子
x -2
2
在实数范围内有意义,则x 的取值范围是 ▲ . 8. 2017南京国际马拉松于4月16日在本市正式开跑.本次参赛选手共12629人,将12629用科学记数法表示为 ▲ .
9. 因式分解:a 3-2a 2+a = ▲ .
10.计算: 4
2
- 8 = ▲ .
11.已知 x 1,x 2是方程 x 2-4x +3=0 的两个实数根,则x 1 + x 2= ▲ .
12.将点A (2,-1)向左平移3个单位,再向上平移4个单位得到点A ′,则点A ′的坐标是 ▲ . 13.如图,点A 、B 、C 、D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到△COD
的位置,则旋转角为 ▲ °.
14.如图,在平行四边形ABCD 中,点E 为AB 边上一点,将△AED 沿直线DE 翻折,点A
落在点P 处,且DP ⊥BC ,则∠EDP = ▲ °.
15.如图,正五边形ABCDE 的边长为2,分别以点C 、D 为圆心,CD 长为半径画弧,两弧
交于点F ,则⌒
BF 的长为 ▲ .
16.如图,在等腰△ABC 中,AB =AC =5,BC =6,半径为1的⊙O 分别与AB 、AC 相切于
E 、
F 两点,B
G 是⊙O 的切线,切点为G ,则BG 的长为 ▲ .
A
B
C
D
E
P
(第14题)
A
(第16题) B
C D E
F
(第15题)
A
A
B
C
D O (第13题)
三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......
内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(6分)先化简,再求代数式的值:(1-1m +2)÷ m 2+2m +1m 2-4 ,其中m =1.
18.(7分)解不等式组⎩⎪⎨⎪⎧ x +32 ≥x +1,
3+4(x -1)>-9,
并把解集在数轴上表示出来.
19.(7分)某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调查,调查的
结果分为A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级,图1、图2是根据采集的数据绘制的两幅不完整的统计图. 请根据统计图提供的信息,回答下列问题:
(1)C 等级所占的圆心角为 ▲ °; (2)请直接在图2中补全条形统计图; (3)若该校有学生1000人,请根据调查结果,估计“比较喜欢”的学生人数为多少人.
某校“中学生喜欢数学的程度”的扇形统计图 某校“中学生喜欢数学的程度”的条形统计图
20.(8分)如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,DE ∥AC 交BC 的延
长线于点E .
(1)求证:△ABC ≌△DCE ;
(2)若CD =CE ,求证:AC ⊥BD .
0 1 -4 -3 -2 -1 2 3 4 (第20题)
A B C
D
E O (第19题) 等级 图2
C 10% A B
D 23% 32% 图1
21.(7分)运动会上,甲、乙、丙三位同学进行跳绳比赛,通过“手心手背”游戏决定谁先
跳,规则如下:三个人同时各用一只手随机出示手心或手背,若其中有一个人的手势与另外两个不同,则此人先进行比赛;若三个人手势相同,则重新决定.那么通过一次“手心手背”游戏,甲同学先跳绳的概率是多少?
22.(6分)如图,已知点P 为∠ABC 内一点,利用直尺和圆规确定一条过点P 的直线,分别
交AB 、BC 于点E 、F ,使得BE =BF .(不写作法,保留作图痕迹)
23.(7分)如图,用细线悬挂一个小球,小球在竖直平面内的A 、C 两点间来回摆动,A 点
与地面距离AN =14cm ,小球在最低点B 时,与地面距离BM =5cm ,∠AOB =66°,求细线OB 的长度. (参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
A
(第22题)
M N O (第23题)
24.(7分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克.经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?
25.(9分)已知一元二次方程x2-4mx+4m2+2m-4=0,其中m为常数.
(1)若该一元二次方程有实数根,求m的取值范围.
(2)设抛物线y=x2-4mx+4m2+2m-4的顶点为M,点O为坐标原点,当m变化时,求线段MO长度的最小值.
26.(12分)今年暑假,小勇、小红打算从城市A到城市B旅游,他们分别选择下列两种交通方案:
方案一:小勇准备从城市A坐飞机先到城市C,再从城市C坐汽车到城市B,整个行程中,乘飞机所花的时间比汽车少用3h.如图1所示,城市A、B、C在一条直线上,且A、C两地的距离为2400km,飞机的平均速度是汽车的8倍.
方案二:小红准备坐高铁直达城市B,其离城市A的距离y2(km)与出发时间x(h)之间的函数关系如图2所示.
(1)AB两地的距离为▲km;
(2)求飞机飞行的平均速度;
(3)若两家同时出发,请在图2中画出小勇离城市A的距离y1与x之间的函数图像,并求出y1与x的函数关系式.
A B
C
图1
h)
3 4 5 6 7
图2
(第26题)
27.(12分)定义:当点P 在射线OA 上时,把OP
OA
的值叫做点P 在射线OA 上的射影值;当
点P 不在射线OA 上时,把射线OA 上与点P 最近点的射影值,叫做点P 在射线OA 上的射影值.例如:如图1,△OAB 三个顶点均在格点上,BP 是OA 边上的高,则点P 和点B 在射线OA 上的射影值均为OP OA = 1
3.
(1)在△OAB 中,
①点B 在射线OA 上的射影值小于1时,则△OAB 是锐角三角形; ②点B 在射线OA 上的射影值等于1时,则△OAB 是直角三角形; ③点B 在射线OA 上的射影值大于1时,则△OAB 是钝角三角形. 其中真命题有
A .①②
B .②③
C .①③
D .①②③
(2)已知:点C 是射线OA 上一点,CA =OA =1,以O 为圆心,OA 为半径画圆,点
B 是⊙O 上任意点. ①如图2,若点B 在射线OA 上的射影值为 1
2
.求证:直线BC 是⊙O 的切线.
②如图3,已知D 为线段BC 的中点,设点D 在射线OA 上的射影值为x ,点D 在射线OB 上的射影值为y ,直接写出y 与x 之间的函数关系式.
图2
B
C
D
O
A

3
图1 (第27题)
2017年中考第一次模拟测试卷 数学参考答案及评分标准
说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.
一、选择题(每小题2分,共计12分)
二、填空题(每小题2分,共计20分)
7.x ≥2 8.1.2629×104 9.a (a -1)2 10.0 11.4 12.(-1,3) 13.90° 14.45° 15.815π 16.11
3
三、解答题(本大题共10小题,共计88分) 17.(本题6分)
解:原式=m +1m +2 (m +2)(m -2)
(m +2)2
········································································· 2分

m -2
m +1
······························································································ 4分 当m =1时,原式=1-21+1
=-1
2. ························································· 6分
18.(本题7分)
解:解不等式①,得x ≤1. ·············································································· 2分
解不等式②,得x >-2. ·········································································· 4分 所以,不等式组的解集是-2<x ≤1. ······················································· 5分 画图正确(略). ···················································································· 7分 19.(本题7分)
(1)126; ···································································································· 2分 (2)图略; ·································································································· 4分 (3)在抽取的样本中,“比较喜欢”数学的人数所占的百分比为
1-32%-10%-23%=35%, ····································································· 5分 由此可估计,该校1000名学生中,“比较喜欢”数学的人数所占的百分比35%, 1000×35%=350(人). ········································································· 6分 答:估计这些学生中,“比较喜欢”数学的人数约有350人. ···························· 7分
20.(本小题满分8分)
证明:(1)∵ 四边形ABCD 是平行四边形,∴ AB //CD ,AB =DC .∴ ∠ABC =∠DCE . ∵ AC //DE ,∴ ∠ACB =∠DEC . ································································· 3分
在△ABC 和△DCE 中,∠ABC =∠DCE ,∠ACB =∠DEC ,AB =DC .
∴△ABC ≌△DCE (AAS ). ································································ 4分 (2)由(1)知△ABC ≌△DCE ,则有BC =CE . ∵ CD =CE , ∴ BC =CD .
∴四边形ABCD 为菱形. ·········································································· 7分 ∴AC ⊥BD . ························································································· 8分 21.(本题7分)
列表或树状图表示正确; ·········································································· 3分
22方法1: 方法2: ·············································
·································· 6分 23.(本题7分)
解:过点A 作AD ⊥OB 于点D .
由题意得AN ⊥MN ,OB ⊥MN ,AD ⊥OB ,∴四边形ANMD 是矩形,
∴DM =AN , ·············································分
设OB =OA =x cm ,在Rt ∆OAD 中,∠ODA =cos ∠AOD =OD OA = x +5-14x ≈0.6. ··············分
解得x =15cm .
经检验,x =15为原方程的解. 答:细线OB 的长度是15cm . ······················分
24.(本小题满分7分)
解:设每千克樱桃应降价x 元,根据题意,得 ······················································ 1分
(60-x -40)(100+10x ) = 2240. ······················································· 4分 解得:x 1=4,x 2=6. ··············································································· 6分 答:每千克樱桃应降价4元或6元. ··························································· 7分
25.(本小题满分9分)
(1)解法一:∵关于x 的一元二次方程x 2-4mx +4m 2+2m -4=0有实数根, ∴△=(-4m )2-4(4m 2+2m -4)=-8m +16≥0, ··································· 3分
∴m ≤2. ······························································································· 4分 解法二:∵x 2-4mx +4m 2+2m -4=0,∴(x -2m )2=4-2m . ······················· 3分 ∴m ≤2. ······························································································· 4分 (2)解法一:y =x 2-4mx +4m 2+2m -4的顶点为M 为(2m ,2m -4), ··········· 6分 ∴MO 2=(2m )2+(2m -4)2=8(m -1)2+8. ········································· 7分 ∴MO 长度的最小值为22. ····································································· 9分 解法二:y =x 2-4mx +4m 2+2m -4的顶点为M 为(2m ,2m -4), ·················· 6分 ∴点M 在直线l :y=x -4上, ···································································· 7分 ∴点O 到l 的距离即为MO 长度的最小值22. ············································ 9分 26.(本小题满分12分)
解:(1)3000; ···························································································· 2分 (2)设汽车的速度为x km/h ,则飞机的速度为8x km/h ,根据题意得:
3000-2400x -2400
8x =3, ············································································ 4分 解之得:x =100.
经检验,x =100为原方程的解.则飞机的速度为8×100=800 km/h .
答:飞机的速度为800 km/h . ···································································· 6分 (3)图略. ··························································································· 8分 当0≤x ≤3,y 1=800x .
当3<x ≤9,,设函数关系式为y 1=kx +b ,
代入点(3,2400),(9,3000)得:⎩⎨⎧3k +b =2400,9k +b =3000解得⎩⎨⎧k =100,
b =2100.
∴函数关系式为:y 1=100x +2100 ···························································· 12分 27.(本题10分)
解:(1)B . ································································································ 2分
(2)解法一:过点B 作BH 垂直OC ,垂足为H .
∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OH OB =1
2,∵CA =OA ,∴
OB OC =12,∴OH OB =OB
OC
.又∵∠O =∠O , ∴△OHB ∽△OBC . ····························································∴∠OBC =∠OHB =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ·············································································· 8分
解法二:连接AB ,过点B 作BH 垂直OC ,垂足为H .
∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OH OB =1
2=cos ∠O ,
∴∠O =60°.∵OB =OA ,∴△OBA 是等边三角形,∴∠OAB =60°. ·············· 4分
∵AC =OA ,∴AB =AC ,∴∠ABC =∠C ,∴∠C =30°. ··································· 6分 ∴∠OBC =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ·············································································· 8分 (3)y =0 (12≤x <34); ··············································································· 10分
y =2x -32(34≤x ≤3
2) ········································································· 12分。

相关文档
最新文档