英文版运筹学期末试卷【精】

合集下载

运筹学完整版(OperationsResearch)

运筹学完整版(OperationsResearch)

本课程的特点和要求
先修课:高等数学,基础概率、线性代数 特点:系统整体优化;多学科的配合;模型方法的应用 运筹学的研究的主要步骤:
真实系统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析与 实施
本课程授课方式与考核
讲授为主,结合习题作业
学科总成绩
平时成绩 (40%)
期末成绩 (60%)
2. 线性规划的数学模型由三个要素构成
决策变量 目标函数 约束条件
Decision variables Objective function Constraints
怎样辨别一个模型是线性规划模型?
其特征是: (1)问题的目标函数是多个决策变量的线性函数, 通常是求最大值或最小值; (2)问题的约束条件是一组多个决策变量的线性不 等式或等式。
线性规划问题的数学模型
4. 建模步骤
(1) 确定决策变量:即需要我们作出决策或选择的量。一般 情况下,题目问什么就设什么为决策变量; (2) 找出所有限定条件:即决策变量受到的所有的约束; (3) 写出目标函数:即问题所要达到的目标,并明确是max 还是 min。
线性规划问题的数学模型
5. 线性规划数学模型的一般形式
3x1 +x2 +x3 +2 x4 ≤180
x1、x2 、x3 、x4 ≥0
线性规划问题的数学模型
例1.5 某航运局现有船只种类、数量以及计划期内各条航 线的货运量、货运成本如下表所示:
航线号
船队 类型
1 1
2
3 2
4
拖轮
1 1 2 1
编队形式 A型 驳船 2 — 2 —
B型 驳船 —

英文版运筹学期末试卷

英文版运筹学期末试卷

XXXX学年第X学期《运筹学》期末试卷Class ID Number Name ScoreI.True/False(1)A balanced transportation problem has the same number of supply points as demand points.(2)In the search for an optimal solution of an LP problem, only vertexes of feasible region areneeded to be considered.(3) The stepping stone method is used because the transportation problem cannot be solved via thesimplex method.(4) Linear Programming can be employed to solve problems with single objective.(5) If a resource is not finished out, then its shadow price must be positive.(6) The first step in applying the simplex method is to transform all inequality constraints intoequality constraints by adding slack variables and subtracting surplus variables.(7) The optimal value of the primal objective function is equal to the optimal value of the dualobjective function.(8) If a constraint is in “≥” form in LP problem, then artificial variable is necessary.(9) That the feasible region of LP is not empty means:(A) it includes the origin X=(0,0,…,0);(B) it is bounded;(C) it is unbounded;(D) it is convex.(A, B, C, D)(10) Both the primal and dual problems are of feasible solution, then may be(A) an optimal solution is available for primal problem, but the optimal solutionis not available for dual problem;(B) at least one problem is unbounded;(C) an optimal solution is available for one problem, and the other problem is ofunbounded solution;(D) both the primal and dual problems might be of optimal solution.(A, B, C, D)II.To solve the problems below:(1) Min. w = 14X1 + 20X2s.t. X1 + 4X2 ≥4X1 + 5X2≥22X1 + 3X2≥7X1, X2 ≥0Please find out the optimal solutions for both this problem and its dual.(2) The objective function of an LP is Max. Z = 5X1+6X2 +8X3. This LP is of two constraints (resources #1 and # 2 respectively) with “≤”form.Below is a processing step by using simplex method.a)To complete this table;b)Is this table optimal? If “yes”, then do c); if “no”, then find out the optimal table.c)To write out the optimal solution and objective value.d)To write out the shadow prices of resources #1 and #2, and describe thesignificances.III.To find the shortest path and its length from A to E:7B1 C1 16 4 4 D1M+12 3 6A 4 B2 2 C2 E3 4 344 1 3 D2B3 3 C3 3M is the last place of your ID number.IV. A factory is going to produce Products I, II and III by using raw materials A, B and C. The related data is shown below:a)Please arrange production plan to make the profit maximization.b)If one more kg of raw material A is available, how much the total profit will beincreased?c)The market price for raw material B is $1.2. Will the factory buy it or sell it?Why?d)What is the allowed range for raw materials A, B and C respectively?e)What is the allowed range for the profit of product II?。

《管理运筹学》考试试卷A,B卷及答案

《管理运筹学》考试试卷A,B卷及答案

《管理运筹学》考试试卷A,B卷及答案一、选择题(每题2分,共20分)1. 运筹学的英文全称是:A. Operation ResearchB. Operation ManagementC. Operational ResearchD. Operations Management2. 线性规划问题的标准形式中,目标函数是:A. 最大化B. 最小化C. 既可以是最大化也可以是最小化D. 无法确定3. 在线性规划中,约束条件可以用以下哪个符号表示?A. ≤B. ≥C. =D. A、B、C都对4. 简单线性规划问题中,如果一个变量在任何解中都不为零,则称这个变量为:A. 基变量B. 非基变量C. 独立变量D. 依赖变量5. 以下哪个方法可以用来求解线性规划问题?A. 单纯形法B. 拉格朗日乘数法C. 对偶理论D. A、B、C都可以二、填空题(每题3分,共15分)6. 在线性规划中,如果一个约束条件的形式为“≥”,则称这个约束为______约束。

7. 在线性规划问题中,若决策变量为非负整数,则该问题为______规划问题。

8. 在目标规划中,目标函数通常表示为______。

9. 在运输问题中,如果产地和销地的数量相等,则称为______。

10. 在排队论中,顾客到达的平均速率通常表示为______。

三、计算题(每题10分,共30分)11. 某工厂生产甲、乙两种产品,甲产品每件利润为200元,乙产品每件利润为150元。

工厂每月最多生产甲产品100件,乙产品150件。

同时,生产甲产品每件需要3小时,乙产品每件需要2小时,工厂每月最多可利用工时为300小时。

试建立该问题的线性规划模型,并求解。

12. 某公司有三个工厂生产同一种产品,分别供应给四个销售点。

各工厂的产量和各销售点的需求量如下表所示。

求最优的运输方案,并计算最小运输成本。

工厂\销售点 A B C D产量 20 30 50需求量 10 20 30 4013. 设某商店有三个售货员,负责四个收款台。

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

《运筹学》09-10学年第一学期末考试试卷(A)

《运筹学》09-10学年第一学期末考试试卷(A)

《运筹学》09-10学年第一学期末考试试卷(A)广东外语外贸大学《运筹学》2021―2021学年第一学期期末考试试卷(A)时间:2小时班级:学号:姓名:成绩:题次分数得分一 20 二 30 三 30 四 20 总分 100一、单选题(在以下各题的备选答案中只有一个是正确的,请将你选择的正确答案编号填在以下表格中)(每小题2分,共20分) 1 2 3 4 5 6 7 8 9 101.运筹学作为一门科学,国际上公认产生于()。

A. 2000多年前B. 第一次世界大战C. 第二次世界大战D. 孙子兵法2.在某一费用最小化线性规划问题的解中,若其中一个约束条件对应的对偶价格等于-2,则在一定范围内, 当该约束条件右边的常数项增加1个单位时,其目标函数的值( ) A. 增加1个单位 B. 增加2个单位 C. 减少1个单位 D. 减少2个单位 3.对于产大于销的运输问题,在构建其产销平衡的运价表时应()。

A. 增加一个虚拟的产地B. 增加一个虚拟的销地 C. 不需要增加虚拟的产地 D. 不需要增加虚拟的销地 4. 设某利润最大化线性规划问题(LPP)的最优解为:x1=2.5,x2=3.2,如果该问题中变量x1对应的实际含意是工人的人数,要求是整数,则可在LPP的基础上增加x1是整数的条件而将LPP转化为混合整数规划问题(ILPP),ILPP的最优解为()。

A.x1=3,x2=3.2 B. x1=2,x2=3.2 C. x1=3,x2=3 D. 无法确定 5.如果目标规划中的某目标要求不能低于其目标值,则在其目标函数中应对该目标的()。

A. 负偏差求最小B. 正偏差求最小C. 负偏差求最大D.正偏差求最大16.树是()的图。

A. 任两顶点之间有一条链相连接B. 有两个顶点之间存在一条链相连接C. 任两顶点之间有唯一一条链相连接 D. 有两顶点之间存在唯一一条链相连接 7. 设某网络中弧(vi,vj)的容量为cij?8,通过弧(vi,vj)的流量fij?8,则对于逆向通过弧(vi,vj)的流量fji来说()。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

�� �
1
0
1 0� �
0 0�
0 1�
0
0
�� �
∴使总消耗时间为最少的分配任务方案为�
甲→C�乙→B�丙→D�丁→A 此时总消耗时间 W=9+4+11+4=28
七、�6 分�计算下图所示的网络从 A 点到 F 点的最短路线及其长度。
此题在“《运筹学参考综合习题》�我站搜集信息自编�.doc”中已有。
B1
B2
B3
B4
si
A1
1
2
3
4
10
A2
8
7
6
5
80
A3
9
10
11
9
15
dj
8
22
12
18
1�用最小费用法求初始运输方案�并写出相应的总运费��5 分� 2�用 1�得到的基本可行解�继续迭代求该问题的最优解。�10 分� 解�用“表上作业法”求解。
1�先用最小费用法�最小元素法�求此问题的初始基本可行解�
�2 x1 � 4 x2 � 22

�� �
� 2
x1 x1
� �
4 x
x
2
2 � 10 �7
� �
x1

3x2
�1
�� x1 , x 2 � 0
⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺
解�
第 1 页 共 11 页
可行解域为 abcda�最优解为 b 点。
�2 x1 � 4 x2 � 22
由方程组 �

x2 � 0
18
60
费销
用 地
B1
B2
B3

运筹学英文版北信科作业

运筹学英文版北信科作业

CHAPTER 33.1-5、Use the graphical method to solve the problem:Maximize Z=2 x1+ x2Subject toX2<=102 x1+5 x2<=60X1+x2<=183 x1 +x2<=44AndX1>=0,x2>=0Solution:X22218(11.3 , 10)1210Feasible region14.61830X1As the figure above shows, the corner-point is the optimal solution, x1=11.3 and x2=10.3.1-13、consider the following problem, where the value of k has not yet been ascertained.Maximize Z=x1+2 x2,Subject to-x1+x2<=2X2<=3K x1+x2<=2k+3, where k>=0AndX1>=0, x2>=0The solution currently being used is x1=2,x2=3. Use graphical analysis to determine the values of k such that this solution actually is optimal.Solution:X2Corner-point322X1As the picture above shows, the value of k is boundless,any value is ok.3.1-14、consider the following problem, where the value of c1 and c2 has not yet been ascertained.Maximize Z=c1 x1+c2 x2Subject to2x1+ x2<=11-x1+2x2<=2AndX1>=0, x2>=0Use graphical analysis to determine the optimal solution for(x1, x2) for the various possible values of c1 and c2.(hint: separate the cases where c2=0.c2>0,andc2<0.for the latter two case,Focus on the ratio of c1 to c2.)X211(4, 3)15.5X1If the value of c2 is 0, the optimal solution is x1=5, x2=0;If the value of c2 is greater than zero and c1/c2 great than 2, the optimal solution is still x1=5, x2=0;If the value of c2 is greater than zero and c1/c2 equal 2, the optimal solution hasmultiple optimal solutions;If the value of c2 is greater than zero and c1/c2 less than 2, the optimal solution is x1=4, x2=3;If the value of c2 is less than zero and c1/c2 less than 1/2, the optimal solution is x1=4, x2=3;If the value of c2 is less than zero and c1/c2 equal 1/2, the optimal solution has multiple optimal solutions;If the value of c2 is less than zero and c1/c2 greater than 1/2, the optimal solution is x1=0, x2=1;3.4-10. Larry Edison is the director of the Computer Center for Buckly College. He now needs to schedule the staffing of the center. It is open from 8 A.M. until midnight. Larry has monitored the usage of the center at various times of the day, and determined that the following number of computer consultants are required.Time of Day Minimum Number of Consultants Required to Be Duty8 A.M.-noon Noon-4 P.M.4 P.M.-8 P.M.8 P.M.-midnight4 8 10 6Two types of computer consultants can be hired: full-time and part-time. The full-time consultants work for 8 consecutive hours in any of the following shifts: morning (8 A.M.-4 P.M.), afternoon (noon-8 P.M.), and evening (4 P.M.-midnight).Full-time consultants are paid $40 per hour.Part-time consultants can be hired to work any of the four shifts listed in the above table. Part-time consultants are paid $30 per hour.An additional requirement is that during every time period, there must be at least 2 full-time consultants on duty.Larry would like to determine how many full-time and how many part-time workers should work each shift to meet the above requirements at the minimum possible cost.(a)Formulate a liner programming model for this problem.C(b) Solve this model by the simplex method.(不会…希望老师多讲讲)Solution:let the full-time consultants be x1、x2、x3, let the part-time consultants bex4、x5、x6、x7.Min z=40(x1+x2+x3)+30(x4+x5+x6+x7)Subject to:X1>=2X2>=2x3>=2X1+x4>=4X1+x2+x5>=8X2+x3+X6>=10X3+x7>=6AndXj(j=1,2,3,4,5,6,7)>=03.4-11.* The Medequip Company produces precision medical diagnostic equipment at two factories. Three medical centers have placed orders for this month’s production output. The table below shows what the cost would be for shipping each unit from each factory to each of these customers. Also shown are the number of units that will be produced at each factory and the number of units ordered by each customer.ToFromUnit Shipping CostOutputCustomer 1 Customer2 Customer3Factory 1 Factory 2 $600 $800 $700$400 $900 $600400 units500 unitsOrder size 300 units 200 units 400 unitsA decision now needs to be made about the shipping plan for how many units to ship from each factory to each customer.(a)Formulate a liner programing model for this problem.C(b) Solve this model by the simplex method.(同上…)Solution: let factory1 to each customer be x1、x2、x3, let factory2 to each customer be x3、x4、x5.Min z=600x1+800x2+700x3+400x4+900x5+600x6Subject to:X1+x4=300X2+x5=200X3+x6=400X1+x2+x3=400X5+x6+x7=500 AndXj(j=1,2,3,4,5,6)>=0。

运筹学英文版、优化单纯形法

运筹学英文版、优化单纯形法

5.3-1Consider the following problem.Maximize Z=x1-x2+2x3Subject to2x1-2x2+3x3<=5X1+x2-x3<=3X1-x2+x3<=2AndX1>=0, x2>=0,x3>=0Let x4, x5,and x6 denote the slack variables for the respective constraints. After you apply the simplex method, a portion of the final simplex tableau is as follows:Basic variable Eq. Coefficient of: Rightside Z X1 X2 X3 X4 X5 X6Z 0 1 1 1 0X2 1 0 1 3 0X6 2 0 0 1 1X3 3 0 1 2 0a. use the fundamental insight presented in Sec. 5.3 to identify the missing numbers in the final simplex tableau. Show your calculations.b. identify the defining equations of the CPF solution corresponding to the optimal BF solution in the final simplex tableau.Solution:as is show in the tableau=I=(X2, X6, X3)=,2x1-2x2+3x3+x4=5X1+x2-x3+x5=3X1-x2+x3+x6=2b=N=(x1)=b=N=b=8 =(-1 -1 0) =-2The simplex tableau:c 1 -1 2 0 0 0cb xb b X1 X2 X3 X4 X5 X6 min-1 X2 14 5 1 0 1 3 00 X6 5 2 0 0 0 1 12 X3 114 0 1 1 2 0z 8 -2 0 0 -1 -1 05.3-2Consider the following problem.Maximize Z=4x1+3x2+x3+2x4,Subject to4x1+2x2+x3+x4<=53x1+x2+2x3+x4<=4AndX1>=0, X2>=0, X3>=0, X4>=0Let x5 and x6 denote the slack variable for the respective constraints. After you apply the simplex method, a portion of the final simplex tableau is as follows:Basic variable Eq. Coefficient of: Rightside Z X1 X2 X3 X4 X5 X6Z 0 1 1 1X2 1 0 1 -1X4 2 0 -1 2a. use the fundamental insight presented in Sec.5.3 to identity the missing number in the final simplex tableau. Show your calculations.b. identify the defining equations of the CPF solution corresponding to the optimal BF solution in the final simplex tableau.Solution:As is show in the tableau:=I =(X2,X4)=,4x1+2x2+x3+x4+x5=53x1+x2+2x3+x4+x6=4b=N=(x1,x3)=b=N==-3 -2The simplex tableau:c 4 3 1 2 0 0cb xb b X1 X2 X3 X4 X5 X6 min 3 X2 1 1 1 -1 0 1 -12 X43 2 0 3 1 -1 2z 9 -3 0 -2 0 -1 -1。

运筹学英文版作业

运筹学英文版作业

4.3-4 解:Max. x x x Z 321634++=S.t. 30334321=+++xx x x (1)403225321=+++x x x x (2)And 0≥x i, for i=1,2,3,4,5Initialization:0,00321===x xx ,; so,40,3054==x xThe basic solution (0,0,030,40) is not a optimal solution.Interation 1 : Step1: x x x Z 321634++=, 6>4>3, so, the entering basic variable is x 2Step2:0021==x x ,340340,403min10330,3033355333443≤⇒-==+←≤⇒-==+x x x x x x x x x xso, the leaving basic variable isx 4Step3:)2(10)1(603131)0(602254214321421=+-+-=+++=+-+x x x x x x x x x x x Z The BF solution is (0,0,10,0,10), z=60 Interation 2 : Step1: 6022421+-+-=x x x Z , and x 2is the entering basic variable.0,41=xxmin)1010(10)303110(10312255222332←≤⇒+==+-≤⇒-==+x x x x x x x x x x So, the leaving basic variable is x 5Step2:)2(103131)1(320313254)0(7043215431541=+++=-++=+++x x x x x x x x x x x Z So, the BF solution is (0,10,20/3,0,0), Z=704.4-3 解:(a)图略;x x Z 212+=;CPF: (0,0),(25,0),(0,40),(20,20); Optimal solution is (20,20)(c) Max. 0221=--x x Z S.t.100440421321=++=++x x x x x xInteration 1 :x x Z 212+=, and x 1is the entering basic variable, 02=xmin)254100(1004)4040(401144111331→≤⇒-==+≤⇒-==+x x x x x x x x x xSo, the leaving basic variable isx 425414115414350212142143242=++=-+=+-x x x x x x x x Z The BF solution is (25,0,15,0), z=50 Interation 2:x 2is the entering basic variable,04=x)1004125(,2541min)204315(15432212122332≤⇒-==+←≤⇒-==+x x x x xx x x x x , So, the leaving basic variable isx 320313120313460313243143243=+-=-+=++x x x x x x x x Z The BF solution is (20,20,0,0), Z=60.The BF solution is (20,20,0,0), Z=60. 4.4-5解:(a)Max.8023402260243342632153214321321=+++=+++=+++++=x x xx x x x x x x x x x x x ZInteration 1 :x 2is the entering basic variable, 0,31=xx)380380(803)4040(40min)15460(604226622255222442≤⇒-==+≤⇒-==+←≤⇒-==+x x x x x x x x x x x x x x xSo, the leaving basic variable isx 435432145254123451541214360643154314321431=+-+-=+-+=+++=+-+x x x x xx x x x x x x x x x ZInteration 2 :x 3is the entering basic variable, 0,41=xx)702135(3521min)3502325(2523)302115(1521236633355333232≤⇒-==+←≤⇒-==+≤⇒-==+x x x xx x x x x x x x x x xSo, the leaving basic variable isx 538031323535032616532031313132303265611654154315421541=+---=+-+=-++=+++x x x x x x x x x x x x x x x Z The BF solution is (0,20/3,50/3,0,0,80/3), Z=230/3.(b)4.6-1 解: (a)图略;1,221==xx ;Z=7;(b) Big M method:342032421321421=++=++=+--x x x x x x x x x M Z234.6-7 解:(a) Big M method:50 422020 3526321543216532 1=+++=+-+-=++---xxxx xxxxxxxxxx MMZOptimal solution : (0,0,50,0,0,0), Z=150 (c) Phase 1:(d)(g) The basic solution of the two methods coincide. They are artificial basic solutions for the revised problem until both artificial variables x 5 and x 6 are driven out of the basis, which in the two phase method is the end of phase 1.4.7-3解:(a) 图略;Optimal value of Z : 38; Optimal solution is (8,3)(b) Changing resource 1 to 17 units (1721=x ), cause Z to increase to Z=4*(17/2)+2*(17/6)=119/3, so 3/51*==∆y Z ; Increasing resource 2 to 18 units (18321=+x x ) increase Z to Z=4*(8)+2*(10/3)=116/3, so 3/22*==∆y Z . since constraint 3 is not binding, 03*=y(c) To increase Z by 15, we would need to increase resource 1 by91535151*==y,(Solving the LP with resource 1 set to 16+9=25 conforms that 83*=Z )9.1-3(a )x x x x MinZ 43218.29.27.23+++=S.tThe initial simplex tableau:)4,3,2,1(0454343214231=≥≤+≤+=+=+i x x x x x x x i xx10.3-4Length of shortest path=16Length of shortest path=1。

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。

答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。

答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。

答案:非线性4. 动态规划适用于解决________决策问题。

答案:多阶段5. 排队论中的基本参数包括________、________和________。

答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。

答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。

线性规划问题通常包括目标函数、约束条件和非负约束。

目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。

2. 请简要阐述整数规划的特点。

答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。

《运筹学》 期末考试 试卷A 答案

《运筹学》 期末考试 试卷A 答案

《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。

中英双语运筹学期末试卷

中英双语运筹学期末试卷

XXXX学年第X学期《运筹学》期末试卷Class IN Number Name ScoreI.Tree/False(1)Linear Programming can be employed to solve problems with multiple objectives.线性规划可用来解决多目标的问题。

(2)In the search for an optimal solution, all points on the boundary of the feasible region must beconsidered.寻优过程中,可行域边界上所有的点都必须考虑。

(3)Changes in profit-contribution coefficients for basic variables will not affect the existingsolution.基本变量的目标系数在允许范围内变化不影响当前解。

(4) Using opportunity costs is one way of handling an unbalanced transportation problem.(5) A balanced transportation problem has the same number of supply points as demand points.(6) The value of an additional unit of a resource, found in the last row under the artificial variables corresponding to the resource, is the shadow price for that resource.资源增加一个单位的价值是该资源的影子价格,可在最下一行对应人工变量的检验数处找到。

(7) The optimal value of the primal objective function is equal to the negative of the optimal value of the dual objective function.原问题的最优目标值等于其对偶问题的最优目标值的相反数。

双语运筹学B卷

双语运筹学B卷

- 1 -XX 学院 2016-2017 学年 第 1 学期Final Exam of Operations Research (B)一、 Single Choice (本大题共 10 小题,每小题 1 分,总计 10 分) 答案整理在此表格里,否则不得分!1. 线性规划具有无穷多最优解是指 ( ) A. 目标函数系数与某约束系数对应成比例B . 可行解集合无界C.存在某个非基变量检验数 σs=0且āis > 0D. 基变量全部大于零2. 当Max z=4x 1-x 2时,则( ) St.A.无可行解B.有唯一最优解C.有无界解D.有多重最优解 3. 原问题与对偶问题都有可行解,则 ( ) A. 原问题有最优解,对偶问题可能没有最优解 B. 原问题与对偶问题可能都没有最优解C.可能一个问题有最优解,另一个问题具有无界解D.原问题与对偶问题都有最优解 4. 当Max z=3x 1+x 2时⎪⎩⎪⎨⎧≥≤≥+0,5 243421221x x x x x ⎪⎩⎪⎨⎧=≤+≤+10,42734212121or x x x x x xA.(0, 0)B.(0,1)C.(1,0)D.(1,1)5.有6个产地4个销地的平衡运输问题模型具有特征()A. 有10个变量24个约束B. 有24个变量10个约束C. 有24个变量9个约束D. 有9个变量10个约束6.运输问题()A.是线性规划问题B.不是线性规划问题C.可能存在无可行解D.可能无最优解7.μ是关于可行流f的一条增广链,则在μ上有()A.对一切B.对一切C.对一切D.对一切8.下列错误的结论是()A.容量不超过流量B.流量非负C.容量非负D.发点流出的合流等于流入收点的合流9.连通图G有n个点,则其树图T特征为()A.T有n个点n条边B.T的长度等于G的每条边的长度之和C.T有n个点n-1条边D.T有n-1个点n条边10.求最短路的计算方法有()A. Dijkstra算法B. Floyd算法C. 加边法D. Ford-Fulkerson算法二、Translation(本大题共2小题,每个5分,共10分)1.an optimal solution is a feasible solution that has the most favorablevalue of the objective function2.Why transportation problem receive this name? Because many ofits application involve determining how to optimally transport good.四、 Write out dual problem of following LP (本大题5 分)32132m ax x x x ++=1x + 22x + 3x ≥1031x +23x ≤151x +22x + 3x =12321,0,0x x x ≤≥无约束解:五、 Converted the problems into general constraint using 0-1(本大题3 分,每题1.5分)1. 变量x 只能取0,3,5,7中一个 解:2. 变量x 或等于3或≥50 解:六、 Solution (本大题共 5 小题,总计 57 分) 1. 用单纯形法中的大M 法求解以下线性规划问题。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。

2、运筹学包括的内容有_______、、、_______、和。

3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。

二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。

2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。

假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。

此外,手工生产每件产品的材料消耗为10元,机器生产为6元。

已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。

请用运筹学方法确定手工或机器生产的数量,以达到最大利润。

参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。

例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。

以下以背包问题为例进行详细说明。

在背包问题中,给定一组物品,每个物品都有自己的重量和价值。

现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。

这是一个典型的0-1背包问题,属于运筹学的研究范畴。

运筹学基础英文版第十版答案

运筹学基础英文版第十版答案

运筹学基础英文版第十版答案1、I do not have my own room,_____. [单选题] *A. neither does Tom(正确答案)B. neither has TomC. so does TomD. so has Tom2、The organization came into being in 1 [单选题] *A. 开始策划B. 进行改组C. 解散D. 成立于(正确答案)3、You should stick to your()and tell him you won' t do the thing. [单选题] *A. principle(正确答案)B. qualityC. contactD. influence4、She _______ so much _______ her mother. [单选题] *A. looks; like(正确答案)B. looks; forC. looks; afterD. looks forwards; to5、Guilin is _______ its beautiful scenery. [单选题] *A. famous for(正确答案)B. interested inC. fond ofD. careful with6、A small village cuts across the river. [单选题] *A. 切B. 穿过(正确答案)C. 划船D. 踢7、Our teacher suggested that each of us _____ a study plan for the tong summer vacation. [单选题] *A. make(正确答案)B. madeC. will makeD. would make8、—Excuse me, how long does it ______ to walk to the library? —About 15 minutes, I’m afraid.()[单选题] *A. take(正确答案)B. spendC. costD. pay9、Its’time to go to bed. _______ your computer, please. [单选题] *A. Turn onB. Turn inC. Turn off(正确答案)D. Turn down10、It was difficult to guess what her_____to the news would be. [单选题] *A.impressionmentC.reaction(正确答案)D.opinion11、I don’t like playing chess. It is _______. [单选题] *A. interestingB. interestedC. boring(正确答案)D. bored12、Every means _____ but it's not so effective. [单选题] *A. have been triedB. has been tried(正确答案)C. have triedD. has tried13、The manager isn’t in at the moment. May I _______ a message? [单选题] *A. take(正确答案)B. makeC. haveD. keep14、Fresh _______ is good for our health. [单选题] *A. climateB. skyC. weatherD. air(正确答案)15、—How do you find()birthday party of the Blairs? —I should say it was __________ complete failure.[单选题] *A.a; aB. the ; a(正确答案)C.a; /D.the; /16、Though the _____ drama is wonderful, I guess most audiences will be tired as it is too long. [单选题] *A. four-hour(正确答案)B. four hoursC. four-hoursD. four-hour's17、Sichuan used to have more people than ______ province in China. [单选题] *B. any other(正确答案)C. anotherD. any others18、87.—Could you? ? ? ? ? ? me the way to the nearest hospital?—Sure. [单选题] *A.askB.tell(正确答案)C.talkD.speak19、The beautiful sweater _______ me 30 dollars. [单选题] *A. spentB. paidC. cost(正确答案)D. took20、—What were you doing when the rainstorm came?—I ______ in the library with Jane. ()[单选题] *A. readB. am readingD. was reading(正确答案)21、Some students are able to find jobs after graduation while _____will return to school for an advanced degree. [单选题] *A. otherB. anotherC. others(正确答案)D. the other22、If we want to keep fit, we should try to _______ bad habits. [单选题] *A. keepB. haveC. getD. get rid of(正确答案)23、I’m so tired after _______ walk. [单选题] *A. three hour’sB. three hours’(正确答案)C. three hoursD. three hour24、I like dancing, ______ I can join the Dancing Club.()[单选题] *A. becauseB. so(正确答案)C. andD. but25、I tell my mother not ______ me.()[单选题] *A. worry aboutB. to worry about(正确答案)C. worry withD. to worry with26、—What do you think of Animal World? —______. I watch it every day.()[单选题] *A. I don’t mind it.B. I like it.(正确答案)C. I can’t stand it.D. I don’t like it.27、66.—How much meat do you want?—________.[单选题] *A.Sorry, there isn't anyB.I can't give you anyC.Half a kilo, please(正确答案)D.Twelve yuan a kilo28、They went out in spite of rain. [单选题] *A. 因为B. 但是C. 尽管(正确答案)D. 如果29、( ) Do you have any difficulty _____ these flowers?I’d like to help you if you need.[单选题] *A in planting(正确答案)B for plantingC with plantingD to plant30、Many of my classmates are working _______volunteers. [单选题] *A. as(正确答案)B. toC. atD. like。

运筹学期末试卷及答案

运筹学期末试卷及答案

运筹学期末试卷及答案一、判断题(21分)1、可行解是基本可行解的充要条件是它的正分量所对应的A 中列向量线性无关();2、如果一个LP 问题有最优解,则它的对偶问题也有最优解,且它们的最优解相等();3、若线性规划问题有最优解,则一定有唯一的最优解();4、若一个原始线性规划问题无界,则它的对偶问题也无界();5、设1:R R f n →在点n x R ∈*处的Hesse 矩阵)(2*?x f 存在,若0)(2=?*x f ,并且)(2*?x f 正定,则*x 是(UMP )的严格局部最优解();6、若1:R R f n →是S 上的凸函数,任意实数0≥α则f α是S 上的凸函数();7、设n R S ?是非空开凸集,1:R R f n →二阶连续可导,则f 是S 上的严格凸函数的充要条件是f 的Hesse 矩阵)(2x f ?在 S 上是正定的().二、1.将下面的线性规划问题化成标准形(7分)2,写出下面线性规划的对偶规划(7分)321654max x x x z ++=32134min x x x z ++=≥≥-+≤++=++.约,0,9522082510x 432.231321321321束无x x x x x x x x x x x t s≥≥≥+-=++≤-+.变为,0,016342532.231321321321量自由x x x x x x x x x x x x t s三、证明题(10分)设1:R R f n →在点n x R ∈*处可微.若*x 是(UMP )的局部最优解,则0)(=?*x f .四、用对偶单纯形法求解下列线性规划问题(10分)32152415min x x x z ++==≥≥++≥+3,2,1,012526.32132j x x x x x x t s j五、把线性规划问题(18分)321x 2min x x Z -+-= ??≥≤+-≤++0,,426x .32121321x x x x x x x t s 记为(P )求(1)用单纯形算法解(p );(2) 2c 由1变为)3(-;(3)b由4346变为六、用分枝定界法解下述ILP 问题(10分)21max x x z +=≥≥-≤+且为整数,0,2452.212121x x x x x x t s七、求以下无约束非线性规划问题的最优解(8分)746),(min 2211222121+-+-+=x x x x x x x x f 八、验证下列非线性规划为凸规划(9分)11394)(min 2112221++++=x x x x x x f ≤++-+=≤++=7422)(0975)(.22122212211x x x x x x g x x x g t s一、判断题(20分)1. V ;2. X;3. X;4. X;5. X ;6. V ;7. X 。

《运筹学》-期末考试-试卷A-答案

《运筹学》-期末考试-试卷A-答案

《运筹学》试题样卷(一)题号一二三四五六七八九十总分得分X)1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

①②③④⑤⑥⑦⑧⑨某农场有100公顷土地与15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元/ 人日,秋冬季收入为20元/ 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元/ 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元/ 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工与收入情况如下表所示:大豆玉米麦子秋冬季需人日数春夏季需人日数年净收入(元/公顷)205030003575410010404600试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中为松弛变量,问题的约束为形式(共8分)5/201/211/205/21-1/2-1/61/30-40-4-2(1)写出原线性规划问题;(4分)(2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XXXX学年第X学期《运筹学》期末试卷
Class ID Number Name Score
I.True/False
(1) A balanced transportation problem has the same number of supply points as demand points.
(2)In the search for an optimal solution of an LP problem, only vertexes of feasible region are
needed to be considered.
(3) The stepping stone method is used because the transportation problem cannot be solved via the
simplex method.
(4) Linear Programming can be employed to solve problems with single objective.
(5) If a resource is not finished out, then its shadow price must be positive.
(6) The first step in applying the simplex method is to transform all inequality constraints into
equality constraints by adding slack variables and subtracting surplus variables.
(7) The optimal value of the primal objective function is equal to the optimal value of the dual
objective function.
(8) If a constraint is in “≥” form in LP problem, then artificial variable is necessary.
(9) That the feasible region of LP is not empty means:
(A) it includes the origin X=(0,0,…,0);
(B) it is bounded;
(C) it is unbounded;
(D) it is convex.
(A, B, C, D)
(10) Both the primal and dual problems are of feasible solution, then may be
(A) an optimal solution is available for primal problem, but the optimal solution
is not available for dual problem;
(B) at least one problem is unbounded;
(C) an optimal solution is available for one problem, and the other problem is of
unbounded solution;
(D) both the primal and dual problems might be of optimal solution.
(A, B, C, D)
II.To solve the problems below:
(1) Min. w = 14X1 + 20X2
s.t. X1 + 4X2 ≥4
X1 + 5X2≥2
2X1 + 3X2≥7
X1, X2 ≥0
Please find out the optimal solutions for both this problem and its dual.
(2) The objective function of an LP is Max. Z = 5X1 +6X2 +8X3. This LP is of two constraints (resources #1 and # 2 respectively) with “≤”form. Below is a processing step by using simplex method.
a)To complete this table;
b)Is this table optimal? If “yes”, then do c); if “no”, then find out the optimal table.
c)To write out the optimal solution and objective value.
d)To write out the shadow prices of resources #1 and #2, and describe the
significances.
III.To find the shortest path and its length from A to E:
7
B1 C1 1
6 4 4 D1
M+1
2 3 6
A 4 B2 2 C2 E
3 4 3
4
4 1 3 D2
B3 3 C3 3
M is the last place of your ID number.
IV. A factory is going to produce Products I, II and III by using raw materials A, B and C. The related data is shown below:
a)Please arrange production plan to make the profit maximization.
b)If one more kg of raw material A is available, how much the total profit will be
increased?
c)The market price for raw material B is $1.2. Will the factory buy it or sell it?
Why?
d)What is the allowed range for raw materials A, B and C respectively?
e)What is the allowed range for the profit of product II?。

相关文档
最新文档