铁碳相图和铁碳合金
8 铁碳合金与铁碳合金相图
ES —A1 温度
JE—ES之 间温度
A1温度 以下
A1 ( Fe) ( Fe) Fe3C
过共析钢的室温组织
过共析钢的室温组织
碳钢结晶特点
高温下都可以进入奥氏体单相区 室温组织中含有珠光体
(3)铸铁
1)共晶白口铁
共晶白口铁室温平衡组织 Ld':P+Fe3C 共晶+Fe3CII
2、Fe-Fe3C相图中的特性线
液相线ABCD 固相线AHJECF 包晶反应线HJB 共晶反应线ECF 共析反应线PSK 析出线 :自单相中析出第二相 CD线: L Fe3CI ES线: Fe3CII PQ线: Fe3CIII 其他相界线 如HN,GP ,MO等
A4
ωC/ %
0 0.53 4.3 6.69 2.11 6.69 0 0.09
说 明 纯铁的熔点 包晶转变时液相成分 共晶点 Fe3C的熔点 碳在γ-Fe中的最大溶解度 Fe3C的成分 A3:α与γ转变点 碳在δ-Fe中的最大溶解度
铁碳相图中各点的温度、碳含量及含义2
符 号 温度 /℃ ωC/ % 说 明
铸 铁
亚共析钢
共析钢
过共析钢
共晶白口铁 工业纯铁 过共晶白口铁 亚共晶白口铁 铸 铁
碳 钢
2、铁碳合金的平衡结晶
(1)工业纯铁(ωC≤0.0218% )
AB线以 上温度 AB—AH 之间温度 AH—HN 之间温度 JN—GS 之间温度 HN—JN 之间温度 Q点温 度以下
GS—GP 之间温度
GP—PQ 之间温度
P=M+N-Q
3、共轭位置
某一顶角的外侧,且在形成此 顶角的两条边的延长线范围内 P +Q +N = M
铁碳合金相图
二 相图中点的含义
1A点 纯铁的熔点;温度 1538℃,Wc=0
2G点 纯铁的同素异晶转变点; 冷却到912℃时,发生 γF→α-Fe
3Q点 600℃时,碳在αFe中的 溶度,Wc=0 0057%
二 相图中点的含义
4D点 渗碳体熔点,温度 1227℃,Wc=6 69%
5C点 共晶点;温度1148℃,Wc=4 3% 成分为C的液相,冷却到此 温度时,发生共晶反应 Lc→A+Fe3C
一 铁碳合金的分类:
按含碳量的不同;铁 碳合金的室温组织可 分为工业纯钛 钢和 白口铸铁; 其中,把 含碳量小雨0 0218% 的铁碳合金称为纯铁; 把含碳量大于 0.0218%而小于2.11% 的铁碳合金称为钢; 把含碳量大于2.11% 的铁碳合金称为铸铁。
纯铁 钢和铸铁的含碳量:
⑴ 工业纯铁组织为单相铁素体 (<0 0218% C)
一次渗碳体+ 低温莱氏体
性能特 强度 硬 C↑,强度 硬度逐 强度较高,硬度 硬度较高,塑性差,
点平衡 度低、 渐提高,有较好的 适中,具有一定 随着网状二次渗碳
状态 塑性好 塑性和韧性
的塑性和韧性 体增加,强度降低
硬度高;脆性大,几乎没有塑性
1 亚共析钢的组织的变化顺序:
亚共析钢的室温组 织由珠光体和铁素体 组成合金的组织按下 列顺序变化:
课堂练习:
1 共析钢冷却到S点时;会发生共析转变,从奥氏体中
同时析出
铁和素(体
)渗的碳混体 合物,称为(
) ; 珠光体
2、过共晶白口铸铁的室温组织是(一次渗碳体 )加( )。低温莱氏体
3、共晶白口铸铁的含碳量为( 4 3 )%
一 填空题
1、常见的金属晶体类型有 晶格、( )晶格和( )晶格三种; 2、金属的整个结晶过程包括( )、( )两个基本过程组成 。 3、根据溶质原子在溶剂晶格中所处的位置不同;固溶体分为( )和 ( )两种。 4、铁碳合金的基本组织中属于固溶体的有( )和( ),属 于金属化合物的有( ),属于混合物的有( )和莱氏体。 5、原子呈无序堆积状态的物体叫( );原子呈有序、有规则排 列的物体叫( )。一般固态金属都属于( )。 6、常温下金属的塑性变形方式主要有( )和( )两种。 7、变形一般分为( )变形和( )变形两种,不能随载荷的去除 而消失的变形称为( )变形。 8、细化晶粒的根本途径是控制结晶时的( )及( )。
铁碳合金相图(详解)
5.2 铁碳合金相图分析
一、概述
所谓一次、二次、三次渗碳体仅在于渗碳体来源 和分布有所不同,没有本质区别,其含碳量,晶体 结构和本身的性质均相同。
相图中AHN线和GPQ线的左方分别为δ和α的铁素 体区域;NJESG包围的范畴为奥氏体区域。
5.2 铁碳合金相图分析
一、概述
铁碳合金相图上的各种合金,通常可按其含碳量 和组织的不同,分成下列三类:
合物,
称此共晶混合物为莱氏体,用字母Ld表示; 冷至室温时成为变态莱氏体,用L′d表示。 此反应发生于所有含碳量 > 2.06% < 6.67%的 铁碳合金范围内。
5.2 铁碳合金相图分析
一、概述
相图中各主要点的涵义:
相图上的三条平行线(HJB、ECF、PCK)是指三个恒温 反应:
(3)在723℃(PSK水平线)发生共析反应,其反应式为
1147℃,此时可溶解2.06%C,而在723℃时只能溶解 0.80%C。故凡含碳量大于0.80%的铁碳合金自 1147℃冷至723℃时,均会从奥氏体中沿晶界析出渗碳 体,称此渗碳体为二次渗碳体(Fe3CⅡ),以区别于从液 体中直接结晶的一次渗碳体(Fe3CⅠ)。
5.2 铁碳合金相图分析
一、概述
此外,值得注意的是ES和PQ线:
(二)亚共析钢(0.02~0.80%C)的结晶过程分析
合金②冷凝后得到A组织,继续冷至GS线(3点温度)时,便会发生A F的转变,同时引起母相A中碳浓度的变化。由于合金继续冷却过程中,A 的含碳量沿GS线逐渐增浓而趋近于S点,即合金冷至723℃时,A的含碳量 增为0.80%,故当合金冷至稍低于723℃时,其组织中剩余的A,便会按 共析反应而转变成为珠光体,最终的显微组织应为F+P。
铁碳相图和铁碳合金(白底+简化)
2020/11/4
12
铁素体的显微组织
铁素体的显微组织与纯铁相同,用4%硝 酸酒精溶液浸蚀后,在显微镜下呈现明 亮的多边形等轴晶粒。
2020/11/4
13
奥氏体的组织
奥氏体的组织与铁素体相似,但晶界较为 平直,且常有孪晶存在。
2020/11/4
14
(3)Fe3C(渗碳体) cementite
2020/11/4
4
(1)纯铁pure iron(多型性)
2020/11/4
➢ 纯铁熔点1538℃,温度变化 时会发生同素异构转变。
➢ 在912℃以下为体心立方 , 称α铁(α-Fe);
➢ 低温的铁具有铁磁性,在 770℃ 以 上 铁 磁 性 趋 于 消 失 。
➢ 912℃—1394℃ 之 间 为 面 心 立方,称为γ铁(γ-Fe);
称为铸铁 ➢含碳量小于0.0218%的铁碳合金则称为工
业纯铁
2020/11/4
25
根据组织特征可将铁碳合金分为以下七种
①工业纯铁(<0.0218%C); ②共析钢,0.77%C; ③亚共析钢(0.0218%—0.77%C); ④过共析钢(0.77%-2.11%C); ⑤共晶铸铁(4.30%C); ⑥亚共晶铸铁(2.11%-4.30%C); ⑦过共晶铸铁(4.30%—6.69%C)。
G 912
2020/11/4
0
α与γ同素异构转变点(A3)
17
2、 Fe-Fe3C相图分析
特征点
符号 H J K N P S Q
2020/11/4
温度/℃ 1495 1495 727 1394 727 727 室温
含碳量/% 含义
0.09 碳在δ-Fe中的最大溶解度
第三节 铁碳合金及相图
3) Fe-Fe3C相图相区分析:
包括: (1)液相区: (2)液、固两相区: (3)固相区: 也包括: (1) 单相区:L、F、A、Fe3C (2) 两相区:L+A、L+ Fe3C、A+F、F+ Fe3C (3) 三相区:Le+A+ Fe3C、P+Le’+ Fe3C
简化后的Fe-Fe3C状态图
G Q
S
FP
Fe3 C K
4.3 6.69
P
0.0218 0.77 2.11
C%
C—共晶点,1148℃ 4.3%C 共晶点—发生共晶反应的点。 共晶反应 — 在一定的温度下,由一定成分的液体同时结 晶出一定成分的两个固相的反应。
共晶反应的产物——共晶体——机械混合物
L(4.3%C)
1148℃
A(2.11%C )+ Fe3C (6.69%C )
纯铁
0.01%C铁素体500×
2)奥氏体(A):碳溶解在γ -Fe中形成的间隙固溶体。 γ -Fe的溶碳能力较高,最大为2.11%(1148℃)。 由于γ -Fe一般存在于727~1394℃之间,所以奥氏体也 只出现在高温区域内。显微镜观察,奥氏体呈现外形不 规则的颗粒状结构,并有明显的界限。 其 δ =40~50%,具有良好的塑性和低的变形抗力。是 绝大多数钢种在高温进行压力加工所需的组织。 3)渗碳体(Fe3C):铁与碳形成的稳定化合物。含碳 量为6.69%。 HB=800,硬度很高,脆性极大,是钢中的强化相。 显微镜下观察,渗碳体呈银白色光泽。
Fe-Fe3C相图中主要特性点含义见表:
2)Fe-Fe3C相图中特性线:
ACD线—液相线 AC—析出A CD—析出 Fe3C AECF线—固相线 AE—A析出终了线
铁碳合金及相图
• 1.定义 •
匀晶相图
二组元在液态和固态下均无 限溶解的二元相图叫做匀晶相 图。形成此类相图的合金系有 Cu-Ni、Bi-Sb,W-Mo,Ti-Zr,TiHf等。
• 2. 相率 在单相区f=C-P+1=2
在两相区f=C-P+1=1,即只有1 个独立变量。假定T为独立变量, 则相的成分就是温度的函数。 给定温度就可以确定相的成分。
化来建立相图的。后两种方法适用于测定材料在固态
下发生的转变。
合金成分的表示方法有两种:质量分数和摩尔分数。 如A组元的质量分数为wA、摩尔分数为xA,其 相对原子量为MA;B组元的质量分数为wB、摩尔 分数为xB,其相对原子量为MB,则:
xA=(wA/MA)/(wA/MA + wB/MB)
xB=(wB/MB)/(wA/MA + wB/MB)
其它相图。
• 2. 相图的组成元素
组元 • 组成相图的独立组成物。组元可 以是纯的元素,如金属材料的纯金 属,也可以是稳定的化合物,如陶 瓷材料的Al2O3,SiO2等。
相区 相图中代表不同相的状态的区域叫相区,相区可分为单相 区、双相区和三相区。单相区中液相一般以L表示,当有几个 固态单相区时,则由左向右依次以、、等符号表示。在两 个单相区之间有对应的两相区存在。
与一个固相在恒定温
度下转变成另外一个
成分不同的固相的过 程。
L + 。
包晶反应机理
由于相是在包围初生相,并使之与液相格开的形 式下生长的,故称之为包晶反应。
§2 铁碳合金中的组元和基本相
组 元: 纯铁、渗碳体 基 本 相: 高温铁素体(δ)、 铁素体(α)、 奥氏体(γ) 基本组织: 珠光体(P)、 莱氏体(Le/Le’)
铁碳相图和铁炭合金
铁碳相图和铁炭合金钢与铸铁是现代工业中应用最广泛的合金,其基本组成主要是铁和碳两大元素,若了解钢和铁时,首先必须知道简单的铁碳二元合金的组织与性能。
铁与碳可以形成Fe3C,Fe2C,FeC等多种稳定化合物,但含碳量大于5%的铁碳合金在工业上没有应用价值,所以在研究铁碳合金时,仅讨论Fe-Fe3C部分。
下面我们要讲的铁碳相图,实际上也就是Fe-Fe3C状态图。
碳在铁碳合金中以两种方式存在,即渗碳体(Fe3C)或石墨。
本章仅分析Fe-Fe3C相图。
1. 铁碳相图和铁碳合金a.纯铁:纯铁溶点为1538 ℃,温度变化时会发生同素异构变化。
在912℃以下为体心立方,称α铁(α-Fe);912 ℃--1394℃之间为面心立方体,称为γ铁(γ-Fe);在1394 ℃--1538 ℃(熔点)之间为体心立方被称为δ铁(δ -Fe)。
b.铁的固溶体:碳溶解于α铁或δ铁中形成的固溶体称为铁素体,用α或δ表示。
碳在铁素体中最大溶解度为0.0218%。
碳溶解于γ铁中形成的固溶体称为奥氏体,用γ表示。
碳在奥氏体中的最大溶解度为2.11%。
c.渗碳体(Fe3C) :渗碳体具有复杂的斜方结构,它的硬度很高,塑性几乎为零,属脆硬相。
渗碳体在钢和铸铁中可呈片状、球状、网状、板状。
它是钢中主要的强化相。
它的量、形态、分布都对钢的性能影晌很大,这一点非常重要,请大家务必注意!2 2.铁碳合金的平衡凝固:通常以含碳量的多少来区分钢和铸铁。
含碳量在0.0218-2.11%的铁碳合金称为钢,含碳量大于2.11%的铁碳合金称为铸铁。
含碳量小于0.0218%的铁碳合金则为工业纯铁。
下面让我们对照着铁碳相图,分析与我们有关的几条线,a.共析钢(0.77%C,线3) 合金在1-2点温度发生晶体转变L-γ,结晶出奥氏体。
到2点温度结晶完成。
2-3点为单相奥聂氏体。
在3点温度(727 ℃)发生共析转变,由γ奥氏体转变成为珠光体αp+Fe3C,一般用P表示。
铁碳相图和铁碳合金
钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。
因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。
Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。
所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。
由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。
化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。
因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图5.6-1)。
Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。
这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。
【说明】图5.6-1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。
铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。
纯铁的同素异晶转变如下:由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。
碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。
纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。
工业纯铁的显微组织见图5.6-2。
纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。
铁碳相图及其合金组织转变
Fe-C系中的组元和合金相一、Fe、C组元1. 纯铁纯铁是过渡组族元素,熔点为1538℃。
工业纯铁的纯度一般为99.8-99.9wt%, 其余为杂质,主要是碳。
纯铁的强度、硬度低,塑性非常好。
固态铁随温度变化会发生同素异晶转变:912℃以下为体心立方结构,称为α- Fe;α- Fe在912℃转变为面心立方结构的γ- Fe,这一转变称为A3转变,相应的转变温度称为A3点;加热到1394℃,γ- Fe转变为体心立方的δ- Fe ,称为A4转变,δ- Fe存在的温度范围为1394-1538℃。
α- Fe加热时在770℃发生磁性转变,由铁磁性变为顺磁性,这种磁性转变称为A2转变。
磁性转变对α- Fe的晶体结构不产生影响。
2. C铁碳合金中的碳为原子态时,可与铁形成固溶体,或与铁结合形成化合物,也可分布于晶体缺陷处。
当碳以单质状态存在时即是石墨,它具有简单六方结构,由于轴比c/a较大,原子排列看似层状,同一层中的原子间结合较强,层与层之间结合很弱。
石墨的强度和硬度都很低,塑性几乎为零。
石墨是铸铁中的一个相,对铸铁的性能有很大影响。
二、铁的固溶体α相或铁素体相:是碳溶于α- Fe中形成的间隙固溶体,为体心立方结构,用符号α或F表示。
铁素体的最大溶碳量为0.0218wt%(727℃),室温时小于0.008%。
在铁素体中碳原子一般存在于八面体间隙位置,这是因为尽管α- Fe的四面体间隙尺寸比较大,但间隙中心相对于围成间隙的原子是对称的;而八面体间隙是不对称的,<110>方向的原子间距比<100>方向的原子间距大得多,碳原子填入八面体间隙时受到<100>方向的两个原子的压力较大,而受到<110>方向的四个原子的压力较小,因此进入八面体间隙比进入四面体间隙的阻力小。
γ相或奥氏体相:碳溶于γ铁形成的具有面心立方结构的间隙固溶体,用γ或A表示。
碳在奥氏体中的最大溶解度为2.11%(1148℃)。
5铁碳合金和铁碳相图
变态莱 氏体
● S点:共析点,金金在平衡结晶 的过程中冷却到727℃时,S点成 分的γ发生共晶反应,生成P点 成分的α和Fe3C:
按有无共晶转变来区分碳钢和铸铁。
按Fe-Fe3C系结晶的铸铁,断口为银白色, 称为白口铸铁,即全部碳以Fe3C形成存在,部 分或全部碳以石墨形式存在时称为灰口铸铁。
(1)工业纯铁(C≤0.0218%)
以碳含量为0.1%的铁碳合金为例,对其冷却曲线和平衡结晶过程解释如下: 合金的冷却曲线及平衡结晶过程
2点以下, Fe3CⅠ成分 重量不再发 生变化, Ld变 化同共晶合 金。
过共晶白口铁的结晶过程
过共晶白口铸铁室温平衡状态显微组织
过共晶白口铸铁的室温组织组成物为 Fe3CⅠ + Ld’ 。 含4.3%C过共晶白口铸铁钢中组织组成物的相对重量为:
Fe3CⅠ =100%*(5-4.3)/(6.69-4.3)=29%; Ld=1-29% =71% 组成相为α、 Fe3C。
合金在1~2点转变为 , 到3点, 开始析出Fe3CⅡ, 其沿晶界呈网状分布 。 到4点, 成分沿ES线变 化到S点,余下的 转变 为P。
过共析钢的结晶过程
过共析钢室温平衡状态显微组织
过共析钢的室温组织组成物为 p+ Fe3CⅡ 。 含1.2%C钢中组织组成物的相对重量为:
Fe3CⅡ=100%*(1.2-0.77)/(6.69-0.77)=7%; p= 1-7%=93% 组成相为α、 Fe3C。
合 金 液 体 在 1-2 点 间
转 变 为 , 3-4 点 间 → , 5-6 点 间 → 。 到7点,从中析出
5.铁碳合金相图
重要的转变线(溶解度变化曲线)
DC线: L→L + Fe3CⅠ
ES线(Acm): A→A + Fe3CⅡ GS线(A3): A→A + F PQ线:F→F + Fe3CⅢ
5种渗碳体(Fe3C)
共晶Fe3C、共析Fe3C、Fe3CⅠ、Fe3CⅡ、Fe3CⅢ 渗碳体与铁素体相形成了多种多样的组织
2)铁碳合金分类:
材料的组织结构决定材料的性能 晶粒越细小
常温下 强度、硬度越高 塑性、韧性越好
晶界易腐蚀
金属
冷塑性变形
强度、硬度增高
塑性、韧性、耐蚀性下降
产生各相异性
第二相强化
化 合 物 形 状
网状分布:强度、塑性下降
球状分布:韧性及切削性提高
弥散分布:强度、硬度提高
塑性、韧性仅略有下降或不下降
钢中ωc ↑→P% ↑ →强度↑、硬度↑,塑性↓
δ=40%~50%
2)渗碳体 具有复杂晶格的间隙化合物,以Fe3C表示。 分解点:1227℃ 硬度高(约800HBW)
脆性大,塑性几乎为零,σb≈30Mpa
分布形态:片状、网状或球状 2.铁碳合金相图的组成 1)铁碳合金相图分析
基本组成相:L,δ,F, A, Fe3C
δ相、A、F均是碳在Fe中的间隙固溶体。
结晶条件:线性高分子易结晶;
晶区与性能:刚性↑、强度↑、软化温度↑。
高分子的聚集态结构示意图
四、铁碳合金相图及铁碳合金
1.铁碳合金相图的组元 1)铁 纯铁:L
1538℃
δ-Fe
bcc
1394℃
γ-Fe
912℃
α-Fe
bcc
fcc (铁的同素异构转变)
HB=170~220
第一章 铁碳相图
第五节 合金在缓冷过程中的固态转变和室温组织
二、钢在缓冷时的固态转变和组织
1. 共析钢的固态转变
A1温度以下,奥氏体发生共析分解,转变后的产物为 珠光体(α+Fe3C)。 珠光体的形态:片层状渗碳体分布在铁素体基体上。 室温下珠光体中渗碳体和铁素体的相对量为:
渗碳体 0.77-0.001 1 = 铁素体 6.69 0.77 8
第五节 合金在缓冷过程中的固态转变和室温组织
工业纯铁
<0.0218wt%C
铁素体,或
铁素体+三次渗碳体
第五节 合金在缓冷过程中的固态转变和室温组织
亚共析钢 0.0218-0.77wt%C 先共析铁素体+珠光体 共析钢 0.77wt%C 珠光体 过共析钢 0.77-2.11wt%C 先共析二次渗碳体+珠光体
第四节 铁碳合金的凝固
二、铸铁(含碳量>2.11%的铁碳合金)的结晶过程
第四节 铁碳合金的凝固
二、铸铁(含碳量>2.11%的铁碳合金)的结晶过程
亚共晶合金结晶时,在共晶 反应前先形成奥氏体; 过共晶合金结晶时,在共晶 反应前先形成渗碳体—一次渗 碳体。
第四节 铁碳合金的凝固
二、铸铁(含碳量>2.11%的铁碳合金)的结晶过程
α Fe γ Fe
超过1394℃,纯铁将再次转变为体心立方点阵
γ Fe δ Fe
A4转变
在1538℃以上,纯铁由固态转变为液态。
第一节 纯 铁
第二节 铁的碳化物
碳化物 Θ 碳化物
ε 碳化物 χ 碳化物
化学式 Fe3C (渗碳体)
ε -Fe2-3C Fe2.2C or Fe5C2
晶系或对称性 正交
3.铁碳合金和铁碳相图资料
(4)三相共存点 S(0.77,727) 共析点 共析转变 γ s α p+Fe3C C(4.30,1148) 共晶点 共晶转变 Lc γ E+Fe3C J(0.17,1495) 包晶点 包晶转变 LB+δH γ J (5)其它点 B(0.53,1495) 发生包晶反应时液相的成分 F(6.69,1148) Fe3C的成分 K (6.69,727) Fe3C的成分
0.77 0.0218 6.69
含义:在恒温下由一个固定成分的固相同时生成两个固定成分的新固相的转变。 产物:α 相和Fe3C的两相混合物,以层片形式混合,称为珠光体,用P表示 合金范围: Wc: 0.0218 %—6.69%(合金成分线与PSK线相交)
ห้องสมุดไป่ตู้
成分新固相的反应——包晶转变反应。
发生包晶反应的合金成分: C%:0.09%——0.53% 即合金 的成分线与HJB线相交。 产物:单相奥氏体(γ J ) 包晶点 (J点):(0.17,1495)
2)共晶转变 (水平线ECF线) 1148º C g Lc E + Fe3C 4.3 相的 转变。 2.11 6.69 含义:由一定成分的液相在恒温下同时转变成两个一定成分的固
同素异构转变线:NH 和 NJ,GS 和 GP
3.相图中的相区 单相区(4个+1个): L、α 、γ 、δ 、 Fe3C
两相区(7个):L+δ, L+ Fe3C,L +γ , δ+γ , γ +α , γ + Fe3C , α + Fe3C
根据相图规则,两个单相区 之间必然夹一个两相区, 两相区的两个相就由这 两个单相区的相组成。
相交,即含碳量Wc:0.53%~4.3%
03课件(铁碳合金及相图)
AECF
GS(A3) GP
1538~ 1148 固相线。是奥氏体结晶终了线并在 ECF发生共晶转变,即Lc AE+Fe3C
912~727 奥氏体转变为铁素体的开始线
912~727 奥氏体转变为铁素体的终了线
ES(Acm) 1148 ~727 碳在奥氏体(γ -Fe)中的溶解度曲线
PQ 727 ~600 碳在铁素体(α -Fe)中的溶解度曲线
2、奥氏体-碳在γ -Fe中固溶体。用符号 “A”表示。
特点-面心立方晶格,碳在γ -Fe中的最 大溶解度在1148 ℃为2.11%,727 ℃降至 0.77%。A塑性好,
利于锻造。
3、渗碳体—铁和碳的化合物,是具有复杂晶 格的化合物。用Fe3C表示。 特点:渗碳体的含碳量为6.69%, 硬度很高, 塑性和韧性几乎为零,脆性极大。常温下钢 中的碳大多都以渗碳体形式存在。
S
727
0.77 共析点AS P (FP+Fe3C)
Q
室温 0.008 室温碳在α-Fe (铁素体)中的溶解度
2、 Fe-Fe3C相图的特性线
简化的Fe-Fe3C相图中主要特性线的意义
特性线 温度/ ℃
物理意义
ACD 1538~1227 液相线。从液态合金中分别结晶出奥 氏体(AC线)和一次渗碳体Fe3CⅠ (CD线)
温度/ ℃
含碳量 /%
物理意义
A
1538
0 纯铁熔点
C
1148
4.30 共晶点,Lc
Ld (AE+Fe3C)
D
1227 6.69 渗碳体熔点(计算值) NhomakorabeaE
1148 2.11 碳在γ-Fe(奥氏体)中的最大溶解度
2.5 铁碳合金和铁碳相图
强
度 含碳量对铁碳合金力学性能的影响
• C%↑, 亚共析钢中P增多而F减少。P的强度高。组织越细密,
则强度值越高。F的强度较低。所以亚共析钢的强度随C%
↑而增大。 • 共析成分之上, 由于强度很低的Fe3CII沿晶界出现, 合金强度 的增高变慢, 到约0.9%C时, Fe3CII沿晶界形成完整的网, 强度 迅速降低, 随着碳质量分数的进一步增加, 强度不断下降, 到
C点为共晶点 1148 ℃时, C点成分的L发 生共晶反应, 生成E点成分的γ和Fe3C(莱 氏体)。
S点为共析点 727 ℃时, S点成分的γ发生共 析反应, 生成P点成分的α和Fe3C(P)。
返回
Fe-Fe3C相图
返回
Fe-Fe3C相图
共晶反应:L=Ld( FeC3+ γ ) 共析反应: γ=P (FeC3+ α)
P+Fe3CⅡ
P+Fe3CⅡ+Ld’
Ld’
Fe3C+Ld’
硬
度 含碳量对铁碳合金力学性能的影响
硬度主要决定于组织中组成相或组织组成物的硬度和 质量分数, 随碳含量的增加, 由于硬度高的Fe3C增多, 硬度 低的F减少,合金的硬度呈直线关系增大, 由全部为F的硬度
约80 HB增大到全部为Fe3C时的约800 HB。
亚共析钢的平衡结晶过程
注意事项
先析铁素体(α相)在随后的冷却过程中会析出Fe3CⅢ,但量很少可忽略
亚共析钢室温平衡组织:先析铁素体+珠光体P
利用杠杆定律计算先析铁素体与珠光体的质量分数,计算铁素体(先析铁 素体+P光体中的铁素体)与渗碳体的质量分数
过共析钢的平衡结晶过程
单相液体的冷却 L相→ γ相
图 铁碳相图 第四节 铁碳相图和铁碳合金
4.4.3 合金铸件的组织与缺陷
铸件从宏观组织来看,可分为激冷晶区、柱状晶区和等 轴晶区。 铸件主要的宏观缺陷有缩孔、缩松、气泡、裂纹、偏析 等。
1.铸锭(件)的三晶区
铸件凝固后宏观组织具有 三个性质、晶体形态不同的 三个区域: 激冷区 柱状晶区 等轴晶区
图 铸锭组织的形成
2.偏析
合金凝固时,随着结晶过程的进行,在液、固相中的溶 质要发生重新分布。在非平衡凝固条件下,凝固速度比较快, 溶质原子来不及重新分布,使得先后结晶的固相中成份不均 匀,这种现象称为偏析。根据产生偏析的范围不同,可分为 宏观偏析和微观偏析。 宏观偏析是大范围的成分不均匀的现象,又称远程偏析。 微观偏析是晶粒尺度范围的成分不均匀现象,又称短程 偏析。
图 渗碳体结构示意图
渗碳体
• 渗碳体(Fe3C):是铁和碳的化合物,含碳量为6.69%。熔 点为1227C,硬度很高(约为HB800),脆性大,塑性很 低。在一定温度下能分解为石墨状的游离碳。
➢ 一次渗碳体:从液态合金中结晶析出的共晶深碳体。其 形态呈粗大较规则的板片状。
➢ 二次渗碳体:从奥氏体中析出的渗碳体称之为二此渗碳 体,一般在奥氏体晶界呈网状分布。
图 Fe-S相图
5.磷的影响
磷在钢中的存在一般属于 有害元素。 在1049℃时,磷在Fe中的 最大溶解度可达2.55%,在室 温时溶解度仍在1%左右,因 此磷具有较高的固溶强化作 用,使钢的强度、硬度显著 提高,但也使钢的塑性,韧 性剧烈降低,特别是使钢的 脆性转折温度急剧升高,这 种现象称为冷脆。
(6)过共晶白口铸铁
过共晶白口铸铁的凝固过程示意图
过共晶白口铸铁的光学显微组织照片
按组织分区的铁碳合金相图
A
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁碳相图和铁碳合金(一)钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。
因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。
Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。
所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。
由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。
化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。
因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。
Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。
这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。
图1 铁碳双重相图【说明】图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。
铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。
纯铁的同素异晶转变如下:由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。
碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。
纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。
工业纯铁的显微组织见图2。
图2 工业纯铁的显微组织图3 奥氏体的显微组织铁的固溶体碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。
铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。
铁素体的显微组织与工业纯铁相同(图2)碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。
具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。
奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。
奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。
图4 碳在γ-Fe晶格中的位置图5 渗碳体的晶格渗碳体(Fe3C)渗碳体是铁和碳形成的化合物,含碳量为6.67%(有些书上为6.69%),具有复杂的晶体结构(图5),熔点为1227℃。
渗碳体硬度极高(HB800),塑性几乎等于0,是硬脆相。
在一定条件下,渗碳体可以分解而形成石墨状的自由碳:Fe3C→3Fe + C(石墨)。
这一过程对于铸铁和石墨钢具有重要意义。
从某种意义上讲,铁碳合金相图是研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。
一、铁碳合金中的基本相铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3 C。
铁存在着同素异晶转变,即在固态下有不同的结构。
不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。
由于α-Fe和γ-Fe晶格中的孔隙特点不同,因而两者的溶碳能力也不同。
1,铁素体(ferrite)铁素体是碳在α-Fe中的间隙固溶体,用符号"F"(或α)表示,体心立方晶格;虽然BCC的间隙总体积较大,但单个间隙体积较小,所以它的溶碳量很小,最多只有0.0218%(727℃时),室温时几乎为0,因此铁素体的性能与纯铁相似,硬度低而塑性高,并有铁磁性.铁碳合金中的基本相铁素体的力学性能特点是塑性,韧性好,而强度,硬度低.δ=30%~50%,AKU=128~160J σb=180~280MPa,50~80HBS.铁碳合金中的基本相铁素体的显微组织与纯铁相同,用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围.铁碳合金中的基本相2,奥氏体(Austenite )奥氏体是碳在γ-Fe中的间隙固溶体,用符号"A"(或γ)表示,面心立方晶格;虽然FCC的间隙总体积较小,但单个间隙体积较大,所以它的溶碳量较大,最多有2.11%(1148℃时),727℃时为0.77%.铁碳合金中的基本相在一般情况下, 奥氏体是一种高温组织,稳定存在的温度范围为727~1394℃,故奥氏体的硬度低,塑性较高,通常在对钢铁材料进行热变形加工,如锻造,热轧等时,都应将其加热成奥氏体状态,所谓"趁热打铁"正是这个意思.σb=400MPa,170~220HBS,δ=40%~50%.另外奥氏体还有一个重要的性能,就是它具有顺磁性,可用于要求不受磁场的零件或部件.铁碳合金中的基本相奥氏体的组织与铁素体相似,但晶界较为平直,且常有孪晶存在.铁碳合金中的基本相3,渗碳体(Cementite)渗碳体是铁和碳形成的具有复杂结构的金属化合物,用化学分子式"Fe3C"表示.它的碳质量分数Wc=6.69%,熔点为1227℃,质硬而脆,耐腐蚀.用4%硝酸酒精溶液浸蚀后,在显微镜下呈白色,如果用4%苦味酸溶液浸蚀,渗碳体呈暗黑色.铁碳合金中的基本相渗碳体是钢中的强化相,根据生成条件不同渗碳体有条状,网状,片状,粒状等形态,它们的大小,数量,分布对铁碳合金性能有很大影响.铁碳合金中的基本相总结:在铁碳合金中一共有三个相,即铁素体,奥氏体和渗碳体.但奥氏体一般仅存在于高温下,所以室温下所有的铁碳合金中只有两个相,就是铁素体和渗碳体.由于铁素体中的含碳量非常少,所以可以认为铁碳合金中的碳绝大部分存在于渗碳体中.这一点是十分重要的.铁和碳可以形成一系列化合物,如Fe3C,Fe2C,FeC等,有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图, 此时相图的组元为Fe和Fe3C._由于实际使用的铁碳合金其含碳量多在5%以下,因此成分轴从0~6.69%.所谓的铁碳合金相图实际上就是Fe—Fe3C相图.铁碳相图和铁碳合金(二)图6 Fe-Fe3C相图单相区——5个相图中有5个基本的相,相应的有5个相区:液相区(L)——ABCD以上区域δ固溶体区——AHNA奥氏体区(γ)——NJESGN铁素体区(α)——GPQ以左渗碳体区(Fe3C)——DFK直线两相区——7个7个两相区分别存在于两个相应的单相区之间:L+δ——AHJBAL+γ——BJECBL+ Fe3C——DCFDδ+γ——HNJHγ+α——GPSGγ+Fe3C——ESKFCEα+ Fe3C——PQLKSP三相区——3个包晶线——水平线HJB(L+δ+γ)共晶线——水平线ECF(L+γ+Fe3C)共析线——水平线PSK(γ+α+Fe3C)相图中一些主要特性点的温度、成分及其意义列于表1。
表1 Fe-Fe3C相图中的特性点符号T /℃ C %说明A15380纯铁的熔点B14950.53包晶转变时液相成分C1148 4.30共晶点D1227 6.67渗碳体的熔点E1148 2.11碳在γ-Fe中的最大溶解度F1148 6.67渗碳体的成分G9120纯铁α↔γ转变温度H14950.09碳在δ-Fe中的最大溶解度J14950.17包晶点K727 6.67渗碳体的成分N13940纯铁γ↔δ转变温度P7270.0218碳在α-Fe中的最大溶解度S7270.77共析点6000.0057600˚C碳在α-Fe中的溶解度Q2007×10-7200˚C碳在α-Fe中的溶解度Fe-Fe3C相图包含三个恒温转变:包晶、共晶、共析。
包晶转变发生在1495℃(水平线HJB),反应式为:式中L0.53——含碳量为0.53%的液相;δ0.09——含碳量为0.09%的δ固溶体;γ0.17——含碳量为0.17%的γ固溶体,即奥氏体,是包晶转变的产物。
含碳量在0.09~0.53%之间的合金冷却到1495℃时,均要发生包晶反应,形成奥氏体。
共晶转变发生在1148℃(水平线ECF),反应式为:共晶转变的产物是奥氏体与渗碳体的机械混合物,称为莱氏体,用符号L d表示。
凡是含碳量大于2.11%的铁碳合金冷却到1148℃时,都会发生共晶反应,形成莱氏体。
共析转变发生727℃(水平线PSK),反应式为:共析转变的产物是铁素体与渗碳体的机械混合物,称为珠光体,用字母P表示。
含碳量大于0.0218%的铁碳合金,冷却至727℃时,其中的奥氏体必将发生共析转变,形成珠光体。
Fe-Fe3C相图中的ES、PQ、GS三条特性线也是非常重要的,它们的含义简述如下:ES线是碳在奥氏体中的溶解度曲线。
奥氏体的最大溶碳量是在1148℃时,可以溶解2.11%的碳。
而在727℃时,溶碳量仅为0.77%,因此含碳量大于0.77%的合金,从1148℃冷到727℃的过程中,将自奥氏体中析出渗碳体,这种渗碳体称为二次渗碳体(Fe3C II)。
PQ线是碳在铁素体中的溶解度曲线。
727℃时铁素体中溶解的碳最多(0.0218%),而在200℃仅可以溶解7×10-7%C。
所以铁碳合金由727℃冷却到室温的过程中,铁素体中会有渗碳体析出,这种渗碳体称为三次渗碳体(Fe3C III)。
由于三次渗碳体沿铁素体晶界析出,因此对于工业纯铁和低碳钢影响较大;但是对于含碳量较高的铁碳合金,三次渗碳体(含量太少)可以忽略不计。
GS线是冷却过程中,奥氏体向铁素体转变的开始线;或者说是加热过程中,铁素体向奥氏体转变的终了线(具有同素异晶转变的纯金属,其固溶体也具有同素异晶转变,但其转变温度有变化)。
铁碳相图和铁碳合金(三)根据铁碳合金的含碳量及组织的不同,可以分为纯铁、钢和白口铁三类。
图7 Fe-Fe3C合金分类1.纯铁——含碳量<0.0218%,显微组织为铁素体。
2.钢——含碳量0.0218%~2.11%,特点是高温组织为单相奥氏体,具有良好的塑性,因而适于锻造。
根据室温组织的不同,钢又可以分为:亚共析钢(Hypo-eutectoidsteel):含碳量0.0218%~0.77%,具有铁素体α+珠光体P的组织,且含碳量越高(接近0.77%),珠光体的相对量越多,铁素体量越少。