随机事件的概率教学反思及说课稿
《随机事件的概率》说课稿
《随机事件的概率》说课稿《随机事件的概率》说课稿作为一名为他人授业解惑的教育工作者,往往需要进行说课稿编写工作,说课稿有助于顺利而有效地开展教学活动。
写说课稿需要注意哪些格式呢?以下是小编整理的《随机事件的概率》说课稿,仅供参考,欢迎大家阅读。
《随机事件的概率》说课稿1教学目标1、让学生理解必然事件、不可能事件、随机事件的概念;2、让学生经历试验等活动会判断必然事件、不可能事件、随机事件。
3、培养学生的数学素养,体验数学与生活密切相关,激发学生学以致用的热情。
重点难点重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。
难点:必然事件、不可能事件、随机事件的区别与转化关系。
教学过程3.1第一学时教学活动活动1教学过程:一、创设情境,导入新课:(摸出红球表示运气好)1、教师拿出事先准备好的一只装的全部是红球的不透明盒子,让坐在教室左边部分的三四位同学摸球,显然学生摸到的全是红球,摸到红球的学生个个惊叹自己运气好啊。
2、教师再拿出事先准备好的另一只装的全部是白球的不透明箱盒子,让坐在教室右边部分的三四位同学摸球,而学生摸出的全部是白球,摸到白球的学生个个唉声叹气,叹自己运气怎么就不好呢。
师:真的是教室左边部分的同学运气好,右边部分的同学运气不好吗?我们一起来观察两个盒子里的秘密。
3、教师揭秘,分别展示两个不透明盒子里的球,学生观察第一个盒子里全部是红球,第二个盒子里全部是白球。
师:这个游戏公平吗?生:不公平。
师:为什么不公平呢?请大家思考生1:第一个盒子里装的全部是红球,必然摸到红球。
第二个盒子里装的全部是白球,摸到红球显然是不可能的。
师:回答得非常好,请坐。
师:如果现在让大家来摸球,你们可以确定摸出的球是什么球吗?生2:在第一个盒子里摸球,摸出的球肯定是红球,在第二个盒子里摸球,摸出的球肯定是白球。
概念:(1)在一定条件下,必然会发生的事件叫做必然事件。
(2)在一定条件下,不可能发生的事件叫做不可能事件。
随机事件说课稿3篇大全
随机事件说课稿3篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!随机事件说课稿3篇随机事件说课稿1教学目标1、让学生理解必然事件、不可能事件、随机事件的概念。
“随机事件的概率”说课稿
《随机事件的概率》说课稿高等教育出版社《中职数学(基础模块)下册》第10章第2节学校:××××××姓名:××××××《随机事件的概率》说课稿尊敬的各位专家、评委老师,大家好!今天我说课的课题是高等教育出版社中职数学(基础模块)下册第十章第二节的第一课时《随机事件的概率》。
下面我就从教材分析、学情分析、教学目标分析、教学模式及教法和学法分析、教学过程分析、板书设计、教学评价与教学反思等八个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委老师批评指正。
一、教材分析:《随机事件的概率》是学生学习《概率》的入门课,也是一堂概念课。
现实生活中存在大量的不确定事件,而概率正是研究不确定事件的一门学科。
本节课主要是通过试验让学生体会“随机事件发生的不确定性以及大量重复试验下又表现出的频率的稳定性”这一抽象知识点;通过剖析试验数据理解频率与概率的关系。
由于学生在初中阶段已经学习了概率初步,因此本节课是对已学内容的深化和延伸;同时,又是对后面拓展模块学习的古典概型、几何概型等内容的一个铺垫,具有承上启下的作用。
二、学情分析:1.知识方面:学生在初中阶段学习了概率初步,所以学生具备了一定的认知结构;2.能力方面:对于中一的学生来说已经具备了一定的动手试验、观察、归纳、概括能力;3.情感方面:学生知道概率与游戏、博彩等有关,多数学生兴趣浓厚,能积极主动的参与教学活动,但少数学生的主动性还需要营造一定的学习氛围加以带动。
三、教学目标及重难点(一)教学目标:知识与技能:(1)结合一些具体实例了解随机事件、必然事件、不可能事件的概念;(2)通过亲身实验,了解随机事件发生的不确定性和频率的稳定性;(3)理解当实验次数较大时实验频率稳定于理论概率,并据此估计某一事件发生的概率。
过程与方法:(1)发现法教学——经历抛硬币试验获取数据的过程,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)培养能力——通过三种事件的区分及用统计算法计算随机事件的概率,提高学生分析问题、解决问题的能力。
《随机事件的概率》教学设计与反思
《随机事件的概率》教学设计与反思关于《随机事件的概率》教学设计与反思一.教材分析在现实世界中,随机现象是广泛存在的,而随机现象中存在着一定的规律性,从而使我们可以运用数学方法来定量地研究随机现象;本节课正是引导学生从数量这一侧面研究随机现象的规律性。
随机事件的概率在实际生活中有着广泛的应用,诸如自动控制、通讯技术、军事、气象、水文、地质、经济等领域的应用非常普遍;通过对这一知识点的学习运用,使学生了解偶然性寓于必然之中的辩证唯物主义思想,学习和体会数学的奇异美和应用美.二.学情分析求随机事件的概率,学生在初中已经接触到一些类似的问题,所以在教学中学生并不感到陌生,关键是引导学生对随机事件的概率这个重点、难点的掌握和突破,以及如何有具体问题转化为抽象的概念。
三.教学设计思路对于随机事件的概率,采用实验探究和理论探究,通过设置问题情景、探究以及知识的迁移,侧重于学生的思、探、究的自主学习,促使学生多动,并利用powerpoint制作课件,激发学生兴趣,争取使学生有更多自主支配的时间.四.教学目标:(1)知识与技能:使学生了解随机事件的定义和随机事件的概率;(2)过程与方法:提高学生分析问题和解决问题的能力,培养学生的数学化归思想;(3)情感与价值:使学生认识到研究随机事件的概率是现实生活的需要,树立辩证唯物主义观点.教学过程:一、情境导入:1、(出示幻灯片1)请同学们思考下列所述各事件发生的可能性(学生观察思考、感知对象??学生活动)(师生共同活动)1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的潜艇战搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.2、(出示幻灯片2)下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(应用概念判断,加强理解学生活动)3、请同学们再分别举出一些例子(理论联系实际学生动手写,然后投影)二、观察探索:由同学们自己动手做抛掷硬币的实验,观察正面朝上事件的规律性。
随机事件的概率教学反思(精选五篇)
随机事件的概率教学反思(精选五篇)第一篇:随机事件的概率教学反思教学反思根据本节课的内容及学生的实际水平,在教学中,采用启发、引导、探索、讨论交流的方式进行组织教学。
充分调动学生的主动性、积极性使学生真正成为学习主体.整个教学过程贯穿“怀疑”—“思索”—“发现”—“解惑”四个环节,学生随时对所学知识产生有意注意,符合学生认知水平,培养了学习能力。
“概率”概念枯燥抽象,学生似懂非懂;抛币试验简单无趣,道理似易实难;教学活动,单调乏味;思辩之美,无从体会——“随机事件的概率”对许多高中教师而言,“食之无味、弃之可惜”.抛币试验是取是舍?频率估计概率的题型训练是否必要?再三权衡,笔者认为,抛币试验是本节课的精华,唯有亲历随机过程,体会其随机性与规律性,才能真正理解概率概念;另外,关于频率估计概率的题型训练,笔者则一笔带过——因为频率估计概率,重在其思想方法,而非具体操练,而且对具体估计值的处理,没有确信的统一方法.希望通过这节课的教学,能使学生感受到随机现象有趣的一面,纠正生活中一些错误常识,更客观的看待一些“偶然”情况;能使学生在紧张而活泼的教学环节中,亲历随机性和规律性的统一过程;能使学生初步理解随机性,并感受利用统计方法处理随机性中的规律性——随机性是表象,规律性才是我们研究的主题.当然,课堂是一个动态的过程,为使严谨的课堂更具弹性,我还做了其他准备,比如模拟抛掷骰子试验,赌徒分金币等学生感兴趣的且与本节课相关的问题,以便适时的给学生拓宽知识,让学生更充分地感受到数学知识在生产、生活、娱乐、服务等方面的广泛应用。
创设情境,引导经历概念和模型构建的过程.概率涉及到很多的新概念和模型,要使这些新概念变为学生自己的知识,必须与学生已有的知识经验建立起广泛的联系这就要求我们在概念和模型的教学过程中,必须根据学生的生活,学习经验,创设丰富的问题情境,引导学生自己去生成概念、提炼模型,发现计算的法则,教师且不可因教学时间紧而淡化概念、模型构建的过程否则,学生因获得孤立的概念、模型,无法在纷繁的问题情景中去辨认,从而导致解题思想僵化.构建知识网络,引导把握各知识点间的联系与区别.学生能否准确迅速地运用概念和模型解题,主要取决于他们对概念和各模型之间的联系和区别是否真正把握,我们平时说“夯实基础,提高能力”,从本质上说就是引导学生把握知识间的联系和区别,即教材的知识结构是否转化为自己的认知结构因此,在概率的教学过程中,教师要随时引导学生将获得的新概念、新模型和已有的概念和模型进行对照和比较,找出它们之间的联系和区别,优化自己的认知结构充分展示建模的思维过程,引导感悟模型提取的思维机制.概率问题求解的关键是寻找它的模型,只要模型一找到,问题便迎刃而解而概率模型的提取往往需要经过观察、分析、归纳、判断等复杂的思维过程,常常因题设条件理解不准,某个概念认识不清而误入歧途因此,在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟出模型提取的思维机制,获取模型选取的经验,久而久之,感受多了,经验丰富了,建模也就容易了,解题的正确率就会大大提高第二篇:随机事件的概率教学反思篇一:随机事件的概率教学反思教学反思根据本节课的内容及学生的实际水平,在教学中,采用启发、引导、探索、讨论交流的方式进行组织教学。
随机事件的概率说课稿
随机事件的概率说课稿一、教材分析概率论是研究现实世界中随机现象规律性的科学,是近代数学的重要组成部分,它在自然科学以及经济工作中都有着广泛的应用。
概率是描述随机事件发生可能性大小的度量,已渗透到人们的日常生活中,例如:彩票的中奖率,产品的合格率,天气预报,台风预报等都离不开概率。
概率的准确含义是什么呢?我们用什么样的方法获取随机事件的概率,从而激发学生学习概率的兴趣呢?本节课通过学生动手实验,让学生体会随机事件的随机性和随机性中的规律性,在这个过程中,体现了试验、观察、探究、归纳和总结的思想方法.二、教学目标知识与技能目标(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率与概率的区别与联系.过程与方法目标学生在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.情感态度与价值观目标学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系,感受与他人合作的重要性。
三、重点难点重点:了解随机事件发生的不确定性和频率的稳定性,正确理解概率的意义。
难点:理解频率与概率的关系,对概率含义的正确理解。
四、学情分析由于学生在初中已经接触了概率,对数学新内容的学习有很大的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡.五、教法学法教学矛盾的主要方面是学生的学。
学是中心,会学是目的。
因此在教学中要不断指导学生学会学习。
本节课主要采用发现法教学,小组合作学习。
教学用具有硬币、乒乓球、多媒体。
六、教学设想游戏规则:请出四名志愿者,在一个黑色的口袋中放入三黄一白四个乒乓球,并规定谁摸到白色的球就能获胜.1、当口袋中全部是黄球时,从中摸一个球是黄球,这件事情是否会发生?2、当口袋中全部是黄球时,从中摸一个球是白球,这件事情是否会发生?在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象.3、当口袋中既有白球又有黄球时,从中摸一个球是黄球,这件事情是否会发生?在一定条件下,事先不能断定发生或不发生某种结果,这种现象就是随机现象概念学习1定义:⏹1.必然事件:⏹2.不可能事件:3.随机事件:概念探究:“从一堆牌中任意抽一张抽到红牌”这是什么事件?事件的结果是相应于一定条件而言的。
人教版高中数学必修3第三章《随机事件的概率》说课稿共6页文档
人教版高中数学必修3第三章《随机事件的概率》说课稿一、教材分析本节课《随机事件的概率》是人教版数学必修3中第三章第一节第一课,《随机事件的概率》主要研究事件的分类,概率的意义及其基本性质。
现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。
它在人们的生活和生产建设中有着广泛的应用,所以它在教材中处于非常重要的位置。
通过本节课的学习,学生的创造性思维能力和动手实践能力得以提高,而本节课所涉及的不确定性与稳定性、随机性与规律性也突出体现了辩证唯物主义观点。
二、学情分析学生在初中阶段学习了概率初步,对频率与概率的关系有一定的认识,但他们还不能很好地理解频率与概率的区别与联系;学生很不喜欢概念课,觉得概念课总是枯燥无味的;高二学生思维活跃、成熟,动手实践、合作探究的积极性高。
三、教学目标1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)了解随机事件发生的不确定性和频率的稳定性;2、能力目标:(1)通过动手试验,体会随机事件发生的随机性和规律性;(2)在试验、探究和讨论过程中理解概率与频率的区别和联系,学会用频率估计概率的思想方法.3、情感态度与价值观:通过学生动手实践,培养学生的试验、观察、归纳和总结的技能,培育学生团结协作探究、合作交流表达的团队意识。
4、重点、难点:重点:事件的分类;理解概率与频率的区别和联系难点:理解随机事件的概率的统计定义。
四、教法学法分析:1、在教法上,因为分组实验是本节课最重要的环节,所以,我们采用“实验探究式”教学模式,借助多媒体辅助教学。
2、在学法上,先学后教,以学生动手为中心,以探究、试验为主线,采用“小组合作探究式学习法”进行学习。
五、教学程序:。
随机事件的概率-获奖说课稿
随机事件的概率-获奖说课稿随机事件的概率一、教材分析1、教材的地位和作用《随机事件的概率》主要研究随机事件的概念,概率的概念及意义,是学生进入概率学习的钥匙。
学生对概念及意义的理解如何,将会直接影响到整个概率知识的学习。
在数学知识的学习上,它能使学生经历观察、分析、猜想、验证等数学活动过程,是培养学生应用意识、创新意识和抽象思维能力的重要素材。
而且概率与我们的实际生活有着紧密的联系,对指导我们从事社会生产、生活具有十分重要的意义。
因此该部分内容在教材中处于非常重要的位置。
2、教学目标:(1)知识与技能:经历对事件进行判断的过程,了解随机事件、必然事件、不可能事件的概念;理解并掌握概率的概念和意义;能利用概率知识解决生活中的实际问题。
(2)过程与方法:亲身经历概率定义的形成过程和对现实生活问题的探究过程,学习对实验数据进行有效的分析和处理的方式和方法,提高分析问题、解决问题的能力。
(3)情感态度与价值观:了解偶然性寓于必然性之中的辩证唯物主义思想,体验研究1式学习的快乐。
3、教学重点、难点:概率的定义及概率定义的形成过程突出重点、突破难点的关键是引导学生亲身参与体验,再现概率定义的形成过程,实现由具体问题到抽象概念的转化。
二、教法学法教法:我采取的是“研究体验式”教学法,这其实也是教给学生学习和研究的一种方法。
以问题为载体,再现概念的形成过程,实现研究方法的渗透以及数学知识的建构。
与此同时通过营造民主和谐的课堂氛围,培养学生自主学习,合作交流的学习习惯,增加学生学习和研究的兴趣。
学法:新课程把转变学生的学习方式作为重要的着眼点,提倡自主、合作、探究的学习方式。
本节课学生通过亲身经历动手试验、收集数据、绘制图表、独立思考、合作交流、分析归纳等研究过程,体验合作参与、自主构建知识的快乐。
三、教学程序新课标倡导:教学过程设计必须遵循学生的认知规律,要尽可能带动所有学生的积极性,让学生经历知识的形成与发展过程;同时还要引导学生走出学习数学概念仅靠单纯的记忆模仿的误区。
《随机事件》教学设计与反思5篇
《随机事件》教学设计与反思5篇第一篇:《随机事件》教学设计与反思《随机事件》教学设计与反思教学目标: 知识与技能:通过分析正确认识必然事件、不可能事件、随机事件,并理解随机事件的概念。
过程与方法:能根据随机事件的特点辨别哪些事件是随机事件。
情感与态度:感受数学与现实生活的联系,在独立思考的基础上,积极参与对数学问题的讨论,获得成功的体验。
在体验中去感受数学,喜欢数学。
教学重点、难点: 重点:理解随机事件的概念并掌握随机事件发生可能性的变化规律。
难点:1、判断现实生活中哪些事件是随机事件。
2、探究随机事件可能性的变化规律。
教具准备:课件、口袋、小球、扑克牌、骰子教学过程:一、创设情境,引入新课在篮球比赛前,有这样一位新裁判员想以抽签方式决定两支球队的进攻方向,他准备了三根形状、大小相同的纸签。
上面分别写有1、0、0,在看不到纸签上的数字情况下,让其中一方队长从三根纸签中任意地抽取一根,抽到数字是1的纸签则拥有选择权,抽到数字是0的纸签则选择权给对方。
[师生行为]结合图片引发学生思考:如果你是队长会去抽吗?让学生凭借自己的经验谈谈想法,教师引导学生学完本节课内容后用严谨的数学知识可以解答。
[设计意图] 从篮球比赛中创设情境引出问题,让学生思考,激发学生求知欲望。
二、活动1:猜牌游戏1、展示四张红桃A,然后洗牌抽出一张,让学生猜这张是什么A?问可能是黑桃A吗2、展示红桃A、黑桃A、方块A、梅花A各一张,然后洗牌抽出一张,猜是什么A?[设计意图] 通过师生互动游戏引导学生观察、思考并归纳出在一定条件下判断事件发生的结果有三种情况:可能、不可能、一定。
活动2:投掷一个质地均匀的正方体骰子,骰子六个面上分别刻有1到6的点数,每位学生掷10次并记录每次向上一面骰子的点数。
问:(1)通过实验推断老师任意的投掷一次骰子而向上一面可能出现哪些点数?(2)出现的点数大于0。
(3)出现的点数会是7。
(4)出现的点数会是4。
《随机事件的概率》说课稿
三、目标分析
1、教 学 目 标
知
过
情
识
程
感
技
方
态
能
法
度
知识技能
(1)了解随机事件、必然事件、不可 能事件的概念;
(2)正确理解事件A出现的频率的意义; (3)正确理解概率的概念和意义,明确 事件A发生的频率与事件A发生的概率的区别 与联系; (4)利用概率知识正确理解现实生活中的 实际问题。
过程与方法
(2)频率和概率有什么区别和联系?
(3)根据概率的概念,是不是实验次数多的频率
一定比实验次数少的频率更接近概率?
环节三
实验探究,合作归纳
15分钟
历史上一些著名的抛币试验结果表
抛掷 次数
2048
4040
12000 24000 30000
正面朝 上次数
1061
2048
6019 12012 14984
频率 0.5181 0.5069 0.5016 0.5005 0.4995
进一步加深学生对概念的理解和把握。
环节二
2.概念提炼
分组讨论 代表发言 教师总结
游戏活动,概念提炼
10分钟
必然事件 在条件s下,一定发生的事件。
不可能事件 在条件s下,一定不发生的事件。
随机事件
在条件s下,可能发生也可能 不发生的事件。
环节二
游戏活动,概念提炼
10分钟
3.巩固概念
下列哪些是随机事件,哪些是必然事件,
收集数据总结规律
数学中 数学试验 收集数据总结规律
设计意图:创设疑问,激发学生好奇 心,3 引出本节课突破重难点的环节。
环节三
实验探究,合作归纳
【课稿】随机事件的概率教学反思及说课稿
【关键字】课稿《梁潇一、教材的地位和作用“随机事件的概率”是人教A版《数学必修3》第三章第一节的内容,本节课是其中的第一课时.课程标准要求:“在具体情境中,了解随机事件发生的谬误定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别”.并指出:“概率教学的核心问题是让学生了解随机现象与概率的意义”.要求“教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的谬误定性及其频率的稳定性,并尝试澄清日常生活遇到的一些错误认识.”本节课“随机事件的概率”主要研究事件的分类,概率的意义,概率的定义及统计算法。
现实生活中存在大量谬误定事件,而概率正是研究谬误定事件的一门学科。
作为“概率统计”这个学习领域中的第一节课它在人们的生活和生产建设中有着广泛的应用,它以初中概率学为基础,又为选修2-3重新进行了知识建构,所以它在教材中处于非常重要的位置。
二、教学目标1、教学目标:(1)知识目标:使学生了解必然事件,不可能事件,随机事件的概念;理解频率和概率的含义和两者的区别和联系.(2)能力目标:培养学生观察和思考问题的能力,提高综合运用知识的能力和分析解决问题的能力.(3)德育目标:结合随机事件的发生既有随机性,又存在着统计规律性,了解偶然性寓于必然性之中的辨证唯物主义思想.(4)情感目标:通过师生、生生的合作学习,培养学生团结协作的精神和主动与他人合作交流的意识.同时,概率的定义与性质是学生学习概率的基石,其中也蕴含了重要的数学思想,因此,我确定重点、难点和教学方法如下:2、教学重点:①事件的分类;②概率的统计定义;③概率的性质.3、教学难点:随机事件的发生所呈现的规律性.4、教学方法:以多媒体教学课件为教学辅助.三、学情分析学生在初中阶段学习了概率初步,对频率与概率的关联有一定的认识,有阅读、观察的基础,具备一定的合作交流,自主探究能力。
但学生的表达能力、归纳能力相对较弱,教学过程中要不断增强学生学习的兴趣,让学生主动发掘本节课的重点。
随机事件的概率说课稿
频率与概率说课稿一、教材分析自然界和人类社会中出现的确定性现象有其必然的结果,而随机事件现象因其不确定性吸引着人们不断探索。
随机事件的概率是高考考查的重点,教材编排中本章放在了“统计”之后,“计数原理”之前,结合古今现实生活的实例展开的,“统计”一章让学生掌握的分析实例的统计方法为本章的学习奠定了基础,大大加强了学生的实践能力,而且为后续概率部分的学习提供了有力保证。
二、教学目标知识和技能:(1)通过试验了解随机事件发生的不确定性和频率的稳定性。
(2)利用概率知识正确理解现实生活中的实际问题。
过程与方法:(1)创设情境,引出课题,激发学生的学习兴趣和求知欲。
(2)发现式教学,通过抛硬币试验,获取数据,归纳总结试验结果。
体会随机事件发生的随机性和规律性,在探索中不断提高。
(3)明确概率与频率的区别和联系,理解利用频率估计概率的思想方法。
(4)通过对现实生活中的“掷币”,“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法。
.情感、态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系。
(2)培养学生的辩证唯物主义观点,增强学生的科学意识,并通过数学史实渗透,培育学生刻苦严谨的科学精神。
三、教学重、难点重点:通过抛掷硬币了解概率的定义、明确其与频率的区别和联系。
难点:利用频率估计概率,体会随机事件发生的随机性和规律性。
四、学法与教学用具学法:实践教学法,指导学生做简单易行的试验,让学生自然地发现随机事件的某一结果发生的规律性。
教学用具:硬币数枚、粉笔五、教学设想六、教学过程教学环节教学程序及设计设计意图创设情境引入新课引入:以北宋大将狄青抛掷100枚铜钱的故事引入,激发学生的学习兴趣,配合实际生活中的抛掷硬币和彩票中奖的例子,设置疑问,引导学生进入到这节课要研究的问题:随机事件的概率。
创设情境激发学生兴趣、引入新课,同时说明新课来自实际生活,便于学生接受。
随机事件的概率 说课稿 教案 教学设计
课题
随机事件的概率
课型
新课
教学目标
(1)了解必然事件、不可能事件、随机事件的概念;
(2)理解频率的稳定性及概率的统计定义.
(3)发现法教学,通过学生在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.理解在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解概率和频率的关系.从而培养学生从试验中归纳出一般规律的能力以及学生动手能力与解决实际问题的能力.
思考6:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率?
通过大量重复试验得到事件A发生的频率的稳定值,即概率.
思考7:在相同条件下,事件A在先后两次试验中发生的频率fn(A)是否一定相等?事件A在先后两次试验中发生的概率P(A)是否一定相等?
(6)随机选取一个实数x,得|x|≥0.
例2某射手在同一条件下进行射击,结果如下表所示:
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是多少?
小结评价
频率具有随机性,做同样次数的重复试验,事件A发生的频率可能不相同;概率是一个确定的数,是客观存在的,与每次试验无关.
随机事件的概率教学案例分析与教学反思
随机事件的概率教学案例分析与教学反思岳继东案例的背景:教材:人民教育出版社出版高中数学第二册(下)课题:随机事件的概率【教案设计说明】1.作为高中数学必修内容的最后一个部份,本章在整个高中数学中占有重要地位概率,在概率论与数理统计已获得今日社会的广泛应用、概率已成为日常生活的普通常识的今天,对它进行初步学习更是显得十分重要:可以获得概率的一些基本知识,了解其中的一些基本观念和思考方法,运用它解决一些简单的实际问题,并为到高中三年级以及进一步学习概率统计知识打好必要的基础2、以学生为主体,问题探索为主线,体现新课改的理念与发展方向。
教师激发学生的学习主动性,向学生提供充分从事数学活动的机会,帮助他们在自主探索与合作交流的过程中,真正理解和把握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
学生是数学学习的主人,教师是数学学习的组织者、引领者与合作者。
为了培养学生的探究能力,因而本课的设计主要在转变学生学习方式、培养探究能力方面作一尝试。
教案及其分析:【教学内容】人民教育出版社出版高中数学第二册(下)第十一章第一节《随机事件的概率》【知识与技能】随机事件及其概率【过程能力与方法】教学目标:1.了解必然事件,不可能事件,随机事件的概念2.理解随机事件在大量重复试验的情况下,其发生呈现规律性3.掌握概率的统计定义及概率的性质教学重点:随机事件的概念及其概率教学难点:随机事件的概念及其概率能力练习:以实验沟通频率与概率之间的桥梁,培养学生综合分析问题解决问题的能力。
【态度情感与价值观】在概率综合应用的教学过程中,渗透数学实验思想及探索精神,培养学生思维的广阔性和严谨性。
【教学模式】探究讨论式【探究过程】(一).设置情景:1名数学家=10个师在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后认为,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法预先确定的,这类现象称为随机现象.确定性现象,一般有着较明显的内在规律,因此比较容易掌握它.而随机现象,由于它具有不确定性,因此它成为人们研究的重点.随机现象在一定条件下具有多种可能发生的结果,我们把随机现象的结果称为随机事件.(二).探索研究:1.随机事件(出示投影)下列哪些是随机事件?(1)导体通电时发热;(2)某人射击一次,中靶;(3)抛一石块,下落;(4)在常温下,焊锡熔化;(5)抛一枚硬币,正面朝上;(6)在标准大气压下且温度低于时,冰融化.由一名学生回答,然后教师归纳:在一定条件下必然要发生的事件,叫做必然事件;在一定条件下不可能发生的事件,叫做不可能事件;在一定条件下可能发生也可能不发生的事件,叫做随机事件.可让学生再分别举一些例子.[目的在于让学生认清、分清几种事件的区别]。
随机事件的概率教学反思
篇一:随机事件的概率教学反思教学反思根据本节课的内容及学生的实际水平,在教学中,采用启发、引导、探索、讨论交流的方式进行组织教学。
充分调动学生的主动性、积极性使学生真正成为学习主体. 整个教学过程贯穿"怀疑"-"思索"-"发现"-"解惑"四个环节,学生随时对所学知识产生有意注意,符合学生认知水平,培养了学习能力。
" 概率"概念枯燥抽象,学生似懂非懂;抛币试验简单无趣,道理似易实难;教学活动,单调乏味;思辩之美,无从体会--"随机事件的概率"对许多高中教师而言,"食之无味、弃之可惜".抛币试验是取是舍?频率估计概率的题型训练是否必要?再三权衡,笔者认为,抛币试验是本节课的精华,唯有亲历随机过程,体会其随机性与规律性,才能真正理解概率概念;另外,关于频率估计概率的题型训练,笔者则一笔带过-- 因为频率估计概率,重在其思想方法,而非具体操练,而且对具体估计值的处理,没有确信的统一方法.希望通过这节课的教学,能使学生感受到随机现象有趣的一面,纠正生活中一些错误常识,更客观的看待一些"偶然"情况;能使学生在紧张而活泼的教学环节中,亲历随机性和规律性的统一过程;能使学生初步理解随机性,并感受利用统计方法处理随机性中的规律性-- 随机性是表象,规律性才是我们研究的主题.当然,课堂是一个动态的过程,为使严谨的课堂更具弹性,我还做了其他准备,比如模拟抛掷骰子试验,赌徒分金币等学生感兴趣的且与本节课相关的问题,以便适时的给学生拓宽知识,让学生更充分地感受到数学知识在生产、生活、娱乐、服务等方面的广泛应用。
创设情境,引导经历概念和模型构建的过程. 概率涉及到很多的新概念和模型,要使这些新概念变为学生自己的知识,必须与学生已有的知识经验建立起广泛的联系这就要求我们在概念和模型的教学过程中,必须根据学生的生活,学习经验,创设丰富的问题情境,引导学生自己去生成概念、提炼模型,发现计算的法则,教师且不可因教学时间紧而淡化概念、模型构建的过程否则,学生因获得孤立的概念、模型,无法在纷繁的问题情景中去辨认,从而导致解题思想僵化. 构建知识网络,引导把握各知识点间的联系与区别. 学生能否准确迅速地运用概念和模型解题,主要取决于他们对概念和各模型之间的联系和区别是否真正把握,我们平时说"夯实基础,提高能力",从本质上说就是引导学生把握知识间的联系和区别,即教材的知识结构是否转化为自己的认知结构因此,在概率的教学过程中,教师要随时引导学生将获得的新概念、新模型和已有的概念和模型进行对照和比较,找出它们之间的联系和区别,优化自己的认知结构充分展示建模的思维过程,引导感悟模型提取的思维机制. 概率问题求解的关键是寻找它的模型,只要模型一找到,问题便迎刃而解而概率模型的提取往往需要经过观察、分析、归纳、判断等复杂的思维过程,常常因题设条件理解不准,某个概念认识不清而误入歧途因此,在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟出模型提取的思维机制,获取模型选取的经验,久而久之,感受多了,经验丰富了,建模也就容易了,解题的正确率就会大大提高篇二:随机事件的概率教学反思及说课稿《3.1.1 随机事件的概率》说课稿梁潇教材的地位和作用"随机事件的概率"是人教a 版《数学必修3》第三章第一节的内容,本节课是其中的第一课时.课程标准要求:"在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别".并指出:"概率教学的核心问题是让学生了解随机现象与概率的意义".要求"教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的不确定性及其频率的稳定性,并尝试澄清日常生活遇到的一些错误认识."本节课"随机事件的概率"主要研究事件的分类,概率的意义,概率的定义及统计算法。
随机事件的概率 说课稿 教案 教学设计
随机事件的概率教学目标:1.通过在抛硬币等试验获取数据,了解随机事件、必然事件、不可能事件的概念.2.通过获取数据,归纳总结试验结果,发现规律,正确理解事件A出现的频率的意义,真正做到在探索中学习,在探索中提高.3.通过数学活动,即自己动手、动脑和亲身试验来理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系,体会数学知识与现实世界的联系.教学重点:理解随机事件发生的不确定性和频率的稳定性.教学难点:理解频率与概率的关系.教学方法:讲授法课时安排1课时教学过程一、导入新课:在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.(故事略)在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.二、新课讲解:1、提出问题(1)什么是必然事件?请举例说明.(2)什么是不可能事件?请举例说明.(3)什么是确定事件?请举例说明.注:以上3问初中已经学习了.(4)什么是随机事件?请举例说明.(5)什么是事件A的频数与频率?什么是事件A的概率?(6)频率与概率的区别与联系有哪些?观察:(1)掷一枚硬币,出现正面;(2)某人射击一次,中靶;(3)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;这三个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.2、活动做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法具体如下:第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下思考:试验结果与其他同学比较,你的结果和他们一致吗?为什么?第二步 由组长把本小组同学的试验结果统计一下,填入下表.思考:与其他小组试验结果比较,正面朝上的比例一致吗?为什么?通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.第三步 用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?第四步 把全班实验结果收集起来,也用条形图表示.思考:这个条形图有什么特点?引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.第五步 请同学们找出掷硬币时“正面朝上”这个事件发生的规律性.思考:如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.3、讨论结果:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件(certain event ),简称必然事件.(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件(impossible event ),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件.(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件(random event ),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n a 为事件A 出现的频数(frequency );称事件A 出现的比例f n (A)=nn A为事件A 出现的频率(relative frequency );对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率(probability ).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数A n 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同.概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关.三、课堂练习:四、课堂小结:本节研究的是那些在相同条件下,可以进行大量重复试验的随机事件,它们都具有频率稳定性,即随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A 的概率),这个常数越接近于1,事件A 发生的概率就越大,也就是事件A 发生的可能性就越大.反之,概率越接近于0,事件A 发生的可能性就越小.因此说,概率就是用来度量某事件发生的可能性大小的量.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机事件的概率教学反思及说课稿《3.1.1随机事件的概率》说课稿梁潇一、教材的地位和作用“随机事件的概率”是人教A版《数学必修3》第三章第一节的内容,本节课是其中的第一课时.课程标准要求:“在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别”.并指出:“概率教学的核心问题是让学生了解随机现象与概率的意义”.要求“教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的不确定性及其频率的稳定性,并尝试澄清日常生活遇到的一些错误认识.”本节课“随机事件的概率”主要研究事件的分类,概率的意义,概率的定义及统计算法。
现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。
作为“概率统计”这个学习领域中的第一节课它在人们的生活和生产建设中有着广泛的应用,它以初中概率学为基础,又为选修2-3重新进行了知识建构,所以它在教材中处于非常重要的位置。
二、教学目标1、教学目标:(1)知识目标:使学生了解必然事件,不可能事件,随机事件的概念;理解频率和概率的含义和两者的区别和联系.(2)能力目标:培养学生观察和思考问题的能力,提高综合运用知识的能力和分析解决问题的能力.(3)德育目标:结合随机事件的发生既有随机性,又存在着统计规律性,了解偶然性寓于必然性之中的辨证唯物主义思想.(4)情感目标:通过师生、生生的合作学习,培养学生团结协作的精神和主动与他人合作交流的意识.同时,概率的定义与性质是学生学习概率的基石,其中也蕴含了重要的数学思想,因此,我确定重点、难点和教学方法如下:2、教学重点:①事件的分类;②概率的统计定义;③概率的性质.3、教学难点:随机事件的发生所呈现的规律性.4、教学方法:以多媒体教学课件为教学辅助.三、学情分析学生在初中阶段学习了概率初步,对频率与概率的关联有一定的认识,有阅读、观察的基础,具备一定的合作交流,自主探究能力。
但学生的表达能力、归纳能力相对较弱,教学过程中要不断增强学生学习的兴趣,让学生主动发掘本节课的重点。
四、教材的重点和难点随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,所以我依据课程标准确定以下重难点。
重点:事件的分类;了解随机事件发生的不确定性和概率的稳定性;正确理解概率的定义。
难点:随机事件的概率的统计定义。
由于概念比较抽象,突破难点的重要途径是注重它们的实际意义,通过实例、实验来加深学生对概念的理解。
五、学法与教学用具:、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:1必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生自主发发现随机事件发生可能性的大小及确定其大小的方法;、教学用具:硬币,幻灯片,计算机及多媒体教学设备.2六、教学过程1、创设情境,引出课题教学过学生活设计意图与评本节课的内容学生(展示幻灯片初中已经有所涉及,如实例“麦迪时刻激发学生的学习兴趣、片实例,思考,动参与课堂,是教学的一球员麦迪在景,NBA回答问题。
1.7比赛最后秒投中大难点.三分球。
为什么观众拿学生感兴趣的体育和运动和生活紧此都判裁如实例当作引例,能够激发学生的学习张?兴趣,调动听课者情绪。
上述例子中涉及到了一个事件:“麦迪投三分球命中”对随机事件的概念,直接利用谈谈上述这个事件的特点。
并举多媒体展示出来,重点放在对生活中随出生活中属于此类的事件。
生活中机事件的讨论上,调动了的事件还有哪些不属于此类?总结同学们的积极性,活跃了说明:气氛.在实际教学中,学举学事件分为以下三类:生生总能想到一些奇特的例下,在一定条件S一定会发生的例说明。
并总子,结,得出三个生动活泼,事件叫做必然事件。
出人意料。
最后老师进行总结,给出事件的概念。
在一定条件S下,不可能发生的三种事件的定义。
并且加事件叫做不可能事件。
以说明,高中对于随机事下,在一定条件S可能发生也可件的定义与初中教材的中能不发生的事件叫做随机事件。
的定义的差别。
提问:“7月麦子成熟”这个事件属于哪个事件?必须加前提“在条件S下”才能在这里举例说明,生将事件准确的分类。
活中也存在着像车祸,比通过同学们举例我们发现,我们赛失利这样的随机事件,生活在一个充满了随机事件的世界我们并没有这样的事件有里。
同时生活中也存在着一些像天发生的可能性而终日惶恐灾、人祸等这样的随机事件,可是不安,或者是放弃今天的我们并没有因此而终日惶恐不安。
努力,由此引出对随机事也没有因为实现人生目标这个事件件发生可能性规律的是一个随机事件而放弃今天的努思考。
不仅推动了课堂的进力,是因为在我们与随机事件接触程,也打到了相应的情感的过程当中,我们对随机事件发生目标。
的规律性有着感性的认识。
事件发生的可能性是有大小之分的,因此人们就开始用数量、数值来度量事件发生的可能性。
我们把这样的数值称之为事件发生的概率。
计算事件的概率是在数学中一个非常重要的研究分支,知随机事件的概率可以为我们的学生分析策提供理论依据,所以今天我就来探究随机事件的概率思考,回答借助前面的事例,思考少课堂的阅读量和重复每个人投三分球命中都维量一个随机事件,为什么比赛的最可以提高课堂效率也增强了规律性与随机时刻是让麦蒂投三分球而不是姚的对比.并且三个问题呢)如果我们使用两个人(.以往比赛中的命中率来说明此问的,这恰恰说明概率的雏形在生活实践题的话,什么是命中率?怎么计中已经产生,同时这样的问题也更算?有利于学生对概率概念本投三分球命中的次数?命中率身的把握,抽象过程就变投三分球的总数得顺其自然了.“命中率”在数学中的意义就是“投三分球命中”这个事件发生的频率。
n次试在相同的条件S下重复分析频率的概念,为是否出现,称验,观察某一事件A理解概率概念及“利用频A出现的次数nAn次试验中事件率估计概率”的思想方法出为事件A出现的频数;称事件A创造条件.n A出现fn(A)=现的比例为事件A n的频率.2、师生合作,共探新知教学过程学生活动设计意图与评述基于初中的学习,有些生活中我们已经有了用试验发生的频率来估计事件发生的概学生具备了用试验频率来率的实践经验,那么我们用一个估计概率的经验.但对于活动来验证此方法是否可行。
“为什么可以这样做”,缺学生活动:做抛掷硬币试验,乏思考,导致在分析问题、探究“硬币正面朝上”这个事件分析数据时会出现偏差.因的概率。
此从学生熟悉的命中率入实验步骤:手,学生首先说明这种方法来源自第一步,第一步,四个人一组,于生活经验,为接下来的探主试验,让同做20次抛掷硬币的试验,每组记学讨做准备.们亲历抛录下试验结果,并记录到下表中;掷硬币的过程。
正面朝上的次次第试分组试验是本节课不能忽略重要的环节第二步第二步每组把试也是本节课教学中最难结果通报,老师在电脑上进行制的一个环节——必须总绘制频率图观察数据特征试验的自主权交给学生正面正面实验小同学们亲历抛掷硬币的上次上频才能唯有如此机过程1察试验图表才能构起正确的随机观2证的理解随机性中的规3规律性的认性. 4识。
…13第三步,利用抛硬币模拟软学生亲历随机试验过计算当试验次数大量增加时,件,程,更能理解试验的随机观察频率发生的变化。
性,并体会出大量重复试验正面“第四步,找出抛掷硬币后的规律性,结合历史上数探这个事件发生的规律性,朝上”学家所做的努力,学生观及电脑模究其概率,及其发生的频率与概拟,更加深对频率的认识,学受科察感率的关系。
并意识到概率概念的雏形.家的治精学。
体现上3-2页表展示书112,情感目标神述实验结论具有普遍性。
实现。
正面向上的试验抛掷次m(频率n(频数次数)数(n 者)m棣莫0.51061 2048 弗0.52048 布丰4040 验在试分析过程中,0.410000 费勒4979 归纳总生学结。
皮尔0.512000 6019 逊皮尔频率稳定在0.5附近0.2400012012这0.即抛掷一枚硬“正面朝上的概率率取值加引概率定义识对比研究,探讨“正面朝上的规律性硬抛掷相同次数的硬币“正面朝上”的频率不是一成不其他人系的充强硬随着试验次数的增加0.“正面朝上”的频率稳定在.近;建构主义要求在课堂上讨论0.5的意义,引出概率思想方法的自主体现概念、的概念:建构过程,让学生去尝试、对于给定的随机事件A,如果随内化成发生的探索,总结、沉淀,着试验次数的增加,事件A 稳定在某个常数上,把知识结构.fn(A)频率这个常数记作P(A),称为事件A的概率。
的概率P(A)的范讨论:事件A 围?频率与概率有何区别和联系?事件A的概率P(A)的范围:1)?P0?(A也就为不可能区分频率和概率,当P(A)=0时,事件A初步理解了随机性和规律事件;为必然事性的辩证统一.P(A)=1当时,事件A 件为随当A时,事件1)?0P(A?就意味着机事件。
当概率越接近0这个事件发生的可能性非常小,如就意味着这个事件发生的果接近1 可能性非常大。
频率与概率的区别和联系:⑴频率是概率的近似值,随着试验次数的增加,频率会稳定在概率附近;⑵频率本身是随机的,在试验前不能确定;是客⑶概率是一个确定的数,观存在的,与每次试验无关。
、讨论探究,应用实例3设计意图与评述学生活动教学过应用实通过对实例一、判断正误有可能出抛掷一枚硬币正面,也有可能出现反面考讨论答所以抛掷两次硬币肯0.有一次出现正面继而的理解次硬币3000所以抛0.5.出现正面的次数很有可能是原有的知识结次。
15000构相互联系,帮“石我们从小就知道使用例二、头剪刀布”的方式来决定胜负,为助学生体会随什么采用此方法?用概率的语言描述。
机事件的随机“用石头剪刀布来分事件性和规律性是胜负,甲获胜”属于哪一类事件?例三、不矛盾的,是辨举出一个概率很小的随机事件)(1 的例子。
证统一的,即随举出一个概率很大的随机事件()2机事件在一次的例子。
试验中体现出随机性,在大量重复试验中体现出规律性.5、课堂小结、布置作业教学过程学生活动设计意图与评述课堂小结:你引导学生总结本节课有1()随机事件、必然事件、不可能何收所学内容,并分享自己的获,学生一些体会(鼓励同学们自事件的概念;谈所学的由发言))概率的定义及其与频率的区别(2知识,方体会随机事件的随机性与规律和联系,法,思想,性。
体会(利用频率(统3()求概率的方法。
作业是本节课讨论内容的自然延伸,通过动手.计规律)估计概率)设计实验,做实验,进步感受利用频率估计概课后作业的具体做法P112练七、教学反思本节课我首先从学生感兴趣的生活实例引入,一方面是为了激发学生的听课热情,另一方面也是让学生体会学习随机事件及概率的原因和必要性.抓住生活实例中包含数学思维的部分进行提问,引导学生用数学的眼光观察、认识我.们生活的世界,对生活中的现象和感性认识进行理性思考.由于学生在初中数学学习中接触过一点概率的内容,对于必然事件,不可能事件的定义,比照随机事件自己总结,事实证明,在课堂上,任务都交给学生处理,同学们充分发挥自己的想象力,效果很好。