化工热力学课后答案

合集下载

化工热力学第三版课后习题答案全

化工热力学第三版课后习题答案全

化工热力学第三版课后习题答案第一章比较简单略第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。

解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程22.522.560.5268.314190.60.427480.42748 3.2224.610c cR T a Pa m K mol P -⨯===⋅⋅⋅⨯53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT aP V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.61.695r c T T T === 124.699 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。

化工热力学课后答案

化工热力学课后答案

化工热力学课后谜底(填空、判断、画图)之马矢奏春创作第1章 绪言一、是否题1.封闭体系的体积为一常数.(错) 2.封闭体系中有两个相βα,.在尚未达到平衡时,βα,两个相都是均相关闭体系;达到平衡时,则βα,两个相都等价于均相封闭体系.(对)3.理想气体的焓和热容仅是温度的函数.(对)4.理想气体的熵和吉氏函数仅是温度的函数.(错.还与压力或摩尔体积有关.)5.封闭体系的1mol 气体进行了某一过程,其体积总是变动着的,可是初态和终态的体积相等,初态和终态的温度分别为T1和T2,则该过程的⎰=21T T V dTC U∆;同样,对初、终态压力相等的过程有⎰=21T T P dT C H ∆.(对.状态函数的变动仅决定于初、终态与途径无关.) 二、填空题1.状态函数的特点是:状态函数的变动与途径无关,仅决定于初、终态 .2.封闭体系中,温度是T 的1mol 理想气体从(Pi,Vi)等温可逆地膨胀到(Pf,Vf),则所做的功为()f i rev V V RT W ln =(以V 暗示)或()i f rev P P RT W ln = (以P 暗示).3.封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T1、P1和V1可逆地变动至P2,则A 等容过程的 W= 0 ,Q=()1121T P P R C ig P ⎪⎪⎭⎫⎝⎛--,∆U=()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H=1121T P P C ig P ⎪⎪⎭⎫⎝⎛-. B 等温过程的 W=21ln P P RT -,Q=21ln P P RT ,∆U= 0 ,∆H= 0 .第2章P-V-T关系和状态方程一、是否题1.纯物质由蒸汽酿成液体,必需经过冷凝的相变动过程.(错.可以通过超临界流体区.)2.当压力年夜于临界压力时,纯物质就以液态存在.(错.若温度也年夜于临界温度时,则是超临界流体.)3.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1.(错.如温度年夜于Boyle 温度时,Z >1.)4.纯物质的三相点随着所处的压力或温度的分歧而改变.(错.纯物质的三相平衡时,体系自由度是零,体系的状态已经确定.)5.在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等.(对.这是纯物质的汽液平衡准则.)6.纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变动值均年夜于零.(错.只有吉氏函数的变动是零.)7.气体混合物的virial 系数,如B,C…,是温度和组成的函数.(对.)C 绝热过程的 W=()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q= 0 ,∆U=()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig P C R igPP P R V P R C ,∆H=1121T P P C ig P C R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛. 4.1MPa=106Pa=10bar=9.8692atm=7500.62mmHg.5.普适气体常数R=8.314MPa cm3 mol-1 K-1=83.14bar cm3 mol-1 K-1=8.314J mol-1 K-1=1.980cal mol-1 K-1.三、填空题1.表达纯物质的汽平衡的准则有()()()()sl sv sl sv V T G V T G T G T G ,,==或(吉氏函数)、vapvapsV T H dT dP∆∆=(Claperyon 方程)、()⎰-=svslV V slsv s V V P dV V T P ),((Maxwell 等面积规则).它们能(能/不能)推广到其它类型的相平衡.2.Lydersen 、Pitzer 、Lee-Kesler 和Teja 的三参数对应态原理的三个参数分别为c r r Z P T ,,、ω,,r r P T 、ω,,r r P T 和ω,,r r P T .3.对纯物质,一定温度下的泡点压力与露点压力相同的(相同/分歧);一定温度下的泡点与露点,在P -T 图上是重叠的(重叠/分开),而在P-V 图上是分开的(重叠/分开),泡点的轨迹称为饱和液相线,露点的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包围的区域称为汽液共存区.纯物质汽液平衡时,压力称为蒸汽压,温度称为沸点.4.对三混合物,展开PR 方程常数a 的表达式,∑∑==-=3131)1(i j ij jj ii ji k a a y y a =其中,下标相同的相互作用参数有332211,k k k 和,其值应为1;下标分歧的相互作用参数有),,(,,123132232112123132232112处理已作和和和k k k k k k k k k k k k ===,通常它们值是如何获得?从实验数据拟合获得,在没有实验数据时,近似作零处置. .5.正丁烷的偏心因子ω=0.193,临界压力Pc=3.797MPa 则在Tr=0.7时的蒸汽压为2435.0101==--ωc s P P MPa.五、图示题1.试定性画出纯物质的P-V 相图,并在图上指出 (a)超临界流体,(b)气相,(c )蒸汽,(d )固相,(e )汽液共存,(f )固液共存,(g )汽固共存等区域;和(h)汽-液-固三相共存线,(i)T>Tc 、T<Tc 、T=Tc 的等温线.2.试定性讨论纯液体在等压平衡汽化过程中,M (= V 、S 、G )随T 的变动(可定性作出M-T 图上的等压线来说明).六、证明题1.由式2-29知,流体的Boyle 曲线是关于0=⎪⎭⎫⎝⎛∂∂TP Z 的点的轨迹.证明vdW 流体的Boyle 曲线是()0222=+--ab abV V bRT a证明:001=⎪⎭⎫ ⎝⎛∂∂+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+=⎪⎭⎫ ⎝⎛∂∂T T T V P V P V P P V RT P Z 得由由vdW 方程得整理得Boyle 曲线第3章 均相封闭体系热力学原理及其应用一、是否题1.热力学基本关系式dH=TdS+VdP 只适用于可逆过程.(错.不需要可逆条件,适用于只有体积功存在的封闭体系)2.当压力趋于零时,()()0,,≡-P T M P T M ig (M 是摩尔性质).(错.当M =V 时,不恒即是零,只有在T =TB 时,才即是零)3.纯物质逸度的完整界说是,在等温条件下,f RTd dG ln =.(错.应该是=-ig G G 0()0ln P f RT 等)4.那时0→P ,∞→P f.(错.那时0→P ,1→P f )5. 因为⎰⎪⎭⎫ ⎝⎛-=PdP P RT V RT 01ln ϕ,那时0→P ,1=ϕ,所以,0=-PRTV .(错.从积分式看,那时→P ,PRT V -为任何值,都有1=ϕ;实际上,0lim 0=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=→BTT P P RT V6.吉氏函数与逸度系数的关系是()()ϕln 1,,RT P T G P T G ig ==-.(错,(),(T G P T G ig -fRT P ln )1==)7.由于偏离函数是两个等温状态的性质之差,故不成能用偏离函数来计算性质随着温度的变动.(错.因为:()()()()[]()()[]()()[]0102011102221122,,,,,,,,P T M P T M P T M P T M P T MP T M P T M P T M igigigig-+---=-)三、填空题1.状态方程P Vb R T()-=的偏离焓和偏离熵分别是bP dP P R T b P RTdP T V T V HH PP P ig=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-=-⎰⎰00和0ln 0000=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-=+-⎰⎰dP P R P R dP T V P R P P R S S PP P ig;若要计算()()1122,,P T H P T H -和()()1122,,P T S P T S -还需要什么性质?igP C ;其计算式分别是()()1122,,P T H P T H -()()[]()()[]()()[]()dTC P P b dTC bP bP T H T H T H P T H T H P T H T T igP T T igP ig ig ig ig ⎰⎰+-=+-=-+---=2121121212111222,,和()()1122,,P T S P T S -()()[]()()[]()()[]dTTC P P R dT T C P P R P P R P T S P T S P T S P T S P T S P T S TT igP T T ig P ig ig ig ig ⎰⎰+-=++-=-+---=2121120102010201110222ln ln ln ,,,,,,.2.对混合物体系,偏离函数中参考态是与研究态同温.同组成的理想气体混合物.五、图示题1.将下列纯物质经历的过程暗示在P-V,lnP-H,T-S 图上(a)过热蒸汽等温冷凝为过冷液体;(b)过冷液体等压加热成过热蒸汽;(c)饱和蒸汽可逆绝热膨胀;(d)饱和液体恒容加热;(e)在临界点进行的恒温膨胀.解:第4章非均相封闭体系热力学一、是否题1.偏摩尔体积的界说可暗示为{}{}ii x P T i n P T i i x V n nV V ≠≠⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂=,,,,∂.(错.因对一个均相关闭系统,n 是一个变数,即(){}0,,≠∂∂≠i n P T i n n )2.对理想溶液,所有的混合过程性质变动均为零.(错.V,H,U,CP,CV 的混合过程性质变动即是零,对S,G,A 则不即是零)3.对理想溶液所有的逾额性质均为零.(对.因is E M M M -=) 4.体系混合过程的性质变动与该体系相应的逾额性质是相同的.(错.同于4)5.理想气体有f=P,而理想溶液有i i ϕϕ=ˆ.(对.因i i i i i i is i is i PfPx x f Px f ϕϕ====ˆˆ) 6.温度和压力相同的两种理想气体混合后,则温度和压力不变,总体积为原来两气体体积之和,总热力学能为原两气体热力学能之和,总熵为原来两气体熵之和.(错.总熵不即是原来两气体的熵之和)7.因为GE(或活度系数)模型是温度和组成的函数,故理论上i γ与压力无关.(错.理论上是T,P,组成的函数.只有对高压下的液体,才近似为T 和组成的函数)8.纯流体的汽液平衡准则为f v=f l.(对)9.混合物体系达到汽液平衡时,总是有l iv i l v l i v i f f f f f f ===,,ˆˆ.(错.两相中组分的逸度、总体逸度均纷歧定相等)10. 理想溶液一定符合Lewis-Randall 规则和Henry 规则.(对.)、填空题1.填表2.有人提出了一定温度下二元液体混合物的偏摩尔体积的模型是)1(),1(122211bx V V ax V V +=+=,其中V1,V2为纯组分的摩尔体积,a,b 为常数,问所提出的模型是否有问题?由Gibbs-Duhem 方程得,b V x V x a 1122=, a,b 不成能是常数,故提出的模型有问题;若模型改为)1(),1(21222211bx V V ax V V +=+=,情况又如何?由Gibbs-Duhem 方程得,b V V a 12=,故提出的模型有一定的合理性_. 3.常温、常压条件下二元液相体系的溶剂组分的活度系数为32221ln x x βαγ+=(βα,是常数),则溶质组分的活度系数表达式是=2ln γ3121232x x ββα-+. 解: 由0ln ln 2211=+γγd x d x ,得从()1021==γ此时x 至任意的1x 积分,得 五、图示题1.下图中是二元体系的对称归一化的活度系数21,γγ与组成的关系部份曲线,请补全两图中的活度系数随液相组成变动的曲线;指出哪一条曲线是或12~x γ;曲线两端点的含意;体系属于何种偏差.21,γγ解,以上虚线是根据活度系数的对称归一化和分歧毛病称归一化条件而获得的.第5章 非均相体系热力学性质计算一、是否题1.在一定压力下,组成相同的混合物的露点温度和泡点温度不成能相同.(错,在共沸点时相同)2.在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,则11x y >,22x y <.(错,若系统存在共沸点,就可以呈现相反的情况)3.在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则体系的压力,随着1x 的增年夜而增年夜.(错,理由同6)4.纯物质的汽液平衡常数K 即是1.(对,因为111==y x )5.下列汽液平衡关系是毛病的i i Solvent i v i i x H Py *,ˆγϕ=.(错,若i 组分采纳分歧毛病称归一化,该式为正确)6.对理想体系,汽液平衡常数Ki(=yi/xi),只与T 、P 有关,而与组成无关.(对,可以从理想体系的汽液平衡关系证明)7.对负偏差体系,液相的活度系数总是小于1.(对)8.能满足热力学一致性的汽液平衡数据就是高质量的数据.(错)9.逸度系数也有归一化问题.(错)10. EOS +γ法既可以计算混合物的汽液平衡,也能计算纯物质的汽液平衡.(错) 、填空题1.说出下列汽液平衡关系适用的条件(1) l iv i f f ˆˆ= ______无限制条件__________;(2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)i i s i i x P Py γ= _________高压条件下的非理想液相__________.2.丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x1=y1=0.796,恒沸温度为327.6K,已知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是A12=______0.587_____,A21=____0.717____(已知van Laar 方程为 221112212112x A x A x x A A RT G E+=)1.组成为x1=0.2,x2=0.8,温度为300K 的二元液体的泡点组成y1的为(已知液相的3733,1866),/(75212121==+=s sE t P P n n n n G Pa)___0.334____________.2.若用EOS +γ法来处置300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困难是MPa P s 4.251=饱和蒸气压太高,不容易简化;( EOS+γ法对高压体系需矫正).3.EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何获得相互作用参数的值?_从混合物的实验数据拟合获得.4.由Wilson 方程计算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数Ai,Bi,Ci; Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij =-λλ,Wilson 方程的能量参数是如何获得的?能从混合物的有关数据(如相平衡)获得. 五、图示题 1描述下列二元y x T --图中的变动过程D C B A →→→:这是一个等压定(总)组成的降温过程.A 处于汽相区,降温到B 点时,即为露点,开始有液滴冷凝,随着温度的继续下降,发生的液相量增加,而汽相量减少,当达到C 点,即泡点时,汽相消失,此时,液相的组成与原始汽相组成相同.继续降温达到D 点.描述下列二元y x P --图中的变动过程D C B A →→→:这是一等温等压的变组成过程.从A 到B,是液相中轻组分1的含量增加,B 点为泡点,即开始有汽泡呈现.B 至C 的过程中,系统中的轻组分增加,汽相相对液相的量也在不竭的增加,C 点为露点,C 点到D 点是汽相中轻组分的含量不竭增加.PA B C DT =常数1.将下列T-x-y图的变动过程A→B→C→D→E和P-x-y图上的变动过程F→G→H→I→J暗示在P-T图(组成=0.4)上.。

化工热力学答案课后总习题答案详解

化工热力学答案课后总习题答案详解

化工热力学答案—课后总习题答案详解第二章习题解答一.问答题:2-1为什么要研究流体的"VT关系?【参考答案】:流体P-V-T关系是化工热力学的基石,是化工过程开发和设讣、安全操作和科学研究必不可少的基础数据。

(I)流体的PVT关系可以直接用于设汁。

(2)利用可测的热力学性质(T, P, V等)计算不可测的热力学性质(H, S, G.等)。

只要有了旷/T关系加上理想气体的C;;, 可以解决化工热力学的大多数问题匚以及该区域的特征:同时指岀其它重要的点、2- 2 ⅛ P-V图上指出超临界萃取技术所处的区域,而以及它们的特征。

【参考答案】:1)超临界流体区的特征是:环、P>Pco2)临界点C的数学特征:(^PM Z)/ =° (在C点)($2p/刃2)・0 (在C点)3)饱和液相线是不同压力下产生第一个气泡的那个点的连线:4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。

5)过冷液体区的特征:给左压力下液体的温度低于该压力下的泡点温度。

6)过热蒸气区的特征:给左压力下蒸气的温度髙于该压力下的露点温度。

7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。

2-3要满足什么条件,气体才能液化?【参考答案】:气体只有在低于7;条件下才能被液化。

2-4不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决左偏离理想气体程度的最本质因素?【参考答案】:不同。

真实气体偏离理想气体程度不仅与7∖ P有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子7;, /和Q。

2-5偏心因子的概念是什么?为什么要提出这个槪念?它可以直接测呈:吗?【参考答案】:偏心因子。

为两个分子间的相互作用力偏离分子中心之间的作用力的程度。

其物理意义为:一般流体与球形非极性简单流体(氮,氟、毎)在形状和极性方而的偏心度。

为了提高计算复杂分子压缩因子的准确度。

化工热力学课后答案

化工热力学课后答案

化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对) 3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。

第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

(错。

可以通过超临界流体区。

)2. 当压力大于临界压力时,纯物质就以液态存在。

(错。

若温度也大于临界温度时,则是超临界流体。

化工热力学课后答案完整版

化工热力学课后答案完整版

.第二章流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400 ℃、 4.053MPa 下甲烷气体的摩尔体积。

( 1 )理想气体方程;( 2 ) RK 方程;( 3)PR 方程;( 4 )维里截断式( 2-7)。

其中 B 用 Pitzer 的普遍化关联法计算。

[解 ] ( 1 )根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积V id为V id RT8.314(400273.15) 1.381 103m3mol 1p 4.053106(2)用 RK 方程求摩尔体积将RK 方程稍加变形,可写为V RT a(V b)b(E1)p T 0.5 pV (V b)其中0.42748R2T c2.5ap c0.08664 RT cbp c从附表 1 查得甲烷的临界温度和压力分别为T c=190.6K,p c=4.60MPa,将它们代入a, b 表达式得a0.42748 8.3142 190.62.5 3.2217m 6 Pa mol -2 K 0.54.60106b0.086648.314190.6 2.9846 10 5 m3 mol 14.60106以理想气体状态方程求得的V id为初值,代入式( E1)中迭代求解,第一次迭代得到V1值为V18.314673.15 2.984610 54.053106.3.2217 (1.381 100.56673.15 4.053 10 1.381 103 2.9846 10 5 )3(1.381 10 3 2.984610 5 )1.38110 32.984610 5 2.124610 51.3896331 10m mol第二次迭代得 V2为V2 1.381103 2.98461053.2217(1.389610 3 2.984610 5)673.15 0.5 4.05310 61.389610 3(1.389610 3 2.984610 5)1.38110 32.984610 5 2.112010 51.389710 3 m3 mol1V1和 V2已经相差很小,可终止迭代。

化工热力学课后题答案

化工热力学课后题答案

习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。

而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。

因此,流体的p –V –T 关系的研究是一项重要的基础工作。

2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。

严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。

理想气体状态方程是最简单的状态方程:RT pV =2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。

实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,cs s r p p p = 对于不同的流体,α具有不同的值。

但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。

对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的sr p log 值之差来表征。

Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。

化工热力学第三版(完全版)课后习题答案解析

化工热力学第三版(完全版)课后习题答案解析

化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。

U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。

H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。

U = 0 ,错误!未找到引用源。

H = 0 。

C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。

化工热力学课后部分习题答案

化工热力学课后部分习题答案

2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。

实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,c s s r p p p =对于不同的流体,α具有不同的值。

但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。

对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。

Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。

由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。

2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗?答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液平衡准则。

气他的热力学性质均不同。

3-1 思考下列说法是否正确① 当系统压力趋于零时,()()0,,≡-p T Mp T M ig(M 为广延热力学性质)。

(F ) ② 理想气体的H 、S 、G 仅是温度的函数。

(F ) ③ 若()⎪⎪⎭⎫⎝⎛+-=00ln p p R S S A ig,则A 的值与参考态压力0p 无关。

(T ) ④ 对于任何均相物质,焓与热力学能的关系都符合H >U 。

(T ) ⑤ 对于一定量的水,压力越高,蒸发所吸收的热量就越少。

(T ) 3-2 推导下列关系式:V T T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T p T V U VT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂()2RT H T RT G p ∆∆-=⎥⎦⎤⎢⎣⎡∂∂ ()RTV p RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 证明:(1)根据热力学基本方程 V p T S A d d d --= (a)因为A 是状态函数,所以有全微分:V V A T T A A TV d d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂= (b) 比较(a)和(b)得: p V A S T A TV -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂, 由全微分性质得:V V T T p T T p p A T T A p V S ⎪⎭⎫ ⎝⎛∂∂-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂-即 VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂(2)由热力学基本方程 V p S T U d d d -= 将上式两边在恒定的温度T 下同除以的d V 得:p V S T V U TT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂由(1)已经证明VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 则 p T p T V U VT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂(3)由热力学基本方程 p V T S G d d d +-= 当压力恒定时 SdT dG -=由Gibbs 自由能定义式得 S T H G ∆∆∆-=()()()222T H T S T H S T T GT GTT T G p∆∆∆∆∆∆∆-=---⋅=-∂∂=⎥⎦⎤⎢⎣⎡∂∂等式两边同乘以R 得()2RT H T RT G p∆∆-=⎥⎦⎤⎢⎣⎡∂∂(4)当温度恒定时Vdp dG =()T V p T G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 所以 ()RTVp RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 3-4 计算氯气从状态1(300K 、1.013×105Pa )到状态2( 500K 、1.013×107Pa )变化过程的摩尔焓变。

化工热力学第三版(完全版)课后习题答案(I).doc

化工热力学第三版(完全版)课后习题答案(I).doc

化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。

U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。

H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。

U = 0 ,错误!未找到引用源。

H = 0 。

C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。

化工热力学答案_冯新_宣爱国_课后总习题答案详解

化工热力学答案_冯新_宣爱国_课后总习题答案详解

习题四一、是否题M M。

4-1 对于理想溶液的某一容量性质M,则i i解:否4-2 在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混合后,其总体积为30 cm3。

解:否4-3温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、Gibbs 自由能的值不变。

解:否4-4对于二元混合物系统,当在某浓度范围内组分2符合Henry规则,则在相同的浓度范围内组分1符合Lewis-Randall规则。

解:是4-5在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。

解:是4-6理想气体混合物就是一种理想溶液。

解:是4-7对于理想溶液,所有的混合过程性质变化均为零。

解:否4-8对于理想溶液所有的超额性质均为零。

解:否4-9 理想溶液中所有组分的活度系数为零。

解:否4-10 系统混合过程的性质变化与该系统相应的超额性质是相同的。

解:否4-11理想溶液在全浓度范围内,每个组分均遵守Lewis-Randall 定则。

解:否4-12 对理想溶液具有负偏差的系统中,各组分活度系数i γ均 大于1。

解:否4-13 Wilson 方程是工程设计中应用最广泛的描述活度系数的方程。

但它不适用于液液部分互溶系统。

解:是二、计算题4-14 在一定T 、p 下,二元混合物的焓为 2121x cx bx ax H ++= 其中,a =15000,b =20000,c = - 20000 单位均为-1J mol ⋅,求(1) 组分1与组分2在纯态时的焓值1H 、2H ;(2) 组分1与组分2在溶液中的偏摩尔焓1H 、2H 和无限稀释时的偏摩尔焓1∞H 、2∞H 。

解:(1)1111lim 15000J mol -→===⋅x H H a2121lim 20000J mol -→===⋅x H H b(2)按截距法公式计算组分1与组分2的偏摩尔焓,先求导:()()()12121111111d dd d d11d H ax bx cx x x x ax b x cx x x =++=+-+-⎡⎤⎣⎦12=-+-a b c cx将1d d Hx 代入到偏摩尔焓计算公式中,得()()()()()()11112121111111112122d 1d (1)211221H H H x x ax bx cx x x a b c cx ax b x cx x a b c cx x a b c cx a c x a cx =+-=+++--+-=+-+-+-+---+-=+-=+()()()()21121211111111121d 2d 112HH H x ax bx cx x x a b c cx x ax b x cx x x a b c cx b cx =-=++--+-=+-+---+-=+无限稀释时的偏摩尔焓1∞H 、2∞H 为:()()2-1112012-122111221lim lim 150002000035000J mol lim lim 200002000040000J molx x x x H H a cx H H b cx∞→→∞→→==+=+=⋅==+=+=⋅4-15 在25℃,1atm 以下,含组分1与组分2的二元溶液的焓可以由下式表示:121212905069H x x x x x x =++⋅+()式中H 单位为-1cal mol ⋅,1x 、2x 分别为组分1、2的摩尔分数,求 (1) 用1x 表示的偏摩尔焓1H 和2H 的表达式; (2) 组分1与2在纯状态时的1H 、2H ;(3) 组分1与2在无限稀释溶液的偏摩尔焓1∞H 、2∞H ;(4) ΔH 的表达式;(5) 1x =0.5 的溶液中的1H 和2H 值及溶液的H ∆值。

化工热力学课后答案完整版朱自强

化工热力学课后答案完整版朱自强

第二章 流体压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体摩尔体积。

(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。

其中B 用Pitzer 普遍化关联法计算。

[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下摩尔体积id V 为33168.314(400273.15) 1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+(E1)其中从附表1查得甲烷临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.15 2.9846104.05310V -⨯=+⨯⨯350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。

化工热力学答案_冯新_宣爱国_课后总习题答案详解

化工热力学答案_冯新_宣爱国_课后总习题答案详解

第二章习题解答一、问答题:2-1为什么要研究流体的pVT 关系?【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。

(1)流体的PVT 关系可以直接用于设计。

(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。

只要有了p-V-T 关系加上理想气体的idp C ,可以解决化工热力学的大多数问题。

2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。

【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。

2)临界点C 的数学特征:3)饱和液相线是不同压力下产生第一个气泡的那个点的连线;4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。

5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。

6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。

7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。

2-3 要满足什么条件,气体才能液化?【参考答案】:气体只有在低于T c 条件下才能被液化。

2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素?【参考答案】:不同。

真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。

2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?()()()()点在点在C V PC V PT T 0022==∂∂∂∂【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。

其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。

为了提高计算复杂分子压缩因子的准确度。

化工热力学课后习题答案

化工热力学课后习题答案

第1章绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。

(错。

和,如一体积等于2V的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T,P的理想气体,右侧是T温度的真空。

当隔板抽去后,由于Q=W=0,,,,故体系将在T,2V,0.5P状态下达到平衡,,,)2. 封闭体系的体积为一常数。

(错)3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程P=P(T,V)的自变量中只有一个强度性质,所以,这与相律有矛盾。

(错。

V也是强度性质)7. 封闭体系的1mol气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T1和T2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。

(错。

)9. 自变量与独立变量是一致的,从属变量与函数是一致的。

(错。

有时可能不一致)10. 自变量与独立变量是不可能相同的。

(错。

有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态。

2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

3. 封闭体系中,温度是T的1mol理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V表示)或(以P表示)。

4. 封闭体系中的1mol理想气体(已知),按下列途径由T1、P1和V1可逆地变化至P ,则2mol ,温度为A 等容过程的 W = 0 ,Q = ,U = ,H =。

化工热力学第三版(完全版)课后习题问题详解

化工热力学第三版(完全版)课后习题问题详解

化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对) 3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

) 二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。

U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。

H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。

U = 0 ,错误!未找到引用源。

H = 0 。

C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。

《化工热力学》详细课后习题答案解析(陈新志)

《化工热力学》详细课后习题答案解析(陈新志)

2习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。

(错。

和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。

当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。

(错)3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。

(错。

V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。

(错。

) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。

(错。

有时可能不一致)10. 自变量与独立变量是不可能相同的。

(错。

有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。

4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。

化工热力学第三版(完全版)课后习题答案

化工热力学第三版(完全版)课后习题答案

临界参数 Tc=425.4K, Pc=3.797MPa, ω=0.193
修正的 Rackett 方程常数: α=0.2726, β=0.0003
ln P S 6.8146 2151.63 36.24 T
P S 0.504 MPa
由软件计算知 V sl 103.0193cm3mol 1, V sv 4757.469cm3mol 1
化工热力学课后答案
第 1 章 绪言
一、是否题
1. 封闭体系的体积为一常数。 (错)
2. 封闭体系中有两个相 , 。在尚未达到平衡时, , 两个相都是均相敞开体系;
达到平衡时,则 , 两个相都等价于均相封闭体系。 (对)
3. 理想气体的焓和热容仅是温度的函数。 (对)
4. 理想气体的熵和吉氏函数仅是温度的函数。 (错。还与压力或摩尔体积有关。 )
Wrev PdV
C
ig P
R dT
RT dV
V
a bT cT 2 R dT Rd ln V 0
T
T2 a R
T1
T
b cT dT
R ln V2 V1
0,又 V 2 V1
P1 T2 ,故 P2 T1
a ln T2 b T2 T1 T1
c
T
2 2
T12
2
R ln P2 0 P1
3. 一个 0.057m 3气瓶中贮有的 1MPa 和 294 K的高压气体通过一半开的阀门放入一个压力
33
4. 对于三混合物,展开 PR 方程常数 a的表达式, a
yi y j aii a jj (1 k ij ) =
i1 j 1
y12 a1 y 22a 2 y32 a 3 2 y1 y 2 a1 a2 1 k12 2 y2 y3 a2 a 3 1 k 23 2 y3 y1 a3 a1 1 k31 ,其

化工热力学答案_冯新_宣爱国_课后总习题答案详解

化工热力学答案_冯新_宣爱国_课后总习题答案详解

习题四一、是否题M M。

4-1 对于理想溶液的某一容量性质M,则i i解:否4-2 在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混合后,其总体积为30 cm3。

解:否4-3温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、Gibbs 自由能的值不变。

解:否4-4对于二元混合物系统,当在某浓度范围内组分2符合Henry规则,则在相同的浓度范围内组分1符合Lewis-Randall规则。

解:是4-5在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。

解:是4-6理想气体混合物就是一种理想溶液。

解:是4-7对于理想溶液,所有的混合过程性质变化均为零。

解:否4-8对于理想溶液所有的超额性质均为零。

解:否4-9 理想溶液中所有组分的活度系数为零。

解:否4-10 系统混合过程的性质变化与该系统相应的超额性质是相同的。

解:否4-11理想溶液在全浓度范围内,每个组分均遵守Lewis-Randall 定则。

解:否4-12 对理想溶液具有负偏差的系统中,各组分活度系数i γ均 大于1。

解:否4-13 Wilson 方程是工程设计中应用最广泛的描述活度系数的方程。

但它不适用于液液部分互溶系统。

解:是二、计算题4-14 在一定T 、p 下,二元混合物的焓为 2121x cx bx ax H ++= 其中,a =15000,b =20000,c = - 20000 单位均为-1J mol ⋅,求(1) 组分1与组分2在纯态时的焓值1H 、2H ;(2) 组分1与组分2在溶液中的偏摩尔焓1H 、2H 和无限稀释时的偏摩尔焓1∞H 、2∞H 。

解:(1)1111lim 15000J mol -→===⋅x H H a2121lim 20000J mol -→===⋅x H H b(2)按截距法公式计算组分1与组分2的偏摩尔焓,先求导:()()()12121111111d dd d d11d H ax bx cx x x x ax b x cx x x =++=+-+-⎡⎤⎣⎦12=-+-a b c cx将1d d Hx 代入到偏摩尔焓计算公式中,得()()()()()()11112121111111112122d 1d (1)211221H H H x x ax bx cx x x a b c cx ax b x cx x a b c cx x a b c cx a c x a cx =+-=+++--+-=+-+-+-+---+-=+-=+()()()()21121211111111121d 2d 112HH H x ax bx cx x x a b c cx x ax b x cx x x a b c cx b cx =-=++--+-=+-+---+-=+无限稀释时的偏摩尔焓1∞H 、2∞H 为:()()2-1112012-122111221lim lim 150002000035000J mol lim lim 200002000040000J molx x x x H H a cx H H b cx∞→→∞→→==+=+=⋅==+=+=⋅4-15 在25℃,1atm 以下,含组分1与组分2的二元溶液的焓可以由下式表示:121212905069H x x x x x x =++⋅+()式中H 单位为-1cal mol ⋅,1x 、2x 分别为组分1、2的摩尔分数,求 (1) 用1x 表示的偏摩尔焓1H 和2H 的表达式; (2) 组分1与2在纯状态时的1H 、2H ;(3) 组分1与2在无限稀释溶液的偏摩尔焓1∞H 、2∞H ;(4) ΔH 的表达式;(5) 1x =0.5 的溶液中的1H 和2H 值及溶液的H ∆值。

化工热力学详细课后习题答案陈新志

化工热力学详细课后习题答案陈新志

化工热力学详细课后习题答案陈新志化工热力学是化学工程领域的一门重要基础课程,它对于理解和设计化工过程具有至关重要的作用。

陈新志编写的相关教材中的课后习题,更是对课程知识的巩固和深化。

以下是为您提供的详细课后习题答案。

首先,我们来看第一章的习题。

例如,有一道关于热力学第一定律应用的题目。

题目中给出了一个化工过程中能量的输入和输出情况,要求计算系统的热力学能变化。

解题的关键在于准确列出能量平衡方程,将各种形式的能量转化为相同的单位进行计算。

根据输入能量总和减去输出能量总和等于系统热力学能变化的原理,逐步计算出结果。

第二章的习题往往涉及到热力学第二定律和熵的概念。

比如,有一个关于判断过程是否可逆以及计算熵变的问题。

要解决这类题目,需要先明确可逆过程的特征,即系统和环境之间的压力和温度差无限小。

然后,根据给定的条件计算出初态和终态的熵值,进而求出熵变。

如果熵变大于零,则过程不可逆;熵变等于零,则过程可逆。

第三章关于热力学性质的计算是重点和难点。

比如,有习题要求根据给定的状态方程计算物质的体积、压力、温度等热力学性质。

在解题时,需要熟练掌握各种状态方程的形式和应用条件,通过代数运算或者迭代法求解未知数。

再来看第四章相平衡的习题。

这部分通常会给出一些混合物的组成和温度、压力等条件,要求判断相态并计算各相的组成。

解题时,需要运用相律和相平衡准则,通过绘制相图或者利用数学方法求解方程组来得出答案。

第五章的化学平衡习题,经常涉及到化学反应的平衡常数计算和反应方向的判断。

例如,给定一个化学反应式和各物质的初始浓度,要求计算平衡常数和判断反应是否达到平衡。

这需要运用化学平衡的基本原理和公式,结合物质的热力学性质进行计算和分析。

第六章关于非均相系统热力学的习题,可能会考察界面现象和表面张力的相关知识。

比如,计算液体在毛细管中的上升高度或者固体颗粒在液体中的沉降速度等。

解题时,要运用相应的物理模型和数学公式,考虑表面张力和重力等因素的影响。

化工热力学课后答案完整版_朱自强

化工热力学课后答案完整版_朱自强

第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、下甲烷气体的摩尔体积。

(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。

其中B 用Pitzer 的普遍化关联法计算。

[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积id V 为(2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+(E1)其中从附表1查得甲烷的临界温度和压力分别为c T =, c p =,将它们代入a, b 表达式得以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。

故用RK 方程求得的摩尔体积近似为(3)用PR 方程求摩尔体积将PR 方程稍加变形,可写为()()()RT a V b V b p pV V b pb V b -=+-++- (E2)式中 220.45724c c R T a p α=从附表1查得甲烷的ω=。

将c T 与ω代入上式 用c p 、c T 和α求a 和b ,以RK 方程求得的V 值代入式(E2),同时将a 和b 的值也代入该式的右边,藉此求式(E2)左边的V 值,得563563355353558.314673.152.68012104.053100.10864(1.39010 2.6801210)4.05310[1.39010(1.39010 2.6801210) 2.6801210(1.39010 2.6801210)]1.381102.6801210 1.8217101.3896V ------------⨯=+⨯-⨯⨯⨯-⨯⨯⨯⨯⨯⨯+⨯+⨯⨯⨯-⨯=⨯+⨯-⨯=33110m mol --⨯⋅ 再按上法迭代一次,V 值仍为3311.389610m mol --⨯⋅,故最后求得甲烷的摩尔体积近似为3311.39010m mol --⨯⋅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题解答一、问答题:2-1为什么要研究流体的pVT 关系?【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。

(1)流体的PVT 关系可以直接用于设计。

(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。

只要有了p-V-T 关系加上理想气体的idp C ,可以解决化工热力学的大多数问题。

2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。

【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。

2)临界点C 的数学特征:3)饱和液相线是不同压力下产生第一个气泡的那个点的连线;4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。

5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。

6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。

7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。

2-3 要满足什么条件,气体才能液化?【参考答案】:气体只有在低于T c 条件下才能被液化。

2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素?【参考答案】:不同。

真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。

2-5偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?()()()()点在点在C VP C VPTT22==∂∂∂∂【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。

其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。

为了提高计算复杂分子压缩因子的准确度。

偏心因子不可以直接测量。

偏心因子ω的定义为:000.1)p lg(7.0T sr r --==ω , ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。

2-6 什么是状态方程的普遍化方法?普遍化方法有哪些类型?【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a ,b ,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT 性质的计算。

普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式 (普遍化压缩因子图法);(2)以两项virial 方程表示的普遍化第二virial 系数关系式(普遍化virial 系数法)2-7简述三参数对应状态原理与两参数对应状态原理的区别。

【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为了提高对比态原理的精度,引入了第三参数如偏心因子ω。

三参数对应态原理为:在相同的r T 和rp 下,具有相同ω值的所有流体具有相同的压缩因子Z ,因此它们偏离理想气体的程度相同,即),P ,T (f Z r r ω=。

而两参数对应状态原理为:在相同对比温度rT 、对比压力rp 下,不同气体的对比摩尔体积r V(或压缩因子z )是近似相等的,即(,)r r Z T P =。

三参数对应状态原理比两参数对应状态原理精度高得多。

2-8总结纯气体和纯液体pVT 计算的异同。

【参考答案】: 由于范德华方程(vdW 方程)最 大突破在于能同时计算汽、液两相性质,因此,理论上讲,采用基于vdW 方程的立方型状态方程能同时将纯气体和纯液体的性质计算出来(最小值是饱和液体摩尔体积、最大值是饱和气体摩尔体积),但事实上计算的纯气体性质误差较小,而纯液体的误差较大。

因此,液体的p-V-T 关系往往采用专门计算液体体积的公式计算,如修正Rackett 方程,它与立方型状态方程相比,既简单精度又高。

2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则?【参考答案】:对于混合气体,只要把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,如Tr ,pr ,ω,并将其代入纯物质的状态方程中,就可以计算混合物的性质了。

而计算混合物虚拟特征参数的方法就是混合规则;它是计算混合物性质中最关键的一步。

对于理想气体的混合物,其压力和体积与组成的关系分别表示成Dalton 分压定律ii py p =和Amagat 分体积定律ii y )nV (V =。

但对于真实气体,由于气体纯组分的非理想性及混合引起的非理想性,使得分压定律和分体积定律无法准确地描述真实气体混合物的p –V -T 关系。

为了计算真实气体混合物的p –V -T 关系,我们就需要引入混合规则的概念。

混合规则有虚拟临界参数法和Kay 规则、立方型状态方程的混合规则、气体混合物的第二维里系数。

2-10状态方程主要有哪些类型? 如何选择使用? 请给学过的状态方程之精度排个序。

【参考答案】:状态方程主要有立方型状态方程(vdW ,RK ,SRK ,PR );多参数状态方程(virial 方程);普遍化状态方程(普遍化压缩因子法、普遍化第二virial 系数法)、液相的Rackett 方程。

在使用时:(1)若计算液体体积,则直接使用修正的Rackett 方程(2-50)~(2-53),既简单精度又高,不需要用立方型状态方程来计算;(2)若计算气体体积,SRK ,PR 是大多数流体的首选,无论压力、温度、极性如何,它们能基本满足计算简单、精度较高的要求,因此在工业上已广泛使用。

对于个别流体或精度要求特别高的,则需要使用对应的专用状态方程或多参数状态方程。

精度从高到低的排序是:多参数状态方程>立方型状态方程>两项截断virial 方程>理想气体状态方程。

立方型状态方程中:PR>SRK>RK>vdW二、计算题:(说明:凡是题目中没有特别注明使用什么状态方程的,你可以选择你认为最适宜的方程,并给出理由)2-11. 将van der Waals 方程化成维里方程式;并导出van der Waals 方程常数a 、b 表示的第二维里系数B 的函数表达式。

2-12. 维里方程可以表达成以下两种形式。

21pV B C Z RTVV==+++⋯ (1)21''pV Z B p C p RT==+++⋯ (2)请证明:'B B R T=2'2()C B C R T -=)2(12⋯⋯+++==VC VB RTPV Z 2PV Z 1B'P C 'P (1)RT==+++⋯⋯解:)3)(1(2⋯⋯+++=VCVB VRT P )5('])('['1)('''1)]1([)1'113322'22'3222'2⋯⋯++++=⋯++⋯⋯+++=⋯⋯+⋯⋯++++⋯⋯++++==VCRT B VRT C BRT B VRT B VRT CVCRT B VBRT B VRT B VCVB VRT C VC VB V RT B RT PV Z ()式右边得:)式代入(将(2'2()C B C R T -='B B RT∴= 2Va bV RT P --=解:VRTaV b RTPV z --==11RTa b B -=∴nXX XX X (11132)++++=-幂级数展开)(VC VB RTPV Z 212⋯⋯+++==)(1113232.......)Vb ()V b (V RTab VRTa .......])Vb ()Vb (V b [z +++-+=-++++=∴2-13. 某反应器容积为31.213m ,内装有温度为0227C 的乙醇45.40kg 。

现请你试用以下三种方法求取该反应器的压力,并与实验值(2.75M Pa )比较误差。

(1)用理想气体方程;;(2)用RK 方程;(3)用普遍化状态方程。

解:(1)用理想气体方程 M P a Vn R T P 38.310213.115.50010314.8987.063=⨯⨯⨯⨯==误差:%9.22 (2)用R-K 方程乙醇:K T C 2.516=, M P a P C 38.6=765.2625.22108039.21038.62.51610314.842748.042748.0⨯=⨯⨯⨯⨯==CCP T R a0583.01038.62.51610314.808664.008664.063=⨯⨯⨯⨯==CCP RT b3229.1987.0213.1m V ==()()MPab V V Ta bV RT P 76.2109247.7105519.30583.0229.1229.115.500108039.20583.0229.115.50010314.85625.0735.0=⨯-⨯=⨯+⨯--⨯⨯=+--=误差:%36.0(3)用三参数普遍化关联 (2<r V 用维里方程关联,MPa P 7766.2=) 635.0=ω, 43.038.675.2===Cr P P P , 97.02.51615.500==r T查图2-12~2-13:82.00=Z, 055.01-=Z7845.0055.0645.082.01=⨯-=+=Z Z Z ωM P a VZ R T P 65.210229.115.50010314.87845.063=⨯⨯⨯⨯==误差:%64.32-14. 容积1m 3的贮气罐,其安全工作压力为100 atm ,内装甲烷100 kg ,问:1)当夏天来临,如果当地最高温度为40℃时,贮气罐是否会爆炸?(本题用RK 方程计算) 2)上问中若有危险,则罐内最高温度不得超过多少度? 3)为了保障安全,夏天适宜装料量为多少kg ?4)如果希望甲烷以液体形式储存运输,问其压缩、运输的温度必须低于多少度? 解:1)甲烷的临界参数为 : T c = 190.6 K , P c = 4.6 MPa a = 0.427485.22R pc Tc =0.42748⨯65.22106.46.190314.8⨯⨯= 3.2217b = 0.08664pcc RT = 0.086646106.46.190314.8⨯⨯⨯=2.985510-⨯V =161010013⨯=1.6⨯104- 3m /mol又 T = 40 ℃)(5.0b V V Ta bV RT p +--==)10985.2106.1(106.115.3132217.310985.2106.115.313314.85445.054-----⨯+⨯⨯⨯⨯-⨯-⨯⨯= 1Pa 710⨯ = 138.3 atm > p 安 = 100 atm故 储气罐会发生爆炸。

相关文档
最新文档