小学奥数之循环小数计算(学生版)

合集下载

小学六年级奥数专项常考题汇编计算问题—循环小数及其分类(含答案)

小学六年级奥数专项常考题汇编计算问题—循环小数及其分类(含答案)

六年级奥数专项精品讲义常考题汇编-计算问题一循环小数及其分类一.选择题在3.141592…,2.1515,0.32655555…,2.58258258…中,循环小数有()个。

二.填空题把3.241、3.241、3.24、3.241按从大到小的顺序排列:3.7÷3的商,用循环小数的简便记法表示是—,保留两位小数是.三.计算题1. 8.47475475...的循环节是() A. 47 B. 47475 C. 75 D. 4752. 下面各数中,是循环小数的是(A. 3.1415926...B. 2.323232...C. 1.14444443. 下面各数中不是循环小数的是(A. 5.3232B. 5.3232...C. 9.834. A. B. C.三 D.四5. 2+7的商的循环节,有()数字。

6. 7. A.两个B. 三个C.六个D.七个 )不是循环小数.A. 3.33...B. 3.1415926...C.下列各数中不是循环小数的是() A. 0.1818...B. 0.3333C. 1.25151...D. 12.3 8.下面算式中,()的商是循环小数. A. 7÷3B. 9÷4C. 3÷89. 11÷6的商是. 小数,循环节是—,简便记作. ;保留一位小数约是—,保留两位小数约 10. 14.1 ・ 11的商用循环小数表示是—,保留两位小数是.11.循环小数7.1515…写作. 6.2435435…写作. 12. 循环小数5.9868686…简便方法记作—,它的循环节是—,保留一位小数约是.13. 在 0.35、0.355 > 0.35、0.3505、0.0355355…中,(1)无限小数有(2)将上面五个小数按从小到大排列是:14.3÷L1的商用循环小数表示是,保留一位小数是. 15. 16.17.写出下面各循环小数的近似值.(保留三位小数)0.5555…≈13.26565...«8.534534...≈8.269269...≈ 18.写出下列数的近似值.(保留两位小数)四.解答题除不尽的用循环小数表示商,再保留两位小数写出它们的近似值. 204÷6.638.2÷2.7≈22.一支队伍长又长,有头无尾排成行,“・”的后面分小节,节节外表都一样.(打一数学名词) 谜底是:24 .按要求排队.3.14,3.1444…,3.1414...,3.1O41M...,3.4125 .找出循环小数,并用简便形式表示.26 .把下面各数按要求填在横线上.4.729.6464...3.1415926...0.3555...«0.353535... ≈ 03535353 ≈ 4.16 ≈ 4.16≈ 4.161 ≈19 .计算下面各题, 除不尽的用循环小数表示商.1÷6 =15÷9 =32,8÷11 =20 .计算下面各题,并说一说哪几题的商是循环小数. 1÷95÷8 21 .6 ÷ 1.8 5.4÷1121.计算下面各题,23. 3÷11的商是一个循环小数,可以简便写作,商保留两位小数是.3.333334.1565656... 100.352352... 9.3444 23.123456 0.0012012012...0.7878784.6738.222...3.2795.6660.0333...1.28964有限小数:;无限小数:;循环小数:.27 .把下列各数按要求填在圈内.0.333… 4.1666... 1.414...72.072072... 5.71907190... 2.54543.141592... 18.732626 0.980808有限小数无限小数28 .循环小数2.406406406…也可以写作,保留两位小数是六年级奥数专项精品讲义常考题汇编-计算问题一循环小数及其分类参考答案一.选择题1 .解:8.47475475…的循环节是475;答案:D.2 .解:A选项:3.1415926…是无限小数;8选项:2.323232…是循环小数,循环节是32;。

六年级下册数学 小学奥数计算模块循环小数 全国通用 张

六年级下册数学 小学奥数计算模块循环小数 全国通用 张

例题讲解
六年级下册数学 小学奥数计算模块循环小数 全国通用 张
例题1 将 1 化成小数,求小数点后面第2020位上的数字是多少? 7
六年级下册数学 小学奥数计算模块循环小数 全国通用 张
六年级下册数学 小学奥数计算模块循环小数 全国通用 张
练习1 真分数 a 化成小数后,如果从小数点后第一位开始连续若 7
和是多少?
六年级下册数学 小学奥数计算模块循环小数 全国通用 张
六年级下册数学 小学奥数计算模块循环小数 全国通用 张
例题3
..
纯循环小数0.a b c 写成最简分数时,分子与分母之和是48,
六年级下册数学 小学奥数计算模块循环小数 全国通用 张

六年级下册数学 小学奥数计算模块循环小数 全国通用 张
六年级下册数学 小学奥数计算模块循环小数 全国通用 张
例题4 已知
a
..
0.3b 7,a是自然数,b是一位数,求a的值.
222
六年级下册数学 小学奥数计算模块循环小数 全国通用 张
六年级下册数学 小学奥数计算模块循环小数 全国通用 张
练习4 若 1 化成分数后,是3位纯循环小数,求a的可能取值有多 a
六年级下册数学 小学奥数计算模块循环小数 全国通用 张
计算:
练习2
..
..
..
(1.216 9 0.18) 2.0981
六年级下册数学 小学奥数计算模块循环小数 全国通用 张
六年级下册数学 小学奥数计算模块循环小数 全国通用 张
挑战2 把 13 和 88 化成小数后,两个循环小数小数点后面第201 101 101
课后作业
六年级下册数学 小学奥数计算模块循环小数 全国通用 张

小学奥数教案——循环小数(精编文档).doc

小学奥数教案——循环小数(精编文档).doc

【最新整理,下载后即可编辑】小学奥数教案---循环小数一本讲学习目标1、掌握循环小数化分数的法则,还要掌握该法则的推导方法——错位相减法;2、会进行分数与循环小数的互化;3、掌握分数与循环小数的混合计算二概念解析循环小数可分为有限循环小数,如:1.123123123(不可添加省略号)和无限循环小数,如:1.123123123……(有省略号)。

前者是有限小数,后者是无限小数。

一、把循环小数的小数部分化成分数的规则①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。

②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。

二、分数转化成循环小数的判断方法:①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数必定是混循环小数。

②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。

三例题讲解纯循环小数化分数从小数点后面第一位就循环的小数叫做纯循环小数。

例把纯循环小数化分数:从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。

9的个数与循环节的位数相同。

能约分的要约分。

混循环小数化分数不是从小数点后第一位就循环的小数叫混循环小数。

例把混循环小数化分数。

(2)先看小数部分0.353由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是不循环部分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个9,再在后面按不循环部分的位数添写几个0组成的数.循环小数的四则运算循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。

小学奥数之循环小数计算(学生版)

小学奥数之循环小数计算(学生版)

小学奥数之循环小数计算(学生版)循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.17的“秘密” 10.1428577??=,20.2857147??=,30.4285717??=,…, 60.8571427= 2.推导以下算式⑴10.19=;1240.129933==;123410.123999333==;12340.12349999=;⑵121110.129090-==;12312370.123900300-==;123412311110.123490009000-==;⑶ 1234126110.123499004950-==;123411370.123499901110-== 以0.1234为例,推导1234126110.123499004950-==.设0.1234A =,将等式两边都乘以100,得:10012.34A =;再将原等式两边都乘以10000,得:100001234.34A =,两式相减得:10000100123412A A -=-,所以12341261199004950A -==. 3.循环小数化分数结论纯循环小数混循环小数分子循环节中的数字所组成的数循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差分母n 个9,其中n 等于循环节所按循环位数添9,不循环位数添0,组成分知识点拨教学目标循环小数的计算含的数字个数母,其中9在0的左侧0.9a =; 0.99ab =; 0.09910990ab =?=; 0.990abc =,…… 模块一、循环小数的认识【例 1】在小数l.80524102007上加两个循环点,能得到的最小的循环小数是_______(注:公元2007年10月24日北京时间18时05分,我国第一颗月球探测卫星“嫦娥一号”由“长征三号甲”运载火箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄傲的时刻。

小学六年级奥数第二章循环小数与分数

小学六年级奥数第二章循环小数与分数

第二章 循环小数与分数知识要点任何分数化为小数只有两种结果,或者是有限小数,或者是循环小数,而循环小数又分为纯循环小数和混循环小数两类。

那么,什么样的分数能化成有限小数,什么样的分数能化成纯循环小数、混循环小数呢?我们先看下面的分数。

(1)=0.5,(=)=0.12,(=)=0.425;12325235174031725⨯(2)=,=,=;130.3 570.714285 13330.39(3)(=)=,(=)=,56523⨯0.83 6717526757⨯0.38285714 (=)=。

1013603101259⨯⨯0.2805 结论:(1)中的分数都化成了有限小数,其分数的分母只含有质因数2和5,化成的有限小数的位数与分母中含有的2与5中个数较多的个数相同。

如,因为40=23×5,含1740有3个2,1个5,所以化成的有限小数有三位。

(2)中的分数都化成了纯循环小数,其分数的分母没有质因数2和5。

(3)中的分数都化成了混循环小数,其分数的分母中既含有质因数2或5,又含有2和5以外的质因数,化成的混循环小数中的不循环部分的位数与分母中含有2与5中个数较多的个数相同。

如,因为175=52×7,含有2个5,所以化成混循环小数中的不循环67175部分有两位。

于是我们得到一个最简分数化为小数的三个结论:1.如果分母只含有质因数2和5,那么这个分数一定能化成有限小数,并且小数部分的位数等于分母中质因数2与5中个数较多的那个数的个数;2.如果分母中只含有2与5以外的质因数,那么这个分数一定能化成纯循环小数;3.如果分母中既含有质因数2或5,又含有2与5以外的质因数,那么这个分数一定能化成混循环小数,并且不循环部分的位数等于分母中质因数2与5中个数较多的那个数的个数。

典例巧解例1 判断下列分数中,哪些能化成有限小数、纯循环小数、混循环小数?能化成有限小数的,小数部分有几位?能化成混循环小数的,不循环部分有几位?5324213125023781001173850点拨上述分数都是最简分数,并且32=25,21=3×7,250=2×53,78=2×3×13,117=32×13,850=2×52×17,根据知识要点的结论可求解。

(小学奥数)循环小数计算

(小学奥数)循环小数计算

循環小數與分數的互化,循環小數之間簡單的加、減運算,涉及循環小數與分數的主要利用運算定律進行簡算的問題.1.17的“秘密”10.1428577••=,20.2857147••=,30.4285717••=,…, 60.8571427••= 2.推導以下算式⑴10.19=;1240.129933==;123410.123999333==;12340.12349999=;⑵121110.129090-==;12312370.123900300-==;123412311110.123490009000-==;⑶ 1234126110.123499004950-==;123411370.123499901110-==以0.1234為例,推導1234126110.123499004950-==.設0.1234A =,將等式兩邊都乘以100,得:10012.34A =; 再將原等式兩邊都乘以10000,得:100001234.34A =, 兩式相減得:10000100123412A A -=-,所以12341261199004950A -==. 3.循環小數化分數結論純循環小數混循環小數分迴圈節中的數字所組循環小數去掉小數點後的數字所知識點撥教學目標循環小數的計算子 成的數 組成的數與不迴圈部分數字所組成的數的差分母n 個9,其中n 等於迴圈節所含的數字個數按迴圈位數添9,不迴圈位數添0,組成分母,其中9在0的左側·0.9a a =; ··0.99ab ab =; ··10.09910990ab abab =⨯=; ··0.990abc a abc -=,……模組一、循環小數的認識【例 1】 在小數l.80524102007上加兩個迴圈點,能得到的最小的循環小數是_______(注:西元2007年10月24日北京時間18時05分,我國第一顆月球探測衛星“嫦娥一號”由“長征三號甲”運載火箭在西昌衛星發射中心升空,編寫此題是為了紀念這個值得中國人民驕傲的時刻。

1-3-3 循环小数计算.学生版

1-3-3 循环小数计算.学生版

循环小数的计算教学目标循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.知识点拨1.17的“秘密”10.1428577∙∙=,20.2857147∙∙=,30.4285717∙∙=,…,60.8571427∙∙=2.推导以下算式⑴10.19=;1240.129933==;123410.123999333==;12340.12349999=;⑵121110.129090-==;12312370.123900300-==;123412311110.123490009000-==;⑶1234126110.123499004950-==;123411370.123499901110-==以0.1234为例,推导1234126110.123499004950-==.设0.1234A =,将等式两边都乘以100,得:10012.34A =;再将原等式两边都乘以10000,得:100001234.34A =,两式相减得:10000100123412A A -=-,所以12341261199004950A -==.3.循环小数化分数结论纯循环小数混循环小数分子循环节中的数字所组成的数循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差分母n 个9,其中n 等于循环节所含的数字个数按循环位数添9,不循环位数添0,组成分母,其中9在0的左侧·0.9a a =;··0.99ab ab =;··10.09910990ab ab ab =⨯=;··0.990abc a abc -=,……例题精讲模块一、循环小数的认识【例1】在小数l.80524102007上加两个循环点,能得到的最小的循环小数是_______(注:公元2007年10月24日北京时间18时05分,我国第一颗月球探测卫星“嫦娥一号”由“长征三号甲”运载火箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄傲的时刻。

五年级奥数.计算综合.循环小数与分数分拆(ABC级).学生版

五年级奥数.计算综合.循环小数与分数分拆(ABC级).学生版

循环小数与分数拆分考试要求(1)掌握循环小数化分数的基本方法与规律;(2)在计算中能灵活运用循环小数化分数的方法进行简便运算。

知识框架【基本概念】纯小数——整数部分是零的小数。

循环小数——从后某一位开始不断地重复出现前一个或一节数字的。

循环小数有以下两类类:混循环小数、纯循环小数。

混循环小数——循环节不是从小数部分第一位开始的循环小数。

纯循环小数——循环节从小数部分第一位开始的循环小数。

【基本方法】(1)纯循环小数化分数:这个分数的分子等于一个循环节所组成的数,分母由9构成,9的个数等于一个循环节中的位数。

(2)混循环小数化分数:这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差;分母的头几位数是9,末几位是0,9的个数与一个循环节中的位数相同,0的个数与不循环部分的位数相同。

重难点重点:循环小数化分数的基本方法与规律;难点:灵活运用循环小数化分数的规律进行运算。

例题精讲一、 分数拆分【例1】110=()()11--()1=()()()111++【巩固】在下面的括里填上不同的自然数,使等式成立.()()()()()()111111110=--=++【例2】 如果1112009A B=-,A B ,均为正整数,则B 最大是多少?【巩固】若1112004a b =+,其中a 、b 都是四位数,且a<b ,那么满足上述条件的所有数对(a,b )是哪些?二、 纯循环小数化分数 【例3】 把纯循环小数化分数:(1)6.0 (2)201.3【巩固】把纯循环小数化成分数(1)612.0 (2)321.4三、混循环小数化分数【例4】 把混循环小数化分数。

(1)512.0 (2)335.6【巩固】把混循环小数化成分数。

(1)627.0 (2)24.7四、循环小数的四则运算与周期运算循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。

从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。

小学奥数之循环小数的计算

小学奥数之循环小数的计算

小学奥数之循环小数的计算循环小数是指小数部分有一段数字重复出现的小数。

在小学奥数中,学生需要学会如何将循环小数转化为分数、如何将分数转化为循环小数。

下面是关于循环小数的计算的完整版。

1.循环小数的定义和示例循环小数是指小数部分有一段数字重复出现的小数。

例如,0.333...是一个循环小数,小数部分的数字3始终重复出现。

2.循环小数转化为分数的方法将循环小数转化为分数可以通过以下的步骤进行:第一步:设循环小数的小数部分有n位数字重复,记为a。

将循环小数表示成分数的形式可以写作:0.a=x。

第二步:将等式两边都乘以10的n次幂,消去小数点及循环节,得到:10^n*0.a=10^n*x。

第三步:将上式两边减去原式,得到:10^n*0.a-0.a=10^n*x-x。

化简简化后得到:(10^n-1)*0.a=x。

第四步:将等式两边除以10^n-1,得到:0.a=x/(10^n-1)。

第五步:化简分数,得到最终的结果。

例如,将循环小数0.333...转化为分数的步骤如下:0.333...=x10*0.333...=10*x9*0.333...=10*x-x(9*0.333...)/9=(10*x-x)/90.333...=x/3所以,循环小数0.333...可以转化为分数1/33.分数转化为循环小数的方法将分数转化为循环小数可以通过以下的步骤进行:第一步:将分数a/b表示为小数形式x/y。

第二步:进行除法运算,将b除以a,得到商和余数,商为循环小数的整数部分,余数乘以10为下一次除法运算的被除数。

第三步:重复第二步操作,直到出现循环。

例如,将分数1/3转化为循环小数的步骤如下:1/3=x3/1=33/3=1出现了余数3,且之前已经出现过余数3,所以循环小数为0.333...。

4.循环小数的加减乘除运算循环小数的加减乘除运算可以通过以下的步骤进行:加法和减法:将循环小数扩展到相同的小数位数,然后进行加法或减法运算。

循环小数问题奥数专题(课件)数学五年级上册全国通用

循环小数问题奥数专题(课件)数学五年级上册全国通用
6. 把小数0.340820196变成循环小数。如果把表示循环节的两个点 加在8和6的上面,则此循环小数第200位上的数字是几?
7. 对于小数0.1234567,要使它成为循环小数且小数部分左起第100位 上数字是5,那么两个循环点应分别加在哪两个数字的上面?
循环节是五位
第7位 第12位 第17位
出现3的位数依次是: 7,12,17,22,27,32,……
所以两个循环小数在小数点后的第27位的数字首次都是3。 18
练习题1
两个循环小数0.196257和0.69257,在小数后第几位首次同时 出现数字7?
19
练习题2
循环小数0.2837546和0.97216,在小数后第几位时,在该位上的 数字都是6?
17
例五 循环小数0.28375463与0.4972163在小数点后第几位时,在 该位上的数字首次都是3?
第3位 第11位 第19位
0.283754632837546328375463…… 循环节是八位
第8位 第16位 第24位
出现3的位数依次是: 3,8,11,16,19,24,2…7…,
0.49721637216372163……
5
例二 36÷37商的小数点后2003个数字之和是多少? 周期问题
解: 36÷37 =0.432432…… =0.432
循环节是: 432
周期是: 3
2003个数有几个这样的周期:2003÷3=667(个)……2 每个周期(每个循环节)的3个数字之和是: 4+3+2 =9 667个周期(667个循环节)的和:9×667 =6003 余下2个数字的和:4+3 =7 小数点后2003个数字的和: 6003+7 =6010
10
练习题2

小学五年级奥数 循环小数

小学五年级奥数 循环小数

循环小数本讲主线1. 分数、小数互化2. 分数、小数四则3. 一个神秘“组织”3. 纯循环小数化分数:(1) 分母9的个数=循环节个数.(2) 分子就是循环节.0.3____ 0.123____1. 数由整数和小数构成,其中:有限小数:0.2 , 0.25,0.125小数无限不循环小数:3.1415926……纯循环小数:2.142, 0.3, 0.16混循环小数:2.132, 0.19342无限小数循环小数2. 常见循环小数:1 1 0.16 1 0.10.33 6 9 4. 混循环小数化分数:(1) 分母9的个数=循环节个数;0的个数=非循环个数.(2) 分子就是全部小数-非循环部分.0.1230.212【课前小练习】(★★)1. 把下面的分数化成小数,小数化成分数:(1) 0.1____ (2) 0.35=____(3) 0.375____(4) 1(5) 1(6) 12342. 把下面的分数化成小数:板块一:分数、小数互化【例1】(★★)将下列循环小数化分数:⑴0.6___ 0.813.42____⑵0.215____ 6.353____(1) 1____2(5) 1____6(9) 1____201(3) 1____ (4) 1____(2) =____345(6) 1____ (7) 1____ (8) 1____81015(10) 1____100有限小数:分母中只含有因数或者.思考题为什么循环小数化分数要找“9”呢?例:0.1231239991【例2】(★★★)将下面的分数化成小数:12____ 3____⑴____888121___237____⑵____9999990 【例4】(★★★★★)将循环小数0.027与0.179672相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?板块二:分数、小数四则【例3】(★★★)(1) 0.01+0.12+0.23+0.34+0.78+0.89____ (结果保留三位小数)【例3】(★★★) (2008年台湾小学数学竞赛选拔赛初赛)(80.80.08)(2) =_________.71113 【例5】(★★★★)冬冬将. 乘以一个数a时,看丢了一个循环点,使得乘积比正确0321结果减少了. ,正确结果应该是多少?003板块三:一个”神秘组织”【超常大挑战】(★★★★★)a真分数化为小数后,如果从小数点后第一位7的数字开始连续若干个数字之和是1992,那么a是多少?知识大总结1. 纯循环小数和混循环小数化分数技巧.2. 循环小数、分数混合四则:(1) 乘除法,先转成分数,然后约分.,,.3. 神秘组织:1428574. 常见分数转小数【今日讲题】例1,例3,超常大挑战【讲题心得】______________________________________________________________。

交大之星-小学奥数精讲精练(五年级)第三章 循环小数

交大之星-小学奥数精讲精练(五年级)第三章 循环小数

第三章循环小数典型题训练1(难度等级★★★)例1÷7所得的商,小数点后面第100位上的数字是几?解先求出1÷7的商,找出商的循环节,再观察循环节中有几个数位,然后看100中有几个循环节、余几,余几就是循环节的第几个数字。

1÷7=0.142857142857…=0.1 42857循环节有6个数字。

100÷6=16……4,由于余数是4,可知小数点后面第100位上的数字,居第16个周期后,即第17个周期的第4个数字,是8。

答:小数点后面第100位上的数字是8。

1.3÷7所得的商,小数点后面第2008位上的数字是几?2.5÷7所得的商,小数点后面第2000位上的数字是几?3.计算:2÷7,4÷7,6÷7所得的商,与上面的结论比照,总结规律。

4.已知0<a <6,a ÷7的商是一个循环小数,它的小数点后面第100位上的数字是5,那么a是多少?典型题训练2(难度等级★★★)例9÷13的商的小数点后的第1993位上的数字是多少?解9÷13=0.6 92307 ,循环节是六位数,1993÷6=332……1,第1993位上的数字在第333个周期的第1位数,就是6。

答:第1993位上的数字是6。

1.1÷13的商的小数点后,从第1位到第1995位,各位上的数字和是多少?2.32÷37的商的小数点后,从第1位到第125位,各位上的数字和是多少?3.在循环小数0.1 42857 中,从小数点后的第1位开始,到第几位为止,各位上的数字和是447?4.在循环小数0.9 1384 中,从小数点后的第1位开始,到第几位为止,各位上的数字和是1000。

5.在循环小数0.7 694311 中,从小数点后的第1位开始,到第几位为止,各位上的数字和是1200。

典型题训练3(难度等级★★★★)例在3.1415926的小数部分的某一个或两个数位上加表示循环节的点,将它变成循环小数,能得到的循环小数中最大的是多少?最小的是多少?解表示循环节的点加在循环小数的小数部分的一个或两个数位上,而末位数字上必有一个点。

小学奥数之各种循环小数化成分数的方法归纳

小学奥数之各种循环小数化成分数的方法归纳

小学奥数之各种循环小数化成分数的方法归纳小学奥数中,常常会遇到各种循环小数,化成分数的问题。

循环小数是指小数部分有一组数字无限重复出现。

对于循环小数,我们可以采用一些方法将其化成分数。

下面我们将介绍几种常见的方法。

方法一:直接法对于循环小数0.abcabcabc...,我们可以设这个循环小数为x,则有:10x = abc.abcabcabc...x = 0.abcabcabc...将上述两式相减,得到:9x = abc所以,x = abc / 9这就是将循环小数直接化成分数的方法。

解:设这个循环小数为x,则有:将上述两式相减,得到:99x=36所以,x=36/99=4/11方法二:倍数法对于循环小数0.abcabcabc...,我们可以设这个循环小数为x,则有:1000x = abc.abcabcabc...100x = 0.abcabcabc...将两式相减,得到:900x = abc所以,x = abc / 900这就是利用倍数法将循环小数化成分数的方法。

解:设这个循环小数为x,则有:将两式相减,得到:900x=571所以,x=571/900=19/30方法三:代数法对于循环小数0.abcabcabc...,我们可以利用代数方法将其化成分数。

设这个循环小数为x,则有:x = 0.abcabcabc...10x = abc.abcabcabc...将两式相减,得到:9x = abc所以,x = abc / 9这种方法和直接法类似,但更侧重于利用代数思想。

例题3:将0.8888...化成分数。

解:设这个循环小数为x,则有:10x=8.8888...x=0.8888...将两式相减,得到:9x=8所以,x=8/9除了以上的三种常见方法,还有一些特殊的循环小数化成分数的方法,根据具体情况灵活运用。

总结起来,小学奥数中循环小数化成分数常用的方法有直接法、倍数法和代数法。

学生们在解决这类问题时,可以根据题目的具体形式选择合适的方法。

小学奥数 循环小数计算 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  循环小数计算 精选练习例题 含答案解析(附知识点拨及考点)

循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.17的“秘密” 10.1428577••=,20.2857147••=,30.4285717••=,…, 60.8571427••= 2.推导以下算式⑴10.19=;1240.129933==;123410.123999333==;12340.12349999=; ⑵121110.129090-==;12312370.123900300-==;123412311110.123490009000-==; ⑶ 1234126110.123499004950-==;123411370.123499901110-== 以0.1234为例,推导1234126110.123499004950-==. 设0.1234A =,将等式两边都乘以100,得:10012.34A =; 再将原等式两边都乘以10000,得:100001234.34A =,两式相减得:10000100123412A A -=-,所以12341261199004950A -==. 3.循环小数化分数结论纯循环小数 混循环小数分子 循环节中的数字所组成的数循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差分母n 个9,其中n 等于循环节所含的数字个数 按循环位数添9,不循环位数添0,组成分母,其中9在0的左侧 知识点拨教学目标循环小数的计算·0.9a a =; ··0.99ab ab =; ··10.09910990ab ab ab =⨯=; ··0.990abc a abc -=,……模块一、循环小数的认识 【例 1】 在小数l.80524102007上加两个循环点,能得到的最小的循环小数是_______(注:公元2007年10月24日北京时间18时05分,我国第一颗月球探测卫星“嫦娥一号”由“长征三号甲”运载火箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄傲的时刻。

小学奥数二期6循环小数

小学奥数二期6循环小数

二期6----循环小数
1、在循环小数3.62890123。

的某一位上再添上一个表示循环的点后,使得:
(1)新的循环小数尽可能大;
(2)新的循环小数尽可能小。

2、甲、乙两个数的和是303.49,如果乙数的小数点向左移动一位就等于甲数,那么甲、乙两数各是多少?
3、有一个四位数,在它的某位数字前面加上一个小数点,再和这个四位数相加得1258.46,问这个四位数是多少?
4、一个小数,若把小数点向右移动一位,所得的数比原数增大了42.84,问原数是多少?
5、已知:c=7,x÷c=0.E。

FABCD。

,那么E+F+A+B+C+D等于多少?
6、已知a=0.00⋯⋯0
⏟22
1990个0,b=0.00⋯⋯0
⏟5,
1992个0
a+b等于多少?a×b等于多少?
7、一个小数,如果把它的小数部分乘4,就得到5.4,;如果把它的小数部分乘9,就得到
8.4,问这个小数是多少?
8、循环小数0.2。

8375463。

与0.497。

2163。

在小数点后第几位,在该位上的数字首次都是3?
9、有23个自然数,让小敏计算它们的平均数,结果要保留三位小数,小敏计算的答案是16.654,李老师说最后一位数字错了,其他数字都对。

问正确的答案应该是多少?
10、在小数0.7082169453中,添上表示循环的两个点,使它变成循环小数。

(1)如果把两个点加在8和3的上面,那么第100位的数应该是几?
(2)如果要使第100位上的数字是5,那么表示循环节的两个点应分别加在哪两个数字的上面?。

小学奥数循环小数计算精选练习例题含答案解析(附知识点拨及考点)

小学奥数循环小数计算精选练习例题含答案解析(附知识点拨及考点)

教学目标循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.知识点拨1. 71的“秘密”1 0.142857 ,2 0.285714 ,3 0.428571 ,7772. 推导以下算式1234 12 611 1234 1 137⑶0.1234 ;0.12349900 4950 9990 1110以0.1234 为例,推导0.12341234 12 611.9900 4950设0.1234 A ,将等式两边都乘以100,得:100A 12.34 ;再将原等式两边都乘以10000,得:10000A 1234.34 ,两式相减得:10000A 100A 1234 12,所以A1234 12 6119900 49503. 循环小数化分数结论纯循环小数混循环小数分子循环节中的数字所组成的数循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差分母n 个9,其中n 等于循环节所含的数字个数按循环位数添9,不循环位数添0,组成分母,其中9 在0 的左侧循环小数的计算6 0.8571427⑴ 0.1 1;0.12 129 99⑵ 0.1212 1 11;90 90 4;;330.1231230.123999123 1290041 1234;0.1234 ;333 999937 1234 123;0.1234300 90001111;;9000例题精讲模块一、循环小数的认识例 1 】 在小数 l.80524102007上加两个循环点,能得到的最小的循环小数是 ________ (注:公元 2007 年10 月 24 日北京时间 18 时 05 分,我国第一颗月球探测卫星 “嫦娥一号 ”由“长征三号甲 ”运载火 箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄傲的时刻。

) 考点】循环小数的认识 【难度】 2 星 【题型】填空 关键词】希望杯, 1 试 解析】因为要得到最小的循环小数, 首先找出小数部分最小的数为 0,再看 0后面一位上的数字, 有 05、02、00、07,00 最小,所以得到的最小循环小数为 l.80524102007答案】 l.80524102007巩 固 】给下列不等式中的循环小数添加循环点: 0.1998 0.1998 0.1998 0.1998 考点】循环小数的认识【难度】 3 星【题型】计算解析】根据循环小数的性质考虑,最小的循环小数应该是在小数点后第五位出现最小数字 1 的小数,因此一定是 0.1998 ,次小的小数在小数点后第五位出现次小数字 8,因此一定是 0.1998 .其后添加 的循环点必定使得小数点后第五位出现 9,因此需要考虑第六位上的数字,所以最大的小数其循 环节中在 9 后一定还是 9,所以最大的循环小数是 0.1998 ,而次大数为 0.1998 ,于是得到不等式: 0.1998 0.1998 0.1998 0.1998答案】 0.1998 0.1998 0.1998 0.1998例 2】 真分数 a 化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么 a 是7多少 ?2=0.285714 , 3 =0.428571 , 4 =0.571428 , 5 =0.714285 , 6 =0.857142 .因 7 7 7 7 7此,真分数 a 化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27 ,又7因为 1992 ÷ 27=73 ⋯⋯ -2211,2=76,而 6=2+4,所以 a =0.857142 ,即 a 6 .7答案】 a 6巩固】真分数 a 化成循环小数之后,从小数点后第 1位起若干位数字之和是 9039 ,则 a 是多少?7考点】循环小数的认识 【难度】 3 星 【题型】计算解析】我们知道形如 a 的真分数转化成循环小数后,循环节都是由1、2、4、5、7、8这 6个数字组7成, 只是各个数字的位置不同而已, 那么 9039就应该由若干个完整的 1 4 2 8 5 7 和一个不 完整 1 4 2 8 5 7组成。

【精品】通用版2022年六年级奥数精品讲义易错专项高频计算题-循环小数及其分类(含答案)

【精品】通用版2022年六年级奥数精品讲义易错专项高频计算题-循环小数及其分类(含答案)

通用版六年级奥数专项精品讲义及常考易错题汇编计算问题-循环小数及其分类【知识点归纳】1.循环小数的概念:一个数的小数部分从某一位起,一个或几个数字依次重复出现的无限小数叫循环小数.循环小数是无限小数.2.循环小数可分为:纯循环小数和混循环小数.纯循环小数指从小数第一位开始循环的小数如3.666…混循环小数指不是从小数第一位循环的小数.【常考题型】例1:9÷11的商用循环小数的简便记法记作(),保留三位小数是().分析:从小数点后某一位开始不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点.由于9÷11=0.818181…,商用用循环小数的简便记法表示是;根据四舍五入的取近似数的方法可知,保留三位小数约是0.818.解:9÷11的商用循环小数的简便记法记作是,保留三位小数是0.818;点评:本题重点考查了循环小数的记法及按要求取近似值的方法.【易错题型】例2:3.09090…的循环节是()A、09B、90C、090D、909分析:循环节是指循环小数的小数部分依次不断重复出现的一个或几个数字,根据循环节的意义进行判断即可.解:3.09090…的循环节是“09”,故选:A.点评:此题考查循环节的意义与辨识.【解题方法点拨】纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9;9的个数与循环节的位数相同.能约分要约分.一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差.分母的头几位数是9,末几位是0;9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同.一.选择题1.2811÷的商是()A.纯循环小数B.混循环小数C.有限小数2.下面各数中,()最大.A.8.36B.8.36C.8.306D.8.3603.把0.94、0.94、0.949、0.94这四个数按照从大到小的顺序排列,排在第二位的数是()A.0.94B.0.94C.0.949D.0.944.6.23562356⋯的循环节是()A.6235B.3562C.23565.5.32727⋯用循环小数的简单记法表示是( ) A .5.327B .5.327C .5.3276.下面算式中,商是循环小数的是( ) A .1.0545÷B .16.445 2.3÷C .516÷7.23 3.3÷的商用循环小数表示是( ) A .6.969696B .6.96C .6.96D .6.98.23÷的商是( )A .纯循环小数B .混循环小数C .无限不循环小数二.填空题9.311÷的商是 小数,在商的小数点后第37位上的数字是 . 10.9022÷的商是一个无限 小数,用简便形式记作: ,循环节是 ,用“四舍五入”法保留三位小数是 .11.将0.1234567加上两个表示循环节的点,变成循环小数,使小数点后第2003位上的数字为5,则这个循环小数是 .12.611÷的商用循环小数表示是 ,精确到百分位是 . 13.611÷的商是 小数,可以简写成 ,保留三位小数是 . 14.79÷的商,用循环小数表示是 ,保留一位小数是 ,保留到百分位约是 .15.3.827÷的商用循环小数表示是 ,精确到百分位约是 ,保留三位小数约是 ;9.6868⋯可以写作 它是 . 16.4.03636⋯用简写的方法表示为 . 三.计算题17.写出下面各循环小数的近似值.(保留三位小数)2.315315⋯≈ 8.7676⋯≈9.888⋯≈ 12.47≈ 6.909≈ 3.514≈ 31.095≈7.863≈18.计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似数.519÷ 3 1.1÷ 2.20.7÷ 3.38 1.8÷3766÷40.74÷19.用简便记法表示下列循环小数.3.62525⋯= 17.0651651⋯= 1.40660.333⋯=⋯=四.解答题20.3.26565是一个循环小数.. 21.判定0.9和1的大小关系. 22.将0.125和0.425分别化成最简分数. 23.找一找.1.666;0.333⋯;?1.0507;3.134892⋯;8.206;??5.390;4.151617⋯24.不通过计算,判断137和3112这两个分数循环节中的最小位数是多少?25.下面哪些是循环小数?把循环小数用简便方法表示出来.0.777⋯1.125125⋯3.1023023023⋯ 5.4666⋯11.181818⋯7.62323⋯ .26.下面哪些数是循环小数?请在它的下面画线,并圈出一个循环节.3.77715.465465⋯6.2121⋯106.55⋯7.69086943.216987⋯27.小马虎忘了给下面四个循环小数点循环点了,请你帮他点上循环点,使下式成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.17的“秘密” 10.1428577••=,20.2857147••=,30.4285717••=,…, 60.8571427••= 2.推导以下算式⑴10.19=;1240.129933==;123410.123999333==;12340.12349999=; ⑵121110.129090-==;12312370.123900300-==;123412311110.123490009000-==; ⑶ 1234126110.123499004950-==;123411370.123499901110-== 以0.1234为例,推导1234126110.123499004950-==. 设0.1234A =,将等式两边都乘以100,得:10012.34A =; 再将原等式两边都乘以10000,得:100001234.34A =,两式相减得:10000100123412A A -=-,所以12341261199004950A -==. 3.循环小数化分数结论纯循环小数 混循环小数分子 循环节中的数字所组成的数循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差分母 n 个9,其中n 等于循环节所按循环位数添9,不循环位数添0,组成分知识点拨教学目标循环小数的计算含的数字个数 母,其中9在0的左侧0.9a =; 0.99ab =; 0.09910990ab =⨯=; 0.990abc =,…… 模块一、循环小数的认识 【例 1】 在小数l.80524102007上加两个循环点,能得到的最小的循环小数是_______(注:公元2007年10月24日北京时间18时05分,我国第一颗月球探测卫星“嫦娥一号”由“长征三号甲”运载火箭在西昌卫星发射中心升空,编写此题是为了纪念这个值得中国人民骄傲的时刻。

)【巩固】 给下列不等式中的循环小数添加循环点:0.1998>0.1998>0.1998>0.1998【例 2】 真分数7a 化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a 是多少?【巩固】 真分数7a 化成循环小数之后,从小数点后第1位起若干位数字之和是9039,则a 是多少?【巩固】 真分数7a 化成循环小数之后,小数点后第2009位数字为7,则a 是多少?【巩固】 (2009年学而思杯4年级第6题)67÷所得的小数,小数点后的第2009位数字是 .【例 3】 写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+……=2002÷______ 。

【例 4】 下面有四个算式:①0.6+0.....1330.733;=例题精讲②0.625=58;③514+32=35142++=816=12;④337×415=1425;其中正确的算式是().(A)①和②(B) ②和④(C) ②和③(D) ①和④【例 5】在混合循环小数2.718281的某一位上再添上一个表示循环的圆点,使新产生的循环小数尽可能大,请写出新的循环小数。

【例 6】将12化成小数等于0.5,是个有限小数;将111化成小数等于0.090…,简记为0.09,是纯循环小数;将16化成小数等于0.1666……,简记为0.16,是混循环小数。

现在将2004个分数12,13,1 4,…,12005化成小数,问:其中纯循环小数有多少个?模块二、循环小数计算【例 7】计算:0.30.030.003--=(结果写成分数形式)【巩固】计算:0.3+0.3=_____(结果写成分数)。

【巩固】请将算式0.10.010.001++的结果写成最简分数.【例 8】计算: 2.004 2.008⨯(结果用最简分数表示)【例 9】 将4255.4250.6350.63999⎛⎫⨯=⨯ ⎪⎝⎭的积写成小数形式是____.【例 10】 计算:0.010.120.230.340.780.89+++++【巩固】 计算 (1)0.2910.1920.3750.526-++ (2)0.3300.186⨯【例 11】 ⑴ 0.540.36+=⑵191.21.2427•••⨯+=【巩固】 ⑴计算:0.160.1428570.1250.1+++⑵191.2 1.2427⨯+=________.【巩固】 ⑴ ····110.150.2180.3111⎛⎫+⨯⨯ ⎪⎝⎭; ⑵ ()2.2340.9811-÷ (结果表示成循环小数)【例 12】 0.30.030.0032009+++=÷( )。

【例 13】 计算200920091199900999909901⎛⎫-⨯ ⎪⎝⎭ (结果表示为循环小数)【例 14】 某学生将1.23乘以一个数a 时,把1.23误看成1.23,使乘积比正确结果减少0.3.则正确结果该是多少?【例 15】 计算:0.1+0.125+0.3+0.16,结果保留三位小数.【例 16】 将循环小数0.027与0.179672相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?【例 17】 有8个数,0.51,23,59,0.51,2413,4725是其中6个,如果按从小到大的顺序排列时,第4个数是0.51,那么按从大到小排列时,第4个数是哪一个数?【例 18】 20022009和1287化成循环小数后第100位上的数字之和是_____________.【例 19】 将循环小数..0.081与..0.200836相乘,小数点后第2008位是 。

赠送一篇美文,舒缓一下心情:1) 有一种情,相濡以沫温馨处处在,有一种意,海枯石烂温暖处处开,有一颗心,沧海桑田温情永不变,有一句话,相知相守爱你一万年,老婆我爱你永不变!2) 你好象生气了,我心里也不好受,如果是我酿成了此错,希望你能原谅,如果不能原谅,我自己也无法原谅自己了。

3) 你负责貌美如花,我负责赚钱养家,你负责轻松悠闲,我负责工作挣钱,你负责开心幸福,我负责操持家务,你负责快乐天天,我负责爱你永远!4) 家有娇妻真温馨,知心相爱常厮守,贤慧温柔知我意,相守一世真幸福,一生至爱是我妻,甜蜜短信送我妻,永不改变爱你意。

5) 家中红旗永不倒,外面野花不会采。

春光明媚花朵艳,不及老婆温柔剑。

服侍双亲多辛劳,相夫教子令人敬。

烧的一手好饭菜,贤良淑德惹人羡。

6) 今天是“要爱妻”,但是这个日子对我来说无关紧要。

你在生气?亲爱的,因为与你在一起的每一天对于我来说都是“要爱妻日”,我爱你!愿用我一生让你开心幸福。

7) 就数老婆好,美女都不要;打骂不还手,见面就告饶;化妆你称道,购物掏腰包;逛街不斜视,乖乖跟好了。

8) 孔雀最美,你是我的孔雀,我为你开屏;百灵最俏,你是我的百灵,我为你鸣叫。

我的妻,爱你是我唯一的语言,疼你是我仅有的表现。

愿我们幸福百年。

9) 浪漫在起舞,甜蜜在微笑;温馨在荡漾,喜悦在心头;内心在狂喜,心情在澎湃;真情在涌动,真爱在表白:老婆,爱你没商量,爱你永不变!10) 爱老婆要做到两个不要:不要问老婆能够为额做些什么,而要问额可以为老婆做些什么;不要问老婆喜欢些什么,老婆喜欢些什么对额而言应该是常识!对老婆煽情的话1) 有你相伴,天空是蓝的,空气是甜的;有你相随,日子是乐的,生活是美的;有你相守,家庭是暖的,心里幸福的;老婆我爱你,最美的祝福送给你,愿幸福绕你身旁,快乐把你笼罩!2) 朝夕相处过日子,偶尔吵吵嘴皮子。

同享美味一桌子,你是最好大厨子。

相亲相爱两口子,幸福相守一辈子。

待到长出白胡子,依然爱你小妮子。

亲爱的老婆,爱你一辈子!3) 此生有你,愿一世情长,两心不忘,三生相伴,纵天荒地老,爱永远,情永长,此生此世都为你痴痴守望,默默相伴。

甜言蜜语4) 冬日只为飘雪留,爱你的心永不回头;海角天涯终有尽,对你的情意无边际;海枯石烂没终止,陪伴一生直到白头。

5) 读书人喜欢诗情画意,生意人喜欢小三小蜜,混江湖的喜欢红颜知己,谈恋爱的喜欢柔情蜜意,像我们结过婚的就追求个恩爱甜蜜。

老婆我爱你。

让我们恩爱百年,幸福美满!6) 真情打造爱情,爱情创造痴情,痴情创建真爱,真爱开启真心,真心起航爱的行程,720妻爱你,愿爱的航船驶向幸福甜蜜的港湾!7) 快乐,是与你饭后的一起漫步;幸福,是同你和孩子们一起嬉戏;甜蜜,是与你心有灵犀相恋相依;720妻爱你,有你就有幸福与甜蜜。

老婆,一生爱你!8) 今年高温不退,每天热的难受;注意珍爱自己,工作不要太累;没事多吃水果,晚上静心去睡;遇事别急别火,万事老公顶着。

亲爱的,在720妻爱你这个特殊而神圣的日子里,我要对你说一句:“我爱你”。

9) 720妻爱你,家庭和睦又甜蜜,即使偶尔有脾气,带着真情吵吵嘴,相濡以沐共进退,患难与共同船渡,携手到老永相依。

祝你夫妻恩爱,生活甜蜜幸福!10) 三生有缘是夫妻,一颗真心交给你,愿你用着我的爱,幸福甜蜜;用着我的情,开心如意;对我撒个娇,对我发脾气,我也觉甜蜜。

720妻爱你,爱你一辈子!11) 720,妻爱你,爱你老实忠厚人勤快,爱你工作积极事业成,爱你尊敬父母有孝心,爱你爱护兄弟有责任……妻子爱你多又多,你也不能太随意,夫妻互爱是根本,你一定要爱她多一点哟!12) 温柔之心送伤心之人,愉快之心送寂寞之人,浪漫之心送有情之人,永恒之心送相爱之人,720妻爱你,老婆,我愿把一颗祝福之心送给正在看信息的你!13) 720,妻爱你,爱你爱在心坎里。

不用豪言与壮语,只是默默守着你。

清晨早早起,备好早点唤你起;出门叮嘱一遍遍,安全身体要注意;下班做好家务事,一心一意等着你。

你可千万不能辜负她的情,她的意。

祝你们白头偕老!14) “七”月夏热情似火,“二”心相印情意浓,“灵”犀相通有独钟,“妻”子美丽又大方,“爱”情深深同风雨,“你”我一生甜蜜蜜,“快”乐开心幸福伴,“乐”无忧愁容颜笑。

祝720妻爱你快乐。

15) 哗哗流淌的日子里溅起的,都是你的关爱;沙沙飞走的时光里闪现的,都是你的疼爱;用真爱的录像机拍摄下来,放进爱情的记忆里,720妻爱你,与你共度甜蜜浪漫生活,一直到地老天荒。

16) 妻,像陀螺,天天不停忙;妻,像开心果,带给家欢乐;妻,像蜜蜂,酿造爱甜蜜。

720妻爱你,亲爱的妻,我爱你,时时刻刻恋着你,幸幸福福到白头!17) 你的香气让我沉醉,你的姿态让我着迷,好想把你一口吞了。

哈哈,老婆做的点心就是好,好闻好看又好吃!720妻爱你,祝最最亲爱的老婆天天快乐,时时开怀,刻刻欢喜!18) 最幸福的事生活有你相伴,最快乐的事宠着你一辈子,最美好的事你我相濡以沫,最浪漫的事陪你一起变老,720,妻爱你,我爱你我的妻,愿你开心每一分,幸福每一秒。

相关文档
最新文档