第六章 抽样分布

合集下载

第6章抽样与抽样分布

第6章抽样与抽样分布
随机变量的分布的可加性 设相互独立的随机变量X ,Y均
服从某种分布,若它们的和X Y也 服从同一种分布(参数有所不同),我们 就称该分布具有可加性.
1.设X ,Y独立,且X ~ B(m, p),Y ~ B(n, p),
则X Y ~ B(m n, p)
2.设X ,Y独立,且X ~ P(1),Y ~ P(2 ),
定义2 从总体中抽出的一部分个体叫样本(子 样).样本中所含个体的数目叫做样本容量.样本所 取的值叫做样本值.
由于抽样具有随机性,所以样本是一组随机变量 (或随机向量).
一个容量为n的样本记为
X1, X2,, Xn
样本值记为
(x1,x2, xn)
抽样方法满足的条件:
(1) 随机性
(2) 独立性
(2)显然P( X x2 ) 0.01
由对称性得 : P( X x2 ) 0.005
查表得: x2 t0.005 (10) 3.1693
t分布的性质
(1)其密度函数f(x)为偶函数; (2)当n较大时,其分布很接近正态分布.
(3)t1 (n) t (n) 在n 45时,t (n) u
常用统计量 样本均值
样本方差
X
1 n
n i 1
Xi
S 2
1 n 1
n i 1
(Xi
X
)2
样本标准差
S
1 n 1
n i 1
(Xi
X
)2
样本k阶原点矩 样本k阶中心矩 样本离差平方和
Ak
1 n
n i 1
X
k i
Bk
1 n
n
(Xi
i 1
X )k
n
(Xi X )2

6教育统计学第六章

6教育统计学第六章
S
n
(3)总体非正态分布条件下平均数的显著性检验
① 当 n≥30 时,尽管总体分布非正态,对于平均数的显 著性检验仍可用Z 检验。
Z
X
0(σ
已知)或
Z
X 0( σ 未知)
S
n
n
② 当 n<30 时,若总体分布非正态,对于平均数的显著 性检验不符合近似 Z 检验的条件,严格讲此时也不符合t 检验 的条件。
计算其置信区间:
X t SX (其X 中 t SX
2
2

SX
S n
小样本的情况
例如,从某小学二年级随机抽取12名学生,其阅读能 力得分为28、32、36、22、34、30、33、25、31、33、 29、26.试估计该校二年级阅读能力总体平均数95%和 99%的置信区间。
X 29.917 , S 4.100 , X 3.926
三、样本平均数与总体平均数离差统计量的形态
从正态总体中随机抽取样本容量为n的一切可 能样本平均数以总体平均数为中心呈正态分布。
当总体标准差已知时:
Z
X
X
X
n
当总体标准差未知时:
N (0,1)
总体标准差 的无偏估计量为
S (X X )2 n 1
S S X
X 2 ( X )2 / n
抽样分布是统计推断的理论依据。实际中只能抽取一个 随机样本根据一定的概率来推断总体的参数。即使是抽取一 切可能样本,计算出的某种统计量与总体相应参数的真值, 大多也是不相同的,这是由于抽样误差的缘故。抽样误差用 抽样分布的标准差来表示。因此,某种统计量在抽样分布上 的标准差称为该种统计量的标准误。
标准误越小,表明样本统计量与总体参数的值越接近, 样本对总体越有代表性,用样本统计量推断总体参数的可靠 度越大,所以标准误是统计推断可靠性的指标。

统计学第6章统计量及其抽样分布

统计学第6章统计量及其抽样分布

整理ppt
16
2. T统计量
设X1,X2,…,Xn是来自正态总体N~ (μ,σ2 )
n
的一个样本,
X
1 n
n i 1
Xi
(Xi X )2 s 2 i1
n 1
则 T(X) ~t(n1)
S/ n
称为T统计量,它服从自由度为(n-1)的t分布。
整理ppt
17
F分布
定义:设随机变量Y与Z相互独立,且Y和Z分别服 从自由度为m和n的c2分布,随机变量X有如下表达式:
整理ppt
8
中心极限定理
设从均值为,方差为2的一个任意总 体中抽取容量为n的样本,当n充分大时, 样本均值的抽样分布近似服从均值为μ、 方差为σ2/n的正态分布。
当样本容量足够大时
(n≥30),样本均值的抽样
分布逐渐趋于正态分布
整理ppt
9
标准误差
标准误差:样本统计量与总体参数之间的平均差异
1. 所有可能的样本均值的标准差,测度所有样本 均值的离散程度
因此,估计这100名患者治愈成功的比 例在85%至95%的概率为90.5%
整理ppt
22
6.5 两个样本平均值之差的分布

X
1
是独立地抽自总体
X1 ~N(1,12)
的一个容量
为n1的样本的均值。 X 2 是独立地抽自总体
X2 ~N(2,22)的一个容量为n2的样本的均值,则有
E (X 1X 2)E (X 1) E (X 2)12
2. 样本均值的标准误差小于总体标准差
3. 计算公式为
x
n
整理ppt
10
【例】设从一个均值μ=8、标准差σ=0.7的总 体中随机抽取容量为n=49的样本。要求:

抽样分布课件

抽样分布课件

第5章 抽样和抽样分布
为了便于抽取样本单位,一般在明确抽样框的条件下,对总 体的每个单位都要编号,然后用抽签式或利用《随机数字表》进 行抽取。(p47)
例如:N=500 n=10
编码从1-500号
在随机数表中随意点二个数字,得到54-50=4行,34列。则选取 的号码从这个被选中的数开始,由于500是个三位数,则小于500 的连续三位数即为中选号码。见表中所示。
第5章 抽样和抽样分布
机 字 随 数 表
9745238942 1276465909 9874763642 2659305984 676587006 1676587006 0377797684 9877808423 2778006869 2133768790 8262130892 3286548900 8084634212 4332657790 7963645324 9087434329 . . . 3489962435 9866332890 8036522364 7065436387 1327690879 769087 1327690879 9535443208 9535443208 2148990085 7065 7065432549 0656433223 2437909854 2376987667 2137860769 8800523267 4379734343 3874856049 . . . 1287087765 2136217721 9878764346 4890832769 2164896589 6476793243 6476793243 4387005345 2164878454 2176590879 2167608965 3254776907 3243 3243700435 2187799990 1358787008 2125749768 . . . 7077434431 1422890012 0874321123 0437 0437575967 132577995 2132577995 4365789796 4365789796 4358650841 9343252534 4387670769 4637567488 2365879048 8765980234 1268803235 9323314766 2366897431 . . . 9424252386 4879903443 2177609554 2177609554 487975 2148797544 2148797544 7537697997 1254876987 1254876987 6743219845 3248906034 0765433245 8707867698 7694432767 9094232155 0232337932 0362212379 3478794235 . . .

第六章 统计量及其抽样分布

第六章 统计量及其抽样分布

样本均值的抽样分布
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概率分 布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。 总体的均值、方差及分布如下

第 一
16个样本的均值(x)

第二个观察值
观 察值1 2
3
4
11
1.
20.

52. 0.
5
21
2.
25.

03. 5.
0
23
2.
30.

53. 0.
5
24
3.
35.

04. 5.
0
.3 P (X ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
第六章 统计量及其抽样分布
抽样理论依据: 1、大数定律 (1)独立同分布大数定律:证明当N足够大时,平均数据有稳定性,为用样本平 均数估计总体平均数提供了理论依据。 (2)贝努力大数定律:证明当n足够大时,频率具有稳定性,为用频率代替概率 提供了理论依据 2、中心极限定律 (1)独立同分布中心极限定律:设从均值为u、方差为s2(有限)的任意一个总体 中抽取样本量为n的样本,但n充分大时,样本均值X的抽样分布近似服从均值为u, 方差为s2/n的正态分布。 (2)德莫佛-拉普拉斯中心极限定律:证明属性总体的样本数和样本方差,在n足 够大时,同样趋于正态分布。
(central limit theorem)

统计学第六章抽样和抽样分布

统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布

第六章_抽样分布及总体平均数的推断

第六章_抽样分布及总体平均数的推断
.
第四节 总体平均数的显著性检验
总体平均数的显著性检验是指对样本平 均数与总体平均数之间的差异进行的显著性 检验。若检验的结果差异显著,可以认为该 样本不是来自当前的总体,而来自另一个、 与当前总体存在显著差异的总体。即,该样 本与当前的总体不一致。
.
一、总体平均数显著性检验的原理
检验的思路是:假定研究样本是从平均 数为μ的总体随机抽取的,而目标总体的平 均数为μ0,检验μ与μ0之间是否存在差异。 如果差异显著,可以认为研究样本的总体不 是平均数为μ0的总体,也就是说,研究样本 不是来自平均数为μ0的总体。
Xt11 0.01
S n 1
Xt11 0.01
S n 1
2
2
2.9 9 1 3 .1 7 0 3 .9 62 6 2.9 9 1 3 .1 7 0 3 .9 62
1 1 2
1 1 2
2.6 240 3.3 594 .
③总体正态,σ未知,大样本
平均数的抽样分布接近于正态分布,
用正态分布代替t分布近似处理:
XZ
2
SnXZ 2
S n
(9.3)
.
例题3:从某年高考中随 机抽取102份作文试卷,算得 平均分数为26,标准差为1.5, 试估计全部考生作文成绩95 %和99%的置信区间。
.
解:学生高考分数假定是从正态总体 中抽出的随机样本,而总体的标准差σ未 知,样本平均数与总体平均数离差统计量 呈t分布。但是由于样本容量较大
从呈t分布。
于是需用t分布来估计该校三年级学生阅
读能力总体平均数95%和99%的置信区间。
.
由原始数据计算出样本统计量为
X 29.917
S3.926
当P=0.95时, t11 2.201 0.0 5

第6章抽样分布与参数估计

第6章抽样分布与参数估计

抽样分布反映了依据样本计算出来的统计量数值的概率分布,这是科 学地进行统计推断的基础。例如,在大样本场合,由中心极限定理有样 本均值趋于正态分布。
★ 讨论题 为什么说抽样分布是抽样理论研究的对象,解释三种分布之 间的联系。
/3:22
《统计学教程》
第6章 抽样分布与参数估计
6.1 抽样分布
6.1.4 样本均值的抽样分布 1.大样本场合下的样本均值抽样分布
总体(Population)是指所研究的事物及其现象的全体,由该事物及 其现象的全部个体组成。
个体(Item Unit)是指构成总体的元素。 总体容量(Population Size)是指构成总体的全部个体的数量。
样本(Sample)是指从总体抽取的若干个体构成的集合。 抽样(Sampling)是指按照具体的抽样方法和抽样设计,从总体中抽 取若干个体的过程。 样本容量(Sample size)是指构成样本的全部个体的数量。
ln i mPnnA
PA
1
(6.1)
贝努利定理表明事件发生的频率依概率收敛于事件发生的概率。从而 以严格的数学形式表述了频率的稳定性特征,即n当很大时,事件发生 的频率与概率之间出现较大的偏差的可能性很小。由此,在n充分大的 场合,可以用事件发生的频率来替代事件的概率。
/3:22
《统计学教程》
第6章 抽样分布与参数估计
在反复抽取容量相同的独立同分布样本条件下,所得到的样本均值的 概率分布称为样本均值的抽样分布。在样本容量充分大的情况下,即大 样本场合,样本均值依据中心极限定理趋于正态分布。
所谓独立同分布样本为从无限总体中随机抽取的等概样本,或从有限 总体中以放回方式,随机抽取的等概样本。
所谓大样本是指能够满足中心极限定理要求,使样本均值趋于正态分 布的样本容量。在统计实践中一般称样本容量大于30即为大样本这只是 一个粗略的经验数值。

第6章_统计量及其抽样分布

第6章_统计量及其抽样分布
【例】设X~N(0,1),求以下概率: (1) P(X <1.5) ;(2) P(X >2); (3) P(-1<X 3) ; (4) P(| X | 2)
解:(1) P(X <1.5) = (1.5)=0.9332
(2) P(X >2)=1- P(2 X)=1-0.9973=0.0227 (3) P(-1<X 3)= P(X 3)- P(X <-1)
标准正态分布函数
1. 任何一个一般的正态分布,可通过下面的线性 变换转化为标准正态分布
Z X ~ N (0,1)
2. 标准正态分布的概率密度函数
(x)
1
x2
e2
,
x
2
3. 标准正态分布的分布函数
x
x
(x) (x)dt
1
t2 -
e 2 dt
均值和方差
总体分布
N
Xi
i1 2.5
N
N
(Xi )2
2 i1
6.1.2 常用统计量
• 样本矩 : • 设x1,x2,…,xn是一个大小为n的样本,对自
然数 k,分别称
为k阶
样本原点矩和k阶样本中心矩, 统称为样本 矩。许最常用的统计量,都可由样本矩构 造。例如,样本均值 (即α1)和样本方差
6.1.3 次序统计量
• 把样本X1,x2,…,xn由小到大排列,得
4. 结果来自容量相同的所有可能样本
6.2.2 渐进分布
• 由于寻找精确的抽样分布有困难,统计学 者转而研究当样本大小 n→∞时统计量的渐 近分布(即极限分布),这种研究是数理统计 大样本理论的基础性工作。
6.2.3 随机模拟获得的近似分布

抽样分布与参数估计总结

抽样分布与参数估计总结

总体参数的估计区间,称为置信区间。
统计学原理
置信度
如果将构造置信区间的步骤重复多次,置信区
间中包含总体真值的次数所占的比例称为置信 水平(Confidence Level)。
也称为置信度或置信系数 (Confidence Coefficient)。
统计学原理
置信度与置信区间的关系
统计学原理
两个总体参数—比例之差
比例之差:大样本下,服从正态分布。 在估计时使用样本标准差替代。
统计学原理
两个总体的方差比
样本方差比的抽样分布为F分布 其中 第一自由度为n1-1,第二自由度为n2-1
2 s12 2 2 ~ F n1 1, n2 1 2 s2 1
统计学原理
例题:关于扑克牌的游戏
从一副扑克牌(52张)中,有放回地抽
出30张,其平均点数的分布规律如何?
如果以点数来赌胜负,什么区间的胜率
是95%?
统计学原理
统计学原理
第二节 参数估计
主要讨论总体平均数的 参数估计
统计学原理
参数估计的一般问题
参数估计:用样本统计量去估计总体的参
数。
统计学原理
计算结果
计算样本平均数:X=39.5 计算样本标准差:s=7.7736 令:总体标准差=样本标准差,计算抽样误差为
1.2956 95%置信度对应的T值为1.96 得总体平均数的置信区间为:
o 上限:39.5+1.96×1.2956=42.04 o 下限:39.5-1.96×1.2956=36.96
N=200时的抽样分布
Std. Dev = 2.23 Mean = 46.24 N = 200.00

概率论第六章样本及抽样分布

概率论第六章样本及抽样分布
2 1 2 2
本相互独立,记
1 n1 X Xi n1 i 1 1 n2 Y Yi n2 i 1
则有 ⑴
2 1 2 2 2 1 2 2
1 n1 S12 ( X k X )2 n1 1 k 1 1 n2 2 S2 (Yk Y ) 2 n2 1 k 1
S / ~ F (n1 1, n2 1) S /
⑵ 当 时
2 1 2 2 2
X Y ( 1 2 ) ~ N (0,1) 1 1 n1 n2
(n1 1) S12

2 1

2 (n2 1) S2

2 2
~ 2 (n1 n2 2)
X Y ( 1 2 ) ~ t (n1 n2 2) 1 1 S n1 n2
2
又因为
(n 1)S 2

2
~ (n 1)
2
X n1 X n
故 Y

(n 1) S 2
n n 1 ~ t (n 1) /(n 1)

2
X n1 X n Y S
n ~ t (n 1) n 1
例4
设总体X , Y 相互独立 X ~ N (0,32 ) , Y ~ N (0,32 ) ,
2
X n1 X n n X 1 , X 2 ,, X n , X n1 , 求 Y 的分布 . S n 1 1 n 1 n 2 2 其中 X n X i , S ( Xi X n ) n i 1 n 1 i 1
1 2 解 由已知得 X n1 ~ N ( , ) , X n ~ N ( , ) , n n 1 2 所以 X n1 X n ~ N (0, ) n n 标准化得 X n1 X n ~ N (0,1) n 1

应用统计学第6章 抽样分布与参数估计

应用统计学第6章 抽样分布与参数估计

μx
6. 3抽样分布
多大是足够的大?
6. 3抽样分布
例子
假设总体的平均数μ = 8 且标准差σ = 3. 假 设选中容量n = 36随机样本。
样本平均数介于7.8和8.2之间的概率是多少?
第6章 6. 3抽样分布
例子
(续)
结论:
即使总体非正态分布, 中心极限定理可以应用 (n > 30)
6.2 抽样误差
样本统计量和对应的总体参数之间的差异,称之为抽 样误差。
抽样误差的产生是由于抽样的非全面性和随机性所引 起的,是偶然性误差。
非抽样误差
抽样框误差 系统性误差 测量误差 登记误差
6. 3抽样分布
6. 3抽样分布
6.3.1 样本均值的抽样分布
6. 3抽样分布
1.样本均值的均值
样)
6. 3抽样分布
p的抽样分布
近乎正态分布分布,如果:
n 5
P( ps)
抽样分布
.3

.2
.1
n(1 ) 5
0 0 . 2 .4 .6
p
81
μ 其中 p
π

π(1 π)
σp
n
(其中 π = 总体比例)
6. 3抽样分布
比例的Z值
使用公式将p标准化为Z值:
p
Z
σp
p (1 )
n
在判断样本中,我们得到预先选好的专家就主题 发表的意见。
6.1 抽样理由和抽样方法
样本类型:概率样本
在概率样本中, 样本中条目的选择基于已知的概率。
概率样本
简单 随机样本
系统样本
分层样本 群样本
6.1 抽样理由和抽样方法

第6章抽样分布

第6章抽样分布

* * Xm 的分布已知,故可求出 X 函数的分布,设 m
所以 n! 1 m 1 nm hm ( y ) f ( x)[1 F ( x)] [ F ( x)] (n m)!(m 1)! f ( x) n! y m 1 (1 y ) n m , (n m)!(m 1)! 0 y 1, m 1 ~ n
所以
X 的特征函数为
2 2 t / n iat / n x t exp 2
n
t 2 2 exp iat 2 n
可见 X ~ N ( a,
2
n
) 分布。
(二)样本均值的极限分布 定理:设 X1, X2,…,Xn来自一般总体X,且E(X)=a,
若总体X为连续型随机变量,其密度函数为f (x),则(X1,X2,…,Xn) 的联合密度函数为
§6-2 样本分布
一、频率直方图
二、样本分布函数
如果我们从随机变量X的总体中抽取了一个样本,把样本的n个值
* * * x1,x2,…, xn加以排队 x1 ,并把它看成是某个离散 x2 xn 随
1 n 2 S (Xi X ) n i 1 2 2
_

1 n S* (Xi X ) n 1 i 1
2
2 2 2、设X ~ N ( a1 , 1 ), Y ~ N ( a2 , 2 ), X 1 , X 2 ,..., X n1 及Y1 , Y2 ,..., Yn 2 分别为

t 1 式中 ( ) 是 X 的特征函数。 n nn n 1 证: X X i 1 X i ,且 1 X , 1 X ,, 1 X 相互独立 1 2 n n i 1 i 1 n

第六章样本及抽样分布

第六章样本及抽样分布

P
2 2 (n)
2 (n)
f
(
y)dy
的点2 (n)为2(n)分布的上分位点,
如图所示.
2
(n)可通过查表求,例
02.1(25) 34.382.
2
(
n)
2、t 分布
定义: 设X~N(0,1) , Y~ 2(n) , 且X与Y相互
独立,则称变量
t X Yn
所服从的分布为自由度为 n的 t 分布.
即学生年龄的取值有一定的分布.
总体分布为
年龄 15 16 17 18 19 20 比率 9 21 132 1207 588 43
2000 2000 2000 2000 2000 2000
由于每个个体的出现是随机的,所以相应的数量指 标的出现也带有随机性 . 从而可以把这种数量指标看 作一个随机变量X ,因此随机变量X的分布就是该数 量指标在总体中的分布.
Xi
它反映了 总体均值 的信息
S 2
1 n1
n i 1
(Xi
X )2
n
1
1
n
X
2 i
i 1
nX
2
样本标准差
S
n
1
n
1
(
i 1
X
i
X
)2
样本k阶原点矩
Ak
1 n
n i 1
X
k i
k=1,2,…
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶矩的信息
它反映了总体k 阶 中心矩的信息
1. 代表性: X1,X2,…,Xn中每一个与所考察的总体有 相同的分布.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章抽样分布
(一)判断题
1、样本统计量是对样本的一种数量描述。

()
2、样本统计量是对样本的一种数量描述。

()
3、样本均值的期望值等于总体均值。

()
4、样本均值与总体均值之间的差被称为抽样误差。

()
5、样本方差的抽样分布服从T 分布。

()
(二)单项选择题
1、某工厂生产的零件出厂时每200个装一盒,这种零件分为合格与不合格两类,合格率约为99%,设每盒中的不合格数为X,则X通常服从()。

A.正态分布
B.二项分布
C.泊松分布
D.超几何分布
2、总体的均值为100,标准差为20,从总体中抽取一个容量为50的样本,则样本均值的标准差为()。

A.2.83
B.20
C.30
D.5
3、中心极限定理表明,来自于任意分布的样本均值的分布为()。

A.正态分布
B.正态分布
C.只有大样本情况下为正态分布
D.只有小样本情况下为正态分布
4、某班同学某课程考试中的平均得分为70,标准差为3分,从该班学生中随机抽取36名,并计算他们的平均成绩,则平均分超过71分的概率为()。

A.0.1293
B.0.4755
C.0.0228
D.0.3507
5、总体均值为10,标准差为5。

从该总体中抽取容量为25的随机样本,则样本均值的抽样分布为()。

A.N(10, 1)
B.N(10, 5)
C.N(5, 1)
D.N(5, 5)
6、某班学生的年龄分布为右偏的,均值为20,标准差为3,如果采取重复抽样的方法从该班抽取容量为100的样本,则样本均值的抽样分布为()。

A.正态分布,均值为20,标准差为0.3
B.分布形状未知,均值为20,标准差为0.3
C.正态分布,均值为20,标准差为3
D.分布形状未知,均值为20,标准差为3
7、如果从总体中抽取的样本不能很好的代表总体,则此样本成为()。

A.推断样本
B.经验样本
C.有偏样本
D.统计样本
8、样本统计量的概率分布被称为()。

A.抽样分布
B.样本分布
C.总体分布
D.正态分布
(三)多项选择题
1、下列说法中正确的是()。

A.样本统计量不同于相应的总体参数,它们之间的差被称为抽样误差
B.当样本容量n增加时,均值的标准差会减少
C.如果总体不服从正态分布,从此总体中抽取容量为n(n<30)的样本,则样本均值服从正态分布
D.抽样推断就是用样本信息推断总体信息
2、假设总体为均匀分布,从该总体中抽取容量为50的样本,则样本均值的抽样分布()。

A.服从均匀分布
B.近似正态分布
C.可能服从正态分布
D.无法确定
3、抽样误差是指()。

A.抽样实际误差
B.系统性误差
C.抽样平均误差
D.抽样极限误差
4、利用中心极限定理处理样本均值的抽样分布时,不可以忽略的信息()。

A.总体均值
B.总体标准差
C.总体分布形状
D.样本容量
5、下列叙述中正确的是()。

A.样本均值的抽样分布与总体的分布有关
B.样本均值的抽样分布与样本容量有关
C.样本均值的抽样分布与总体的分布无关
D.样本均值的抽样分布总是服从正态分布
(四)填空题
1、正态分布是一种图形为_______的分布。

它是统计学中最重要的分布,应用极为广泛。

2、样本均值的抽样分布服从__________分布。

3、样本方差的抽样分布服从__________分布。

4、样本方差比的抽样分布服从__________分布。

(五)计算题
1、若自样本均值为100,标准差为20的无限总体中抽取容量为90的样本,试回答下列问题:要求:
(1)样本均值为多少?
(2) 样本标准差为多少?
(3)样本均值的抽样分布是什么?
(4)样本均值超过101的概率是多少?
2、某公司有400人,平均工龄为10年,标准差为3年。

现随机抽出50名组成一个随机样本,试问样本中工作人员的平均工龄不低于9年的概率有多大
ANSWER 6
(一)判断题
1.(√)
2.(×)
3.(√)
4.(√)
5.(×)
(二)单项选择题
1.③
2. ①
3. ③
4. ③
5. ①
6. ①
7. ③
8. ①
(三)多项选择题
1. ①②④
2. ②③
3. ①②③④
4. ①②④
5. ①②
(四)填空题
1.单峰钟形对称2.正态分布3.卡方分布4.F 分布
(五)计算题。

相关文档
最新文档