函数综合练习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数综合练习题

一. 选择题:

二.填空题:

3、已知函数)(x f y =的图象关于直线1-=x 对称,且当0>x 时,1

)(x

x f =则当

2-

________________。

4.已知)11(x x f -+=2

2

11x

x +-,则)(x f 的解析式可取为 5.已知函数1

()2

ax f x x +=

+在区间()2,-+∞上为增函数,则实数a 的取值范围_____(答:1

(,)2

+∞); 6.函数y=245x x --的单调增区间是_________.

三.简答题:

1、已知二次函数)(x f 满足564)12(2+-=+x x x f ,求)(x f

2.已知(21)y f x =-的定义域是(-2,0),求(21)y f x =+的定义域(-3

21

22

+-+=

x x x y 的值域]2133,2133[+- (2)如 4

4y x x =+

+,

求(1)[3,7]上的值域 (2)单调递增区间(x ≤0或x ≥4)

4.已知2()82,f x x x =+-若2()(2)g x f x =-试确定()g x 的单调区间和单调性. 解:222()82(2)(2)g x x x =+---4228x x =-++,3()44g x x x '=-+, 令 ()0g x '>,得1x <-或01x <<,令 ()0g x '<,1x >或10x -<< ∴单调增区间为(,1),(0,1)-∞-;单调减区间为(1,),(1,0)+∞-.

5.已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有

1212()()()f x x f x f x ⋅=+,且当1x >时()0,(2)1f x f >=,

(1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数;(3)解不等式2(21)2f x -<. 解:(1)令121x x ==,得(1)2(1)f f =,∴(1)0f =,令121x x ==-,得∴(1)0f -=, ∴()(1)(1)()()f x f x f f x f x -=-⋅=-+=,∴()f x 是偶函数. (2)设210x x >>,则

221111()()()()x f x f x f x f x x -=⋅

-221111

()()()()x x

f x f f x f x x =+-= ∵210x x >>,∴

211x x >,∴21

()x

f x 0>,即21()()0f x f x ->,∴21()()f x f x > ∴()f x 在(0,)+∞上是增函数. (3)

(2)1f =,∴(4)(2)(2)2f f f =+=,

∵()f x 是偶函数∴不等式2(21)2f x -<可化为2(|21|)(4)f x f -<,

又∵函数在(0,)+∞上是增函数,∴2|21|4x -<,解得:22

x -

<<,

即不等式的解集为(22

-.

6.已知函数x

a

x x x f ++=2)(2).,1[,+∞∈x 若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a

的取值范围。

[解析] 02)(2>++=

x

a

x x x f 在区间),1[+∞上恒成立;∴022>++a x x 在区间),1[+∞上恒成立;∴a x x ->+22在区间),1[+∞上恒成立; 函数x x y 22+=在区间),1[+∞上的最小值为3,∴3<-a 即3->a

7.已知奇函数)(x f 是定义在)2,2(-上的减函数,若0)12()1(>-+-m f m f ,求实数m 的取值范围。 [解析]

)(x f 是定义在)2,2(-上奇函数∴对任意x ∈)2,2(-有()()f x f x -=-

由条件0)12()1(>-+-m f m f 得(1)(21)f m f m ->--=(12)f m -

)(x f 是定义在)2,2(-上减函数∴21212m m ->->->,解得1223

m -<< ∴实数m 的取值范围是12

23m -

<<

8.设函数f(x)是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f(2a 2+a+1)

[解析]设0

∴f(-x 2)

.03

2

)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又

由f(2a 2+a+1)3a 2-2a+1.解之,得0

9.已知函数f(x)= - x 2+2ax+1-a 在0≤x ≤1时有最大值2,求a 的值。 解:f(x)= -(x-a)2+a 2-a+1(0≤x ≤1),对称轴x=a 10 a<0时,121)0()(max -=∴=-==a a f x f

20 0≤a≤1时)

(

2

5

1

2

1

)

(

)

(2

max

±

=

=

+

-

=

=a

a

a

a

f

x

f

30 a>1时,2

2

)1(

)

(

max

=

=

=

=a

a

f

x

f

综上所述:a= - 1或a=2

10.已知关于x的二次方程x2+2mx+2m+1=0

(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围。

(2)若方程两根在区间(0,1)内,求m的范围。

思维分析:一般需从三个方面考虑①判别式Δ②区间端点函数值的正负③对称轴

a

b

x

2

-

=与区间相对位置。

f(x)=x2+2mx+2m+1

(1)由题意画出示意图

2

1

6

5

5

6)1(

2

)1

(

1

2

)0(

-

<

<

-

>

+

>

=

-

<

+

=

⇔m

m

f

f

m

f

2

1

2

1

1

-

<

-

⎪⎩<

-

<

m

m

(2)

11:方程k

x

x=

-

2

3

2在(- 1,1)上有实根,求k的取值范围。

宜采用函数思想,求)1

1

(

2

3

)

(2<

<

-

-

=x

x

x

x

f的值域。)

2

5

,

16

9

[-

k

12.已知函数22

()(21)2

f x x a x a

=--+-与非负x轴至少有一个交点,求a的取值范围.解法一:由题知关于x的方程22

(21)20

x a x a

--+-=至少有一个非负实根,设根为

12

,x x

12

x x≤或

12

12

x x

x x

∆≥

>

⎪+>

,得

9

4

a

≤≤.

相关文档
最新文档