流体力学流动阻力和能量损失教学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 流动阻力和能量损失
§4.1 沿程损失和局部损失 §4.2 层流与紊流、雷诺数 §4.3 圆管中的层流运动 §4.4 紊流运动的特征和紊流阻力 §4.5 尼古拉兹实验 §4.6 工业管道紊流阻力系数的计算公式 §4.7 非圆管的沿程损失 §4.8 管道流动的局部损失 §4.9 减小阻力的措施
单位重量流体的
所以流动为紊流流态。
1 1.79106
保持层流的最大流速是临界流速:
vc
Re
c
1
d
2000 1.79106 0.1
0.0358
m/s
(2)油的流动雷诺数 Re Vd 0.5 0.1 1677 2000
所以流动为层流流态。 2 30 106
油流动保持为层流的最大流速:
vc
Re
c
2
d
2000 30106 0.1
D
hj
v vcr 流动较稳定
C
v vcr 流动不稳定
B
A
2、临界流速
vcr ——下临界流速(紊流过渡到O 层流状vr c 态下v’的cr 流体v 速度)
vcr ——上临界流速(层流过渡到紊流状态下的流体速度)
层 流: v vcr
不稳定流: vcr v vcr
紊 流: v vcr
§层流、紊流和雷诺数
所以流动为紊流流态。
(2)风道的临界流速:
vc
Rec d
2000 16.6106 0.2
0.166
m/s
§层流、紊流和雷诺数
四、流态分析
层流:规则流层 滑动摩擦阻力 大得多
紊流:质点掺混碰撞 滑动摩擦阻力,惯性阻力
流体的流动状态是层流还是紊流,对于流场的速度分布、 产生阻力的方式和大小,以及对传热传质过程和动量传递 规律等都各不相同,所以在研究这些问题之前,首先需要 判别流体的流动是属于哪一种状态。
§层流、紊流和雷诺数
例4.1
和 2
水3和0 油10的6运m动2 /粘s 度,分若别它为们1以1v.=790.51m0/6sm的2 流/ s速在直径为
d=100mm的圆管中流动,试确定其流动形态;若使流动保持
为层流,最大流速是多少?
解: (1)水的流动雷诺数 Re vd 0.5 0.1 27933 2000
第二节 层流和紊流、雷诺数
一、雷诺实验
1883年英国物理学家雷诺在与 图4-2类似的装置上进行了实验。 试验时,水箱A内水位保持不变, 阀门C用于调节流量.容器D内 盛有容重与水相近的颜色水,经 细管E流入玻璃管,阀门F用于控 制颜色水流量。
当管B内流速较小时,管内颜色水成一股细直的流束,这表明各液 层间毫不相混。这种分层有规则的流动状态称为层流。当阀门F逐 渐开大流速增加到某一临界流速时,颜色水出现摆动,继续增大流 速,则颜色水迅速与周围清水相混,这表明液体质点的运动轨迹是 极不规则的,各部分流体互相剧烈掺混.这种流动状态称为紊流。
当Re较小时粘性力作用大,对质点运动起约束作用,流体 质点表现为有秩序互补掺混的层流状态。
当Re>Recr时,惯性力起主导作用,粘性力控制减弱,不足以 控制和约束外界扰动,惯性力将微小扰动不断扩大,形成紊流。
3、临界雷诺数 雷诺数 Re vd vd
Re cr 2320 ——下临界雷诺数
Recr 13800 ——上临界雷诺数
工程上常用的圆管临界雷诺数
层 流: Re Re cr 不稳定流: Re cr Re Recr 紊 流: Re Recr
Re cr 2000 层 流: Re 2000 紊 流: Re 2000
§层流、紊流和雷诺数
[惯性力]=[m][a] [][L]3[L] /[T ]2 [][L]2[v]2
[粘性力] [][A] du [][L]2[v]/[L] [][L][v]
dn
[惯性力] [粘性力]
[ ][L]2 [v]2 [ ][L][v]
[][L][v] []
[Re]
雷诺数物理意义:雷诺数反映了惯性力和粘性力的对比关系。 因此可用来判别流态。
2、局部水头损失
hm
v2 2g
hm ——单位重力流体的局部能量损失。
——局部损失系数 v2 ——单位重力流体的动压头(速度水头)。
2g
用压强损失表示:
pf
l
d
v 2
2
pm
v 2
2
三、总能量损失
整个管道的能量损失是分段计算出的能量损失的叠加。
hl12 hf hm
hl12——总能量损失(水头损失)。
0.6
m/s
§层流、紊流和雷诺数
例4-2 某低速风管道,直径d=200mm,风速v=3. 0m/s ,空气 温度是30ºC。(1)试判断风道内气体的流态;(2)该风道的 临界流速是多少?
解: (1)查表得空气的运动粘滞系数 16.6106 m2 / s
管中流动雷诺数:Re vd 30.2 36150 2000 16.6106
2.局部能量损失
发生在流动状态急剧变化的急变流中的能量损失,即在管 件附近的局部范围内主要由流体微团的碰撞、流体中产生的漩 涡等造成的损失。
二、能量损失的计算公式
1.沿程水头损失
hf
l
d
v2 2g
h f ——单位重力流体的沿程能量损失 ——沿程损失系数 l ——管道长度 d ——管道内径 v2 ——单位重力流体的动压头(速度水头)。 2g
紊流
§层流、紊流和雷诺数
二、沿程损失与流动状态
实验装置
§层流、紊流和雷诺数
实验结果
层流: hf v1.0
紊流: hf v1.75~2.0
结论: 沿程损失与流动状态有关,故
计算各种流体通道的沿程损失,必 须首先判别流体的流动状态。
§层流、紊流和雷诺数
三、流态的判别准则—临界雷诺数
1、实验发现
z1
p1
1v12
2g
z2
p2
2v22
2g
hl12
平均能量损失
固体边壁
速度梯度 流动阻力
粘性
能量损失
一、流动阻力和能量损失的分类
1.沿程阻力 2.局部阻力
沿程能量损失(沿程水头损失) 局部能量损失(局部水头损失)
1.沿程能量损失
发生在均匀流(缓变流)整个流程中的能量损失,由流体的 沿程摩擦阻力造成的损失。
Baidu Nhomakorabea
实验现象
层流:着色流束为一条明晰细小的直线。 表明整个流场呈一簇互相平行的流线, 流动状态分层规则。
过渡状态:着色流束开始振荡摆动。表 明流体质点的运动处于不稳定状态。
紊流:着色流束迅速与周围流体相混, 颜色扩散至整个玻璃管。表明流体质 点作复杂的无规则的运动,各部分流体 互相剧烈掺混。
层流 过渡状态
相关文档
最新文档