初三数学利润问题
初中数学销售利润问题的知识点
初中数学销售利润问题的知识点一、知识概述《初中数学销售利润问题》①基本定义:说实话,销售利润问题就是关于买卖东西时赚钱或者赔钱多少的事儿。
利润就是卖东西得到的钱减去成本(也就是买这个东西花的钱或者生产这个东西花的钱)。
比如你10元进了一个笔记本,15元卖出去了,那利润就是15 - 10 = 5元。
②重要程度:在初中数学里可是相当重要的哦。
这可不仅仅是数学题,在日常生活中只要涉及买卖就离不开它,像爸妈做生意、超市算账啥的都会用到,而且在数学考试里也是经常出现的考点呢。
③前置知识:得先掌握简单的加减法、乘除法运算,还有百分数的计算。
像刚才算笔记本利润的时候就要会减法运算。
④应用价值:实际应用场景太多了。
我们去商场买衣服的时候,商家计算能赚多少钱就用到它;还有工厂生产产品,计算盈利也得用。
简单说,只要是做生意,不管是小摊贩还是大公司都用得上。
二、知识体系①知识图谱:它属于代数部分中的应用题范畴。
就像是一棵大树上关于商业数学运算的一个分支。
②关联知识:和方程知识关系密切。
因为很多时候我们要通过设未知数,列方程来解决销售利润问题。
还和函数有点关系,比如价格和销售量之间的函数关系等。
③重难点分析:掌握难度的话,我觉得只要理解了基本概念就不难。
关键点是要搞清楚成本、售价、利润这几个量之间的关系,还有在复杂的题目里找到等量关系去列方程。
④考点分析:在考试中那是非常重要的。
考查方式大多是出应用题,给出成本价、售价、销售量等一些量中的几个,叫你求利润或者相关的其他量。
有时候还会和打折等概念混合起来考查。
三、详细讲解【方法技能类】①基本步骤:首先要确定成本价、售价这两个基本量。
然后利润= 售价- 成本价。
如果遇到打折的情况,那要先算出打折后的售价。
比如一件衣服原价100元,打8折,那打折后的售价就是100×= 80元。
然后根据已知条件去找等量关系列方程求解。
②关键要点:要清楚每个量的含义,别把成本和售价弄混了。
中考利润问题典型题目
中考利润问题典型题目1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140-2x 。
(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且x=65时,y=55;x=75时,y=45.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x 元:(1)设平均每天销售量为y 件,请写出y 与x 的函数关系式.(2)设平均每天获利为Q 元,请写出Q 与x 的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +a b 2)2+a b ac 442-的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1) 求y与x的函数关系式;(2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x表示床价,Y表示该宾馆一天出租床位的纯收入。
初三数学利润问题题型
初三数学利润问题题型一、利润问题的基础概念嘿,小伙伴们!咱们来聊聊初三数学里让人又爱又恨的利润问题。
首先呢,咱们得搞清楚几个关键的概念。
啥是成本?简单说,就是你生产或者进货一件东西花的钱。
售价呢,就是你把这东西卖出去的价格。
利润呢,就是售价减去成本啦。
还有个重要的利润率,它等于利润除以成本再乘以 100%哟。
二、常见的利润问题题型1. 求利润这种题目一般会直接告诉你成本和售价,让你算利润。
比如说,一件衣服成本 80 元,卖了 120 元,那利润就是 120 80 = 40 元,是不是挺简单?2. 求利润率要是题目给了成本和利润,让算利润率,那就用利润除以成本再乘以 100%。
假设成本 100 元,利润 30 元,那利润率就是30÷100×100% = 30%。
3. 价格变动与利润有时候商品价格会变动,比如先涨价再打折啥的。
像一件商品原价 100 元,涨价 20%,然后打 8 折出售,这时候就得先算出涨价后的价格100×(1 + 20%) = 120 元,再算打折后的价格120×0.8 = 96 元,然后再算利润。
4. 成本、售价、利润的关系有些题会只给其中两个量,让求另一个。
比如知道利润率和成本,求售价,那就用成本乘以(1 + 利润率)。
三、解题小技巧1. 认真读题,把关键数字和信息都圈出来,别马虎哟。
2. 设未知数,要是有些量不清楚,大胆设个 x 或者 y,然后根据题目里的关系列方程。
3. 多做几道题练练手,熟悉了就不怕啦。
怎么样,小伙伴们,利润问题是不是也没那么可怕啦?加油哦!答案及解析:一、求利润例 1:一件商品成本 50 元,售价 80 元,利润是多少?解析:利润 = 售价成本 = 80 50 = 30 元二、求利润率例 2:一件商品成本 60 元,利润 20 元,利润率是多少?解析:利润率 = 利润÷成本×100% = 20÷60×100% ≈ 33.3%三、价格变动与利润例 3:一件商品原价 80 元,涨价 25%,然后打 9 折出售,利润是多少?解析:涨价后的价格= 80×(1 + 25%) = 100 元打折后的价格= 100×0.9 = 90 元利润 = 90 80 = 10 元四、成本、售价、利润的关系例 4:商品的利润率为 40%,成本为 120 元,售价是多少?解析:售价 = 成本×(1 + 利润率) = 120×(1 + 40%) = 168 元。
人教版九年级数学上册利润问题
22.3.2 利润问题
(2) 销售单价在什么范围时,该种商品每天的销售利润不低于16元?
(2)显然,当y=16时,x1=7、x2=13. ∵y=-x+20x-75图象的对称轴为x=10, ∴点(7,16)关于对称轴的对称点为(13,16), 结合图象分析得, 销售单价在7 ≤x ≤13时,利润不低于16元.
解:(1)设y与x的函数关系式为y=kx+b(k≠0),代入
4k b 10000 5k b 9500
k -500 ,解得 b 12000 .
∴y=-500x+12 000;
22.3.2 利润问题
(2)在销售过程中要求销售单价不低于成本价,且不高于15元/
件.若某一周该商品的销售量不少于6 000件,求这一周该商场销
60-40 (60-40-x)
销售量(件)
300 (300+20x)
每星期利润(元) 6000
(60-40-x)(300+20x)
建立函数关系式:y = (60-40-x)(300+20x), 即:y = -20x2+100x+6000.
22.3.2 利润问题
②自变量x的取值范围如何确定?
营销规律是价格下降,销量上升,因此需要考虑单件利润不为负, 故 20-x ≥ 0,且x ≥ 0,因此自变量的取值范围是0 ≤ x ≤20.
22.3.2 利润问题
22.3.2 利润问题
归纳 求解最大利润问题的一般步骤
1. 建立利润与价格之间的函数关系式:运用“总利润= 总售价-总成本”或“总利润=单件利润×销售量”; 2. 结合实际意义,确定自变量的取值范围; 3. 在自变量的取值范围内确定最大利润: 可以利用配方法或公式求出最大利润;也可以画出函数 的简图,利用简图和性质求出.
中考数学利润问题
中考数学利润问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、服装店以120元的相同价格卖出两件不同的衣服,其中一件盈利20%,另一件亏损20%。
问结果是盈利、亏损、还是不盈不亏(如果是盈利或亏损,请算出具体数额。
)2、某鞋店以每双80元的价钱买进一批皮鞋,出售时加价40%。
当卖掉20双皮鞋时恰好收回本钱。
求这批皮鞋共可盈利多少元?3、体育用品商店以每个40元的价格购进一批小足球,以每个50元的价格卖出。
当卖掉这批足球的90%时,不仅收回了成本,还获利800元。
这批小足球一共多少个?4、新华书店购进一批图书,如果按定价出售,每本获利1.2元。
现在降价销售,结果销售量增加了一倍,利润增加50%,每本书的售价降低多少元?5、电讯商店销售某种手机,去年按定价的90%出售,可获得20%的利润,由于今年的买入价降低了,按同样定价的75%出售,却可获得25%的利润,请问今年的买入价是去年买入价的百分之几?6、百货商店运来一批玩具,按出厂价加上运费、营业费和利润出售,运费是出厂价的5%,营业费与利润之和是出厂价的20%,已知每个玩具售价是75元,求每个玩具的出厂价是多少?7、皮衣专卖店销售一种皮衣,因销售有一定的困难,店老板核算了一下:如果按销售价打九折出售,每件可盈利200元,如果打八折出售,每件就要亏损120元。
这种皮衣的进价是多少元?8、文具店购进一批钢笔,进价是每支11元,售价是每支14元。
现在商店还有50支笔,这时已经收回了全部成本,并且盈利140元。
求这批钢笔共有多少支?9、水果店运来500千克苹果,每千克进价2元,付出运费、税费等各项开支共150元。
要使出售后盈利20%,每千克苹果的售价应是多少元?10、健身中心入场券30元一张,若降价后人数增加一半,收入将增加25%,每张入场券降价多少元?11、电影票原价每张若干元,现在每张降价10元,观众增加了50%,收入只增加20%,一张电影票原价多少元?1、分析:其中一件盈利20%,也就是120元的售价相当于成本的1+20%;另一件亏损20%,也就是120元的售价相当于成本的1-20%。
初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)
初中数学二次函数的应用题型分类——商品销售利润问题(附答案)1. 某网店经营一种品牌水果, 其进价为10元/千克, 保鲜期为25天, 每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式;(2)当该品牌水果定价为多少元时, 每天销售所获得的利润最大?(3)若该网店一次性购进该品牌水果3000千克, 根据(2)中每天获得最大利润的方式进行销售, 发现在保鲜期内不能及时销售完毕, 于是决定在保鲜期的最后5天一次性降价销售, 求最后5天每千克至少降价多少元才能全部售完?2. 特产店销售一种水果, 其进价每千克40元, 按60元出售, 平均每天可售100千克, 后来经过市场调查发现, 单价每降低2元, 则平均每天可增加20千克销量.(1)若该专卖店销售这种核桃要想平均每天获利2240元, 每千克水果应降多少元?(2)若该专卖店销售这种核桃要想平均每天获利最大, 每千克水果应降多少元?3.某文具店购进A, B两种钢笔, 若购进A种钢笔2支, B种钢笔3支, 共需90元;购进A种钢笔3支, B种钢笔5支, 共需145元.(1)求该文具店购进A.B两种钢笔每支各多少元?(2)经统计, B种钢笔售价为30元时, 每月可卖64支;每涨价3元, 每月将少卖12支, 求该文具店B种钢笔销售单价定为多少元时, 每月获利最大?最大利润是多少元?4.某公司可投入研发费用80万元(80万元只计入第一年成本), 成功研发出一种产品, 公司按订单生产(产量=销售量), 第一年该产品正式投产后, 生产成本为8元/件, 此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+28.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元, 那么该产品第一年的售价是多少?(3)第二年, 该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发, 使产品的生产成本降为6元/件, 为保持市场占有率, 公司规定第二年产品售价不超过第一年的售价, 另外受产能限制, 销售量无法超过14万件, 请计算该公司第二年的利润W2至少为多少万元.5.某实验器材专营店为迎接我市理化生实验的到来, 购进一批电学实验盒子, 一台电学实验盒的成本是30元, 当售价定为每盒50元时, 每天可以卖出20盒.但由于电学实验盒是特殊时期的销售产品, 专营店准备对它进行降价销售.根据以往经验, 售价每降低3元, 销量增加6盒.设售价降低了x(元), 每天销量为y(盒).(1)求y与x之间的函数表达式;日销售利润w875 1875 1875 875(元)(注: 日销售利润=日销售量×(销售单价﹣成本单价))(1)求y与x的函数关系式;(2)当销售单价x为多少元时, 日销售利润w最大?最大利润是多少元?(3)当销售单价x为多少元时, 日销售利润w在1500元以上?(请直接写出x的范围)7. 某公司销售一批产品, 进价每件50元, 经市场调研, 发现售价为60元时, 可销售800件, 售价每提高1元, 销售量将减少25件.公司规定:售价不超过70元.(1)若公司在这次销售中要获得利润10800元, 问这批产品的售价每件应提高多少元?(2)若公司要在这次销售中获得利润最大, 问这批产品售价每件应定为多少元?8.某公司开发了一种新型的家电产品, 又适逢“家电下乡”的优惠政策.现投资万元用于该产品的广告促销, 已知该产品的本地销售量(万台)与本地的广告费用(万元)之间的函数关系满足.该产品的外地销售量(万台)与外地广告费用(万元)之间的函数关系可用如图所示的抛物线和线段来表示.其中点为抛物线的顶点.结合图象, 求出(万台)与外地广告费用(万元)之间的函数关系式;()2求该产品的销售总量y(万台)与本地广告费用x(万元)之间的函数关系式;如何安排广告费用才能使销售总量最大?9.某电子厂生产一种新型电子产品, 每件制造成本为20元, 试销过程中发现, 每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时, 厂商每月获得的利润为400万元?(3)根据相关部门规定, 这种电子产品的销售单价不能高于40元, 如果厂商每月的制造成本不超过520万元, 那么当销售单价为多少元时, 厂商每月获得的利润最大?最大利润为多少万元?10.某灯具厂生产并销售A, B两种型号的智能台灯共100盏, 生产并销售一盏A型智能台灯可以获利30元;如果生产并销售不超过20盏B型台灯, 则每盏B型台灯可以获利90元, 如果超出20盏B型台灯, 则每超出1盏, 每盏B型台灯获利将均减少2元.设生产并销售B型台灯x盏.(其中x>20)(2)当A型台灯所获得的利润比B型台灯所获得利润少200元时, 求生产并销售A, B 两种台灯各多少盏?(3)如何设计生产销售方案可以获得最大利润, 最大的利润为多少元?11.某商场销售一批名牌衬衫:平均每天可售出20件, 每件盈利40元, 为了扩大销售量, 增加盈利, 尽快减少库存, 商场决定采取适当的降价促销措施, 经市场调查发现:如果每件衬衫降价1元, 那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(1)请直接写出a的值为;(2)从第21天到第40天中, 求q与x满足的关系式;(3)若该网店第x天获得的利润y元, 并且已知这40天里前20天中y与x的函数关系式为y=﹣x2+15x+500i请直接写出这40天中p与x的关系式为: ;ii求这40天里该网店第几天获得的利润最大?13. 某工厂生产甲、乙两种产品, 已知生产1吨产品甲需要2吨原材料A;生产1吨产品乙需要3吨原材料A. 根据市场调研, 产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足函数关系:产品甲:y=ax2+bx且x=2时, y=2.6;x=3时, y=3.6产品乙: y=0.3x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现原材料A共有20吨, 请设计方案, 应怎样分配给甲、乙两种产品组织生产, 才能使得最终两种产品的所获利润最大.14. 某商场销售一批衬衫, 平均每天可售出20件, 每件盈利40元. 为了扩大销售, 增加盈利, 商场采取了降价措施. 假设在一定范围内, 衬衫的单价每降1元, 商场平均每天可多售出2件, 设衬衫的单价降x元, 每天获利y元.(1)如果商场里这批衬衫的库存只有44件, 那么衬衫的单价应降多少元, 才能使得这批衬衫一天内售完, 且获利最大, 最大利润是多少?种成本为25元/件的新型商品.在40天内, 其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时, ;当21≤x≤40时, .这40天中的日销售量m(件)与时间x(天)符合函数关系, 具体情况记录如下表(天数为整数):时间x(天)日销售量m(件)45 40 35 30 25 …(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元, 试写出日销售利润w(元)与时间x(天)的函数关系式;16.某体育用品商店试销一款成本为50元的排球, 规定试销期间单价不低于成本价, 且获利不得高于40%.经试销发现, 销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元, 试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时, 该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元, 请确定销售单价x的取值范围.销售单价q(元/件)与x满足: 当1≤x<25时q=x+60;当25≤x≤50时q=40+ . (1)请分析表格中销售量p与x的关系, 求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(1)请你根据表中的数据, 用所学知识确定与之间的函数表达式;(2)该商店应该如何确定这批文具盒的销售价格, 才能使日销售利润最大?(3)根据(2)中获得最大利润的方式进行销售, 判断一个月能否销售完这批文具盒, 并说明理由.20. 某工厂加工一种商品, 每天加工件数不超过100件时, 每件成本80元, 每天加工超过100件时, 每多加工5件, 成本下降2元, 但每件成本不得低于70元.设工厂每天加工商品x(件), 每件商品成本为y(元),(1)求出每件成本y(元)与每天加工数量x(件)之间的函数关系式, 并注明自变量的取值范围;(2)若每件商品的利润定为成本的20%, 求每天加工多少件商品时利润最大, 最大利润是多少?21.家用电器开发公司研制出一种新型电子产品, 每件的生产成本为18元, 按定价40元出售, 每月可销售20万件, 为了增加销量, 公司决定采取降价的办法, 经过市场调研, 每降价1元, 月销售量可增加2万件.(1)求出月销售利润W(万元)与销售单价x(元)之间的函数关系式.(2)为了获得最大销售利润, 每件产品的售价定为多少元?此时最大月销售利润是多少?(3)请你通过(1)中函数关系式及其大致图象帮助公司确定产品的销售单价范围, 使月销售利润不低于480万元.22.城隍庙是宁波市的老牌商业中心, 城隍庙商业步行街某商场购进一批品牌女装, 购进时的单价是600元, 根据市场调查, 在一段时间内, 销售单价是800元时, 销售量是200件, 销售单价每降低10元, 就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌女装获得的利润W(元)与销售单价x(元)之间的函数关系式;倍,且y是x的二次函数,它们的关系如下表:x(10万元)y 1 1.5 1.8 …(1)求y与x的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费, 试写出年利润S(10万元)与广告费x(10万元)的函数关系式;(3)如果投入的年广告费为10~30万元, 问广告费在什么范围内, 公司获得的年利润随广告费的增大而增大?24.绿色生态农场生产并销售某种有机产品, 每日最多生产130kg, 假设生产出的产品能全部售出, 每千克的销售价y1(元)与产量x(kg)之间满足一次函数关系y1=﹣x+168, 生产成本y2(元)与产量x(kg)之间的函数图象如图中折线ABC所示.(1)求生产成本y2(元)与产量x(kg)之间的函数关系式;(2)求日利润为W(元)与产量x(kg)之间的函数关系式;(3)当产量为多少kg时, 这种产品获得的日利润最大?最大日利润为多少元?25.新鑫公司投资3000万元购进一条生产线生产某产品, 该产品的成本为每件40元, 市场调查统计:年销售量y(万件)与销售价格x(元)(40≤x≤80, 且x为整数)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式;(2)如何确定售价才能使每年产品销售的利润W(万元)最大?(3)新鑫公司计划五年收回投资, 如何确定售价(假定每年收回投资一样多)?26. 某商品的进价是每件40元, 原售价每件60元. 进行不同程度的涨60 61 62 63 …价后, 统计了商品调价当天的售价和利润情况, 以下是部分数据:售价(元/件)利润(元)6000 6090 6160 6210 …(1)当售价为每件60元时, 当天售出件;(2)若对该商品原售价每件涨价x元(x为正整数)时当天售出该商品的利润为y元.①用所学过的函数知识直接写出y与x之间满足的函数表达式:.②如何定价才能使当天的销售利润不等于6200元?27.服装厂批发某种服装, 每件成本为65元, 规定不低于10件可以批发, 其批发价y (元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式, 并写出x的取值范围;(1)由题意知商品的最低销售单价是元, 当销售单价不低于最低销售单价时, y是x的一次函数. 求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下, 当销售单价为多少元时, 所获销售利润最大, 最大利润是多少元?29. 某店只销售某种进价为40元/kg的产品, 已知该店按60元kg出售时, 每天可售出100kg, 后来经过市场调查发现, 单价每降低1元, 则每天的销售量可增加10kg.(1)若单价降低2元, 则每天的销售量是_____千克, 每天的利润为_____元;若单价降低x元, 则每天的销售量是_____千克, 每天的利润为______元;(用含x的代数式表示)(2)若该店销售这种产品计划每天获利2240元, 单价应降价多少元?(3)当单价降低多少元时, 该店每天的利润最大, 最大利润是多少元?30. 某文具店出售一种文具, 每个进价为2元, 根据长期的销售情况发现:这种文具每个售价为3元时, 每天能卖出500个, 如果售价每上涨0.1元, 其销售量将减少10个. 物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润, 每个文具的售价应是多少?(2)该如何定价, 才能使这种文具每天的利润最大?最大利润是多少?31.某制衣企业直销部直销某类服装,价格(元)与服装数量(件)之间的关系如图所示,现有甲乙两个服装店,计划在"五一”前到该直销部购买此类服装, 两服装店所需服装总数为件,乙服装店所需数量不超过件,设甲服装店购买件,如果甲、乙两服装店分别到该直销部购买服装,两服装店需付款总和为元.(1)求y关于x的函数关系式,并写出x的取值范围.(2)若甲服装店购买不超过100件,请说明甲、乙两服装店联合购买比分别购买最多可节约多少钱32. 某企业接到生产一批手工艺品订单, 须连续工作15天完成. 产品不能叠压, 需专门存放, 第x天每件产品成本p(元)与时间x(天)之间的关系为p=0.5x+7(1≤x≤5, x 为整数). 约定交付产品时每件20元. 李师傅作了记录, 发现每天生产的件数y(件)与时间X(天)满足关系:(1)写出李师傅第x天创造的利润W(不累计)与x之间的函数关系式.(只要结果, 并注明自变量的取值范围.)(2)李师傅第几天创造的利润最大?是多少元?(3)这次订单每名员工平均每天创造利润299元. 企业奖励办法是: 员工某天创造利润超过平均值, 当天计算奖金30元. 李师傅这次获得奖金共多少元?33. 某手机专营店, 第一期进了品牌手机与老年机各50部, 售后统计, 品牌手机的平均利润是160元/部, 老年机的平均利润是20元/部, 调研发现:①品牌手机每增加1部, 品牌手机的平均利润减少2元/部;②老年机的平均利润始终不变.该店计划第二期进货品牌手机与老年机共100部, 设品牌手机比第一期增加x部. (1)第二期品牌手机售完后的利润为8400元, 那么品牌手机比第一期要增加多少部?(2)当x取何值时, 第二期进的品牌手机与老年机售完后获得的总利润W最大, 最大总利润是多少?34.某公司经销一种水产品, 在一段时间内, 该水产品的销售量W(千克)随销售单价x(元/千克)的变化情况如图所示.(1)求W与x的关系式;(2)若该水产品每千克的成本为50元, 则当销售单价定为多少元时, 可获得最大利润?(3)若物价部门规定这种水产品的销售单价不得高于90元/千克, 且公司想要在这段时间内获得2250元的销售利润, 则销售单价应定为多少元?35. 某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示, 成本y2与销售月份x之间的关系如图2所示(图1的图象是线段, 图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低, 此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜, 每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元, 且5月份的销售量比4月份的销售量多2万千克, 求4、5两个月的销售量分别是多少万千克?36. 某商品的进价为每件20元, 市场调查反映, 若按每件30元销售, 每天可销售100件;若销售单价每上涨1元, 每天的销售就减少5件.(1)设每天该商品的销售利润为y元, 销售单价为x元(x≥30), 求y与x的函数解析式;(2)求销售单价为多少元时, 该商品每天的销售利润最大, 最大利润是多少?37. 数学兴趣小组几名同学到商场调查发现, 一种纯牛奶进价为每箱40元, 厂家要求售价在40~70元之间, 若以每箱70元销售平均每天销售30箱, 价格每降低1元平均每天可多销售3箱.(1)求出y 与x 之间的函数表达式(2)该新型“吸水拖把”每月的总利润为w (元), 求w 关于x 的函数表达式, 并指出销售单价为多少元时利润最大, 最大利润是多少元?(3)由于该新型“吸水拖把”市场需求量较大, 厂家又进行了改装, 此时超市老板发现进价提高了m 元, 当每月销售量与销售单价仍满足上述一次函数关系, 随着销量的增大, 最大利润能减少1750元, 求m 的值.39.某花店用3600元按批发价购买了一批花卉.若将批发价降低10%, 则可以多购买该花卉20盆.市场调查反映, 该花卉每盆售价25元时, 每天可卖出25盆.若调整价格, 每盆花卉每涨价1元, 每天要少卖出1盆. (1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时, 且销量尽可能大, 该花卉每盆售价是多少元? (3)为了让利给顾客, 该花店决定每盆花卉涨价不超过5元, 问该花卉一天最大的销售利润是多少元?40. 某商店经营一种小商品, 进价为3元, 据市场调查, 销售单价是13元时平均每天销售量是400件, 而销售价每降低一元, 平均每天就可以多售出100件.(Ⅰ)假定每件商品降低x 元, 商店每天销售这种小商品的利润y 元, 请写出y 与x 之间的函数关系. (注:销售利润=销售收入-购进成本)(Ⅱ)当每件小商品降低多少元时, 该商店每天能获利4800元?40元, 根据市场调查:在一段时间内, 销售单价是50元时, 销售量是600件,而销售单价每涨2元, 就会少售出20件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>50), 请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润ω元, 并把结果填写在表格中:销售单价(元)销售量y(件)①销售玩具获得利润ω(元)②(2)在(1)问条件下, 若玩具厂规定该品牌玩具销售单价不低于54元, 且商场要完成不少于400件的销售任务, 求商场销售该品牌玩具获得的最大利润是多少元?42.如图,某工厂与两地有铁路相连,该工厂从地购买原材料,制成产品销往地.已知每吨进价为600元(含加工费),加工过程中1吨原料可生产产品吨,当预计销售产品不超过120吨时,每吨售价1600元,超过120吨,每增加1吨,销售所有产品的价格降低2元.设该工厂有吨产品销往地.(利润=售价—进价—运费)(1)用的代数式表示购买的原材料有吨.(2)从地购买原材料并加工制成产品销往地后,若总运费为9600元,求的值,并直接写出这批产品全部销售后的总利润.(3)现工厂销往地的产品至少120吨, 且每吨售价不得低于1440元, 记销完产品的总利润为元, 求关于的函数表达式, 及最大总利润.43. 水产经销商以10元/千克的价格收购了1000千克的鳊鱼围养在湖塘中(假设围养期每条鳊鱼的重量保持不变), 据市场推测, 经过湖塘围养后的鳊鱼的市场价格每围养一天能上涨1元/千克, 在围养过程中(最多围养20天), 平均每围养一天有10千克的鳊鱼会缺氧浮水。
九年级数学上册复习专题06一元二次方程利润问题(1)
专题06一元二次方程利润问题这类问题在考试中是必考内容,需要掌握的知识点也比较多,是一类非常重要的考题,需要掌握以下知识点:①总利润=单件利润×数量(销售量);②单件利润=售价-进价;③总利润与x是二次函数关系;④数量与x是一次函数关系;【1②公式中“单利”为未降价前的单件利润,即单利=售价-进价;③公式中“基础数量”为降价前的销售量,题目中给出;④公式中“件数”为题目中说明的,降价“1元”,增加的数量;(注意必须是降价1元,不是1元的,转化为1元)⑤列出方程;(注意降价的范围)⑥解出方程;【2①设应涨价x元;②公式中“单利”为未涨价前的单件利润,即单利=售价-进价;③公式中“基础数量”为涨价前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价“1元”,减少的数量;(注意必须是涨价1元,不是1元的,转化为1元)⑤列出方程;(注意涨价的范围)⑥解出方程;【3】定价问题(问题为定价多少元或售价为多少元)(注意:无论是涨价还是降价,公式中的符号和位置都不变)①设应定价x元;②公式中“进利”为题目中给出的进价;③公式中“基础数量”为价格改变前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价(或者降价)“1元”,增加(或者减少)的数量;(注意必须是涨价或降价1元,不是1元的,转化为1元)⑤公式中“售价”为题目中给出价格为改变前的销售价格;⑥列出方程;(注意x的范围)⑦解出方程;【4】数量为一次函数类型我们已经知道,数量与x(涨价,降价或者定价)是一次函数关系,因此我们可以用一次函数的待定系数法求出数量的表达式,再将一次函数表达式代入方程中即可;①设数量y=kx+b(k≠0);②在给出的函数图像上找两个已知坐标的点代入;③求出y的解析式;④总利润=单利×数量中,“数量”用求出的“kx+b”代替,列出方程;⑤注意x的取值范围;1.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为 千克、销售利润为 元;(2)若将这种水果每千克降价x 元,则每天的销售量是 千克(用含x 的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?【答案】(1)销售量:260,利润:312((2(100+200x (千克);(3)张阿姨应将每千克的销售价降至5元.【解析】【分析】(1)销售量=原来销售量+下降销售量(销售量×每千克利润=总利润(据此列式即可((2)销售量=原来销售量+下降销售量(据此列式即可((2)根据销售量×每千克利润=总利润列出方程求解即可(【详解】(1)销售量(100+20×0.80.1=100+160=260(利润((100+160((6(4(0.8(=312(则每天的销售量为260千克(销售利润为312元(故答案为260(312((2)将这种水果每千克降低x 元(则每天的销售量是100+0.1x ×20=100+200x (千克)( 故答案为(100+200x (((3)设这种水果每千克降价x 元(根据题意得((6(4(x ((100+200x (=300(2x 2(3x =1=0(解得(x =0.5或x =1( 当x =0.5时(销售量是100+200×0.5=200<240(当x =1时(销售量是100+200=300>240(∵每天至少售出240千克(∴x =1(6(1=5(答(张阿姨应将每千克的销售价降至5元(【点睛】本题考查了一元二次方程的应用(第一问关键求出每千克的利润(求出总销售量(从而利润.第二问(根据售价和销售量的关系(以利润做为等量关系列方程求解(2.合肥百货大楼服装柜在销售发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价2元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【答案】每件童装应降价20元.【解析】【分析】设每件童装应降价x 元,则平均每天可售出4(20)2x 件,根据总利润=每件的利润⨯销售数量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论. 【详解】解:设每件童装应降价x 元,则平均每天可售出4(20)2x 件, 依题意,得:4(40)(20)12002x x , 整理,得:2302000x x -+=,解得:110x =,220x =.要求尽快减少库存,20x ∴=.答:每件童装应降价20元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3.某商场销售一批衬衫,平均每天可以售出20件,每件盈利40元.为回馈顾客,商场决定采取适当的降价措施.经调查发现,每件衬衫降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,商场可售出多少件?(2)若商场每天的盈利要达到1200元,每件衬衫应降价多少元?【答案】(1)30件;(2)每件衬衫应降价10元或20元【解析】【分析】(1)根据“每件衬衫降价1元,商场平均每天可多售出2件”直接计算即可得出答案;(2)设每件衬衫应降价x 元,商场每天要获利润1200元,可列方程求解.【详解】解:(1)∵每件衬衫降价1元,商场平均每天可多售出2件,∴每件衬衫降价5元,可售出20+5×2=30(件);(2)设每件衬衫应降价x 元,据题意得:(40﹣x )(20+2x )=1200,解得:x =10或x =20.答:每件衬衫应降价10元或20元.本题考查了一元二次方程的应用,准确抓住题目中的相等关系,列出方程是解题的关键.4.某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?【答案】每辆车需降价2万元【解析】【分析】设每辆车需降价x 万元,根据每辆汽车每降5000元,公司平均每天可多售出2辆可用x 表示出日销售量,根据每天要获利48万元,利用利润=日销售量×单车利润列方程可求出x 的值,根据尽量减少库存即可得答案.【详解】设每辆车需降价x 万元,则日销售量为()82840.5x x +⨯=+辆, 依题意,得:(5)(84)48x x -+=,解得:11x =,22x =,∵要尽快减少库存,∴2x =.答:每辆车需降价2万元.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语,得出等量关系是解题关键.5.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,该商品每降价1元,商场平均每天可多售出2件.(1) 设每件商品降价x 元,则商场日销售量增加 件,每件商品盈利_________元(用含x 的代数式表示);(2) 每件商品降价多少元时,商场日盈利可达到2000元?【答案】(1)2x ,50-x (0<x≤50,x 为正整数);(2)25元.【解析】【分析】(1)根据已知条件可得:当每件商品降价x 元后,商场平均每天可多售出2x 件商品,每件商品的利润为:50-x (0<x≤50x 为正整数).(2)设每件商品降价x 元,则由已知条件可得商场的日盈利为:(50)(302)x x -+再由日盈利为:2000元,可得到一个关于x 的一元二次方程,并解之即得.(1)解:(该商品每降价1元,则商场平均每天可多售出2件(当每件商品降价x 元后,商场平均每天可多售出2x 件商品,每件商品的利润为:50-x (0<x≤50 x 为正整数). 故答案为:2x ,50-x (0<x≤50 x 为正整数).(2)解:设每件商品降价x 元,则由已知条件可得商场的日盈利为:(50)(302)x x -+化简得:22701500x x -++(商场的日盈利为2000元(227015002000x x -++=化简得:2352500x x -+=分解因式得:(10)(25)0x x --=解之得:1210,25x x ==(当每件商品的价格降低10元或25元时,商场的日盈利可达利2000元.又∵商场需要尽快减少库存(当每件商品的价格降低25元时,商场的日盈利可达利2000元.故答案为:25元.【点睛】本题考查了根据实际问题,设定未知数,列一元二次方程;一元二次方程的解法中的因式分解法(首先应把该方程化为标准形式:20ax bx c ++=,其中a ,b ,c 为常数且a≠0,再将等式左边进行因式分解.6.商场某种商品平均每天可销售30件,每件赢利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多销售出2件.(1)若某天,该商品每天降价4元,当天可获利多少元?(2)每件商品降多少元,商场日利润可达2100元?【答案】(1)1748元;(2)20元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“盈利=单件利润×销售数量”即可列出关于x 的一元二次方程,解之即可得出x 的值, 再根据尽快减少库存即可确定x 的值.【详解】解:(1)当天盈利:(50-4)×(30+2×4)=1748(元).答:若某天该商品每件降价4元,当天可获利1748元.(2)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.根据题意,得:(50-x)×(30+2x)=2100,整理,得:x2-35x+300=0,解得:x1=15,x2=20,∵商城要尽快减少库存,∴x=20.答:每件商品降价20元时,商场日盈利可达到2100元.【点睛】本题考查了一元二次方程的应用,根据数量关系列出一元二次方程(或算式)是解题的关键.1.某商店将进价为30 元的商品按售价50 元出售时,能卖500 件.已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,且尽量减少库存,售价应为多少元?【答案】售价为60元【解析】【分析】设售价为x元,由已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,列出方程,由且尽量减少库存得出方程的解,可得答案.【详解】设售价为x元由题意得:(x-30)[500-10(x-50)]=12000解得:x1=60,x2=70∵尽量减少库存∴售价应定为60元答:售价为60元【点睛】本题主要考查一元二次方程的实际应用,由已知条件列出方程式解题的关键.2.某商店销售一款口罩,每袋的进价为12元,计划售价大于12元但不超过22元,通过试场调查发现,这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋.(1)在售价为18元的基础上,将这种口罩的售价每袋提高x元,则日均销售量是袋;(用含x的代数式表示)(2)要想销售这种口罩每天赢利275元,该商场每袋口罩的售价要定为多少元?【答案】(1)(505)x -;(2)17【解析】【分析】(1)销售量=原来销售量-下降销售量,据此列式即可;(2)根据销售量×每袋利润=总利润列出方程求解即可.【详解】解:(1)505505x x -=-(袋);故答案为:(505)x -;(2)根据题意得:(1812)(505)275x x -+-=,即:2450x x --=,解得:11x =-,25x =,当1x =-时,售价是18(1)17+-=元;当5x =时,售价是18523+=元.∵计划售价大于12元但不超过22元,∴1x =-,售价是17元.答:该商场每袋口罩的售价要定为17元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.3.某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价x 元(x 为非负整数),每周的销量为y 件. (1)求y 与x 的函数关系式及自变量x 的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?【答案】(1)10010=-y x ,05x ≤≤;(2)每件的售价是17元或者18元.【解析】【分析】(1)根据“每件的售价每涨1元,那么每周少卖10件”,即可求出y 与x 的函数关系式,然后根据x 的实际意义和售价每件不能高于20元即可求出x 的取值范围;(2)根据总利润=单件利润×件数,列方程,并解方程即可.【详解】(1)解:y 与x 的函数关系式为10010=-y x∵售价每件不能高于20元∴01520x x ≥⎧⎨+≤⎩∴自变量的取值范围是05x ≤≤;(2)解:设每件涨价x 元(x 为非负整数),则每周的销量为()10010x -件,根据题意列方程()()100101510560-+-=x x ,解得:122,3x x ==,所以,每件的售价是17元或者18元.答:如果经营该商品每周的利润是560元,求每件商品的售价是17元或者18元.【点睛】此题考查的是一次函数的应用和一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.1.春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价0.5元,那么每天就少售10件;如果每件降价0.5元,那么每天能多售出20件.为了使该商品每天销售盈利为1980元,每件定价多少元?【答案】为了使得该商品每天盈利1980元,每件定价应为21或23元【解析】【分析】首先根据题意列出方程(利用根的判别式判断方程实数根的情况(然后再求解即可(【详解】①设每件应降价x 元(根据题意得((20(x (12((240+40x ((1980整理得(x 2-2x +1.5=0(((=4(6=(2(0(∴原方程无实数根(②设每件应该涨价y 元(根据题意得((20+y (12((240(20y ((1980解得(y 1(3(y 2(1(当y =3时(20+y =20+3(23(元((当y =1时(20+y =20+1(21(元)(答(为了使得该商品每天盈利1980元(每件定价应为21或23元(【点睛】本题考查了一元二次方程的应用(解题的关键是能够分别表示出销售量和单件的销售利润(从而列出方程求解(解答过程中注意舍去不符合题意的根(2.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?【答案】每件商品售价60元或50元时,该商店销售利润达到1200元.【解析】【分析】根据题意得出,(售价-成本)⨯(原来的销量+2⨯降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价x 元时,该商店销售利润为1200元.根据题意,得()()70302021200x x --+=整理得:2302000x x -+=,解这个方程得:110x =,220x =.所以,7060x -=或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.3.平安超市准备进一批书包,每个进价为40元.经市场调查发现,售价为50元时可售出400个;售价每增加1元,销售量将减少10个.超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少【答案】60元【解析】【分析】设定价为x 元,则利用单个利润×能卖出的书包个数即为利润6000元,列写方程并求解即可.【详解】解:设定价为x 元,根据题意得(x -40)[400-10(x -50)]=60002x -130x+4200=0解得:1x = 60,2x = 70根据题意,进货量要少,所以2x = 60不合题意,舍去.答:售价应定为70元.【点睛】本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.4.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【答案】(1)450千克;(2)当月销售利润为元8750时,每千克水果售价为65元或75元;(3)当该优质水果每千克售价为70元时,获得的月利润最大【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为x 元,根据题意列方程解答即可;(3)设月销售利润为y 元,每千克水果售价为x 元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可.【详解】解(()1当售价为55元/千克时,每月销售量为()50010555050050450-⨯-=-=千克.()2设每千克水果售价为x 元,由题意,得()()4050010508750,x x ⎡⎤=⎦-⎣-- 即2101400400008750,x x -+-=整理,得21404875,x x -=-配方,得()27049004875,x -=-解得1265,75.x x == ∴当月销售利润为元8750时,每千克水果售价为65元或75元()3设月销售利润为y 元,每千克水果售价为x 元,由题意,得()()405001050,y x x ⎡⎤=---⎣⎦ 即210140040(00040)100,y x x x =-+-≤≤配方,得()210709000,y x =--+ 100-<,∴当70x =时,y 有最大值∴当该优质水果每千克售价为70元时,获得的月利润最大(【点睛】此题考查一元二次方程的实际应用,顶点式二次函数的性质,正确理解题意,根据题意对应的列方程或是函数关系式进行解答,并正确计算(5.某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?【答案】(1)580;(2)70;(3)50【解析】【分析】(1)由“这种书包的售价每上涨1元,其销售量就减少10个”进行解答;(2)根据“售价+月销量减少的个数÷10”进行解答;(3)设销售价格应定为x 元,根据“这种书包的售价每上涨1元,其销售量就减少10个”列出方程并解答.【详解】(1)当售价为42元时,每月可以售出的个数为600-10×(42-40)=580(个),答:每月可售出580个;(2)当书包的月销售量为300个时,每个书包的价格为:40+(600-300)÷10=70(元);答:每个书包的定价为70元;(3)设销售价格应定为x 元,则(x -30)[600-10(x -40)]=10000,解得x 1=50,x 2=80,当x=50时,销售量为500个;当x=80时,销售量为200个.答:为体现“薄利多销”的销售原则,销售价格应定为50元.【点睛】本题考查了一元二次方程的应用,解题的关键是分别表示出销量和单价,用销量乘以单价表示出利润即可.6.某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售200件,售价每提高1元,销售量将减少10件.那么,该服装每件售价是多少元时,商店销售这批服装获利能达到2240元?【答案】该服装每件售价是64元或66元时,商店销售这批服装获利能达到2240元.【解析】【分析】设每件服装售价提高x元,则每天可售出(200﹣10x)件,根据总利润=每件服装的利润×销售数量,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】设每件服装售价提高x元,则每天可售出(200﹣10x)件,依题意,得:(60+x﹣50)(200﹣10x)=2240,整理,得:x2﹣10x+24=0,解得:x1=4,x2=6,∴60+x=64或66.答:该服装每件售价是64元或66元时,商店销售这批服装获利能达到2240元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本).(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.【答案】(1)250,3250;(2)当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.【解析】【分析】(1)根据当天销售量=280﹣10×增加的销售单价,即可求出结论;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,然后求解方程即可得出结论.【详解】解:(1)280﹣(43﹣40)×10=250(件),当天销售利润是250×(43﹣30)=3250(元),故答案为:250,3250;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,依题意,得:(x﹣30)[280﹣(x﹣40)×10]=3450,整理,得:x 2﹣98x +2385=0,解得:x 1=53,x 2=45.答:当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.【点睛】本题主要考查一元二次方程的应用,解此题的关键在于根据题意设出未知数,列出方程进行求解.1.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【答案】(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【解析】【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得: 55706060k b k b +=⎧⎨+=⎩, 解得:2180k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.2.某网店销售某款童装,每件售价60元,每星期可卖300件,为尽快减少库存,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,该商店每天的销售利润为6480元?【答案】(1)302100=-+y x ;(2)52元.【解析】【分析】(1)根据销售量y 件=原销售量300件+降价(60-x )元后增加的销售量解答即可;(2)根据利润=每件利润×销售量即得关于x 的方程,解方程即可求出x ,检验后即得结果.【详解】解:(1)由题意得:()3003060302100y x x =+-=-+;(2)由题意,得()()403021006480x x --+=解得:1252,58x x ==,∵要尽快减少库存,∴每件售价应为52元.答:当每件售价定为52元时,该商店每天的销售利润为6480元.【点睛】本题考查了一元二次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.3.某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.(1)用含x的代数式表示y;(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?【答案】(1)y=−5x+190;(2)每袋售价定为20元时,商店销售该款口罩所得的日均毛利润为720元.【解析】【分析】(1)设口罩每袋的售价为x元,日均销售量为y袋,由题意可得出y与x的关系式;(2)根据“总利润=每袋利润×日均销售量”列方程求解可得出答案.【详解】解:(1)设口罩每袋的售价为x元,日均销售量为y袋,由题意得y=100−5(x−18)=−5x+190,即y=−5x+190;(2)设每袋售价定为x元时,商店销售该款口罩所得的日均毛利润为720元,根据题意可得:(x−12)(−5x+190)=720,解得:x1=20,x2=30,∵该款口罩的每袋售价不得高于22元,∴x=30舍去,∴x=20,答:每袋售价定为20元时,商店销售该款口罩所得的日均毛利润为720元.【点睛】本题主要考查一次函数的实际应用,一元二次方程的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程.4.某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?【答案】(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元【解析】【分析】(1)将点(40,120)、(60,80)代入一次函数表达式,即可求解;(2)由题意得(x -40)(-2x+200)=1000,解不等式即可得到结论;(3)由题意得w=(x -40)(-2x+200)=-2(x -70)2+1800,即可求解.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(40,120)、(60,80)代入一次函数表达式得:401206080k b k b +=⎧⎨+=⎩ 解得2200k b =-⎧⎨=⎩, 所以关系式为y=-2x+200;(2)由题意得:(x -40)(-2x+200)=1000解得x 1=50,x 2=90;所以当x=50时,销量为:100件;当x=90时,销量为20件;(3)由题意可得利润W =(x -40)(-2x+200)=-2(x -70)2+1800,∵-2<0,故当x <70时,w 随x 的增大而增大,而x≤65,∴当x=65时,w 有最大值,此时,w=1750,故销售单价定为65元时,该超市每天的利润最大,最大利润1750元.【点睛】考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.5.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y (台)和销售单价x (万元)对应的点(x ,y )在函数y =kx + b 的图象上,如图:(1)求y 与x 的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多。
九年级数学降价涨价利润问题
例题1:某水果批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.若该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
分析:在做这类题目时,只要抓住两个量:(1)涨价(或)降价后的单千克利润;(2)涨价(或)降价后的销售量。
设每千克水果涨了x元,那么就少卖了20x千克,因此涨价后单千克的利润为(10+x)元,涨价后的销售量为(500+20x)千克,列出方程即可解决。
第二个套路在于“要使顾客得到实惠”,因此涨价要取较小值,降价要取较大值。
解:设每千克水果涨了x元,(10+x)(500-20x)=6000,
解得:x1=5,x2=10.
答:要顾客得到实惠,所以应该上涨5元.。
九年级数学上册复习专题06一元二次方程利润问题
专题06一元二次方程利润问题这类问题在考试中是必考内容,需要掌握的知识点也比较多,是一类非常重要的考题,需要掌握以下知识点:①总利润=单件利润×数量(销售量);②单件利润=售价-进价;③总利润与x是二次函数关系;④数量与x是一次函数关系;【1②公式中“单利”为未降价前的单件利润,即单利=售价-进价;③公式中“基础数量”为降价前的销售量,题目中给出;④公式中“件数”为题目中说明的,降价“1元”,增加的数量;(注意必须是降价1元,不是1元的,转化为1元)⑤列出方程;(注意降价的范围)⑥解出方程;【2】涨价问题(问题为涨价多少元)①设应涨价x元;②公式中“单利”为未涨价前的单件利润,即单利=售价-进价;③公式中“基础数量”为涨价前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价“1元”,减少的数量;(注意必须是涨价1元,不是1元的,转化为1元)⑤列出方程;(注意涨价的范围)⑥解出方程;【3】定价问题(问题为定价多少元或售价为多少元)(注意:无论是涨价还是降价,公式中的符号和位置都不变)②公式中“进利”为题目中给出的进价;③公式中“基础数量”为价格改变前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价(或者降价)“1元”,增加(或者减少)的数量;(注意必须是涨价或降价1元,不是1元的,转化为1元)⑤公式中“售价”为题目中给出价格为改变前的销售价格;⑥列出方程;(注意x的范围)⑦解出方程;【4】数量为一次函数类型我们已经知道,数量与x(涨价,降价或者定价)是一次函数关系,因此我们可以用一次函数的待定系数法求出数量的表达式,再将一次函数表达式代入方程中即可;①设数量y=kx+b(k≠0);②在给出的函数图像上找两个已知坐标的点代入;③求出y的解析式;④总利润=单利×数量中,“数量”用求出的“kx+b”代替,列出方程;⑤注意x的取值范围;1.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为千克、销售利润为元;(2)若将这种水果每千克降价x元,则每天的销售量是千克(用含x的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?2.合肥百货大楼服装柜在销售发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价2元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?3.某商场销售一批衬衫,平均每天可以售出20件,每件盈利40元.为回馈顾客,商场决定采取适当的降价措施.经调查发现,每件衬衫降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,商场可售出多少件?(2)若商场每天的盈利要达到1200元,每件衬衫应降价多少元?4.某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?5.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,该商品每降价1元,商场平均每天可多售出2件.(1) 设每件商品降价x元,则商场日销售量增加件,每件商品盈利_________元(用含x的代数式表示);(2) 每件商品降价多少元时,商场日盈利可达到2000元?6.商场某种商品平均每天可销售30件,每件赢利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多销售出2件.(1)若某天,该商品每天降价4元,当天可获利多少元?(2)每件商品降多少元,商场日利润可达2100元?1.某商店将进价为30 元的商品按售价50 元出售时,能卖500 件.已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,且尽量减少库存,售价应为多少元?2.某商店销售一款口罩,每袋的进价为12元,计划售价大于12元但不超过22元,通过试场调查发现,这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋.(1)在售价为18元的基础上,将这种口罩的售价每袋提高x元,则日均销售量是袋;(用含x的代数式表示)(2)要想销售这种口罩每天赢利275元,该商场每袋口罩的售价要定为多少元?3.某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价x元(x为非负整数),每周的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?1.春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价0.5元,那么每天就少售10件;如果每件降价0.5元,那么每天能多售出20件.为了使该商品每天销售盈利为1980元,每件定价多少元?2.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?3.平安超市准备进一批书包,每个进价为40元.经市场调查发现,售价为50元时可售出400个;售价每增加1元,销售量将减少10个.超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少4.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?5.某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?6.某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售200件,售价每提高1元,销售量将减少10件.那么,该服装每件售价是多少元时,商店销售这批服装获利能达到2240元?7.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本).(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.1.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?2.某网店销售某款童装,每件售价60元,每星期可卖300件,为尽快减少库存,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,该商店每天的销售利润为6480元?3.某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.(1)用含x的代数式表示y;(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?4.某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?5.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)对应的点(x,y)在函数y=kx+ b的图象上,如图:(1)求y与x的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多少万元?6.某商店代销一种智能学习机,促销广告显示“若购买不超过40台学习机,则每台售价800元,若超出40台,则每超过1台,每台售价将均减少5元”,该学习机的进价与进货数量关系如图所示:x 时,用含x的代数式表示每台学习机的售价;(1)当40(2)当该商店一次性购进并销售学习机60台时,每台学习机可以获利多少元?(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台?7.某公司购进一批新产品进行销售,已知该产品的进货单价为8元/件,该公司对这批新产品上市后的销售情况进行了跟踪调查.销售过程中发现,该产品每月的销售量y(万件)与销售单价x(元)之间的关系满足下表.(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并求出y与x之间的函数关系式;(2)当销售单价为多少元时,该产品每月获得的利润为240万元?(3)如果该产品每月的进货成本不超过160万元,那么当销售单价为多少元时,该产品每月获得的利润最大?最大利润为多少万元?8.吴江区某桶装水经营部每天的房租、人员工资等固定成本为150元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1200元,求该桶装水的销售单价.9.为提高农民收入,某区一水果公园引进一种新型蟠桃,蟠桃进价为每公斤40元.上市后通过一段时间的试营销发现:当蟠桃销售单价在每公斤40元至90元之间(含40元和90元)时,每月的销售量y(公斤)与销售单价x(元/公斤)之间的关系可近似地看作一次函数,其图像如图所示.(1)求y与x的函数解析式,并写出定义域;(2)如果想要每月获得2400元的利润,那么销售单价应定为每公斤多少元?。
初三利润问题解题技巧
初三利润问题解题技巧
解决初三利润问题,最重要的是要弄清楚问题的意思,例如说求一共赚多少钱,还是求每个增加多少钱,等等。
第一步:弄清楚问题的含义,明确要求的内容。
如果比较模糊,得先把问题弄清楚,这样可以确保解题正确。
第二步:分析问题,找出前提条件,分析出是关于收入、成本、利润等概念。
第三步:将题目中涉及到的信息和数据放到一个方程中,然后进行求解。
可以使用分数来计算,以便求出问题的结果,也可以使用代数方法来进行推导。
第四步:如果问的是一共赚多少钱,可以使用分析法,先把利润计算出来,然后加上收入减去成本,就可以得出最终的答案。
第五步:最后认真核对结果,确保计算没有错误,可以给自己验证一下结果是否正确。
总之,解决初三利润问题的技巧是:要弄清楚问题的意思,分析前提条件,将相关信息放到方程中进行求解,如果是求一共赚多少钱,可以使用分析法,最后认真核对结果。
人教版九年级上册数学 21.3 利润问题
答:每张贺卡应降价0.1元
2、新华商场销售某种冰箱,每台进价为2500元.市场调研表明:当销售价 为2900元时,平均每天能售出8台;而当销价每降低50元时,平均每天 能多售4台.商场要想使这种冰箱的销售利润平均每天达到5000元,每 台冰箱的定价应为多少元?
第四步:检查求得的值是否符合实际意义;
第五步:写出答案(及单位名称)。
提示:要注意题目中的隐含条件。
如果设每台冰箱降价x元,那么每台冰箱的定价就是 ____________元每台冰箱的销售利润为___(2__9_0_0___x_)____元。 平均每天销售冰箱的数量为_____________台。
课堂小结与反思: 解应用题的一般步骤? 第一步:设未知数(单位名称); 第二步:根据相等关系列出列出方程; 第三步:解这个方程,求出未知数的值;
第21章:一元二次方程
22.3实际问题与一元二次方程(3)
营销和利润问题
人教版·九年级上册
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500
千克,经市场调查发现,在进价不变的情况下,商场要保证每天盈利6000元,同时又让顾客得到实惠,那么
解:⑴设每件衬衫应降价X元
根据题意得:(40-x)(20+2x)=1200 ∴ x2-30x+200=0
解之得:x1=10, x2=20 而商场为了尽快减少库存∴ x=20
答:每件应降价20元
⑵设商场平均每天盈利为y元 则:y= (40-x)(20+2x) ∴ y=-2x2+60x+800 ∴y=-2( x-15)2+1250 ∴当 x=15时,y有最大值是1250
数学有损耗利润问题的应用题初三
数学有损耗利润问题的应用题初三1.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55,x=75时,y=45,( 1)求一次函数y=kx+b的表达式2)若改商场获得利润为w元,试写出利润w与销售单价×之间的关系式,销售单价定为多少元时,商场可获得最大利润,最大利润是多少元3)若该商场获得利润不低于500元,试确定销售单价×的范围2.某商店将进价为8元的商品按每件10元售出,每天可销售200件,现在采取提高商品售价减少售价量的方法增加利润这种商品每件的销售价每提高一元其销售量就减少20件,设售价提高×元(1)用含×的代数式表示提价后的销售量(2)提价后的利润设为w试用含×的代数式表示w=?(3)若物价部门规定此种商品的销售价不能超过进价的百分之七十五,那么应将每天的售价定为多少元时,才能使每天利润为640元?3.某百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20 件,没每件盈利40元,为了迎接六一,商场决定采取适当降价,扩大销售量,增加盈利,尽尽快减少库存,经市场调查发现:如果每件童装降价4元,那么平均每天可多售出8件,要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?4.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?。
《 销售最大利润问题》九年级初三数学上册PPT课件
某产品现在售价为每件60元,每星期可卖出300件。市场调查反映:如果调价,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,请问:1)题中调整价格的方式有哪些?2)如何表示价格与利润之间的关系?
涨价和降价
利润=每件产品利润×销售数量
当产品单价降价2.5元,即售价57.5元,利润最大,最大利润为6125元。
当产品单价涨价5元,即售价65元,利润最大,最大利润为6250元。
当产品售价65元,利润6000元。
综上所述,当涨价5元时利润最大,最大利润6250元
情景思考(销售最大利润问题)
1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨1元,每星期要少卖8件;每降价1元,每星期可多卖12件.已知商品的进价为每件40元.
随堂测试
(1)设与的函数关系式为:,把代入,可得,解得,所以与的函数关系式为:;设售价为a元,由题意得:;当涨价5元时,即,把代入销售利润:(元)故答案为:,6750;(2)当时,(元)即当售价定为70元时会获最大利润,最大利润为9000元。
随堂测试
时间:20XX
第二十二章 二次函数
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
(2)设每件降价x元,则此时每星期多卖______件,实际卖出________________件,此时每件产品的销售价为__________元,每周产品的销售额___________________元,此时每周产品的成本______________元,因此周利润合计为:
人教版九年级上册数学第21章一元二次方程利润问题应用题(含答案)
一元二次方程利润问题应用题1、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?3、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?4、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价6、一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)7、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元8、将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。
中考数学总复习《最大利润问题(一次函数的实际应用)》专题训练(附答案)
中考数学总复习《最大利润问题(一次函数的实际应用)》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.某学校准备购买A、B两种型号的垃圾箱,通过市场调研发现:买2个A型垃圾箱和1个B型垃圾箱共需100元;买1个A型垃圾箱和2个B型垃圾箱共需110元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)若该校需购买A,B两种型号的垃圾箱共30个,其中A型垃圾箱不超过16个,求购买垃圾箱的总费用w (元)与A型垃圾箱的数量a(个)之间的函数关系式,并说明总费用至少要多少元?2.春节临近,为了满足顾客的消费需求,某大型商场计划用200000元购进一批家电,这批家电的进价和售价如表:类别彩电冰箱洗衣机进价(元/台)200026001000售价(元/台)230028001100若在现有资金允许的范围内,计划购买三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商场购买冰箱x台.(1)用含x的代数式表示洗衣机的台数;(2)商场最多可以购买冰箱多少台?(3)购买冰箱多少台时,能使商场销售完这批家电后获得的利润最大?最大利润为多少元?3.某商场准备购进甲、乙两种服装进行销售,甲种服装每件进价160元,售价220元;乙种服装每件进价120元,售价160元.现计划购进两种服装共100件,其中甲种服装不少于60件.设购进甲种服装x件,两种服装全部售完,商场获利y元.(1)求y与x之间的函数关系式.(2)若购进100件服装的总费用不超过15000元,则最大利润为多少元?4.某商店11月份购进甲、乙两种配件共花费1350元,其中甲种配件6元/个,乙种配件15元/个.12月份,这两种配件的进价上调为:甲种配件8元/个,乙种配件18元/个.(1)若该店12月份购进这两种配件的数量与11月份都相同,将多支付货款350元,求该店11月份购进甲、乙两种配件分别是多少个?(2)若12月份将这两种配件进货总量减少到120个,设购进甲种配件a个,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若乙种配件不少于30个,则12月份该店需要支付这两种配件的货款最少应是多少元?5.某商店准备购进甲乙两种服装共100件进行销售,其中甲种服装每件利润40元,乙种服装每件利润50 x≥)件,两种服装全部售完,商场获利y元.元.设购进甲种服装x(30(1)求y与x之间的函数关系式;(2)该店购进甲,乙服装各多少件时,才能使销售总利润最大?最大利润为多少元?(3)实际进货时,厂家对甲服装的出厂价下调a(020<<)元,且限定该店最多只能购进甲服装60件.若a该店保持售价不变,请你根据以上信息,设计出使这100件服装总利润最大的进货方案.6.为迎接“国家级文明卫生城市”检查,我市环卫局准备购买A,B两种型号的垃圾箱.通过市场调研发现:购买1个A型垃圾箱和2个B型垃圾箱共需170元;购买3个A型垃圾箱和1个B型垃圾箱共需210元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中购买A型垃圾箱不超过16个.①求购买垃圾箱的总花费W(元)与A型垃圾箱x(个)之间的函数关系式;①当购买A型垃圾箱个数多少时总费用最少,最少费用是多少?7.某商店销售3台A 型和5台B 型电脑的利润为3000元,销售5台A 型和3台B 型电脑的利润为3400元.(1)求每台A 型电脑和B 型电脑的销售利润各多少元?(2)该商店计划一次购进两种型号的电脑共50台,设购进A 型电脑n 台,这50台电脑的销售总利润为w 元.请写出w 关于n 的函数关系式,并判断总利润能否达到26000元,请说明理由.8.第19届亚运会已于2023年9月23日至10月8日在中国浙江杭州成功举行.这是党的二十大胜利召开之后我国举办的规模最大、水平最高的国际综合性体育赛事,举国关注,举世瞩目.杭州亚运会三个吉祥物分别取名“琮琮”“宸宸”“莲莲”.某专卖店购进A ,B 两种杭州亚运会吉祥物礼盒进行销售.A 种礼盒每个进价160元,售价220元;B 种礼盒每个进价120元,售价160元.现计划购进两种礼盒共100个,其中A 种礼盒不少于60个.设购进A 种礼盒x 个,两种礼盒全部售完,该专卖店获利y 元.(1)求y 与x 之间的函数关系式;(2)若购进100个礼盒的总费用不超过15000元,求最大利润为多少元?(3)在(2)的条件下,该专卖店对A 种礼盒以每个优惠(020)m m <<元的价格进行优惠促销活动,B 种礼盒每个进价减少n 元,售价不变,且4m n -=,若最大利润为4900元,请直接..写出m 的值.9.某教育科技公司销售A,B两种多媒体,这两种多媒体的进价与售价如表所示:A B进价(万元/套)3 2.4售价(万元/套) 3.3 2.8(1)若该教育科技公司计划购进两种多媒体共50套,共需资金132万元,该教育科技公司计划购进A,B两种多媒体各多少套?(2)若该教育科技公司计划购进两种多媒体共50套,其中购进A种多媒体m套(1020<<),当把购进的m两种多媒体全部售出,求购进A种多媒体多少套时,能获得最大利润,最大利润是多少万元?10.某商店购进一批牛奶进行销售,据了解,每箱甲种牛奶的进价比每箱乙种牛奶的进价少5元,且购进2箱甲种牛奶和3箱乙种牛奶共需215元.(1)问甲、乙两种牛奶每箱的进价分别为多少元?(2)若每箱甲种牛奶的售价为50元,每箱乙种牛奶的售价为60元,考虑到市场需求,商店决定共购进这两种牛奶共300箱,且购进甲种牛奶的数量不少于100箱.设购进甲种牛奶m箱,总利润为W元,请求出总利润W(元)与m(箱)的函数关系式,并根据函数关系式求出获得最大利润的进货方案.(1)学校用4920元以进价购进这批篮球和足球,求购进篮球和足球各多少个;(2)设该电商所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数表达式(不要求写出x的取值范围);(3)因资金紧张,电商的进货成本只能在4745元的限额内,请为学校设计一种进货方案使得尽可能多地购买篮球和足球,同时要使电商利润最小;并求出利润的最小值.13.陕西洛川盛产苹果,政府要将其发展成“帮助群众脱贫致富、推动乡村振兴”的特色产业.王师傅在政府的扶持下种植了A、B两个品种的苹果共50亩,两种苹果的成本和售价如下表所示:品种成本(万元/亩)售价(万元/亩)A 1.1 2.2B 1.3 2.7设种植A品种苹果x亩,若50亩地全部种植两种苹果共获得利润y万元.(1)求y与x之间的函数关系式;(2)若A品种苹果的种植亩数不少于B品种苹果种植亩数的1.5倍,则种植A品种苹果多少亩时利润最大?并求出最大利润.14.某校在开展数学文化节知识竞赛中,对优秀选手予以评奖,并颁发奖品,奖品有甲、乙、丙三种类型.已知1个甲种奖品的价格是1个丙种奖品价格的2倍,1个乙种奖品的价格比1个甲种奖品的价格少20元.若决定:今年新采购100台污水处理设备用以增强公司的污水处理能力.经过市场考查,诚信机械设备公司(以下简称:诚信公司)推荐了A、B两种型号的设备供选择,其中每台的报价与月处理污水量如表:经核算,若按诚信公司的报价:购买一台A型设备将比购买一台B型设备多20万元,购买2台A型设备会比购买3台B型设备少40万元.(1)求m,n的值;(2)诚信公司最初给出的销售条件是:购买B型设备原则上不予优惠;购买A型设备不超过20台时无优惠;购买20台以上时,超过20台的部分每台可按报价的7.5折销售.并且由于受库存和产能等因素限制,在规定的交货期限内,诚信公司最多只能提供80台A型设备,而富春紫光需要这批新购进的100台设备月处理污水总能力不能低于20600吨①富春紫光买下这批设备最少需要支付多少购买资金?①经过反复谈判协商,诚信公司最终同意:在富春紫光按照最初的销售条件全部买下诚信公司库存的50台A型设备的前提下,再给予B 型设备如下的优惠措施:购买B 型设备不超过a 台时无优惠;购买a 台以上时,超过a 台的部分每台可按报价的8折销售.如果富春紫光想要用不超过7850万元的资金买下这批污水处理设备,试求a 的最大值?参考答案: 1.(1)每个A 型垃圾箱30元,每个B 型垃圾箱40元(2)购买垃圾箱的总费用w (元)与A 型垃圾箱的数量a (个)之间的函数关系式为101200w a =-+,总费用至少要1040元2.(1)1003x -(2)27台(3)购买冰箱27台时,能使商场销售完这批家电后获得的利润最大,最大利润为23500元3.(1)204000y x =+(2)当75x =时,y 最大,最大值为5500元4.(1)该店11月份购进甲种配件100个,购进乙种配件50个;(2)102160w a =-+;(3)12月份该店需要支付这两种配件的货款最少应是1260元.5.(1)105000y x =-+(2)当购进甲服装30件,乙服装70件时,总利润最大,为4700元(3)购进60件甲服装,40件乙服装时,总利润最大6.(1)每个A 型垃圾箱50元,每个B 型垃圾箱60元.(2)①()101800016W x x =-+≤≤,其中x 为整数.①购买16个A 型垃圾箱时总费用最少,最少费用是1640元.7.(1)每台A 型电脑和B 型电脑的销售利润各为500,300元(2)20015000w n =+,不能8.(1)()20400060y x x =+≥(2)5500元(3)109.(1)购进A 种多媒体20套,B 种多媒体30套(2)购进A 种多媒体11套时,能获得最大利润,最大利润是189.万元10.(1)每箱甲种牛奶的进价为40元,每箱乙种牛奶的进价为45元.(2)总利润W (元)与m (箱)的函数关系式为54500W m =-+;获得最大利润的进货方案为购进甲种牛奶100箱,乙种牛奶200箱.11.(1)每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资(2)有三种派车方案(3)安排甲车3辆,乙车7辆所用的燃油费最少,最低燃油费是24200元12.(1)购进篮球37个,购进足球13个(2)51750y x =-+(3)购进篮球16个,足球34个利润最小为1670元13.(1)0.370y x =-+(2)当30x =时,最大利润为61万元14.(1)1个甲种奖品的价格为60元,1个乙种奖品的价格为40元,1个丙种奖品的价格为30元(2)11500元15.(1)m的值为100,n的值为80(2)①富春紫光买下这批设备最少需要支付8100万元购买资金;①a的最大值为25.第11页共11页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一利润问题
1.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55,x=75时,y=45,
(1)求一次函数y=kx+b的表达式
2)若改商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少元时,商场可获得最大利润,最大利润是多少元
3)若该商场获得利润不低于500元,试确定销售单价x的范围
2.某商店将进价为8元的商品按每件10元售出,每天可销售200件,现在采取提高商品售价减少售价量的方法增加利润
这种商品每件的销售价每提高一元其销售量就减少20件,设售价提高x元(1)用含x的代数式表示提价后的销售量
(2)提价后的利润设为w 试用含x的代数式表示w=?
(3)若物价部门规定此种商品的销售价不能超过进价的百分之七十五,那么应将每天的售价定为多少元时,才能使每天利润为640元?
3.某百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,没每件盈利40元,为了迎接六一,商场决定采取适当降价,扩大销售量,增加盈利,尽尽快减少库存,经市场调查发现:如果每件童装降价4元,那么平均每天可多售出8件,要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?
4.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?
(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种
商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?。