结构化学--金属晶体和离子晶体结构

合集下载

南开大学结构化学精品课程-第8章

南开大学结构化学精品课程-第8章

Nankai University
《结构化学》第八章 金属和离子晶体
5) 空间利用率:74.05%
a 2 2r
(100)面
Nankai University
《结构化学》第八章 金属和离子晶体
正 四 面 体 空 隙
Nankai University
《结构化学》第八章 金属和University
《结构化学》第八章 金属和离子晶体
(110)面
设想一下,如果A4中所有能放入相同半径球的空缺处 都被添满,应该变成何种堆积?
Nankai University
《结构化学》第八章 金属和离子晶体
最密堆积 密置层顺序 配位数 空间点阵型式 结构基元数 晶胞内球数 结构基元内容 四面体空隙数 A3 hcp ABAB... 12 hP 1 2 2个球 4 A1 ccp ABCABC... 12 cF 4 4 1个球 8
第八章 金属和离子晶体
Nankai University
《结构化学》第八章 金属和离子晶体
§8.1 金属键的自由电子模型
金属键是一种多原子参与的,自由电子在正离子形 成的势场中运动的离域键。 金属晶体中的电子可视为三维势箱中运动的电子 金属键没有方向性的化学键 金属晶体可视为圆球的密堆积 金属的性质是内部结构决定的
Nankai University
《结构化学》第八章 金属和离子晶体
8.3.2 立方最密堆积(A1)
cubic closest packing (ccp)
Nankai University
《结构化学》第八章 金属和离子晶体
8.4.2 金刚石堆积(A4) 1) 点阵型式: 立方面心 cF
结构基元内容: 2个球

结构化学第5章--晶体结构-5-04

结构化学第5章--晶体结构-5-04

结构 类型
点阵型 式
caesium chloride
CsCl
sodium chloride NaCl
立方P
立方 F
Zine blende structure
wurtzide structure
立方 ZnS
六方 ZnS
立方F 六方
calsium fluoride CaF2
rutile structቤተ መጻሕፍቲ ባይዱre TiO2
NaCl rNa+/rCl-=959pm/181pm=0.525 Na+填在Cl-堆积的八面体空隙中. CsCl rCs+/rCl-=169pm/181pm=0.934 Cs+填在Cl-堆积的正方体空隙中。
⑵正、负离子的配位数和离子晶体结构参数 对于简单的二元离子晶体来说,除正负离子半径比决定离 子晶体的结构类型外,离子晶体堆积的紧密程度(负离子 堆积产生的空隙是否被正离子填充满等)也影响着晶体的 结构型式。若Z+、Z-分别为正负离子的电荷数,n+、n-分 别为正负离子数,CN+、 CN-分别为正负离子的配位数, 有
电负性较大的非金属元素和电负性较小的金属元 素生成的化合物一般都是离子化合物。在离子化合物 中,金属元素将价电子转移给非金属,形成具有较稳 定电子结构的正、负离子。正、负离子由于静电力互 相吸引靠近,当它们充分靠近时又会因电子云重叠而 相互排斥。当吸引和排斥相平衡时,形成稳定的离子 化合物。由此可知,离子化合物中存在的结合力是以 正、负离子间静电力为基础的离子键。正、负离子具 有球对称的电子云(Unsöld定理),所以离子键也和金属 键一样没有饱和性和方向性。离子键向空间各个方向 发展,即形成了离子晶体。
立方F 四方P

《结构化学》第六章 金属的结构和性质

《结构化学》第六章 金属的结构和性质

6.2 金属单质的晶体结构
金属单质晶体结构比较简单, 这与金属键密切相关: 由 于金属键没有方向性和饱和性,大多数金属元素按照等径 圆球密堆积的几何方式构成金属单质晶体,主要有立方面 心最密堆积、六方最密堆积和立方体心密堆积三种类型.
6.2.1 等径圆球最密堆积与A1、A3型结构
等径圆球以最密集的方式排成一列(密置列),进 而并置成一层(密置层),再叠成两层(密置双层), 都只有一种方式:
非最密堆积方式中最重要的是立方体心堆积A2 , 还有A4和少数的A6、A7、A10、A11、A12等.
A2 立方体心密堆积
布鲁塞尔的原子球博物馆 9个直径18米的球形展厅构成一个立方体心模型
A4 金刚石型结构
A4中原子以四面体键相连. 晶胞中虽然都是同种原子, 但所处的环境不同(球棍图中用两色颜色来区分). 一个浅蓝 色球与一个深蓝色球共同构成一个结构基元.
A1最密堆积形成立方面心(cF)晶胞
ABCABC……堆积怎么会形成立方面心晶胞? 请来个逆向思维:
取一个立方面心晶胞:
体对角线垂直方向就是密置层, 将它们设成3种色彩:
从逆向思维你已明白, 立方面心晶胞确实满足 ABCABC……堆积。
那么, 再把思路正过来: ABCABC……堆积形成立 方面心晶胞也容易理解吧?
晶胞 六方P
四、 金刚石型晶体(A4型)
C原子的配位数为4, 2套等同点 结构基元:2个C 空间点阵型式:立方F 每个晶胞中有8个C原子, 其坐标分别为:
(0,0,0), (1/2,1/2,0),
(1/2,0,1/2),(0,1/2,1/2),
(1/4,1/4,1/4),(1/4,3/4,3/4),
(为看得清楚,绿 球和蓝球层各有3 个球未画出)

结构化学知识点汇总

结构化学知识点汇总

结构化学知识点汇总关键信息项:1、原子结构原子轨道电子排布原子光谱2、分子结构化学键类型分子几何构型分子的极性3、晶体结构晶体类型晶格结构晶体的性质11 原子结构111 原子轨道原子轨道是描述原子中电子运动状态的数学函数。

主要包括s 轨道、p 轨道、d 轨道和 f 轨道。

s 轨道呈球形对称,p 轨道呈哑铃形,d 轨道和 f 轨道形状更为复杂。

112 电子排布遵循泡利不相容原理、能量最低原理和洪特规则。

电子按照一定的顺序填充在不同的原子轨道上,形成原子的电子构型。

113 原子光谱原子在不同能级间跃迁时吸收或发射的光子所形成的光谱。

包括发射光谱和吸收光谱,可用于分析原子的结构和成分。

12 分子结构121 化学键类型共价键:通过共用电子对形成,分为σ键和π键。

离子键:由正负离子之间的静电引力形成。

金属键:存在于金属晶体中,由自由电子和金属离子之间的相互作用形成。

氢键:一种特殊的分子间作用力,比一般的范德华力强。

122 分子几何构型通过价层电子对互斥理论(VSEPR)和杂化轨道理论来解释和预测。

常见的分子构型有直线型、平面三角形、四面体型、三角双锥型和八面体型等。

123 分子的极性取决于分子中正负电荷中心是否重合。

极性分子具有偶极矩,非极性分子则没有。

13 晶体结构131 晶体类型离子晶体:由离子键结合而成,具有较高的熔点和硬度。

原子晶体:通过共价键形成,硬度大、熔点高。

分子晶体:分子间以范德华力或氢键结合,熔点和硬度较低。

金属晶体:由金属键维系,具有良好的导电性和导热性。

132 晶格结构晶体中原子、离子或分子的排列方式。

常见的晶格有简单立方、体心立方、面心立方等。

133 晶体的性质各向异性:晶体在不同方向上的物理性质不同。

自范性:能够自发地呈现出多面体外形。

固定的熔点:在一定压力下,晶体具有固定的熔点。

21 量子力学基础211 薛定谔方程是描述微观粒子运动状态的基本方程,通过求解该方程可以得到粒子的能量和波函数。

结构化学_李炳瑞_习题

结构化学_李炳瑞_习题

结构化学习题(选编)(兰州大学化学化工学院李炳瑞)习题类型包括:选择答案、填空、概念辨析、查错改正、填表、计算、利用结构化学原理分析问题;内容涵盖整个课程,即量子力学基础、原子结构、分子结构与化学键、晶体结构与点阵、X射线衍射、金属晶体与离子晶体结构、结构分析原理、结构数据采掘与QSAR等;难度包括容易、中等、较难、难4级;能力层次分为了解、理解、综合应用。

传统形式的习题,通常要求学生在课本所学知识范围内即可完成,而且答案是唯一的,即可以给出所谓“标准答案”。

根据21世纪化学演变的要求,我们希望再给学生一些新型的题目,体现开放性、自主性、答案的多样性,即:习题不仅与课本内容有关,而且还需要查阅少量文献才能完成;完成习题更多地需要学生主动思考,而不是完全跟随教师的思路;习题并不一定有唯一的“标准答案”,而可能具有多样性,每一种答案都可能是“参考答案”。

学生接触这类习题,有助于培养学习的主动性,同时认识到实际问题是复杂的,解决问题可能有多钟途径。

但是,这种题目在基础课中不宜多,只要有代表性即可。

以下各章的名称与《结构化学》多媒体版相同,但习题内容并不完全相同。

第一章量子力学基础1.1 选择题(1) 若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者(A) 动量相同(B) 动能相同(C) 质量相同(2) 为了写出一个经典力学量对应的量子力学算符,若坐标算符取作坐标本身,动量算符应是(以一维运动为例)(A) mv (B)(C)(3) 若∫|ψ|2dτ=K,利用下列哪个常数乘ψ可以使之归一化:(A) K (B)K2 (C) 1/(4) 丁二烯等共轭分子中π电子的离域化可降低体系的能量,这与简单的一维势阱模型是一致的,因为一维势阱中粒子的能量(A) 反比于势阱长度平方(B) 正比于势阱长度(C) 正比于量子数(5) 对于厄米算符, 下面哪种说法是对的(A) 厄米算符中必然不包含虚数(B) 厄米算符的本征值必定是实数(C) 厄米算符的本征函数中必然不包含虚数(6) 对于算符Ĝ的非本征态Ψ(A) 不可能测量其本征值g.(B) 不可能测量其平均值<g>.(C) 本征值与平均值均可测量,且二者相等(7) 将几个非简并的本征函数进行线形组合,结果(A) 再不是原算符的本征函数(B) 仍是原算符的本征函数,且本征值不变(C) 仍是原算符的本征函数,但本征值改变1.2 辨析下列概念,注意它们是否有相互联系, 尤其要注意它们之间的区别:(1) 算符的线性与厄米性(2) 本征态与非本征态(3) 本征函数与本征值(4) 本征值与平均值(5) 几率密度与几率(6) 波函数的正交性与归一性(7) 简并态与非简并态1.3 原子光谱和分子光谱的谱线总是存在一定的线宽,而且不可能通过仪器技术的改进来使之无限地变窄. 这种现象是什么原因造成的?1.4 几率波的波长与动量成反比. 如何理解这一点?1.5 细菌的大小为微米量级, 而病毒的大小为纳米量级. 试通过计算粗略估计: 为了观察到病毒, 电子显微镜至少需要多高的加速电压.1.6 将一维无限深势阱中粒子的波函数任取几个, 验证它们都是相互正交的.1.7 厄米算符的非简并本征函数相互正交. 简并本征函数虽不一定正交,但可用数学处理使之正交. 例如,若ψ1与ψ2不正交,可以造出与ψ1正交的新函数ψ’2ψ’=ψ2+cψ12试推导c的表达式(这种方法称为Schmidt正交化方法).1.8 对于一维无限深势阱中粒子的基态, 计算坐标平均值和动量平均值,并解释它们的物理意义.1.9 一维无限深势阱中粒子波函数的节点数目随量子数增加而增加. 试解释: 为什么节点越多, 能量越高. 再想一想: 阱中只有一个粒子, 它是如何不穿越节点而出现在每个节点两侧的?1.10 下列哪些函数是d2/dx2的本征函数: (1) e x (2) e2x (3) 5sin x (4)sin x+cos x (5)x3. 求出本征函数的本征值.1.11 对于三维无限深正方形势阱中粒子, 若三个量子数平方和等于9, 简并度是多少?1.12 利用结构化学原理,分析并回答下列问题:纳米粒子属于介观粒子,有些性质与宏观和微观粒子都有所不同. 不过,借用无限深势阱中粒子模型,对纳米材料中的“量子尺寸效应”还是可以作一些定性解释.例如: 为什么半导体中的窄能隙(<3eV)在纳米颗粒中会变宽, 甚至连纳米Ag也会成为绝缘体?第二章原子结构2.1 选择题(1) 对s、p、d、f 原子轨道进行反演操作,可以看出它们的对称性分别是(A) u, g, u, g (B) g, u, g, u (C) g, g, g, g(2) H原子的电离能为13.6 eV, He+的电离能为(A) 13.6 eV (B) 54.4eV (C) 27.2 eV(3) 原子的轨道角动量绝对值为(A) l(l+1)2(B)(C) l(4) p2组态的原子光谱项为(A) 1D、3P、1S(B) 3D、1P、3S(C) 3D、3P、1D(5) Hund规则适用于下列哪种情况(A) 求出激发组态下的能量最低谱项(B) 求出基组态下的基谱项(C) 在基组态下为谱项的能量排序(6) 配位化合物中d→d跃迁一般都很弱,因为这种跃迁属于:(A) g←/→g(B)g←→u(C) u←/→u(7) Cl原子基态的光谱项为2P,其能量最低的光谱支项为(A) 2P3/2 (B) 2P1/2(C) 2P02.2 辨析下列概念,注意它们的相互联系和区别:(1) 复波函数与实波函数(2) 轨道与电子云(3) 轨道的位相与电荷的正负(4) 径向密度函数与径向分布函数(5)原子轨道的角度分布图与界面图(6)空间波函数、自旋波函数与自旋-轨道(7)自旋-轨道与Slater行列式(8)组态与状态2.3 请找出下列叙述中可能包含着的错误,并加以改正:原子轨道(AO)是原子中的单电子波函数,它描述了电子运动的确切轨迹. 原子轨道的正、负号分别代表正、负电荷. 原子轨道的绝对值平方就是化学中广为使用的“电子云”概念,即几率密度. 若将原子轨道乘以任意常数C,电子在每一点出现的可能性就增大到原来的C2倍.2.4(1) 计算节面对应的θ;(2) 计算极大值对应的θ;(3) 在yz平面上画出波函数角度分布图的剖面, 绕z轴旋转一周即成波函数角度分布图. 对照下列所示的轨道界面图, 从物理意义和图形特征来说明二者的相似与相异.2.5 氢原子基态的波函数为试计算1/r的平均值,进而计算势能平均值<V>, 验证下列关系:<V> = 2E= -2<T>此即量子力学维里定理,适用于库仑作用下达到平衡的粒子体系 (氢原子基态只有一个1s电子,其能量等于体系的能量) 的定态, 对单电子原子和多电子原子具有相同的形式.2.6 R. Mulliken用原子中电子的电离能与电子亲合能的平均值来定义元素电负性. 试从原子中电子最高占有轨道(HOMO)和最低空轨道(LUMO)的角度想一想,这种定义有什么道理?2.7 原子中电子的电离能与电子亲合能之差值的一半, 可以作为元素化学硬度的一种量度(硬度较大的原子,其极化率较低). 根据这种定义,化学硬度较大的原子,其HOMO与LUMO之间的能隙应当较大还是较小?2.8 将2p+1与2p-1线性组合得到的2p x与2p y, 是否还有确定的能量和轨道角动量z分量?为什么?2.9 原子的轨道角动量为什么永远不会与外磁场方向z重合, 而是形成一定大小的夹角? 计算f轨道与z轴的所有可能的夹角. 为什么每种夹角对应于一个锥面, 而不是一个确定的方向?2.10 快速求出P原子的基谱项.2.11 Ni2+的电子组态为d8, 试用M L表方法写出它的所有谱项, 并确定基谱项.原子光谱表明, 除基谱项外, 其余谱项的能级顺序是1D<3P<1G<1S, 你是否能用Hund规则预料到这个结果?2.12 d n组态产生的谱项, 其宇称与电子数n无关, 而p n组态产生的谱项, 其宇称与电子数n有关. 为什么?2.13 试写出闭壳层原子Be的Slater行列式.2.14 Pauli原理适用于玻色子和费米子, 为什么说Pauli不相容原理只适用于费米子?第三章双原子分子结构与化学键理论3.1 选择题(1) 用线性变分法求出的分子基态能量比起基态真实能量,只可能(A) 更高或相等(B) 更低(C) 相等(2) N2、O2、F2的键长递增是因为(A) 核外电子数依次减少(B) 键级依次增大(C) 净成键电子数依次减少(3) 下列哪一条属于所谓的“成键三原则”之一:(A) 原子半径相似(B) 对称性匹配(C) 电负性相似(4) 下列哪种说法是正确的(A) 原子轨道只能以同号重叠组成分子轨道(B) 原子轨道以异号重叠组成非键分子轨道(C) 原子轨道可以按同号重叠或异号重叠,分别组成成键或反键轨道(5) 氧的O2+ , O2, O2- , O22-对应于下列哪种键级顺序(A) 2.5, 2.0, 1.5, 1.0(B) 1.0, 1.5, 2.0, 2.5(C) 2.5, 1.5, 1.0 2.0(6) 下列哪些分子或分子离子具有顺磁性(A) O2、NO (B) N2、F 2(C) O22+、NO+(7) B2和C2中的共价键分别是(A)π1+π1,π+π(B)π+π,π1+π1(C)σ+π,σ3.2 MO与VB理论在解释共价键的饱和性和方向性上都取得了很大的成功, 但两种理论各有特色. 试指出它们各自的要点 (若将两种理论各自作一些改进, 其结果会彼此接近).3.3 考察共价键的形成时, 为什么先考虑原子轨道形成分子轨道, 再填充电子形成分子轨道上的电子云, 而不直接用原子轨道上的电子云叠加来形成分子轨道上的电子云?3.4 “成键轨道的对称性总是g, 反键轨道的对称性总是u”. 这种说法对不对? 为什么?3.5 一般地说, π键要比σ键弱一些. 但在任何情况下都是如此吗? 请举实例来说明.3.6 N2作为配位体形成配合物时, 通常以2σg电子对去进行端基配位(即N ≡N→), 而不以1πu电子对去进行侧基配位。

结构化学知识点汇总

结构化学知识点汇总

结构化学知识点汇总结构化学是一门研究原子、分子和晶体结构以及结构与性能之间关系的学科。

它是化学领域的重要基础,对于理解化学反应、物质的性质和材料科学等方面具有关键作用。

以下是对结构化学一些重要知识点的汇总。

一、原子结构原子由原子核和核外电子组成。

原子核包含质子和中子,质子数决定了原子的元素种类。

电子在原子核外的分布遵循一定的规律。

玻尔模型提出了电子在特定轨道上运动,但其存在局限性。

量子力学的发展给出了更精确的描述,电子的运动状态用波函数来表示。

电子具有四个量子数:主量子数(n)决定电子所在的能层;角量子数(l)决定电子亚层;磁量子数(m)决定电子在亚层中的轨道取向;自旋量子数(ms)表示电子的自旋方向。

原子轨道是电子在核外空间出现概率密度分布的形象化描述。

s 轨道呈球形,p 轨道呈哑铃形。

电子填充原子轨道遵循能量最低原理、泡利不相容原理和洪特规则。

二、分子结构分子的化学键包括共价键、离子键和金属键。

共价键的形成是原子间通过共用电子对达到稳定结构。

价键理论认为共价键的形成是原子轨道重叠的结果。

杂化轨道理论解释了分子的空间构型,如 sp、sp2、sp3 杂化等。

价层电子对互斥理论可以预测分子的几何构型。

分子的极性取决于分子的正负电荷中心是否重合。

分子间作用力包括范德华力和氢键。

范德华力包括取向力、诱导力和色散力,它们对物质的物理性质有重要影响。

氢键的存在会使物质的熔点、沸点升高。

三、晶体结构晶体具有规则的几何外形和固定的熔点。

晶体分为离子晶体、原子晶体、分子晶体和金属晶体。

离子晶体由阴阳离子通过离子键结合而成,具有较高的熔点和硬度。

原子晶体中原子通过共价键形成空间网状结构,如金刚石。

分子晶体中分子间通过范德华力或氢键结合,熔点和硬度较低。

金属晶体由金属阳离子和自由电子通过金属键结合,具有良好的导电性和导热性。

晶体的空间点阵结构用晶胞来描述,通过晶胞参数可以计算晶体的密度等性质。

四、化学键的性质键能是指断开化学键所需的能量,键能越大,化学键越稳定。

《结构化学》教学大纲

《结构化学》教学大纲

《结构化学》教学大纲课程简介:结构化学是现代物理化学学科的重要分支,是在原子、分子水平上讨论物质的性质与几何结构和电子结构之间的关系。

在电子结构上,从量子力学规律出发,推演出一般微观粒子的运动规律、原子和分子中电子的运动状态以及化学键的本质;在几何结构上,通过数学群论等工具,对分子的结构进行分析,探讨分子空间几何结构与性质的关系;基于X衍射等技术,对晶体的微观几何结构进行研究,阐明晶体性质与内部周期性结构的关系。

教学对象:化学学院化学、材料和分子工程专业二年级同学预备知识:无机化学、有机化学基础知识教学目的:《结构化学》课程是化学学院本科生重要的基础理论课,在化学课程结构中具有重要的地位,同时是本科阶段接触的第一门理论课程。

在此以前,化学学科给同学的印象主要是实验科学,因而《结构化学》课程对更新同学们的观念极为重要。

在本课程的学习中,不仅让学生通过学习掌握结构化学的基本知识,而且要求学生能深刻理解“性质反映结构,结构决定性质”这一基本原理,使学生从更高水平上理解各种化学的现象。

课程内容及学时分配:1.量子力学基础(9课时)1-1 微观粒子的运动特征1-2 量子力学基本假设1-3 势箱中运动的粒子2.原子的结构和性质(9课时)2-1 氢原子及类氢离子的Schrödinger方程及其解2-2 量子数的物理意义2-3 波函数及电子云图形2-4 多电子原子结构2-5 电子的自旋2-6 原子光谱项3.分子结构(20课时, 其中讲授教授18课堂, 1次模型实习2课时)3-1氢分子离子结构3-2分子轨道理论3-3双原子分子结构3-4共轭体系和休克尔分子轨道理论3-5分子对称性4.晶体结构(23课时, 其中讲授教授15课堂, 4次模型实习8课时)4-1 晶体的点阵结构和晶体的性质4-2 晶体结构的对称性4-3 金属晶体结构4-4 离子晶体结构4-5 其它键型的晶体结构4-6 晶体的X射线衍射—晶体结构分析原理。

结构化学 09 离子晶体结构-4节课

结构化学 09 离子晶体结构-4节课

B(负离子)
0
0
0
u
u
0
1/2
1/2
1/2
-u
-u
0
1/2+u 1/2-u
1/2
1/2-u 1/2+u 1/2
金红石型结构
金红石型结构
金红石型:离子堆积描述
结构型式
n+/n-
负离子堆积方式
正离子 CN+/CN- 所占空隙类型
正离子 所占空隙分数
金红石型 1:2 假六方密堆积
6:3
八面体
1/2
金红石型晶体中正离子所占空隙分数
2. n+/n-在晶体结构中的作用
(1) 化学组成比与电价比成反比
(2) 化学组成比与正、负离子配位数比成反比
(3) 正、负离子电价比与其配位数比成正比 (4) CN+主要由正、负离子半径比决定, 而CN-由此式决定
88..33..66 多多元元离离子子晶晶体体的的结结晶晶化化学学规规律律:: PPaauulliinngg规规则则
88..33 离离子子晶晶体体的的结结构构和和性性质质
离子键和晶格能
离子键的强弱可用晶格能大小表示。晶格能是0K时lmo1离 子化合物中的正、负离子(而不是正、负离子总共为lmo1),由相 互远离的气态结合成离子晶体时所释放出的能量, 也称点阵能。若 用化学反应式表示,晶格能U相当于下一反应的内能改变量:
CaF2(荧石)型晶体结构
萤石型:离子堆积描述
结构型式
n+/n-
负离子堆积方式
CN+/CN-
正离子 所占空隙类型
正离子 所占空隙分数
萤石型 1:2 简单立方堆积
8:4

晶体结构_精品文档

晶体结构_精品文档
②阴离子与阴离子相接触, 阳离子与阴离子也接触, 体系处于平衡状态,结构稳定
③阳离子与阴离子相接触, 阴离子之间脱离接触,引力大于斥力, 在一定范围内结构稳定,超出范围后过 剩的引力需由更远的阴离子作用来平衡
八面体配位的离子半径关系:
(2r- )2 (2r )2 (2r 2r)2
r 0.414 r
A2(bcc) A3(hcp)
金属的 堆积方式
六方紧密堆积 面心立方紧密堆积 立方体心堆积
金属钾 K 的立方 体心堆积
2、等径球体紧密堆积所形成的空隙类型和空隙数 1)空隙类型:










2)空隙数量
幻灯片 8
幻灯片 12
六方紧密堆积 立方紧密堆积
每个球体周围
四面体空隙:8个 八面体空隙:6个
1 4 1
=2个 =1个
1
Ca Al O Si
Ca
Al Si O
Al
Ca Ca
Si O Ca
Ca
2.2单质晶体结构
一、典型金属的晶体结构 二、多晶型性 三、非金属元素单质的晶体结构
一、典型金属的晶体结构
1、面心立方结构(A1或fcc )(金属Cu、Ag、Au、Al、γ-Fe等 )
①点阵(晶胞)常数:(a=b=c),a= 2 2r
体空间中所占有的体积百分数(K)。如以一个晶胞来计算,则致密度就
是晶胞中原子体积与晶胞体积之比值,即:
K nv V
4R 2a a 4 R 2
K

fcc
4(4 R3
a3
/
3)
4(4 R3 / 3)
(4R / 2)3

高中化学选修3 第三章晶体结构与性质 讲义及习题.含答案解析

高中化学选修3 第三章晶体结构与性质  讲义及习题.含答案解析

高中化学选修三第三章晶体结构与性质一、晶体常识1、晶体与非晶体比较自范性:晶体的适宜的条件下能自发的呈现封闭的,规则的多面体外形。

对称性:晶面、顶点、晶棱等有规律的重复各向异性:沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,因此导致的在不同方向的物理化学特性也不尽相同。

2、获得晶体的三条途径①熔融态物质凝固。

②气态物质冷却不经液态直接凝固(凝华)。

③溶质从溶液中析出。

3、晶胞晶胞是描述晶体结构的基本单元。

晶胞在晶体中的排列呈“无隙并置”。

4、晶胞中微粒数的计算方法——均摊法某粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。

中学常见的晶胞为立方晶胞。

立方晶胞中微粒数的计算方法如下:①晶胞顶角粒子为8个晶胞共用,每个晶胞占1/8②晶胞棱上粒子为4个晶胞共用,每个晶胞占1/4③晶胞面上粒子为2个晶胞共用,每个晶胞占1/2④晶胞内部粒子为1个晶胞独自占有,即为1注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状。

二、构成物质的四种晶体1、四种晶体的比较(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。

金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。

(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高。

如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。

晶格能:1mol气态阳离子和1mol气态阴离子结合生成1mol离子晶体释放出的能量。

(4)分子晶体①分子间作用力越大,物质熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。

②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。

③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,熔、沸点越高。

④同分异构体,支链越多,熔、沸点越低。

(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。

晶体结构基础知识

晶体结构基础知识

添加标题
添加标题
添加标题
添加标题
晶体结构决定了晶体的物理性质和 化学性质
晶体结构可以分为金属晶体、原子 晶体、离子晶体和分子晶体等类型
晶体结构的特点
晶体结构由原子、分子或离 子按照一定的规则排列而成
晶体结构具有周期性、对称 性和重复性
晶体结构的种类包括金属晶 体、原子晶体、分子晶体和
离子晶体
晶体结构的研究对于理解物 质的物理性质、化学性质和
晶体对称性 包括对称操 作和对称元 素
对称操作包 括旋转、反 射、倒转等
对称元素包 括对称中心、 对称面、对 称轴等
晶体对称性 是晶体结构 的重要特征 决定了晶体 的物理性质 和化学性质
05 晶体结构的物理性质
光学性质
晶体的光学性质与其结构有关 晶体的光学性质包括折射率、色散、双折射等 晶体的光学性质可以用于鉴定晶体的种类和结构 晶体的光学性质可以用于研究晶体的生长和缺陷
地质学:研究晶体结构与地质构造的 关系
环境科学:研究晶体结构与环境污染 的关系
医学领域
药物研发:通 过晶体结构分 析药物与蛋白 质的相互作用 优化药物设计
疾病诊断:通 过晶体结构分 析蛋白质的结 构变化辅助疾
病诊断
药物筛选:通 过晶体结构分 析药物与蛋白 质的结合能力 筛选有效药物
药物设计:通 过晶体结构分 析药物与蛋白 质的结合位点 设计新型药物
电学性质
导电性:晶体的导电性取决于其内部电子的移动能力 介电常数:晶体的介电常数决定了其对电场的响应能力 光电效应:晶体的光电效应是指晶体在光照下产生的电荷效应 压电效应:晶体的压电效应是指晶体在受到压力时产生的电荷效应
热学性质
热膨胀系数:晶体的热膨胀 系数与其晶体结构有关不同 晶体的热膨胀系数不同

结构化学知识点汇总

结构化学知识点汇总

结构化学知识点汇总结构化学是一门研究原子、分子和晶体结构以及结构与性能之间关系的学科。

它为我们理解物质的性质和化学反应提供了基础。

以下是对结构化学中一些重要知识点的汇总。

一、原子结构1、玻尔模型玻尔提出了原子的行星模型,认为电子在特定的轨道上绕核运动,轨道具有固定的能量。

2、量子力学模型薛定谔方程是描述微观粒子运动状态的基本方程。

电子具有波动性和粒子性,其运动状态用波函数来描述。

3、原子轨道原子轨道是波函数的数学表达式,常见的有 s、p、d、f 轨道。

4、电子排布遵循能量最低原理、泡利不相容原理和洪特规则,电子依次填充不同的原子轨道。

二、分子结构1、价键理论认为原子通过共用电子对形成共价键,包括σ 键和π 键。

2、杂化轨道理论原子在形成分子时,轨道会杂化,形成等性杂化和不等性杂化。

3、价层电子对互斥理论用于预测分子的几何构型,根据中心原子的价层电子对数和孤电子对数来判断。

4、分子轨道理论将分子看作一个整体,电子在分子轨道中运动,分子轨道有成键轨道和反键轨道。

三、化学键1、离子键由正负离子之间的静电引力形成,通常在金属和非金属元素之间形成。

2、共价键原子间通过共用电子对形成,具有方向性和饱和性。

3、金属键金属原子通过自由电子形成的化学键,具有良好的导电性和导热性。

4、氢键一种特殊的分子间作用力,比范德华力强,但比化学键弱。

四、晶体结构1、晶体的分类根据晶体中粒子的排列方式,可分为离子晶体、原子晶体、分子晶体和金属晶体。

2、晶胞晶体的基本重复单元,通过晶胞可以研究晶体的结构和性质。

3、晶体的堆积方式如金属晶体的面心立方堆积、体心立方堆积等。

4、晶体的缺陷包括点缺陷、线缺陷和面缺陷,对晶体的性能有重要影响。

五、结构与性能的关系1、熔点和沸点与晶体类型和化学键的强度有关。

2、硬度和强度与晶体的结构和化学键的类型有关。

3、导电性和导热性金属晶体具有良好的导电性和导热性,而离子晶体在熔融或溶液状态下导电。

4、光学性质晶体的结构会影响其对光的折射、反射和吸收。

晶体结构

晶体结构

q q f R2
没有方向性和饱和性(库仑引力的性质所决定)
NaCl
CsCl
人们习惯上将正离子周围直接接触的负离子数称为正离 子的配位数,并将周围的负离子原子核的连线形成的多 面体称之为配位多面体。
90
2.

14种布拉维点阵形式


布拉维系有7种不同几何特征的晶胞。晶胞又有素晶胞、 体心晶胞、面心晶胞和底心晶胞之分。所以,7种不同 的晶胞在保持α、β、γ、a、b、c不变的情况下,又可 素复结合,变异为14种晶胞,如表3-1和图3-20所示。 在晶体学中称为布拉维点阵形式,也叫14种晶格。表 3-1给出了这14种晶胞的符号。 小写字母:为晶族代号:c(立方)、t(四方)、o (正交)、m(单斜)、a(三斜)、h(六方)。 大写字母:P 、I、 F分别素晶胞、体心晶胞、面心晶 胞; A、B、C代表底心晶胞;R只代表菱方晶胞。

例如: 金属锂的能带结构
Metal lithium
由于每个锂原子只有1个价
电子,该离域轨道应处于 半满状态。电子成对地处 于能带内部能级最低的轨
道上,使能级较高的一半
轨道空置。 在充满了的那一半能带的
最高能级上,电子靠近能
量较低的空能级,从而很 容易离开原来能级,进入 能量略高的空能级。
能带理论中的一些重要概念 能带理论中的一些重要概念
小写字母与大写字母结合,是一种既涉及: 布拉维系又涉及素复的晶胞代号。

例如:cP是素立方晶胞,cI是体心立方晶 胞,mP是单斜素晶胞,等等。这些符号 是国际晶体学会组织编写的重要工具书 晶体学国际表(1983)推荐的,已广泛 应用。

3-3 点阵· 晶系(选学内容,不 作要求,可作为课外阅读内容)

2012结构化学09章-晶体结构

2012结构化学09章-晶体结构

齐鲁师范学院齐鲁师范学院结构 化学第九章 晶体结构§9.0 晶体的通性 §9.1 晶体的周期性-点阵结构 §9.2 晶面指标 §9.3 晶体的对称性 §9.4 圆球的堆积 §9.5 典型的晶体结构1结构 化学§9.0 晶体的通性一、晶体由原子、分子、离子等微粒在空间按一定规则进 行周期性排列所构成的固体物质。

晶体的分布非常广泛,自然界的固体物质(尤其是无机物) 绝大多数是晶体,气体、液体和非晶物质在一定条件下也可以 转变成晶体。

非晶是固体的另一种状态,如玻璃、松香和明胶等物质,它 们内部的微粒没有周期性排列特征,可以视为是“过冷液体”, 们内部的微粒没有周期性排列特征,可以视为是“过冷液体” 称为玻璃体或非晶态物质。

晶体物质内部的周期性排列,使得它们具有一些特殊性质。

2齐鲁师范学院齐鲁师范学院结构 化学二、晶体的共同特点 、晶体的共同特点(1)均匀性 一块晶体内部各个部分的宏观性质是相同的。

结构 化学(2)各向异性同一块晶体在不同方向上会具有不同的物理性质。

例如,电导率、热膨胀系数、折光率以及机械强度 等性质,会因方向不同而数值不同。

这是由于晶体内 部的周期性排列,造成了不同方向上原子或分子的排 列情况各不相同。

非晶体没有各向异性的特征。

例如密度、化学组成等,这些性质都是均匀的。

虽然晶体内部具有微粒排列的周期性变化,但是宏 观观察分辨不出这种微观的不连续性。

所以晶体具 有宏观均匀性。

玻璃体也具有宏观均匀性,但这种均匀性源自于 原子、分子无序排列的统计结果。

34齐鲁师范学院齐鲁师范学院结构 化学(3)自范性 晶体在生长过程中会自发地形成规范的凸多面体 外形。

自范性源自于周期性排列。

并且具有如下规律。

晶面数 + 顶点数 = 晶棱数 + 2结构 化学(4)有明显的熔点(5)有对称性结构(6)可以使 X-射线发生衍射 非晶体没有自范性。

第三章晶体结构

第三章晶体结构
设按六方密堆的O2-分别为OA层与OB层,则-Al2O3中氧与铝 的排列可写成:OAAlDOBAlEOAAlFOBAlDOAAlEOBAlF∥OAAlD…, 从第十三层开始才出现重复。
三.其它晶体结构 1.金刚石结构
金刚石结构为面心立方格 子,碳原子位于面心立方的所 有结点位置和交替分布在立方 体内的四个小立方体的中心, 每个碳原子周围都有四个碳, 碳原子之间形成共价键。
一.面心立方紧密堆积结构
4. CaTiO3(钙钛矿)型结构 钙钛矿结构的通式为ABO3,其中,A2+ 、B4+或A1+ 、B5+金
属离子。CaTiO3在高温时为立方晶系,O2-和较大的Ca2+作面心 立方密堆,Ti4+填充于1/4的八面体空隙。Ca2+占据面心立方的 角顶位置。O2-居立方体六个面中心,Ti4+位于立方体中心。Z=1, CNCa2+=12 CNTi4+=6 ,O2-的配位数为6 (2个Ti4+和 4个Ca2+)。
一.面心立方紧密堆积结构 1. NaCl型结构
Cl-呈面心立方最紧密堆积,Na+则填充于全部的八面体空隙
中,(即阴离子位于立方体顶点和六个面的中心,阳离位于立
方 体 的 中 心 和 各 棱 的 中 央 ) 。 两 者 CN 均 为 6 , 单 位 晶 胞 中 含 NaCl的个数Z=4 ,四面体空隙未填充。
一.面心立方紧密堆积结构 2. β-ZnS(闪锌矿)型结构
S2-位于面心立方的结点位置,Zn2+交错地分布于立方体内 的1/8小立方体的中心,即S2-作面心立方密堆,Zn2+填充于1/2的 四面体空隙之中,CN均为4,Z=4。β -ZnS是由[ZnS4]四面体以 共顶的方式相连而成。

914704-结构化学-第9章

914704-结构化学-第9章

空隙位置 体心1个, 及数目 12条棱心 3个
占 有 位 置 体心1 ,棱心3
NaCl型
(111)方向正负离子堆积 s型:分数坐标描述(以负离子B为晶胞顶点,O点为坐标原点)
A(正离子)
B(负离子)
1/3 2/3 1/4
0
0
0
1/3 2/3 3/4 2/3 1/3 1/2
哥希密特指出:“晶体的结构型式主 要取决于组成晶体的原子、离子或原子团 的相对数量关系、相对大小关系及相互极 化性能三个因素。”
组成晶体的结构基元相对数量影响
晶体的结构一般可按化学式分类:例如, AB,AB2,AB3等,由于化学式不同,则晶体 结构一般不同,即组成者相对数量不同,结构 不同。
n+/n-=1 : 1
n+ : 1 +1/4 ×12
=4
n- : 1/8×8 +1/2×6
=4
NaCl型
2. 结构型式
结构型式是用一些 有代表性的晶体来命名的。 例如,MgO、SrS、LiF 等晶体的结构型式都属于 NaCl型,这只是说它们 的正、负离子空间排布方 式也采取NaCl晶体中那 种方式,而化学组成与 NaCl毫无共同之处。
NaCl型
CN+=6 CN-=6
NaCl型 5. 正离子所占空隙种类
正八面体
由CN+可知正离子所占空隙种类。
6. 正离子所占空隙分数
NaCl型
浅蓝色球代表的负离子(它们与绿色球是相同的负离子) 围成正四面体空隙, 但正离子并不去占据:
仔细观察一下: 是否有被占据的正四 面体空隙?
没有!
NaCl型
第9章 离子化合物的结构化学
离子化合物是指由正负离子结合在一起形 成的化合物,它一般由电负性较小的金属元素与 电负性较大的非金属元素构成。

结构化学第十章离子晶体的若干简单结构型式1

结构化学第十章离子晶体的若干简单结构型式1

这个O2-已从Si4+上“收到”2个正电荷,恰好与自身负电荷平
第三规则(配位多面体共用顶点、棱、面规则):
相邻的正离子配位体之间共用棱(即共用两顶点)、
特别是共用面(即共用三顶点)的存在会降低结构的稳定性.
第 三 规 则 图 解
硅氧四面体模型
两个四面体共用顶点
设正-正离子距离为1单位
两个四面体共用棱 正-正离子距离减为0.58单位
用图形:
10.3.3 多元离子晶体的结晶化学规律:Pauling 规则
以下结合硅酸盐结构,对Pauling 规则作一些图解.
第一规则(离子配位多面体规则):
正离子周围形成一个正离子配位体(也称负离子多面
体). 正负离子间距离取决于离子半径和,正离子配位数及
正离子配位体型式取决于离子半径比.
硅酸盐中的硅氧四面体
触的), 则正方体的面对角线长度为2r-, 体对角线长度为2(r++r-)
2a 2r 3a 2( r r ) 3 ( r r ) a 2 3 ( 2r ) 2 6 r 1.225 r 2 r / r 0.225
六配位的正八面体空隙
2( r r ) 2 ( 2r ) r / r 0.414
特别注意: 四配位的多面体是正四面体而不是正方形. 由于正离子被包在正四面体
中难以看清正负离子的大小关系, 故简化成平面结构用作示意图, 这并不是真实结构!
对于几种确定的CN+,理论上要求的r+/r-临界值(最小值)如下:
r r
三配位的正三角形空隙
2 r sin 60 2 r 3 2 2 3
10.3.1 离子半径比与配位数的关系

结构化学教案 第五章

结构化学教案 第五章

二、晶胞及晶胞的二个基本要素 空间点阵是晶体结构的数学抽象,晶体具 有点阵结构。空间点阵中可以划分出一个个的 平行六面体一空间格子,空间格子在实际晶体 中可以切出一个个平行六面体的实体,这些包 括了实际内容的实体,叫晶胞,即晶胞是晶体 结构中的基本重复单位。 晶胞一定是平行六面体,它们堆积起来就 能构成晶体。晶胞也有素晶胞,复晶胞和正当 晶胞之分,素晶胞只含一个结构基元。
的状态; (长程有序) 非晶态材料则象液体那样,只有在几个 原子间距量级的短程范围内具有原子有序的 状态。(短程有序)
晶体的原子呈周期性排列
非晶体的原子不呈周期性排列
§5-1、晶体的点阵理论
一个理想晶体是由全同的称作基元的结构 单元在空间作无限的重复排列而构成的;基元 可以是原子、离子、原子团或者分子;晶体中 所有的基元都是等同的,也就是说它们的组 成、位形和取向都是相同的。因此,晶体的内 部结构可以抽象为在空间作周期性的无限分布 的一些相同的几何点,这些几何点(点阵点) 代表了基元的某个相同位臵,而这些几何点的 集合就称作空间点阵,简称点阵。
2a
倒易截数之比:1/2:1/3:1/4 = 6:4:3 , 为整数。
1、当一个晶面与某一个晶面平行时,可认 为晶面在这个晶轴上的截数为无穷大∞,而 其倒易截数为0。 2、由于采用了互质整数比,所以一个晶面 指标( h*:k*:l*)代表了一组晶面,只有同 一个方向的晶面均可用一个h*:k*:l*表示。 3、晶面指标的数值反应了这组晶面之间的 间距跟阵点的疏密。 4、已知一组晶面的晶面指标可求得这组晶 面在三个晶轴上的截数与截长。
a
b
a 方向生长LBGM晶体
b 方向生长LBGM晶体
c 方向生长LBGM晶体
2、晶体缺陷:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013版
第九章-金属晶体和离子晶体
33
U
EC
ER
ZZe2 r
b rm
点阵能
U r
r re
ZZe2 r2
b r m1
0
求极值
b Z Ze2r m1 m
求出b
U ZZe2 ANA 1 1
4 0re m
求出点阵能
A—Madelung常数。
m—Born指数, 与离子的电子壳层有关。
ε—介电常数。
12
六方晶系的划分
请点击按钮打开晶体模型
结构基元: 2个原子[ 8(1/8) + 1]
空间点阵: 六方简单格子
特征对称性: 63
2013版
第九章-金属晶体和离子晶体
13
密置层堆积起来后, 三重旋转轴尚在, 六重旋转轴却不复存在
六重旋转轴消失
三重旋转轴
2013版
第九章-金属晶体和离子晶体
14
六方晶系的特征对称元素: 六次反轴或六次螺旋轴.
2013版
第九章-金属晶体和离子晶体
2
9.1.1 等径圆球的密置排列
球体相切
2013版
第九章-金属晶体和离子晶体
3
密堆积的结构特点
(1). B,C空位在A层的前后都有。 (2). B空位被球填充后,C空位就没有空间再填充球。
2013版
第九章-金属晶体和离子晶体
4
两种最密堆积
(1). ABCABC……, 每三 层重复一次, 称为A1型,可 抽象出立方面心点阵.
3
Vcell a 3 16 2r 3
Po
Vatoms Vcell
32
74.05%
这是等径圆球密堆积所能达到的最大占有率, 所以A1 堆积是最密堆积。
2013版
第九章-金属晶体和离子晶体
11
A3 型金属等径圆球密堆积
AB层结构完全相同,但相错一位置,互为空位填充。
2013版
第九章-金属晶体和离子晶体
(2). ABABAB……, 每两层 重复一次, 称为A3 型, 可抽 象出六方简单点阵.
2013版
第九章-金属晶体和离子晶体
5
A1型
2013版
第九章-金属晶体和离子晶体
ABC三层结构 完全相同,但 相错一位置, 互为空位填充, 红、绿、蓝球 代表A, B,C三 层原子.
6
垂直于密置层观察
垂直于单胞的 体对角线的原 堆积
U 693 740 768 959 3125 3310 3515 3916 — m.p. ºC 933 1013 1074 1261 2196 2703 2858 3073 2833 硬度 — — — — 3.3 3.5 4.5 6.5 9.0
2013版
第九章-金属晶体和离子晶体
38
离子键没有方向性和饱和性
U 753kJ mol1
2013版
第九章-金属晶体和离子晶体
36
晶体的点阵能的实验测定
Born-Haber 热力学循环法
Na (s) + (1/2) Cl2(g)
S
D
Na (g)
Cl (g)
I
E
Na+(g) + Cl– (g)
→ NaCl (s) ∆Hf
∆H2
∆H1 → NaCl (g)
U H1 H2
2013版
第九章-金属晶体和离子晶体
25
离子键的经典概念
1916, W. Kossel 提出离子键理论, 原子通过得到或 失去电子成为惰性气体元素原子的电子结构, 形成 离子键。
Na Na e 周期表左側元素, 失电子, 正离子。 Cl e Cl 周期表右側元素, 得电子, 负离子。
离子键: 由正负离子的静电引力作用形成的化学键。 离子键是一种极端的化学键。
2013版
第九章-金属晶体和离子晶体
7
ABCABC……堆积形成立方晶系,立方面心点阵
体对角线垂直方向就是密 置层, 将它们设成3种色彩:
立方面心晶胞
沿体对角 线观察:
对应ABCABC……堆积
2013版
第九章-金属晶体和离子晶体
8
A1型晶体: 球数:八面体空隙数:四面体空隙数=1:1:2
中心球G的上下:
第九章-金属晶体和离子晶体
22
A4 空间占有率的计算
1
2
3
a 2
2r
2013版
3a 8r a 8r 3
Vatoms
4 r 3 8
3
32 r 3
3
Vcell
a3
(
8r 3
)3
512r 3 33
Po
Vatoms Vcell
第九章-金属晶体和离子晶体
3 34.01%
16
23
9.2.5 小结: 几种典型的金属单质晶体结构
39
离子的电子构型 是否一定是惰性气体的电子结构呢?
电子构型 2 8 18
(18+2)
9~17
2013版
离子的电子组态 1s2 2s22p6 [ns2np6(n=2,3,4…)] 3s23p6 ns2np6nd10 (n=3,4,5,…) (n-1)s2(n-1)p6(n-1)d10ns2 (n=4,5,6,…)
六次反轴
2013版
第九章-金属晶体和离子晶体
六次螺旋轴
15
两相邻密置层中的空隙: 1.正八面体空隙
3A+3B 2.正四面体空隙
3A+1B or
1A+3B
T 4 2 1 21 4
T1
4
O 21 2
Ball 8 1 1 2 8
2013版
T 1/4
第九章-金属晶体和离子晶体
O1
16
A3型晶体: 球数:八面体空隙数:四面体空隙数=1:1:2
Cr3+ 63 Ga3+ 62 Cl¯ 181
Mn2+ 80 Ge2+ 73 Br¯ 196
Fe2+ 74 As3+ 58 I¯ 220
A. 正离子的电荷高, 核外电子受核的吸引强, 离子半径小。 B. 负离子的电荷高, 核外电子受核的吸引弱, 离子半径大。
Fe2+ 74pm
Fe3+ 64pm
S2- 184pm
四面体空隙
八面体空隙
2013版
第九章-金属晶体和离子晶体
9
空间占有率
定义: 空间占有率=晶胞中原子总体积 / 晶胞体积
P Vatoms Vcell
2013版
第九章-金属晶体和离子晶体
10
A1 的空间占有率的计算
2a 4r a 4r 2 2r 2
Vatoms
4 r 3 4
3
16 r 3
2013版
第九章-金属晶体和离子晶体
32
离子键的强度—点阵能—Born-Landé方程
A. 正负离子的静电引力:
F
ZZe2 r2
Coulomb 能量: EC
Fdr ZZe2 r
正负离子距离较远
B. 电子间的短程排斥力:
ER brm
正负离子靠近到一定距离
C. 吸引力和排斥力达到平衡时.
一对正负离子的总能量: U EC ER
2013版
第九章-金属晶体和离子晶体
34
AxBy离子化合物的点阵能—Born-Landé方程
U ( y x)NA Z1Z2e2 (1 1)A
2
40R0 n
➢以NaCl晶体为例: Z1=l,Z2=1 对于正负电价都取绝对值 Born指数n=(7+9)/2=8 Madelung常数A=1.7476
2013版
第九章-金属晶体和离子晶体
24
9.2 离子化合物的晶体结构
9.2.1 离子晶体与离子键ionic bond
1. 离子键没有方向性和饱和性,每个离子倾向于键合 较多的异号离子。
2. 离子键是正负离子之间的静电作用。 3. 区分离子晶体与共价晶体的有力判据是: 离子晶体的 晶格能与静电模型相当符合。
2013版
第九章-金属晶体和离子晶体
17
重心
2013版
A3 的空间占有率的计算
Vcell ab c S h
S a b sin1200 (2r)(2r) 3 2
2 3r 2
h 2
(2r)2
2 3
(2r)2
r
2
2
8r 3
第九章-金属晶体和离子晶体
18
Vcell S h 2
没有饱和性
A. 大离子可结合较多的异号离子, 小离子结合较少的异号离子.
B. 离子结合异号离子, 是以外部同号离子球体间的最小排斥力
为准.
没有方向性
No.
配位数 多面体
实例
1 2 3 4 5 6
2013版
3
三角性
4
四面体
5
三角双锥
6
八面体
8
立方体
10
十二面体
第九章-金属晶体和离子晶体
TiO2 SiO2 NaSiO3 NaCl CaF2 , CsCl ZrSiO3VaLeabharlann oms4 r 33
2
8 r 3
3
Vcell
a3
(
4r 3
)3
64r 3 33
Po
Vatoms Vcell
3 68.02%
8
2013版
第九章-金属晶体和离子晶体
21
A4 金刚石型结构
A4中C原子相连成四面体. 晶胞两种不同位置的原子对 应 一个浅蓝色球和一个深蓝色球,构成一个结构基元。
相关文档
最新文档