完全平方公式经典习题精选
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2. 12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式经典例题
《完全平方公式》典型例题例1利用完全平方公式计算:(1)2)32(x -;(2)2)42(a ab +;(3)2)221(b am -.例2计算:(1)2)13(-a ;(2)2)32(y x +-;(3)2)3(y x --.例3用完全平方公式计算:(1)2)323(x y +-;(2)2)(b a --;(3)2)543(c b a -+.例4运用乘法公式计算:(1)))()((22a x a x a x -+-;(2)))((c b a c b a ---+;(3)2222)1()1()1(+-+x x x .例5计算:(1)2241)321(x x --;(2)212)(212(+---b a b a ;(3)22)()(y x y x --+.例6利用完全平方公式进行计算:(1)2201;(2)299;(3)2)3130(.例7已知12,3-==+ab b a ,求下列各式的值.(1)22b a +;(2)22b ab a +-;(3)2)(b a -.例8若2222)()(3c b a c b a ++=++,求证:c b a ==.参考答案例1分析:这几个题都符合完全平方公式的特征,可以直接应用该公式进行计算.解:(1)22229124)3(3222)32(x x x x x +-=+⨯⨯-=-;(2)222222216164)4(422)2()42(a b a b a a a ab ab a ab ++=+⨯⨯+=+;(3)22224241)221(b amb m a b am +-=-.说明:(1)必须注意观察式子的特征,必须符合完全平方公式,才能应用该公式;(2)在进行两数和或两数差的平方时,应注意将两数分别平方,避免出现223124)32(x x x +-=-的错误.例2分析:(2)题可看成2]3)2[(y x +-,也可看成2)23(x y -;(3)题可看成2)]3([y x +-,也可以看成2])3[(y x --,变形后都符合完全平方公式.解:(1)2221132)3()13(+⋅⋅-=-a a a 1692+-=a a (2)原式22)3(3)2(2)2(y y x x +⋅-⋅+-=229124y xy x +-=或原式2)23(x y -22)2(232)3(x x y y +⋅⋅-=224129x xy y +-=(3)原式2)]3([y x +-=2)3(y x +=2232)3(y y x x +⋅⋅+=2269y xy x ++=或原式22)3(2)3(y y x x +⋅-⋅--=2269y xy x ++=说明:把题目变形为符合公式标准的形式有多种方式,做题时要灵活运用.例3分析:第(1)小题,直接运用完全平方公式x 32为公式中a ,y 3为公式中b ,利用差的平方计算;第(2)小题应把2)(b a --化为2)(b a +再利用和的平方计算;第(3)小题,可把任意两项看作公式中a ,如把)43(b a +作为公式中的a ,c 5作为公式中的b ,再两次运用完全平方公式计算.解:(1)2)323(x y +-=2229494)332(y xy x y x +-=-(2)2)(b a --=2222)(b ab a b a ++=+(3)22225)43(10)43()543(c b a c b a c b a ++-+=++=abb c bc ac a 24162540309222+++-+说明:运用完全平方公式计算要防止出现以下错误:222)(b a b a +=+,222)(b a b a -=-.例4分析:第(1)小题先用平方差公式计算前两个因式的积,再利用完全平方式计算.第(2)小题,根据题目特点,两式中都有完全相同的项c a -,和互为相反数的项b ,所以先利用平方差公式计算])[(b c a +-与])[(b c a --的积,再利用完全平方公式计算2)(c a -;第三小题先需要利用幂的性质把原式化为22)]1)(1(10[(+-+x x x ,再利用乘法公式计算.解:(1)原式=422422222222)())((a x a x a x a x a x +-=-=--(2)原式=22)(])][()[(b c a b c a b c a --=--+-=2222b c ac a -+-(3)原式=22222)]1)(1[()]1)(1)(1[(+-=+-+x x x x x =12)1(4824+-=-x x x .说明:计算本题时先观察题目特点,灵活运用所学过的乘法公式和幂的性质,以达到简化运算的目的.例5分析:(1)和(3)首先我们都可以用完全平方公式展开,然后合并同类项;第(2)题可以先根据平方差公式进行计算,然后如果还可以应用公式,我们继续应用公式.解:(1)x x x x x x 3941934141)321(2222-=-+-=--;(2)]21)221)2[()212212(+---=+---b a b a b a b a 414441)2(222-+-=--=b ab a b a ;(3))2(2)()(222222y xy x y xy x y x y x +--++=--+xy y xy x y xy x 4222222=-+-++=.说明:当相乘的多项式是两个三项式时,在观察时应把其中的两项看成一个整体来研究.例6分析:在利用完全平方公式求一个数的平方时,一定要把原有数拆成两个数的和或差.解:(1)4040112002200)1200(201222=+⨯+=+=;(2)980111002100)1100(99222=+⨯-=-=.(3)2)3130(=22231(3130230)3130(+⨯⨯+=+.219209120900=++=说明:在利用完全平方公式,进行数的平方的简算时,应注意拆成的两个数必须是便于计算的两个数,这才能达到简算的目的.例7分析:(1)由完全平方公式2222)(b ab a b a +==+,可知=+22b a 2)(b a +ab 2-,可求得3322=+b a ;(2)45)12(332222=--=-+=+-ab b a b ab a ;(3)57)12(2332)(222=-⋅-=+-=-b ab a b a .解:(1)33249)12(232)(2222=+=-⨯-=-+=+ab b a b a (2)451233)12(33)(2222=+=--=-+=+-ab b a b ab a(3)abb a b ab a b a 2)(2)(22222-+=+-=-572433)12(233=+=-⨯-=说明:该题是2222)(b ab a b a ++=+是灵活运用,变形为ab b a b a 2)(222-+=+,再进行代换.例8分析:由已知条件展开,若能得出,0)()()(222=-+-+-a c c b b a 就可得到,0,0,0=-=-=-a c c b b a 进而,,c b a a cc b b a ==⇒===同时此题还用到公式bc ac ab c b a c b a 222)(2222+++++=++.证明:由,)()(32222c b a c b a ++=++得acbc ab c b a c b a 222333222222+++++=++.022*******=---++bc ac ab c b a 则0)2()2()2(222222=+-++-++-a ac c c bc b b ab a .0)()()(222=-+-+-a c c b b a ∵.0)(,0)(,0)(222≥-≥-≥-a c c b b a ∴.0,0,0=-=-=-a c c b b a 即,,,a c c b b a ===得c b a ==.。
(完整版)完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式经典习题
完全平方公式一1.(a +2b )2=a 2+_______+4b 2; (3a -5)2=9a 2+25-_______.2.(2x -_____)2=____-4xy +y 2; (3m 2+_____)2=______+12m 2n +______.3.x 2-xy +______=(x -______)2; 49a 2-______+81b 2=(______+9b )2.4.(-2m -3n )2=_________; (41s +31t 2)2=_________.5.4a 2+4a +3=(2a +1)2+_______. (a -b )2=(a +b )2-________.6.a 2+b 2=(a +b )2-______=(a -b )2-__________.7.(a -b +c )2=________________________.8.(a 2-1)2-(a 2+1)2=[(a 2-1)+(a 2+1)][(a 2-1)-(______)]=__________. 9.代数式xy -x 2-41y 2等于……………………( )(A )(x -21y )2 (B )(-x -21y )2 (C )(21y -x )2 (D )-(x -21y )210.已知x 2(x 2-16)+a =(x 2-8)2,则a 的值是…………………………( )(A )8 (B )16 (C )32 (D )6411.如果4a 2-N ·ab +81b 2是一个完全平方式,则N 等于……………………… ( )(A )18 (B )±18 (C )±36 (D )±6412.若(a +b )2=5,(a -b )2=3,则a 2+b 2与ab 的值分别是………………( )(A )8与21(B )4与21(C )1与4 (D )4与113.计算:(1)(-2a +5b )2; (2)(-21ab 2-32c )2;(3)(x -3y -2)(x +3y -2); (4)(x -2y )(x 2-4y 2)(x +2y );(5)(2a+3)2+(3a-2)2;(6)(a-2b+3c-1)(a+2b-3c-1);(7)(s-2t)(-s-2t)-(s-2t)2;(8)(t-3)2(t+3)2(t 2+9)2.14. 用简便方法计算:(1)972;(2)992-98×100;15.求值:(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值.3,求4a2+b2-1的值.(2)已知2a-b=5,ab=2(3)已知(a+b)2=9,(a-b)2=5,求a2+b2,ab的值.完全平方公式二1.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式30道题
完全平方公式30道题一、完全平方公式基础计算(10道题)1. 计算(a + 3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a=a,b = 3。
所以(a+3)^2=a^2+2× a×3 + 3^2=a^2 + 6a+9。
2. 计算(x 5)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a=x,b = 5。
所以(x 5)^2=x^2-2× x×5+5^2=x^2-10x + 25。
3. 计算(2m+1)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 2m,b=1。
所以(2m + 1)^2=(2m)^2+2×2m×1+1^2=4m^2 + 4m+1。
4. 计算(3n 2)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 3n,b = 2。
所以(3n-2)^2=(3n)^2-2×3n×2+2^2 = 9n^2-12n + 4。
5. 计算(a + b)^2,其中a = 2x,b=3y解析:先将a = 2x,b = 3y代入完全平方公式(a + b)^2=a^2+2ab + b^2,得到(2x+3y)^2=(2x)^2+2×2x×3y+(3y)^2=4x^2 + 12xy+9y^2。
6. 计算(m n)^2,其中m = 5a,n=2b解析:把m = 5a,n = 2b代入完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 5a,b = 2b,所以(5a-2b)^2=(5a)^2-2×5a×2b+(2b)^2=25a^2-20ab + 4b^2。
7. 计算(4x+3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 4x,b = 3。
完全平方公式经典习题
完全平方公式一1.(a +2b )2=a 2+_______+4b 2; (3a -5)2=9a 2+25-_______.2.(2x -_____)2=____-4xy +y 2; (3m 2+_____)2=______+12m 2n +______.3.x 2-xy +______=(x -______)2; 49a 2-______+81b 2=(______+9b )2.4.(-2m -3n )2=_________; (41s +31t 2)2=_________.5.4a 2+4a +3=(2a +1)2+_______. (a -b )2=(a +b )2-________.6.a 2+b 2=(a +b )2-______=(a -b )2-__________.7.(a -b +c )2=________________________.8.(a 2-1)2-(a 2+1)2=[(a 2-1)+(a 2+1)][(a 2-1)-(______)]=__________. 9.代数式xy -x 2-41y 2等于……………………( )(A )(x -21y )2 (B )(-x -21y )2 (C )(21y -x )2 (D )-(x -21y )210.已知x 2(x 2-16)+a =(x 2-8)2,则a 的值是…………………………( )(A )8 (B )16 (C )32 (D )6411.如果4a 2-N ·ab +81b 2是一个完全平方式,则N 等于……………………… ( )(A )18 (B )±18 (C )±36 (D )±6412.若(a +b )2=5,(a -b )2=3,则a 2+b 2与ab 的值分别是………………( )(A )8与21(B )4与21(C )1与4 (D )4与113.计算:(1)(-2a +5b )2; (2)(-21ab 2-32c )2;(3)(x -3y -2)(x +3y -2); (4)(x -2y )(x 2-4y 2)(x +2y );(5)(2a+3)2+(3a-2)2;(6)(a-2b+3c-1)(a+2b-3c-1);(7)(s-2t)(-s-2t)-(s-2t)2;(8)(t-3)2(t+3)2(t 2+9)2.14. 用简便方法计算:(1)972;(2)992-98×100;15.求值:(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值.3,求4a2+b2-1的值.(2)已知2a-b=5,ab=2(3)已知(a+b)2=9,(a-b)2=5,求a2+b2,ab的值.完全平方公式二1.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
《完全平方公式》因式分解精编测试题及参考答案
《完全平方公式》因式分解精编测试题及参考答案一、选择题1.下列式子中为完全平方式的是( )A.a2+b2B.a2+2aC.a2-2ab-b2D.a2+4a+42.下列多项式中不能用完全平方公式因式分解的是( )A.9a2-6a+1B.a2-6a+9C.a2-2a+4D.a2-2ab+b23.把多项式x2-6x+9分解因式,结果正确的是( )A.(x-3)2B.(x-9)2C.(x+3)(x-3)D.(x+9)(x-9)4.把多项式x2+10x+25因式分解,结果是( )A.(x+5)2B.(x-5)2C.x(x+10)+25D.(x+5)(x-5)5.把4a2-4a+1分解因式,结果正确的是( )A.(4a-1)2B.(4a+1)2C.(2a-1)2D.(2a+1)26.将a2+24a+144分解因式的结果为( )A.(a+18)(a+8)B.(a+12)(a-12)C.(a+12)2D.(a-12)27.把2xy-x2-y2分解因式,结果正确的是( )A.(x-y)2B.(-x-y)2C.-(x-y)2D.-(x+y)28.把2x2-4x+2进行因式分解,结果正确的是( )A.2x(x-2)B.2(x-1)2C.2(x2-2x+1)D.2(x+1)29.因式分解x2y-2xy+y的结果为( )A.(xy-1)2B.y(x-1)2C.y(x2-2x+1)D.y(x+1)210.下列各式:①x2-10x+25②4a2+4a-1③x2-2x-1④-m2+m-14⑤4x4-x2+14.不能用完全平方公式分解因式的有( )A.1个B.2个C.3个D.4个11.下面对于二次三项式-x2+4x-5的值的判断正确的是( )A.恒大于0B.恒小于0C.不小于0D.可能为012.把多项式a2+10a+16分解因式的结果是( )A.(a-2)(a+8)B.(a+2)(a-8)C.(a+2)(a+8)D.(a-2)(a-8)13.把多项式(x+y)2-5(x+y)-6分解因式的结果是( )A.(x+y+2)(x+y-3)B.(x+y-2)(x+y+3)C.(x+y-6)(x+y+1)D.(x+y+6)(x+y-1)14.已知x-y=-4,则多项式12x 2-xy+12y 2的值为 ( )A.4B.6C.8D.1015.若△ABC 的三边a,b,c 满足(a-b)(b 2-2bc+c 2)=0,则△ABC 一定是( )A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形16.若a,b,c 是三角形的三边之长,则代数式a 2+2bc-c 2-b 2的值( )A.小于0B.大于0C.等于0D.以上均有可能17.若x 2+mx+9 是一个完全平方式,则m 的值为( )A.3B.6C.±3D.±6 18. 若x 2+(m-3)x+4是完全平方式,则m 的值是( )A.7B.-1C.±7D.7或-1二、填空题19.分解因式(1)3a 2-6a+3=__________.(2)2a 2+8ab+8b 2=________.(3)2m 2-12m+18=__________.(4)3x 2+6xy+3y 2=_______.(5)2x 2-4x+2=________.(6)ab 2-4ab+4a=________.20.因式分解(1)x 2-2x+1=________.(2)4-4x+x 2=_________.(3)x 2-6xy+9y 2=_______.21.将下列各式分解因式(1)x 2-5x+6=_________.(2)x 2-5x-6=_________.(3)x 2+5x+6=_________.(4)x 2+5x-6=_________.(5)x 2-2x-8=_________.(6)x 2+14xy-32y 2=________.22.若a+b=2,ab=-3,则式子a 3b+2a 2b 2+ab 3的值为______.23.若a<1,化简a+√a 2−2a +1=_____.三、计算题24.因式分解(1)x 2+4x+4 (2)a 2-8a+16(3)m 2+m+14 (4)4m 2-12mn+9n 2(5)x 2+4y 2-4xy (6)14m 2-13mn+19n 225.分解因式(1)y 2+2y+1 (2)16m 2-72m+81(3)(x+y)2+6(x+y)+9 (4)4xy 2-4x 2y-y 3四、解答题26.若一个三角形的三边长分别为a,b,c,且满足a 2+2b 2+c 2-2ab-2bc=0.试判断该三角形的形状,并说明理由.27.下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行分解因式的过程.解:设x2-4x=y,则(x2-4x+2)(x2-4x+6)+4=(y+2)(y+6)+4=y2+8y+16=(y+4)2=(x2-4x+4)2回答下列问题:(1)该同学分解因式的结果是否彻底?若不彻底,请直接写出分解因式的最后结果;(2)请你模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行分解因式.28.观察甲、乙两名同学分解因式的过程.甲: x2-xy+4x-4y=(x2-xy)+(4x-4y)(分成两组)=x(x-y)+4(x-y)(直接提公因式)=(x-y)(x+4)乙:a2-b2-c2+2bc=a2-(b2+c2-2bc)(分成两组)=a2-(b-c)2(直接运用公式)=(a+b-c)(a-b+c)(再用平方差公式)请你在他们解法的启发下,把下面的多项式分解因式:(1)m2-mn+mx-nx(2)x2-2xy+y2-9参考答案一、选择题1-5 DCAAC 6-10 CCBBC 11-15 BCCCA 16-18 BDD二、填空题19(1)3(a-1)2(2)2(a+2b)2(3)2(m-3)2(4)3(x+y)2(5)2(x-1)2(6)a(b-2)220(1)(x-1)2(2)(2-x)2(3)(x-3y)221(1)(x-3)(x-2)(2)(x-6)(x+1)(3)(x+3)(x+2)(4)(x+6)(x-1)(5)(x-4)(x+2)(6)(x+16y)(x-2y)22.-1223.124(1)(x+2)2(2)(a-4)2)2(3)(m+12(4)(2m-3n)2(5)(x-2y)2n)2(6)(12m-1325(1)(y+1)2(2)(4m-9)2(3)(x+y+3)2(4)-y(y-2x)226.等边三角形27(1)(x-2)4(2)(x-1)428(1)(m-n)(m+x)(2)(x-y+3)(x-y-3)。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习50题(有答案)完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习50题(有答案)1、计算1) $(a+2b)^2$2) $(3a-5)^2$3) $(-2m-3n)^2$4) $(a^2-1)^2-(a^2+1)^2$5) $(-2a+5b)^2$6) $(-ab^2-c)^2$7) $(x-2y)(x^2-4y^2)(x+2y)$8) $(2a+3)^2+(3a-2)^2$9) $\frac{a-2b+3c-1}{a+2b-3c-1}$10) $(s-2t)(-s-2t)-(s-2t)^2$11) $\frac{(t-3)^2(t+3)^2}{(t^2+9)^2}$12) $992-98\times100$13) $49\times51-2499$14) $(x-2y)(x+2y)-(x+2y)^2$15) $(a+b+c)(a+b-c)$16) $3a+1$17) $7x-3y$2、先化简,再求值:$(x+2y)(x-2y)(x^2-4y^2)$,其中$x=2$,$y=-1$。
3、解关于$x$的方程:$(x+1)^2-(x-2)(x+3)=0$。
4、已知$x-y=9$,$xy=5$,求$x^2+y^2$的值。
5、已知$a(a-1)+(b-a)=-7$,求$-ab$的值。
6、已知$a+b=7$,$ab=10$,求$a^2+b^2$和$(a-b)^2$的值。
7、已知$2a-b=5$,$ab=\frac{1}{2}$,求$4a^2+b^2-1$的值。
8、已知$(a+b)^2=9$,$(a-b)^2=5$,求$a^2+b^2$和$ab$的值。
9、已知$a+b=16$,$ab=4$,求与$(a-b)^2$的值。
10、已知$a-b=5$,$ab=3$,求$(a+b)^2$和$3(a^2+b^2)$的值。
11、已知$a+b=6$,$a-b=4$,求$ab$和$a^2+b^2$的值。
12、已知$a+b=4$,$a^2+b^2=4$,求$a^2b^2$的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.6完全平方公式
一、点击公式
1、()2a b ±= ,()2
a b --= ,()()a b b a --= .
2、()222a b a b +=++ =()2a b -+ .
3、()()22a b a b +--= . 二、公式运用
1、计算化简
(1) ()()()2222x y x y x y ⎡⎤+-+-⎣⎦
(2)2)())((y x y x y x ++--- (3)2
)21(1x ---
(4)()()z y x z y x 3232+--+ (5)()()2121a b a b -+--
2、简便计算:
(1)(-69.9)2 (2)472-94×27+272
3、公式变形应用:
在公式(a ±b )2=a 2±2ab+b 2中,如果我们把a+b ,a-b ,a 2+b 2,ab 分别看做一个整体,那么 只要知道其中两项的值,就可以求出第三项的值.
(1)已知a+b =2,代数式a 2-b 2
+2a +8b +5的值为 ,已知1125,,7522x y ==代数式 (x +y )2-(x -y )2的值为 ,已知2x -y -3=0,求代数式12x 2-12xy +3y 2的值
是 ,已知x=y +4,求代数式2x 2-4x y+2y 2
-25的值是 .
(2)已知3=+b a ,1=ab ,则22b a += ,44a b += ;若5a b -=,4ab =,则22b a +的值为______;()28a b -=,()22a b +=,则ab =_______. (3)已知:x+y =-6,xy =2,求代数式(x-y )2
的值.
(4)已知x+y =-4,x-y =8,求代数式x 2-y 2的值.
(5已知a+b =3, a 2+b 2=5,求ab 的值.
(6)若()()222315x x -++=,求()()23x x -+的值.
(7)已知x-y=8,xy=-15,求的值.
(8)已知:a 2+b 2=2,ab =-2,求:(a-b )2
的值.
4、配方法(整式乘法的完全平方公式的反用)
我们知道,配方是一种非常重要的数学方法,它的运用非常广泛.学好它,对于中学生来说显得尤为重要.试用配方法解决下列问题吧!
(1) 如果522+-=x x y ,当x 为任意的有理数,则y 的值为( )
A 、有理数
B 、可能是正数,也可能是负数
C 、正数
D 、负数
(2)多项式192+x 加上一个单项式后成为一个整式的完全平方,那么加上的这个单项式 是 .(填上所有你认为是正确的答案)
(3)试证明:不论x 取何值,代数x 2+4x +
92的值总大于0. (4)若 2x 2-8x +14=k ,求k 的最小值.
(5)若x 2-8x +12-k =0,求2x +k 的最小值.
(6)已知2)()1(2
-=---y x x x ,求xy y x -+22
2的值. (7)已知ab b a b a 10162222=+++,那么=+22b a ;
(8)若关于x 的一元一次方程50ax b +-=的解为2x =,求22
4423a b ab a b ++--+的 值.
(9)若m 2+2mn+2n 2-6n+9=0,求m 和n 的值.
(10)若△ABC 的三边为a,b,c,并满足222a b c a b b c c a ++=++,试问三角形ABC 为何种三角形?
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。